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Abstract—We present spectral matting: a new approach to natural image matting that automatically computes a basis set of fuzzy

matting components from the smallest eigenvectors of a suitably defined Laplacian matrix. Thus, our approach extends spectral

segmentation techniques, whose goal is to extract hard segments, to the extraction of soft matting components. These components

may then be used as building blocks to easily construct semantically meaningful foreground mattes, either in an unsupervised fashion

or based on a small amount of user input.

Index Terms—Image matting, unsupervised segmentation, spectral analysis.
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1 INTRODUCTION

DIGITAL matting is the process of extracting a foreground
object from an image along with an opacity estimate

for each pixel covered by the object. This operation enables
compositing the extracted object over a novel background
and thus constitutes an invaluable tool in image editing,
video production, and special effects in motion pictures.

In particular, the challenging case of natural image
matting, which poses no restrictions on the background,
has received much research attention. Recognizing that the
problem is inherently underconstrained, all of the existing
methods require the user to provide additional constraints
in the form of a trimap [2], [22], [8] or a set of brush strokes
[24], [14], [9] (while brush strokes are also a form of trimap,
the user input is typically sparser). The question of whether
(or to what degree) it is possible to automate the matting
process is of considerable theoretical and practical interest.

In this paper, we attempt to provide some new insights
into this question. Our work is strongly influenced by
spectral segmentation methods [20], [25], [17], [26]. These
methods analyze the smallest eigenvectors of the image’s
graph Laplacian matrix in order to obtain an unsupervised
decomposition of the image into a collection of hard
segments. In this work, we extend this idea to unsupervised
computation of a collection of soft matting components.

Spectral segmentation methods, such as [20], resort to
computation of real-valued eigenvectors as an approxima-
tion necessary to transform an NP-complete optimization
problem into a tractable one. In contrast, we are not seeking
a disjoint image partitioning, but rather attempting to

recover the fractional foreground coverage at each pixel.
Specifically, we obtain our real-valued matting components
via a linear transformation of the smallest eigenvectors of
the matting Laplacian matrix, introduced by Levin et al. [14].
Once obtained, these matting components serve as building
blocks for construction of complete foreground mattes.

This concept is illustrated in Fig. 1. Given the input
image in Fig. 1a, one can produce an unsupervised disjoint
hard partitioning of the image using, e.g., [26] (Fig. 1b). In
contrast, we compute a set of overlapping, fractional,
matting components, visualized in Fig. 1d. Combining
three of these components (framed in red) yields the
foreground matte of the girl, shown in Fig. 1c.

In summary, our main contribution is the introduction of
the concept of fuzzy matting components and a method for
computing them in an unsupervised manner. We then
proceed to describe an unsupervised matting algorithm. Of
course, just like unsupervised segmentation, unsupervised
matting is an ill-posed problem. Thus, we focus more on
two extensions that use our matting components to
construct a particular matte: 1) present the user with
several matting alternatives to choose from or 2) let the user
specify her intent by just a few mouse clicks.

A shorter version of this paper appeared in [15].

2 MATTING COMPONENTS

Matting algorithms typically assume that each pixel Ii in an
input image is a linear combination of a foreground color Fi
and a background color Bi:

Ii ¼ �iFi þ ð1� �iÞBi: ð1Þ

This is known as the compositing equation. In this work, we
generalize the compositing equation by assuming that each
pixel is a convex combination of K image layers F 1; . . . ; FK :

Ii ¼
XK
k¼1

�ki F
k
i : ð2Þ

The K vectors �k are the matting components of the image,
which specify the fractional contribution of each layer to
the final color observed at each pixel. The matting
components are nonnegative and sum to one at every
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pixel. The intuitive motivation for having these compo-

nents is that, similarly to the individual low-level fragments
in an oversegmented image, they may be used to construct
higher level, semantically meaningful foreground mattes,

as demonstrated in Fig. 1.
A desirable, although not required, property of the

matting components is sparsity: Each component should be
either completely opaque or completely transparent over as

many image pixels as possible. This means that areas of
transition between the different layers are limited to a small
number of pixels and each pixel is influenced by a small

number of layers.
In this paper, we explore the relationship between the

matting components and the eigenvectors of the matting
Laplacian matrix [14]. Specifically, we show that, under

certain assumptions, the matting components are spanned
by the smallest eigenvectors of the matting Laplacian. We
then propose a method for computing the matting

components by finding an appropriate linear transforma-
tion and applying it to these eigenvectors.

3 SPECTRAL ANALYSIS

We start by briefly reviewing the basic theory of spectral

segmentation methods [5], [6], [7], [4], [11], [18], [10], [20],
[25], [17], [26]. These methods typically associate with the

image an N �N affinity matrix A, such as Aði; jÞ ¼ e�dij=�2
; ,

where dij is some measure of the distance between the

pixels (such as color difference and geometric distance).

