4D Frequency Analysis of Computational Cameras for Depth of Field Extension
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Standard lens image Our lattice-focal lens: input Latfaeal lens: all-focused output

Figure 1: Left: Image from a standard lens showing limited depth of field, with only themigst subject in focus. Center: Input from our
lattice-focal lens. The defocus kernel of this lens is designed to presgfvdrequencies over a wide depth range. Right: An all-focused
image processed from the lattice-focal lens input. Since the defocus kezaetves high frequencies, we achieve a good restoration over the
full depth range.

Abstract response that can be achieved. In this paper, we use a standard
computational photography tool, the light field, e.g., [Levoy and
Depth of field (DOF), the range of scene depths that appear sharpHanrahan 1996; Ng 2005; Levin et al. 2008a], to address these is-
in a photograph’ poses a fundamental tradeoff in pho’[ography_ sues. USlng gar_gum_ents of conservation of energy and taklng into
wide apertures are important to reduce imaging noise, but they alsoaccount the finite size of the aperture, we present bounds on the
increase defocus blur. Recent advances in computational imagingPower spectrum of all defocus kernels.
modify the acquisition process to extend the DOF through decon-
volution. Because deconvolution quality is a tight function of the
frequency power spectrum of the defocus kernel, designs with high
spectra are desirable. In this paper we study how to design effective
extended-DOF systems, and show an upper bound on the maxima
power spectrum that can be achieved. We analyze defocus kernel
in the 4D light field space and show that in the frequency domain,
only a low-dimensional 3D manifold contributes to focus. Thus,
to maximize the defocus spectrum, imaging systems should con-
centrate their limited energy on this manifold. We review several
computational imaging systems and show either that they spend en-gyr analysis leads to the development of the lattice-focal lens—a
ergy outside the focal manifold or do not achieve a high spectrum noye| design which allows for improved image reconstruction. It
lens, which concentrates energy at the low-dimensional focal man- field spectrum, and achieves defocus kernels with high spectra. The
ifold and achieves a higher power spectrum than previous designs.qesign is a simple arrangement of lens patches with different focal
We have built a prototype lattice-focal lens and present extended powers, but the patches’ size and powers are carefully derivesl. Th
depth of field results. defocus kernels of a lattice-focal lens are high over a wide depth
range, but they are not depth invariant. This both requires and en-
Keywords. Computational camera, depth of field, light field, ables coarse depth estimation. We have constructed a prototype and
Fourier analysis. demonstrate encouraging extended depth of field results.

Furthermore, a dimensionality gap has been observed between the
4D light field and the space of 2D images over the 1D set of depths
[Gu et al. 1997; Ng 2005]. In the frequency domain, only a 3D
anifold contributes to standard photographs, which corresponds
o focal optical conditions. Given the above bounds, we show that
it is desirable to avoid spending power in the othécal regions
of the light field spectrum. We review existing camera designs and
find that some spend significant power in these afocal regions, while
others do not achieve a high spectrum over the depth range.

1 Introduction 1.1 Depth of field evaluation

Depth of field, the depth range over which objects in a photograph To facilitate equal comparison across designs all systems are allo-
appear acceptably sharp, presents an important tradeoff. Lense§ated a fixed time budget and maximal aperture width, and hence
gather more light than a pinhole, which is critical to reduce noise, ¢an collect an equal amount of photons. All systems are expected
but this comes at the expense of defocus outside the focal plane 0 cover an equal depth randes [dmin, dmax-

While some defocus can be removed computationally using decon-g;iiar t previous work, we focus on Lambertian scenes and as-
volution, the results depend heavily on the information preserved sume locallv constant depth. The observed imBgef an ob-
by the blur, as characterized by the frequency power spe_ctrumject at deptk)llzl is then descFr)ibéd as a convolutiBn= gy © | +N
of the defocus kernel. Recent advances in computational imag-\ herel is the ideally sharp imagey is the imaging noise a’nd
'er}ga{ng}')%'f'ngsgftfge%'z.l%f;ahi‘ﬁg'e?a?"zggg]?%\éff{ya[ﬁgﬁ‘gal @y is the defocus kernel, commonly referred to as the point spread

A » Nag ‘ . 9€ function (PSF). The defocus P3f is often analyzed in terms of
acquisition process to enable extended depth of field through such. . - . .

its Fourier transformgy, known as the optical transfer function

a deconvolution approach. : e i
P (OTF). In the frequency domain, convolution is a multiplication

