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1 Implementation details

1.1 Super Resolution

We adopt the SRGAN architecture [1]1 and train it on only 800 images from
the DIV2K dataset [2], for 1500 epochs with h= 0.1 (for the contextual loss).
Our network is initialized by first training using only the L2 loss for 100 epochs.
We used TensorFlow [3] and Adam optimizer [4] with the default parameters
(β1 = 0.9, β2 = 0.999, ε = 1e− 08).

In the total objective we set: λCX = 0.1, λGAN = 1e − 3, and λL2 = 10. The
images G(s)LF, yLF are low-frequencies obtained by convolution with a Gaussian
kernel of width 21×21 and σ=3. For the Contextual loss feature extraction we
used layer conv3 4 of VGG19 [5]

1.2 Normal Estimation

We chose as architecture the Cascaded Refinement Network (CRN) [6]2 originally
suggested for label-to-image and was shown to yield great results in a variety of
other tasks [7]. For the contextual loss we took as features 5×5 patches of the
normal map (extracted with stride 2) and layers conv1 2, conv2 2 of VGG19. In
our implementation we reduced memory consumption by random sampling of
all three layers into 65×65 features.

In the total objective we set: λCX = 1, and λL2 = 0.1. The normal-maps
G(s)LF, yLF are low-frequencies obtained by convolution with a Gaussian kernel
of width 21×21 and σ = 3. We tested with both λL1 = 1 and λL1 = 0, which
removes the third term.

We will release the code upon acceptance.

? indicate authors contributed equally
1 We used the implementation in https://github.com/tensorlayer/SRGAN
2 Authors release https://github.com/CQFIO/PhotographicImageSynthesis

https://github.com/tensorlayer/SRGAN
https://github.com/CQFIO/PhotographicImageSynthesis
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2 Additional Experiments

A qualitative comparison to pixel-to-pixel losses The popular trend in
training generator networks is to use pixel-to-pixel loss functions such as L1 or
L2 since these directly minimize the PSNR. However, the resulting images are
often considered to be non-realistic by human raters [1,8,9]. To show the benefits
of using a statistical objective, such as the Contextual loss, we designed a simple
experiment on a super-resolution task. The goal of the experiment is to compare
a network trained with the Contextual loss with a network trained with L2 (or
L1) - i.e., one that aims at optimal PSNR.

To do this we chose a simplified super-resolution setup, where we train an
image-specific network, (i.e., training on a single image), to increase the res-
olution of that specific image. This simplified setup essentially tries to overfit
the network to the specific image, in order to reveal the network’s ability to
reconstruct the image under least challenging conditions.

As architecture we adopted SRResNet [1] and trained it with either L1, or
L2, or the Contextual loss as the objective. The features fed to the Contextual
loss were vectorized RGB patches of size 5×5 (stride 2). At each iteration we
compared between the high resolution (HR) target image y and the output of
the network G(s), where s is the low resolution (LR) image. The training data
consisted of random crops (of size 384×384) extracted from a single image (of
size 1072×712). The crops were ×4 down-sampled (to size 96×96) yielding pairs
of LR-HR images. Training lasted 10K iterations.

Results are presented in Figure 1. As can be seen, optimizing the network
with L2 produces blurred high-resolution images. This is in spite of the simplified
problem setup and the loss being a direct match for PSNR. Results with L1
were very similar and hence were excluded from the figure. Training with the
Contextual loss, on the other hand, resulted in high quality reconstruction. The
network intelligently hallucinated many of the fine details, that were missing in
the low-resolution. This outcome is well aligned with the observations in [10],
where it was shown that such detail generation is impossible when using pixel-
to-pixel loss functions like L2 and L1.
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Fig. 1. Maintaining natural image statistics in super-resolution: (b),(c)
High-resolution images produced by SRResNet when trained with either L2 or
LCX, respectively. Training was done on a single image, see text for details. It
can be seen that using the Contextual loss allows hallucination of fine details on
the sweater texture, the cracks on the lips, and the facial hair. Conversely, with
L2, the generated images are blurred (results with L1 are highly similar, hence,
excluded).
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Minimizing the difference between distributions: We next provide
another qualitative view on how optimizing the Contextual loss minimizes the
difference between the feature distributions of the generated image and target
image. This is done by visualizing these distributions, before and after training
the network. The goal being to show how after training the distributions become
more similar.