One can then define the Laplacian matrix L ¼ D�A,

where D is the diagonal matrix Dði; iÞ ¼
P

j Aði; jÞ. L is a

symmetric positive semidefinite matrix whose eigenvectors

capture much of the image structure.1

Consider the ideal case where the affinity matrix A

captures exactly the fact that an image is composed from

several distinct clusters, or connected components. That is, a

subset C of the image pixels is a connected component of

the image if Aði; jÞ ¼ 0 for every i, j such that i 2 C, j 62 C,

and there is no subset of C which satisfies this property. Let

mC denote the indicator vector of the component C:

mC
i ¼

1 i 2 C
0 i 62 C;

�

then mC is a 0-eigenvector of L (i.e., an eigenvector with

eigenvalue 0).
Now, suppose that the image consists of K connected

components C1; . . . ; CK such that f1; . . . ; Ng ¼
SK
k¼1 Ck,

where Ck are disjoint subsets of pixels. In this case, the

indicator vectors mC1 ; . . . ;mCK are all independent, ortho-

gonal 0-eigenvectors of L. However, computing the
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Fig. 1. Spectral segmentation and spectral matting. (a) Input image. (b) Hard segmentation. (c) Alpha matte. (d) Matting components computed by

our method.

1. In fact, most spectral segmentation papers consider normalized affinity
matrices such as D�1L or D�1=2LD�1=2. However, in this work, we focus on
L itself as it is not clear how to justify the normalization in the case of the
matting Laplacian. The problem is that the off-diagonal elements of the
matting Laplacian can be both negative and positive and, thus, the matting
cost cannot be expressed as a sum of positive pairwise terms.



eigenvectors of L yields these indicator vectors only up to
rotation. This is the case since, for any K �K rotation
matrix R, the vectors ½mC1 ; . . . ;mCK �R are also a basis for
the nullspace of L.

In real images, the affinity matrix A is rarely able to
perfectly separate between the different pixel clusters.
Therefore, the Laplacian L usually does not have multiple
0-eigenvectors. However, it has been observed that the
smallest eigenvectors of L tend to be nearly constant within
coherent image components. Extracting the different
components from the smallest eigenvectors is known as
spectral rounding and has attracted much attention [17], [26],
[23], [27], [13]. The simplest approach [17] is to cluster the
image pixels using the k-means algorithm and use
perturbation analysis to bound the error of this algorithm
as a function of the connectivity within and between
clusters. Other more recent methods [26], [27], which
inspired the approach taken in this work, explicitly search
for a rotation matrix that brings the eigenvectors as close as
possible to binary indicator vectors.

3.1 Spectral Analysis with the Matting Laplacian

Our goal in this work is to derive an analogy between hard
segmentation and matting and to show that fuzzy matting
components may be extracted from the smallest eigenvec-
tors of the matting Laplacian, similarly to the extraction of
hard clusters described earlier.

3.1.1 The Matting Laplacian

The matting Laplacian was introduced by Levin et al. [14]
in order to evaluate the quality of a matte without explicitly
estimating the foreground and background colors in (1).
They show that if the colors of the background and the
foreground within a local image window w form two
different lines in RGB space, then the � values within w
may be expressed as a linear combination of the color
channels:

8i 2 w �i ¼ aRIRi þ aGIGi þ aBIBi þ b: ð3Þ

Thus, the matte extraction problem becomes one of finding
the alpha matte that minimizes the deviation from the
linear model (3) over all image windows wq:

Jð�; a; bÞ ¼X
q2I

X
i2wq

�i � aRq IRi � aGq IGi � aBq IBi � bq
� �2

þ "kaqk2;
ð4Þ

where "kaqk2 is a regularization term on a. The linear model
coefficients a, b may be eliminated from (4), yielding a
quadratic cost in � alone:

Jð�Þ ¼ �TL�: ð5Þ

This cost has a trivial minimum, which is a constant �
vector, and thus, in the user-assisted framework described
in [14], Jð�Þ is minimized subject to user constraints.

In (5), L is the matting Laplacian, a sparse symmetric
positive semidefinite N �N matrix whose entries are a
function of the input image in local windows, depending
neither on the unknown foreground and background colors
nor on the linear model coefficients. L is defined as a sum

of matrices L ¼
P

q Aq, each of which contains the affinities
among pixels inside a local window wq:

Aqði; jÞ ¼
�ij � 1

jwq j

1þ ðIi � �qÞT �q þ "
jwq j I3�3

� ��1
ðIj � �qÞ

� �
ði; jÞ 2 wq

0 otherwise:

8>>><
>>>:

ð6Þ

Here, �ij is the Kronecker delta, �q is the 3 � 1 mean color
vector in the window wq around pixel q, �q is a 3 � 3
covariance matrix in the same window, jwqj is the number of
pixels in the window, and I3�3 is the 3 � 3 identity matrix.