Computational imaging systems can dramatically extend depth of B(w) = @(w)I(w) 4+ N(w) where hats denote Fourier transforms.
field, but little is known about the maximal frequency magnitude In a nutshell, deblurring divides every spatial frequency by the ker-



Standard Lens Wavefont Coding Lens
nel spectrum, so the information preserved at a spatial frequency
depends strongly on the kernel spectrumjgif( w)| is low, noise is I
amplified and image reconstruction is degraded. To capture scenesg
with a given depth range € [dmin, dmax, we want PSFgy whose

modulation transfer function (MTH)| is as high as possible for
every spatial frequenay, over the full depth range. Noise is absent
from the equations in the rest of this paper, because whatever noise
is introduced by the sensor gets amplified as a monotonic function

of | @ (w)]-

In this paper, we focus on the stability of the deblurring process to
noise and evaluate imaging systems according to the spectra theyt
achieve over a specified depth range. We note, however, that manyZ,
approaches such as coded apertures and our new lattice-focal len$
involve a depth-dependent Pk and require a challenging depth
identification stage. On the positive side, such systems output a 5
coarse depth map of the scene in addition to the all-focused image.
In contrast, designs like wavefront coding and focus sweep have an
important advantage: their blur kernel is invariant to depth.
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While the tools derived here apply to many computational cam-

eras, our focus is on designs capturing only a single input image.
In [Levin et al. 2009a] we present one possible extension to mul-

tiple measurement strategies like the focal stack and the plenoptic
camera.

Fourier Lens Spectrum

Figure 2: Integration surfaces in flatland. Top: Ray mapping dia-
1.2 Related work grams. Middle: The corresponding light field and integration sur-
face qu). Bottom: The lens spectrukn The blue/red slices rep-
Depth of field is traditionally increased by reducing the aperture, resent OTF-slices of the blue/red objects respectively. The vertical
but this unfortunately lowers the light collected and increases noise. yellow slices represerty, slices discussed in Sec. 3. Left: Stan-
Alternatively, a focal stack [Horn 1968; Hasinoff and Kutulakos dard lens focused at the blue object. Right: Wavefront coding.
2008] captures a sequence of images with narrow depth of field

but varying focus, which can be merged for extended depth of field | UV aperture plane coordinates
[Ogden et al. 1985; Agarwala et al. 2004]. Our new lattice-focal | XY spatial coordinates (at focus plane)
lens can be thought of as capturing all the images from a special| &xy spatial frequencies
focal stack, shifted and summed together in a single photo. Q max spatial frequency
) ) ) o(X,Y) point spread function (PSF)
New designs have achieved improved frequency response together oo w,) optical transfer function (OTF)
with a depth invariant PSFs, allowing for deconvolution without k(x ’u V) 4D lens kernel
depth estimation. Wavefront coding achieves this with a cubic op- | = YU,
tical element [Dowski and Cathey 1995]. Others use a log asphere| K(6X @y, @u, @) | 4D lens spectrum
[George and Chi 2003] and focus sweep approaches modify the fo-| A aperture width
cus configuration continuously during the exposure [Hausler 1972; | €A hole/subsquare width
Nagahara et al. 2008]. a(wxy), B(wxy) | bounded multiplicative factors (Egs. (43,11))

In contrast, coded aperture approaches [Veeraraghavan e0al. 20
Levin et al. 2007] make the defocus blur more discriminative to
depth variations. Having identified the defocus diameter, blur can
be partially removed via deconvolution. One disadvantage of this
design is that some light rays are blocked. A more serious prob- /(x y, u,v) describing radiance for all rays in a scene, where a ray is
lem is that the lens is still focused only at one particular depth and parameterized by its intersections with two parallel planesyithe
objects located away from the focus depth are still heavily blurred. plane and they-plane [Levoy and Hanrahan 1996]. Figure 2 shows
a 2D flatland scene and its corresponding 2D light field. We assume
the camera aperture is positioned ontiveplane, andky is a plane

in the scene (e.g., the focal plane of a standard legg)re spatial
coordinates and the v coordinates denote the viewpoint direction.

Table 1: Notation.