We repeat the experiment in the previews section, but this time using straight-
forward gradient descent, directly updating the image values, instead of a trained
CNN. In addition, the source-target pairs were shifted, with respect to each
other, by random translation of up to 10 pixels. This was in order to cancel the
spatial dependence between the pixels of the source and target.

To visualize the patch distribution of an image we extract from it all 5×5
patches, vectorize them, and apply a random projection onto 2D. In Figure 2 we
present such visualizations, where the projections of the patches of the target
image and the generated image are overlaid. It can be seen that optimizing with
the Contextual loss results in a final generated image with patch distribution
highly similar to that of the target. Conversely, when using L1 as an objective,
the distributions do not converge (and similarly for L2, not shown in the figure).
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(a) Initial (b) Optimized with L1 (c) Optimized with LCX

Fig. 2. Minimizing the difference between distributions: Random projec-
tions of image patches onto 2D illustrate the distribution of patches in an image.
The projection of the patches of the target are in green. The input and the
final output are both in Magenta. When two projections agree, they overlap
and the color turns to Black. We compare between the target image and (a) the
input image, (b) the output after optimization with L1, and, (c) the output after
optimizing with LCX (more details in the text). Optimizing with LCX reduces
the outliers and yields high correlation (more black) with the target, while using
L1 barely reduces the gap between the densities.
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Small spatial support Large spatial support Statistical support

Fig. 3. Importance of spatial support during training: In order to be able
to reconstruct specific pattern, illustrate by the lightning, the spatial support
should include distant pixels of the same pattern. The pixel p1 is computed from
the influencing region in the spatial support Ω1, while the pixel p2 cannot be
calculated since the supporting area Ω2 does not contain the necessary infor-
mation. This improve when the spatial support is larger. Our solution takes the
entire image as the support (context) by utilize the statistical approach of the
Contextual loss. Here we illustrate for image SR, with out the loss of generality,
same insight is true for all image restoration problems. Similar idea was shown
in [13] during test time.

The contribution of a single pixel: In the classical pixel-to-pixel loss
function (e.g. L1, L2, perceptual loss [11]) the contribution of each pixel in the
training process is simple, the loss is a sum over all distances. In this manner,
each pixel is influence on it self without any relation to the neighborhood. Since
the CNN architecture use convolutions and pooling, the spatial support is in
practice larger and is term the receptive field [12]. A single pixel is computed by
a set of mathematical operations taken on its covered region in the input image
plane. The receptive field is a function of the network architecture, for example
in VGG-16 [5] the receptive field of the last pooling layer is 212.

The support of the contextual loss is non-local in its nature, in practice the
contribution of a single pixel is depended in the entire image. This can be simple
derives from the contextual loss definition: the contribution of a single pixel, j,
is done by taking the max value of Aij . Namely, a single pixel, j, is depended on
all i′s and vise versa. Conceptually, the contribution of each pixel is calculated
by answering the following question: what is the distance of all other pixels
{x}Ni to the particular closest yj? . As a result the receptive field of each pixel
without relation to the architecture used is the entire image, not directly, rather
statistically – thus we name this the statistical receptive field. Inspired from [13]
we show in Figure 3 an illustrating of the spatial support importance during SR
training.