Note that the matting Laplacian is fundamentally
different from a “standard” graph Laplacian matrix.
Standard Laplacian matrices are constructed using non-
negative affinities Aði; jÞ and, hence, all off-diagonal
elements of L are nonpositive. On the other hand,
according to (6), the off-diagonal elements of the matting
Laplacian may have arbitrary signs. Thus, although we
follow the terminology of Levin et al. [14] and refer to the
matrix L as the matting Laplacian, it should be understood
that this is an extension of the standard term as most
important properties of graph Laplacians rely on the
nonnegative affinity assumption.

Fortunately, as we show below, some of the useful
properties of standard graph Laplacian matrices apply to
the matting Laplacian as well. The first such property is that
both types of Laplacians are positive semidefinite matrices.
For the standard graph Laplacian, this property is trivially
implied from the fact that the pairwise affinities Aði; jÞ are
nonnegative; for every N-dimensional vector x, it holds that
xTLx ¼

P
i;j Aði; jÞðxi � xjÞ

2 � 0. The matting Laplacian is
also positive semidefinite, but, instead of positive pairwise
terms, it can be factored as a sum of positive terms consisting
of the affinities in 3 � 3 windows; by construction of the
matting Laplacian (see [14] for the exact derivation), for every
N-dimensional vector x, it holds that

xTAqx ¼ mina;b
X
i2wq

xi � aRq IRi � aGq IGi � aBq IBi � bq
� �2

þ "kaqk2 � 0;

which implies xTLx ¼
P

q x
TAqx � 0.

Another useful property of the matting Laplacian (6) is
that its smallest eigenvectors appear to capture information
about the fuzzy cluster assignments of pixels in the image,
even before any user-specified constraints are taken into
account. This observation was already made by Levin et al.
[14]; however, they made no use of the eigenvectors beyond
presenting them to the user as guides for scribble
placement. In this work, we show that the smallest
eigenvectors of the matting Laplacian span the individual
matting components of the image.

3.1.2 The Matting Laplacian’s Nullspace

To gain some understanding, we begin by studying the
ideal case. To justify the usage of spectral analysis to
estimate matting components, our goal is to show that,
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under reasonable conditions, the actual matting compo-
nents belong to the nullspace of the matting Laplacian. We
say that a matting component �k is active in a local image
window w if there exists a pixel i 2 w for which �ki > 0. The
following claim states the conditions on the local color
distribution in each layer, under which L�k ¼ 0. The
severity of the conditions is related to the number of active
layers in a local window. The least restricted case is when
only one layer is active, in which the local color distribution
can be arbitrary complex. The most restricted case is when
a window contains three active layers (as in the case of a
T-junction) and, for such windows, the theorem holds
when each layer color is locally uniform.

Claim 1. Let �1; . . . ; �K be the actual decomposition of the
image I into k matting components. The vectors �1; . . . ; �K

lie in the nullspace of the matting Laplacian L (given by (6)
with " ¼ 0) if every local image window w satisfies one of the
following conditions:

1. A single component �k is active within w.
2. Two components �k1 , �k2 are active within w and the

colors of the corresponding layers Fk1 , Fk2 within w
lie on two different lines in RGB space.

3. Three components �k1 , �k2 and �k3 are active within
w, each layer Fk1 , Fk2 , Fk3 has a constant color within
w, and the three colors are linearly independent.

Proof. The matting cost (5) measures the deviation between
a matte and a linear function of the color channels over
all local windows (4). Thus, in order to show that a matte
component �k satisfies L�k ¼ 0, it suffices to show that,
for every local window w, there exist aR, aG, aB, b such
that: �ki ¼ aRIRi þ aGIGi þ aBIBi þ b, 8i 2 w. Below, we
show this for each of the three window types.

Case 1. Since the matting components sum to 1 at every
image pixel, the single active component �k must equal 1
withinw. Thus, it is easily expressed as a linear function of
the image by setting aR ¼ aG ¼ aB ¼ 0 and b ¼ 1.

Case 2. This case is equivalent to [14, Theorem 2].
Case 3. Assume wlog that k1 ¼ 1, k2 ¼ 2, k3 ¼ 3. Let

F ¼ ½F 1; F 2; F 3� be a 3 � 3 matrix of the uniform layer
colors and, for i 2 w, let ��i ¼ ½�1

i ; �
2
i ; �

3
i �
T be a 3 � 1

vector of components values. We note that Ii ¼ F��i.

Since the three layer colors are linearly independent, F is
invertible and ��i ¼ F�1Ii, which implies that �k are
linear functions of the image. tu

As in the case of standard Laplacians, when the smallest

eigenvectors of the matting Laplacian are computed, the

result may be any linear combination of the different

matting components and recovering the individual compo-

nents is equivalent to linearly transforming the eigenvec-

tors. It should be noted that, unlike hard segments, the

matting components are not binary vectors and, thus, are

not necessarily orthogonal. Hence, while the eigenvectors

are orthogonal, the transformation from eigenvectors to

matting components might be a general linear transforma-

tion and not a simple rotation.
To summarize, the main conclusion of the above discus-

sion is that, whenever the matting components of an image

satisfy the conditions of Claim 1, they may be expressed as a

linear combination of the 0-eigenvectors of L.
In most real images, the assumptions of Claim 1 do not

hold exactly and, thus, the matting Laplacian might not have

multiple 0-eigenvectors. Yet, if the layers are sufficiently

distinct, they are generally captured by the smallest

eigenvectors of L. For example, Fig. 2 shows the smallest

eigenvectors for a real image, all exhibiting the fuzzy layer

boundaries. We have empirically observed that the matting

components of real images are usually spanned quite well by

the smallest eigenvectors of the matting Laplacian. Indeed,

the components shown in Fig. 1d were obtained as linear

combinations of the smallest eigenvectors.