Other designs [Ben-Eliezer et al. 2005] divide the aperture into sub-
squares consisting of standard lenses, similar to our lattice-focal
lens. But while these methods involve redundant focal lengths, our
analysis lets us optimize the combination of different focal powers

for improved depth of field. An important property is that the light rays emerging from a given

We build on previous analysis of cameras and defocus in light field physical point correspond to a 2D plane in 4D of the form
space [Ng 2005; Adams and Levoy 2007; Levin et al. 2008a]. A _ 1— _ 1— 1
related representation in the Fourier optics literature is the Ambi- X=su+ (1= y=svi(1-9)py, @)
guity function [Rihaczek 1969; Papoulis 1974; Brenner et al. 1983; \yhose slops encodes the object’s depth:

FitzGerrell et al. 1997], allowing a simultaneous analysis of defo-

cus over a continuous depth range. s=(d—do)/d, )

2 Background on defocus in light field space whered is the object depth andy the distance between the;, xy

. . . . ) i planes. The offsetpy and py characterize the location of the scene
Our main analysis is based on geometric optics and the light field, point within the plane at depith

but [Levin et al. 2009a] provides complementary derivations using
wave optics. We first review how the light field can be used to Each sensor element gathers light over its 2D area and the 2D aper-
analyze cameras [Ng 2005; Levin et al. 2008a]. It is a 4D function ture. This is a 4D integral over a set of rays, and under first order
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optics (paraxial optics), it can be modeled as a convolution [Ng 0
2005; Levin et al. 2008a]. A shift-invariant kerriék, y, u, v) deter-

mines which rays are summed for each element, as governed by the
lens. Before applying imaging noise, the value recorded at a sensor

0

element is then: 050 74
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For most designs, the 4D kernel is effectively non-zero only at a 2D %
[

integration surface because the pixel area is small compared to the 0.5
aperture. That is, the 4D kernel is of the form

k(X,y, U,V) = 6(X7 CX(uav)vyf Cy(UV))R(U/A)R(V/A) ’ (4) -Q /
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whereR is a rect functiong denotes a Dirac delta, amdu,v) —
(x,y) is a 2D— 2D surface describing the ray mapping atthe lens's @ / & -2 -050 0
aperture, which we assume to be square and of AizeA. The
surfacec is shown in black in the middle row of Figure 2.

Figure 3. Layout of the 4D lens spectrum, highlighting the focal

For example, a standard lens focuses rays emerging from a pointmanifold. Each subplot representsca, y,-slice, ke, (@, w).

at the focus depth and the integration surfade linearc(u,v) = The outer axes vary the spatial frequerwy, y,, i.e., the slicing
(su,sv). The integration slope corresponds to the slope of the fo-  position. The inner axes of each subplot, i.e., of each slice, vary
cusing distance (Fig. 2, left). When integrating a light field with the ¢y, |, The entries ok along each focal segment are color coded, so
same slope (blue object in Fig. 2), all rays contributing to a Sensor that the 2D set of points sharing the same color corresponds to an
element come from the same 3D point. In contrast, when the object 5TE with a given depth/slope (e.g., the red points define an OTF for
is misfocused (e.g., red/green objects), values from multiple scene,e gjone s- —1). This illustrates the dimensionality gap: the set of

points get averaged, causing defocus. Wavefront coding [Dowski entries contributing to an OTF at any physical depth occupies onl
and Cathey 1995] involves a cubic lens. Since refraction is a func- 1ing el Yy phy P b y
tion of the surface normal, the kernel is a parabolic surface [Levin a 1D segment in each 20y, -slice. In the flatland case (Fig. 2),

etal. 2008b; Zhang and Levoy 2009] (Fig. 2, right) defined by~ ©aCN®aqy,-slice corresponds to a vertical column.

c(uv) = (awf,av?) . ®) Below we refer to slices of this form @3TF-slices because they
directly provide the OTF, describing the frequency response due to
defocus at a given depth. OTF-slices in flatland are illustrated in
the last row of Figure 2 (dashed red/blue). These are slanted slices
Consider a Lambertian scene with locally constant depth. If the lo- WHOS€ slope s orthogonal to the object slope in the primal light field
cal scene depth, or slope, is known, the noise-free defocused imagélomain. Low spectrum values kleads to low magnitudes in the

B can be expressed as a convolution of an ideal sharp image OTF for the corresponding depth. In particular, for a standard lens,
aPSFg: B= @ ®1. As demonstrated in [Levin et al. 2008c], fora  ©nly the OTF-slice corresponding to the focusing distance (dashed
given slopesthis PSF is fully determined by projecting the 4D lens  Plue, Fig. 2 left) has high values.

kernelk along the slope:

Finally, the kernel of the focus sweep is not a 2D surface but the
integral of standard lens kernels with different slopes/depths.