We note that the support discuss above is influencing solaly during training
as it reflected in the loss function. This differ from the classical meaning of layer
support during test time.
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Power-spectrum analysis: Further to Section 5.1 discussing the super
resolution trends, we ask to highlight the difference between the PSNR group
and the perceptual group in their ability to generate natural looking images.
This is done by revisit a decades-old observation, which says that natural images
exhibit a typical corresponding power-spectrum [14,15]. We present in Figure 4
the mean power-spectra of images generated by methods from both groups. It
can be seen, that the power-spectra corresponding to methods from the second
group are by far more similar to that of real images. Furthermore, the power-
spectrum corresponding to our method (described next) is the most similar of
all to that of the ground-truth.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Natural image statistics: The mean power spectra of images recon-
structed by six different super-resolution methods: (a) bicubic (as baseline); (b)
LapSRN [16] and (c) SRResNet-MSE [1] are designed for high PSNR and trained
with L2 as loss; In contrast, (d) SRGAN [1], (e) EnhanceNet [8], and, (f) ours,
are all trained with GAN and aim for high perceptual quality. (g) The mean
power-spectrum of the ground-truth high-resolution images. It can be seen that
methods aimed at perceptual quality (d,e,f) produce images with more natu-
ral power-spectrum than methods aimed at high PSNR (a,b,c). The latter lack
high-frequencies.
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Additional 2D toy examples: In Figure 5 we present an additional 2D
example to the one presented in Figure. 3 in the paper.

normalized affinity value (a) The Contextual loss [7] (b) Chamfer distance [17]

Fig. 5. The Contextual loss vs. Chamfer Distance: We demonstrate via
a 2D example the difference between two approximations to the KL-divergence
(a) The Contextual loss and (b) Chamfer Distance. Point sets Y and X are
marked with blue and orange squares respectively. The colored lines connect
each yj with xi with the largest affinity. The KL approximation of Eq.(8) sums
over these affinities. It can be seen that the normalized affinities used by the
Contextual loss lead to more diverse and meaningful matches between Y and X.
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3 Additional Results

Subtype Metric
Distortions Real Algorithms All

Trad- CNN
All SR

Video color- Frame
All All

itiona -Based Deblur ization Interp

Oracle Human 80.8 84.4 82.6 73.4 67.1 68.8 68.6 69.5 73.9

Low L2 59.9 77.8 68.9 64.7 58.2 63.5 55.0 60.3 63.2
-level SSIM 60.3 79.1 69.7 65.1 58.6 58.1 57.7 59.8 63.1

FSIMc 61.4 78.6 70.0 68.1 59.5 57.3 57.7 60.6 63.8

Net Squeeze 73.3 82.6 78.0 70.1 60.1 63.6 62.0 64.0 68.6
with Alex 70.6 83.1 76.8 71.7 60.7 65.0 62.7 65.0 68.9
L2 VGG 70.1 81.3 75.7 69.0 59.0 60.2 62.1 62.6 67.0

Net Squeeze 75.8 83.5 79.7 70.9 60.3 63.2 62.5 64.2 69.4
with Alex 71.4 83.5 77.4 71.4 60.7 64.6 62.8 64.9 69.1
LCX VGG 75.8 82.1 79.0 70.4 59.3 59.2 62.4 62.8 68.2

Table 1. Results on 2AFC dataset (higher is better) across a spectrum of meth-
ods and test sets. Note, that we do not show here the methods that were trained
using the 2AFC data for the task of perceptual similarity. The full table, can be
found in [18].

How perceptual is the Contextual loss? In table 1 we show full quantitative
results across all validation sets and considered metrics, including low-level met-
rics, supervised networks with L2, and supervised networks with the contextual
loss.

Additional super resolution results: Presented in Figures 6 and 7.
Last, the supplementary material include the first 10 images (001 to 010)

from the DIV2K dataset, these images present the effectiveness of our method
on high resolution (2K) images. Note that we attached only 10 images due to
space limit of the submission.
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Bicubic Ours HR

Fig. 6. Super-resolution zoom examples
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Bicubic Ours HR

Fig. 7. Super-resolution zoom examples
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