3.2 From Eigenvectors to Matting Components

As explained above, recovering the matting components of

the image is equivalent to finding a linear transformation of

the eigenvectors. Recall that the matting components

should sum to 1 at each image pixel and they should be

near 0 or 1 for most image pixels since the majority of image

pixels are usually opaque. Thus, we are looking for a linear

transformation of the eigenvectors that would yield a set of

nearly binary vectors.
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Fig. 2. The smallest eigenvectors of the matting Laplacian for the image in Fig. 1a. Linear combinations of these eigenvectors produced the matting

components shown in Fig. 1d.



More formally, let E ¼ ½e1; . . . ; eK � be the N �K matrix

of eigenvectors. Our goal is then to find a set of K linear

combination vectors yk that minimize

X
i;k

�ki
�� ���þ 1� �ki

�� ���; where �k ¼ Eyk

subject to
X
k

�ki ¼ 1:
ð7Þ

If 0 < � < 1 is used (in our implementation � ¼ 0:9), then

j�ki j
� þ j1� �ki j

� is a robust score measuring the sparsity of

a matting component (plotted in Fig. 3). Without the

requirement �k ¼ Eyk, the sparsity term would be mini-

mized by binary vectors, but, as the vectors �k are restricted

to linear combinations of the eigenvectors, they must

maintain the fuzzy layer boundaries. Although we do not

explicitly constrain the � values to be between 0 and 1, in

practice, the resulting values tend to lie in this range due to

the sparsity penalty.
The above cost is, of course, a nonconvex one and we

optimize it iteratively using Newton’s method [3], which

amounts to a sequence of second-order approximations.

Given a guess for the values of �ki , we define uki as the

second derivative of j�ki j
� , uki / j�ki j

ð��2Þ, and, similarly,

vki / j1� �ki j
ð��2Þ. The second-order approximation to (7)

reads as minimizing

X
i;k

uki �
k
i

�� ��2þvki 1� �ki
�� ��2; where �k ¼ Eyk

subject to
X
k

�ki ¼ 1:
ð8Þ

As this problem has now become one of quadratic optimiza-

tions under linear constraints, the optimal solution can be

computed in closed form by inverting aK2 �K2 matrix. For

that, we define Uk ¼ diagðukÞ and V k ¼ diagðvkÞ. We also

define Wk ¼ ET ðUk þ V kÞE and 1 as a vector of ones. It

may be shown that the K2 elements of y1; . . . ; yK are the

solution for

Id Id Id � � � Id

0 W 2 þW 1 W 1 � � � WK

0 W 1 W 3 þW 1 � � � WK

..

. ..
. ..

. . .
. ..

.

0 W 1 W 1 � � � WK þW 1

2
6666664

3
7777775
y

¼

E1

Ev2 þ Eu1

Ev3 þ Eu1

..

.

EvK þ Eu1

2
6666664

3
7777775
;

ð9Þ

where Id is the K �K identity matrix. Given an initial
guess, our algorithm iteratively solves a sequence of
second-order optimization problems of the form of (8)
and uses the solution of each iteration to reweight the
following one. We note that the weights uki (and vki ) are
higher when the current guess for �ki is close to 0 (or 1) and
are lower when the guess is farther away from these values.
Thus, the effect of the reweighting step is to pull toward 0
(or 1) those � entries for which the current guess is already
close and to loosen the relation for pixels for which the
guess is far anyway. For example, if the current guess for �ki
is close to 0, then uki � vki and, thus, the term uki j�ki j

2 þ
vki j1� �ki j

2 pulls the alpha component at this pixel toward 0
much more strongly than toward 1.

Since the cost (7) is not convex, the result of the Newton
process strongly depends on the initialization. One useful
way to initialize the process is to apply a k-means algorithm
on the smallest eigenvectors of the matting Laplacian and
project the indicator vectors of the resulting clusters onto
the span of the eigenvectors E:

�k ¼ EETmCk

: ð10Þ

The effect of this projection step is to find a linear
combination of eigenvectors that minimizes the squared
distance to mCk

. We note that the resulting matting
components sum to one since

X
k

�k ¼ EET
X
k

mCk

 !
¼ EET1 ¼ 1: ð11Þ

The last equality follows from the fact that the constant
vector belongs to the nullspace of the matting Laplacian. As
a result, projecting the hard clusters provides a legal
solution for (7). We also note that, despite the fact that mCk

are binary vectors, the projection typically features fuzzy
matte boundaries. This is due to the fact that, as illustrated
in Fig. 2, the smallest eigenvectors all maintain the fuzzy
layer structure and, thus, simply do not suffice to span the
hard segmentation boundaries.