Notations and assumptions: All systems in this paper are allo-
©6) cated a fixed exposure time, w.l.0.g. 1. The aperture si2e<ig\.

A denotes a pixel width back-projected onto the foxgbplane.
) ) ) In the frequency domain we deal with the rarngeQ, Q], where
That is, we S|mply integrate over all rays,y, u-+ sx v+ sy) corre- Q = 1/(20). wyy,w,y are shortcuts for the 2D vecto(sy, wy),
sponding to a given point in they-plane (see Eq. 1). (e, wy). Table 1 summarizes notations.

For example, we have seen that the 4D kekifet a standard lensis ~ We seek to capture a fixed depth randin, dmax. To simplify the
planar. If the slope of an object and the orientation of this planar light field parameterization, we select the location of tiyeplane
k coincide, the object is in focus and the projected RS an according to the harmonic mealy = 29nndnax - corresponding to
impulse. For a different slope the projected PSF is a box filter, and G-

the width of this box depends on the difference between the slopesthe point at which one would focus a standard lens to equalize de-
of the object and that d€. For wavefront coding, the parabolic 4D focus diameter at both ends of the depth range, e.g., [Hasinoff and

kernel has an equal projection in all directions, explaining why the Kutulakos 2008]. This maps ;Fde di?ﬂ; range to the symmgtrlc slope
resulting PSF is invariant to object depth [Levin et al. 2008b; Zhang range[—S/2,S/2], whereS= =" (Eq. (2)). Under this pa-

maxtOmin

and Levoy 2009]. rameterization the defocus diameter (onxiplane) of slopescan

) be expressed simply #gs|.
Now that we have expressed defocus as a convolution, we canW I H di is tairl h
analyze it in the frequency domain. Liet,, y, wy, ) denote e also assume that scene radiance is fairly constant over the nar-
the 4D lens spectrum, the Fourier transform of the 4D lens kernel FOW Solid angle subtended by the camera aperture. This assumption
K(x,y.u,V). Figure 2 visualizes lenses spec&én flatland for a is violated by highly specular objects or at occlusion boundaries.

standard and wavefront coding lenses. As the BSE obtained . .
from k by projection (Eq. (6)), by the Fourier slice theorem, the 3 Frequency analysis of depth of field

OTF (optical transfer functiongs is a slice of the 4D lens spectrum  \we now analyze the requirements, strategies, and limits of depth

k in the orthogonal direction [Ng 2005; Levin et al. 2008c]: of field extension. We show that a key factor for depth of field
. N optimization is the presence otlamensionality gajn the 4D light
sy, wy) = K( oy, wy, —Stwy, —Swy) . @ field: only a manifold of the 4D spectrum, which we cfical,

@(xy) = // K(X,y,u+sx v+ sy)dudv.



contributes to focusing at physical depths. Furthermore, we show The proof, provided in the appendix, follows from the finite amount
that the energy in a 4D lens spectrum is bounded. This suggests thabf light passing through a bounded aperture over a fixed exposure.
to optimize depth of field, most energy should be concentrated on As a consequence of Parseval's theorem, this energy budget then

the focal manifold. We discuss existing lens designs and show thatapplies to everywy, yo-sliceR

many of them spend energy outside the focal manifold. In Sec. 4 we
propose a novel design which significantly reduces this problem.

3.1 The dimensionality gap

As described above, scene depth corresponds to sliopée light
field. It has, however, been observed that the 4D light field has
a dimensionality gapin that most slopes do not correspond to a
physical depth [Gu et al. 1997; Ng 2005]. Indeed, the set of all 2D
planesx= syu+ px, y = syv+ py described by their slop®, s, and
offset px, py is 4D. In contrast, the set corresponding to real depth,
i.e., wheres= s, = s, is only 3D, as described by Eq. (1). This
makes sense because scene points are 3D. The dimensionality g
is a property of the 4D light field, and does not exist for the 2D
light field in flatland. The other slopes whesg # s, are afocal

and represent rays from astigmatic refractive or reflective sesfac
which are surfaces with anisotropic curvature [Adams and Levoy
2007], e.g., the reflection from a cylindrical mirror. Since we con-
sider scenes which are sufficiently Lambertian over the aperture,
afocal light field orientations hold no interesting information.