In practice, we typically use a larger number of eigenvec-
tors than the number of matting components to be recovered.
Using more eigenvectors makes it possible to obtain sparser
components. The reason is that more basis elements span a
richer set of vectors (in the extreme case, if allN eigenvectors
are used, any binary vector can be generated). A number of
examples demonstrating the extraction of soft matting
components are given in Figs. 1 and 4.
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4 GROUPING COMPONENTS

So far, we have shown how matting components may be

extracted from the matting Laplacian. However, usually the

matting components are not a goal in their own as one is

ultimately interested in recovering a complete matte for

some foreground object. Fortunately, all that is needed to

obtain a complete matte is to specify which of the

components belong to the foreground. Let b denote a

K-dimensional binary vector indicating the foreground

components (i.e., bk ¼ 1 iff �k is a foreground component).

The complete foreground matte is then obtained by simply

adding the foreground components together:

� ¼
X
k

bk�k: ð12Þ

For example, the matte in Fig. 1c was obtained by adding

the components highlighted in red in Fig. 1d.
For the applications discussed below, one would like to

compare multiple grouping hypotheses. If the smallest

eigenvalues are not exactly zero (which is the case for most

real images), we can also measure the quality of the

resulting �-matte as �TL�, where L is the matting

Laplacian (6). When a large number of hypotheses is to

be tested, multiplying each hypothesis by L might be too

expensive. However, if each hypothesis is just a sum of

matting components, we can precompute the correlations

between the matting components via L and store them in a

K �K matrix �, where

�ðk; lÞ ¼ �kTL�l: ð13Þ

The matte cost can then be computed as

Jð�Þ ¼ bT�b; ð14Þ

where b is a K-dimensional binary vector indicating the

selected components. Thus, if � has been precomputed,

Jð�Þ can be evaluated in OðK2Þ operations instead of

OðNÞ operations.

4.1 Unsupervised Matting

Given an image and a set of matting components, we
would like to split the components into foreground and
background groups and pull out a foreground object. If the
grouping criterion takes into account only low-level cues,
then we just search for a grouping with the best matting
cost, as defined in (14). However, the matting cost is usually
biased toward mattes which assign nonconstant values
only to a small subset of the image pixels (in the extreme
case, the best matte is a constant one). The spectral
segmentation literature suggests several criteria that over-
come this bias. One approach is to search for quotient cuts
(e.g., normalized cuts [20]) which score a cut as the ratio
between the cost of the cut and the size of the resulting
clusters. A second approach is to look for balanced cuts
[13], where the size of each cluster is constrained to be
above a certain percent of the image size. In this work, we
follow this latter approach and rule out trivial solutions by
considering only groupings that assign at least 30 percent of
the pixels to the foreground and at least 30 percent of the
pixels to the background. When the number K of matting
components is small, we can enumerate all 2K hypotheses
and select the one with the best score using (14).

Fig. 5 shows some results produced by the unsupervised
matting approach described above. In two of these examples,
the hypothesis with the highest score indeed corresponds to
the “correct” foreground matte, while, in one example
(bottom row), the “correct” matte was ranked fourth. Note
that, in all of these examples, the other high-ranked
hypotheses are quite sensible as well, considering that our
approach does not attempt to perform any high-level image
understanding. Of course, it is not hard to find examples
where unsupervised matting fails, and the last two examples
in Fig. 5 illustrate such failures. In general, whenever the
foreground or background objects consist of several visually
distinct components, the assignment with the minimal
matting cost might not correspond to our visual perception.
In fact, it is well known within the image segmentation
community that, while unsupervised bottom-up cues can
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Fig. 4. A number of test images and the matting components extracted from them using our method. A random color is assigned to each component

for visualization purposes.



efficiently group coherent regions in an image, the general
image segmentation problem is inherently ambiguous and
requires additional information. In practice, such as in the
case of hard image segmentation, the foreground/back-
ground assignment may be guided by several additional
cues such as top-down models [1], color statistics [19], or
motion and focus cues. Thus, we believe that the main
practical use of matting components is in the supervised
setting and focus on user-guided matting in the remainder
of this paper.

4.2 User-Guided Matting

We now consider an interactive setting where the user
guides the matting process toward the extraction of the
desired foreground matte. In such a setting, the fore-
ground/background assignment of some of the compo-
nents is determined by the user, thereby reducing the
number of legal hypotheses to be tested. Given very
minimal foreground and background constraints, it is
usually possible to rule out trivial solutions, so there is no
need to explicitly keep the size of each group above a
certain threshold (as in the unsupervised case). In this case,
we can speed up the search for an optimal foreground/

background assignment of components using a graph min-
cut formulation.