The dimensionality gap is particularly clear in the Fourier do-
main [Ng 2005]. Consider the 4D lens spectrigmand examine
the 2D slicesﬁ%_yo(ah,m,), in which the the spatial frequencies
Wy, Wy, are held constant (Fig. 3). We call thesg, y,-slices In
flatland, wy, v, -slices are vertical slices (yellow in Fig. 2). Follow-
ing Eq. (7), we note that the set of entries in e&ggyo participat-
ing in the OTF for any depth is restricted to a 1D line:

Iz%.yo(_sa&o’_so‘))@) ) (8)

for which w, = —swy,, wy, = —swy,. For a fixed slope rangec
[—S/2,S/2] the set of entries participating in any Ok is a 1D
segment. These segments, which we refer téoaal segments
are highlighted in Figure 3. The rest of the spectrumfecal This
property is especially important, because itimplies thast entries
of k do not contribute to an OTF at any depth

As an example, Figure 4(b-e) shows the 2D families of@Dy,-

slices for a variety of cameras. A standard lens has a high respons
for an isolated point in each slice, corresponding to the focusing
distance. In contrast, wavefront coding (Fig. 4(e)) has a broader

- While Claim 1 involves geo-
metric optics, similar bounds can be obtained with Fourier optics
using slices of the ambiguity function [Rihaczek 1969; FitzGer-
rell et al. 1997]. In [Levin et al. 2009a] we derive an analogous
bound under Fourier optics, with a small difference—the budget is
no longer equal across spatial frequencies, but decreases with the
diffraction-limited MTF.

As in the 1D space-time case [Levin et al. 2008c], optimal worst-
case performance can be realized by spreading the energy budget
uniformly over the range of slopes. The key difference in this paper
is the dimensionality gap. As shown in Figure 3, the Ofksover

only a 1D line segment, and most entries in@y,y,-slice R%‘yo

280 not contribute to any OTF. Therefore, the energy budget should

be spread evenly over the 1D focal segment only.

Given a power budget for eadly, y,-slice, the upper bound for
the defocus MTF concentrates this budget on the 1D focal segment
only. Distributing energy over the focal manifold requires caution,
however, because the segment effectively has non-zero thickness
due to its finite support in the primal domain. If a 1D focal segment
had zero thickness, its spectrum values could be made infinite while
still obeying the norm constraints of Claim 1. As we show below,
since the primal support d&fis finite (K admits no light outside the
aperture), the spectrum must be finite as well, so the 1D focal seg-
ment must have non-zero thickness. Slices from this ideal spectrum
are visualized in Figure 4(a).

Claim 2 The worst-case defocus MTF for the rarjge&s/2,S/2] is
bounded. For every spatial frequenayy:

. ~ 2 _ Blwy)A
A~ R
where the factor
oyl (1, min(|ed, |ay) ) 11
Blaxy) max(| x|, @) 3-max(|ax|, [awy) -

is in the range[ 22, 1] ~ [0.93,1].

%roof: For eacm%,,yo-slicef(%_yyo the 1D focal segment is of length

Sl yo|- We first show that the focal segment norm is bounded by

response that spans more of the focal segment, but also over theA%, and then the worst-case optimal strategy is to spread the budget

afocal region. While the spectrum of the focus sweep (Fig. 4(d)) is
on the focal segment, its magnitude is lower magnitude than that of
a standard lens.

3.2 Upper bound on the defocus MTF

In this section we derive a bound on the defocus MTF. As intro-
duced earlier, we pose depth of field extension as maximizing the
MTFs \(Zg(aky)\ over all slopes € [-S/2,S/2] and over all spatial
frequenciesuy. Since the OTFs are slices from the 4D lens spec-
trum k (Eq. (7)), this is equivalent to maximizing the spectrum on
the focal segments &t

evenly over the segment.

To simplify notations, we consider the casg = 0 since the gen-
eral proof is similar after a basis change. For this case, the 1D focal

segment is a horizontal line of the forﬁq%yO (a,0), shown in the
central row of Figure 3. For a fixed value af,, this line is the
Fourier transform of:

/// K(x, Y, u,v)e 2T @oX+0y+0V) gy dydy. (12)

By showing that the total power of Eq. (12) is bounded®8y Par-
seval’s theorem gives us the same bound for the focal segment.

We first derive the available energy budget, using a direct extension Since the exposure time is assumed to be 1, we collect unit energy

of the 1D case [FitzGerrell et al. 1997; Levin et al. 2008c].

Claim 1 For an aperture of size A A and exposure length the
total energy in eachy, y,-slice is bounded by A

// \R(%_m(ah, w)Pdaydaw, < A?. 9)

through every, v point lying within the clear apertute

// K(x,y, u,v)dxdy= {

1
0

Ul <A/2, V| <A/2

otherwise (13)

1if an amplitude mask is placed at the aperture (e.g., a codetliage
the energy will be reduced and the upper bound still holds.



Camera type Squared MTF
- 3
a. Upper bound ()P < g4y
b. Standard lens |@s(wey) 2 = A%sin(A(s— so)ax)sin(A(s— o))
c. Coded aperture | E[|@(axy)[?] ~ 822’*4 sinc (eA(s— So) wx)sin€ (EA(s— So) w)
” 2 . Palexy)?
d. Focus sweep [@s(axy)|® = oy
. ~ 2 A2
e. Wavefront coding  |@(wyy)|® ~ Fldlay]
; - /3 (axy)
f. Lattice-focal E[|@(wy)?] ~ W/;\Xw

Table 2: Squared MTFs of computational imaging designs. See
Table 1 for notation. The optimal spectrum bound falldiofarly

as a function of spatial frequency, yet existing designs such as the

focus sweep and wavefront coding fall gffadraticallyand do not
utilize the full budget. The new lattice-focal lens derived in this
paper achieves a higher spectrum, closer to the upper bound.

The MTFs for the previous designs shown in Figure 5 are lower
than the upper bound. We have analytically computed spectra for
these designs. The derivation is provided in the appendix and sum-
marized in Table 2. We observe that no existing spectrum reaches
the upper bound. Below we review the results in Table 2b-e and
provide some intuitive arguments. In the next section we introduce
a new design whose spectrum is higher than all known designs, but
still does not fully meet the bound.

Standard lens:  For a standard lens focused at degjhwe see
in Figure 4(b) high frequency content near the isolated points

Ky o (—S00xo, —SoWy,), Which correspond to the in-focus depth

@,. The spectrum falls off rapidly away from these points, with
a sinc whose width is inversely proportional to the aperture. When
the deviation between the focus slope and the object $kypes|

is large, this sinc severely attenuates high frequencies.

Coded aperture:  The coded aperture [Levin et al. 2007; Veer-
araghavan et al. 2007] incorporates a pattern blocking light rays.
The integration surface is linear, like that of a standard lens, but has
holes at the blocked areas. Compared to the sinc of a standard aper-
ture, the coded aperture camera has a broader spectrum (Fig. 4(c))
but is still far from the bound. To see why, assume w.l.0.g. that
the lens is focused & = 0. The primal integration surface lies

A phase change to the integral in Eq. (13) does not increase itson thex = 0,y = 0 plane andk is constant over altoyy. Indeed,

magnitude, therefore, for every spatial frequengyy,,
‘// k(x,y,u,v)e‘Zi"(%X“‘*/oy)dxM <1. (14)

Using Eq. (14) and the fact that the aperture is wiléilong on the
v-axis, we obtain:

2
’///k(x,y,u,v)efzm%x*oy*o"dxdyd* <A?. (15)

On theu-axis, the aperture has width as well. By integrating
Eq. (15) overu we see the power is bounded AY:

. _ 2
/ ‘ / / / k(x,y,u,v)efz'"<%x+‘**/oy)dxdyd* du<A®. (16)

Since the left-hand side of Eq. (15) is the power spectrum of
k%_yO(wu,O), by applying Parseval's theorem we see that the to-

tal power over the focal segment is boundedByas well:
[ 1Ry (e, 0) P, < A2 (17)

Since the focal segment norm is boundeddyand since we aim

all a, y,-slices in Figure 4(c) are equal. Since the union of focal
segment orientations from all, y,-slices covers the plane, to guar-
antee worst-case performance, the coded aperture spectrum should
be spread over the entire 2D plane of eagy,-slice. This implies
significant energy away from focal segments.

Focus sweep: For a focus sweep camera [Hausler 1972; Naga-
hara et al. 2008], the focus distance is varied continuously during
exposure and the 4D lens spectrum is the average of standard lenses
spectra over a range of slopgs(Figs. 4(d) and 5(d)). In contrast

to the isolated points covered by a static lens, this spreads energy
over the entire focal segment, since the focus varies during expo-
sure. This design does not spend budget away from the focal seg-
ment of interest. However, as discussed in the appendix, since the
lens kernel describing a focus sweep camera is not a Dirac delta,
phase cancellation occurs between different focus settings and the
magnitude is lower than the upper bound (Fig. 4(a)).