4.2.1 Optimizing Assignments in the Components

Graph

To efficiently search for the optimal foreground/back-
ground assignment, we approximate the matting cost (14)
as a sum of pairwise terms. This enables us to approximate
the search for the optimal foreground/background assign-
ment as a min-cut problem in a graph whose nodes are the
matting components and whose edge weights represent
matting penalty. Since the function we are trying to
minimize is not submodular in general, we rewrite (14) as
a sum of nonnegative local and pairwise terms Jð�Þ ¼ EðbÞ,
where b is the binary vector representing the components in
�. Alternatively, one could use algorithms for minimizing
nonsubmodular functions such as the QPBO method (see
[12] for a review on such methods).

We define the energy EðbÞ as

EðbÞ ¼
X
k

EkðbkÞ þ
X
k;l

Ek;lðbk � blÞ2; ð15Þ
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Fig. 5. Unsupervised matting results for a few images. The hypotheses are ordered according to their score.



where Ekð0Þ ¼ 1 if the kth component is constrained to
belong to the foreground, Ekð1Þ ¼ 1 if the component is
constrained as background, and 0 otherwise. To define the
pairwise term, we note that �k;k ¼

P
l6¼k �

k;l (this follows
from the fact that Lð

P
�kÞ ¼ L1 ¼ 0 and, thus, �1 ¼ 0)

and, as a result,

bT�b ¼
X
k;l

��k;lðbk � blÞ2: ð16Þ

Therefore, if we define Ek;l ¼ ��k;l, we obtain thatX
k;l

Ek;lðbk � blÞ2 ¼ Jð�Þ: ð17Þ

However, in order to search for a min-cut efficiently, we use a
positive approximation and define Ek;l ¼ maxð0;��k;lÞ. To
justify this approximation, we can prove that the approx-
imation is exact in all local image windows for which no
more than two components are active. When good
components are extracted from an image, the majority of
image windows will be associated with no more than two
components (that is, no more than two components will be
active). Indeed, we have empirically observed that, for most
matting component pairs, �k;l < 0.

Claim 2. The correlation �k;l between components �k, �l will be
negative if every local image window w satisfies one of the
following conditions:

c1. �ki ¼ 0 8i 2 w.
c2. �li ¼ 0 8i 2 w.
c3. �ki ¼ 1� �li 8i 2 w.

Proof. Following (6), we rewrite the correlation between
components via the matting Laplacian as a sum of
correlations over local windows:

�k;l ¼ �kTL�l ¼
X
q2I

�k
T
Lq�

l; ð18Þ

where Lq is an N �N matrix if ði; jÞ 2 wq Lqði; jÞ is
defined using (6) and Lqði; jÞ ¼ 0 otherwise. We will
show that, under the above conditions, �k

T
Lq�

l < 0 for

every image window wq. This will follow immediately if
�ki ¼ 0 or �li ¼ 0 8i 2 w. For the third case, we note that

�k
T
Lq�

l ¼� �kTLqð1� �kÞ ¼�� ��k
T
Lq�

k 	��� 0; ð19Þ

where � follows from the condition c3, �� follows from
the fact that the matting cost of the constant vector is 0,
and ��� follows from the fact that each of the Lq matrices
is positive semidefinite. tu
Using the above graph formulation, finding the optimal

foreground/background assignment does not involve an
exponential search and is found efficiently, in time
polynomial in the number of components, as a graph
min-cut. As a result, if the matting components are
precomputed, the optimal matte may be computed very
rapidly, enabling interactive responses to user input. The
computational challenges of our algorithm are equivalent
to those of conventional spectral segmentation techniques.
Specifically, it takes our unoptimized Matlab implementa-
tion a couple of minutes to compute the matting compo-
nents for the images in Fig. 6. However, this preprocessing
step can be done offline and, once the matting components
are available, it only takes a few additional seconds to
construct a matte given the user’s constraints.

4.2.2 Matte Extraction Using User Scribbles

Fig. 6 presents a few examples where a foreground matte
was extracted from an image based on a small number of
foreground (white) and background (black) markings
provided by the user. The second column shows the
resulting matte extracted by the approach described above
(the scribbles are used to reduce the space of splitting
hypotheses: a component is constrained to belonging to the
foreground whenever its area contains a white scribble).
The remaining columns show the mattes generated from
the same input by a number of previous methods [14], [24],
[8], [22]. None of these previous approaches is able to
recover a reasonable matte from such minimal user input.
In particular, although our approach uses the same matting
Laplacian as [14], our results are very different from those
obtained by directly minimizing the quadratic matting cost
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Fig. 6. A comparison of mattes produced by different matting methods from minimal user input (yellow scribbles indicate foreground, while green

scribbles indicate background).



(5) subject to user-specified constraints. The main drawback
of such direct optimization is that, whenever an image
contains distinct connected components without any con-
straints inside them, a quadratic cost such as (5) tends to
assign them some average nonopaque values, as demon-
strated by the simple example in Fig. 7. The core of this
problem is that the quadratic cost of [14] places strong
assumptions on the foreground and background distribu-
tions, but imposes no restrictions on �. Thus, it searches for
continuous solutions without taking into account that, for a
mostly opaque foreground object, the matte should be
strictly 0 or 1 over most of the image.

4.2.3 Matte Extraction by Component Labeling

Once the matting components of an image have been
computed, placing hard constraints by a set of scribbles or a
trimap is not the only way for the user to specify her intent.
The matting components suggest a new, more direct user
interaction mode which was not possible until now: In this
mode, the user is presented with the precomputed matting
components and may simply label some of them as
background or foreground. The labeled components then
become constrained accordingly in the min-cut problem.
The advantage of such an interface is illustrated in Fig. 8,
where the large fuzzy hair areas do not lend themselves to
placement of hard constraints. Thus, the best trimap we
could practically expect leaves such areas unconstrained
(Fig. 8c). The least-squares matte of [14] populates these
areas with average gray values (Fig. 8d). In contrast, by
searching for the cheapest assignment of matting compo-
nents consistent with the trimap, we obtain the matte in
Fig. 8e. In this case, no oversmoothing is observed, but
some of the fuzzy hair was not selected to belong to the
foreground. However, if the user is allowed to directly
select three additional components (highlighted in red in
Fig. 8g) as foreground, we obtain the matte in Fig. 8f.

5 QUANTITATIVE EVALUATION

To quantitatively evaluate our approach and compare it with
previous methods, we captured ground truth data. Three
different dolls were photographed in front of a computer
monitor displaying seven different background images
(Fig. 9a). A ground truth matte was then extracted for each
doll using a least-squares framework [21]. Each image was
downsampled to 560 � 820 pixels and the tests described
below were performed on (overlapping) 200� 200 windows
cropped from these images. For our approach, 60 matting
components were extracted using the 70 smallest eigenvec-
tors of each cropped window. The running time of our

unoptimized Matlab implementation (on a 3.2 GHz CPU)
was a few minutes for each 200 � 200 window.

To design a comparison between matte extraction using
matting components and previous matting algorithms, we
need to address the two noncompatible interfaces and it is
not clear how to measure the amount of user effort
involved in each case. While previous approaches were
designed to work with hard constraints (scribbles or
trimap), our new approach enables a new interaction mode
by component selection. Therefore, in our experiments, we
attempted to determine how well each approach can do,
given the best possible user input. Thus, we first used the
ground truth matte to generate an “ideal” trimap. The
unknown region in this trimap was constructed by taking
all pixels whose ground truth matte values are between
0.05 and 0.95 and dilating the resulting region by four
pixels. The resulting trimap was used as input for four
previous matting algorithms: Levin et al. [14], Wang and
Cohen [24], random walk matting [8], and Poisson matting
[22]. We also ran our method twice in each experiment:
1) using the same trimap to provide a partial labeling of the
matting components, followed by a min-cut computation,
as described in Section 4.2 and 2) using the ground truth
matte to select the subset of matting components that
minimizes the distance of the resulting matte from the
ground truth, thus simulating the ideal user input via the
direct component picking interface. The SSD errors
between the mattes produced by the different methods
and the ground truth matte (averaged over the different
backgrounds and the different windows) are plotted in
Fig. 9b. It is apparent that, given a sufficiently precise
trimap, our method offers no real advantage (when given
the same trimap as input) over the least-squares matting of
Levin et al., which produced the most numerically accurate
mattes. However, when simulating the best labeling of
components, our approach produced the most accurate
mattes, on average.

While our experiment compares the quality of mattes
produced from an ideal input, a more interesting compar-
ison might be to measure the amount of user time required
for extracting a satisfactory matte with each approach.
Ideally, we would also like to measure whether (or to what
degree) a component picking interface is more intuitive
than a scribble-based interface. Such a comparison involves
a nontrivial user study and is left for future work.

Given the strong analogy between spectral matting and
hard spectral segmentation, we would like to gain some
intuition about the possible advantage of using matting
components versus standard hard segmentation compo-
nents (also known as super-pixels). The answer, of course,
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Fig. 7. The middle region is not constrained and the method of Levin et al. assigns it an average nonopaque value.



depends on the application. If the final output is a hard
segmentation, matting components probably do not offer
an advantage over standard hard components. On the other

hand, when the goal is a fuzzy matte, it is better to
explicitly construct matting components, as we do, rather
than first compute a hard segmentation and then feather

the boundaries (as in [16], [19], for example). To show this,
we compare the two approaches. We first extract matting

components from each of the test images and select the
subset of matting components which will minimize the
distance from the ground truth matte. The second approach

is to select a subset of hard components (we used the
available implementation of Yu and Shi [26]) that best
approximates the ground truth. We then apply morpholo-

gical operations (we have experimented with several
constant radius erosion windows) on the resulting hard
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Fig. 8. Benefits of direct component labeling. (a) A test image. (b) Input. (c) Trimap. (d) Levin et al. [14] from trimap. (e) Components from trimap.