Wavefront coding:  The integration surface of a wavefront
coding lens [Dowski and Cathey 1995] is a separable 2D
parabola [Levin et al. 2008b; Zhang and Levoy 2009]. The spec-
trum is a separable extension of that of the 1D parabola [Levin et al.
2008c]. However, while the 1D parabola achieves an optimal worst-
case spectrum, this is no longer the case for a 2D parabola in 4D,
and the wavefront coding spectrum (Table 2e, Figs. 4(e) and 5(e))
is lower than the bound. They,,-slices in Figure 4(e) reveal

to maximize the worst-case magnitude, the best we can do is towhy. Due to the separability, energy is spread uniformly within the

spread the budget uniformly over the lengthy, y,| focal segment,
which bounds the worst MTF power 2 /S w,|. In the general
case, Eq. (16) is bounded By w)A3 rather tharA®, and Eq. (10)
follows. [|

3.3 Analysis of existing designs

We analyze the spectra of existing imaging designs with particular
attention paid to the spectrum on the focal manifold since it is the

portion of the spectrum that contributes to focus at physical depths.

Figure 4 visualizesy, y,-slices through a 4D lens spectrqﬁpfor

minimal rectangle bounding the focal segment. For another per-
spective, consider the wavefront coding integration surface in the
primal domain, which is a separable parabofa,v) = (aw?,av?).

A local planar approximation to that surface around an aperture
point ug, Vo is of the formc(u,v) = (syu,syv), for sy, = % = 2aup,

Sy = ‘;—f,y = 2ay. Forug # vp the lens is locally astigmatic, and
as discussed in Sec. 3.1, this isa@cal surface. Thus, the only
focal part of the wavefront coding lens is the narrow strip along its
diagonal, whereig = vg.

Still, the wavefront coding spectrum is superior to that of coded

recent imaging systems. Figure 5 shows the corresponding MTFsapertures at low-to-mid frequencies. It spreads budget only within
(OTF-slices) at a few depths. A low spectrum value at a point on the minimal rectangle bounding the focal segment, but not up to the
the focal segment leads to low spectrum content at the OTF of the maximal cutoff spatial frequency. The wavefront coding spectrum
corresponding depth. Examining Figures 4 and 5, we see that someand that of a focus sweep are equaldk| = |w,|. However, the
designs spend a significant portion of the budget on afocal regions.wavefront coding spectrum is significantly improved fax| — 0
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Figure 4: 4D lens spectrum for different optical designs. Each subplot isugR,-slice as described in Figure 3. In the flatland case of
Figure 2, thesewy, y,-slices correspond to vertical columns. An ideal design (a) shouldurddor the dimensionality gap and spend energy
only on the focal segments. Yet, this bound is not reached by any exie8ignd A standard lens (b) devotes energy only to a point in
each subplot. A coded aperture (c) is more broadband, but its spadgwwonstant over ally, y,-slices, so it cannot cover only the focal
segment in eachy, y,-slice. The focus sweep camera (d) covers only the focal segmentmseduced energy due to phase cancellations
and does not achieve the bound. A wavefront coding lens (e) is $8panathe w,, w, directions and spends significant energy on afocal
areas. Our new lattice-focal lens (f) is an improvement over existing dgsend spreads energy budget over the focal segments. Note that
all subplots show the numerical simulation of particular design instancéh, parameters for each design tuned to the depth range (see

Sec. 5.1), approximating the analytic spectra in Table 2. The intensity iscadastant for all subplots.

(a) (b) (© @ (e) 0] i
sl 0D siohard  caded  ‘ocus  wevefront attice- or |wy| — 0, because the rectangle becomes compact, as shown in

bound S —05 S—0 sweep coding focal the central row and column of Figure 4(e).