(f) Component labeling. (g) Matting components.



mask, create a trimap, and run the matting algorithm of

[14]. However, since the optimal radius of the erosion

window strongly depends on the local image structure and

varies over the image, it is impossible to obtain an ideal

trimap with a constant radius window. This problem is

illustrated visually in Fig. 10.
Fig. 9c shows the SSD errors (averaged over the different

backgrounds and the different windows) of the two

approaches, which indicate that optimally picking the

matting components indeed results in more accurate mattes

than those obtained by feathering a hard segmentation.

6 DISCUSSION

In this work, we have derived an analogy between standard
(hard) spectral image segmentation and image matting and
have shown how matting components may be automati-
cally obtained from the smallest eigenvectors of the matting
Laplacian. From a practical standpoint, matting compo-
nents can help automate the matte extraction process and
reduce user effort. Matting components also suggest a new
mode of user control over the extracted matte: While, in
previous methods, the result is controlled by placement of
hard constraints in image areas where the matte is either
completely opaque or completely transparent, our new
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Fig. 9. Quantitative evaluation. (a) A few test images. (b) A comparison with other matting methods. (c) Spectral matting versus hard segmentation.

Fig. 10. Spectral matting versus obtaining trimaps from a hard segmentation.



approach may provide the user with a simple intuitive
preview of optional outputs and thus enables the user to
directly control the outcome in the fractional parts of the
matte as well.

Limitations. Our method is most effective in automating
the matte extraction process for images that consist of a
modest number of visually distinct components. However,
for highly cluttered images, component extraction proves to
be a more challenging task. As an example, consider the
case shown in Fig. 11. The input image consists of a large
number of small components. Projecting the ground truth
matte (Fig. 11a) on the subspace spanned by the 70 smallest
eigenvectors results in a poor approximation (Fig. 11b).
Recall that, since the matting components are obtained via a
linear combination of the eigenvectors, they can do no
better than the eigenvectors themselves and, thus, Fig. 11b
is the best matte that we could hope to construct from up to
70 matting components. Thus, it is quite clear that this
number of components is insufficient to produce an accurate
matte for this image. A better matte may be obtained from the
400 smallest eigenvectors (Fig. 11c), but even this matte
leaves room for improvement. We have not been able to test
more than 400 eigenvectors due to computational limitations.
We have empirically observed that this problem is signifi-
cantly reduced if matting components are computed in local
image windows independently and we are currently
investigating methods for stitching together components
obtained in different windows.

One major challenge in spectral matting is determining
the appropriate number of matting components for a given
image. This is a fundamental difficulty shared by all
spectral segmentation methods. While the question of
automatically selecting the number of components has
been investigated (e.g., [27]), this parameter is still often
manually adjusted. For the applications described in this

paper, we found that a useful strategy is to oversegment the
image and group the components later using additional
cues. A second free parameter in the algorithm is the
number of smallest eigenvectors from which the compo-
nents are formed (the number should be larger than or
equal to the number of components). In practice, we have
observed that the performance is not very sensitive to this
number and all results in this paper were obtained using
the 70 smallest eigenvectors. Fig. 12 demonstrates the effect
of varying the number of matting components and the
number of eigenvectors. It can be seen that usually it is
better to use a large number of matting components and a
large number of eigenvectors, but this obviously makes the
algorithm slower. When too many matting components are
used, some regions in the alpha matte may become too
transparent. This is due to some matting components that
were not grouped correctly by the min-cut algorithm. The
algorithm is much less sensitive to the number of
eigenvectors being used. Using 50 to 200 eigenvectors
usually produced similar results. It should be noted that
increasing the number of eigenvectors makes the resulting
alpha matte more opaque as it gives more freedom to the
nonlinear optimization, which looks for opaque solutions.
(In the extreme case, using all eigenvectors will produce
binary mattes.)

Future directions. An important potential advantage of
presegmenting the image into matting components is the
option to compute meaningful color or texture histograms,
or other statistics, within each component. The histogram
similarity can provide another important cue to guide
component grouping. This ability might significantly
improve matting algorithms that make use of color models,
such as [24]. For example, the current strategy in [24] is to
build an initial color model using only the small number of
pixels under the scribbles. This simple initialization is
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Fig. 11. Demonstration of limitations. Top: input image. Bottom: (a) Ground truth matte. Mattes from (b) 70 and (c) 400 eigenvectors.



known to make the algorithm sensitive to small shifts in the

scribble location.
Given the growing interest in the matting problem and

the large amount of recent matting research, it seems that

an important future challenge is the design of an appro-

priate comparison between different user interaction

modes and different matting algorithms. The ground truth

data collected in this work is a step toward this goal, yet a

proper user study is required in order to evaluate the

amount of user time required for producing good results

with each method.
Our code and ground truth data are available at:

www.vision.huji.ac.il/SpectralMatting.
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