In [Levin et al. 2009a] we also analyze the plenoptic camera and the
focal stack imaging models. Note that despite all the sinc patterns
mentioned so far, the derivation in this section and the simulations
in Figures 4 and 5 model pure geometric optics. Diffraction and

oo

05 wave optics effects are also discussed in [Levin et al. 2009a]. In
most cases Fourier optics models lead to small adjustments to the
spectra in Table 2, and the spectra are scaled by the diffraction-

i | limited OTF.
-,
Having reviewed several previous computational imaging ap-
-05 proaches to extending depth of field, we conclude that none of them

spends the energy budget in an optimal way. In a standard lens the
entire aperture area is focal, but light is focused only from a sin-
gle depth. A wavefront coding lens attempts to cover a full depth
range, but at the expense that most aperture area is afocal. In the
next section we propose a new lens design, the lattice-focal lens,
Figure 5. Spectra of OTF-slices for different optical designs over with the best attributes of both—all aperture area is focal, yet it
a set of depths. The subplots represent the MTF of a given imagingfocuses light from multiple depths. This lets our new design get
system for slope ggs(wy, wy)|, where the subplot axes areyy. closer to the upper bound compared to existing imaging systems.
These OTF-slices are the 2D analog of the slanted red and blue

slices in Figure 2. Our new lattice-focal lens design best approxi- 4 The l|attice-focal lens

mates the ideal spectrum upper bound. Note that all subplots show

the numerical simulation of particular design instances, with pa- Motivated by the previous discussion, we propose a new design,
rameters for each design tuned to the depth range (see Sec. 5.1)which we call the lattice-focal lens. The spectrum it achieves is
approximating the analytic spectra in Table 2. higher than previous designs but still lower than the upper bound.
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Figure6: Left: Ray mapping for a lattice-focal lens in flatland. The
aperture is divided into three color-coded sections, each focused on
a different depth. Right: In the 2D light field the integration surface
is a set of slanted segments, shown with corresponding colors.
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(a) Lattice-focal lens (b) PSFs
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(a) Lattice-focal lens (b) Discrete focus sweep

Figure 8: Focus sweep vs. the lattice-focal lens. (a) Lattice-focal
lens whose aperture is divided inBodifferently-focused bins. (b)
Discrete focus sweep, dividing the integration time ®itons, each
focusing on a different depth (note that an actual focus sweep cam-
era varies focus continuously). Depth ranges with defocus diameter
below a threshold are colored. While in both cases each bin lets in
1/3 of the energy, the sub-apertures for the lattice-focal lens are
narrower than the full aperture used by the focus sweep, hence the
effective DOF for each of the lattice-focal bins is larger.

Figure 7: (a) Toy lattice-focal lens design with only 4 subsquares.
(b) The PSFg in the primal domain, at two different depths. Each
subsquare (color-coded) corresponds to a box in the PSF. The width
of each box is a function of the deviation between the subsquarethat since each lattice-focal subsquarsrisallerthan the full aper-
focal depth and the object depth. ture, its effective DOF is larger than the DOF for the full aper-
ture (Figure 8). As shown in Fig. 4(d,f) and Fig. 5(d,f), the
. . o ) lattice-focal lens achieves significantly higher spectra than focus
In this design, the aperture is divided intgef subsquares of  gyeep. Mathematically, by discretizing the exposure time Mto
size eA x eA each (for 0< & < 1). Each subsquare is a fo-  pins each bin of the focus sweep (focused at skpeontributes
cal element cropped from a standard lens focused at some slope,, .
sj € [-S/2,5/2]. Thatis, the integration surface is defined as: N SINQA(S — sj) ax)siNgA(s — sj) wy) to the OTF. By contrast, by
dividing the aperture intd\ bins, each bin of the lattice-focal lens
contributes sing AN~Y/2(s— sj) ax)sind AN~Y/2(s — s;) ). In
both cases each bin collectgN of the total energy (and the sincs’

c(u,v) = (sju,sjv) for (u,v) €W, (18)

whereW; denotes the area of thieth subsquare. Figure 6 visu-
alizes the integration surface of a lattice-focal lens, composed of
linear surfaces with different slopes (compare with Figure 2, left).
Figure 7 illustrates a toy four-element lattice-focal lens and its PSF
for two different depths. In the primal domain, the PSF is a super-

height isA%/N), but the lattice-focal sinc is wider. While coin-
cidental phase alignments may narrow the sincs, these alignments
occur in isolation and do not persist across all depths and all spatial
frequencies. Therefore, the lattice-focal lens has a higher spectrum
when integrating oves;.

position of scaled and shifted boxes corresponding to the various
aperture subsquares. For this example, one of the subsquares is forhe yo-Slices in Figure 4(f), and the OTF-slices in Figure 5(f)

cused at the correct depth for each scene depth, so the PSF consistsyggest that the lattice-focal lens achieves a higher spectrum com-
of an impulse plus three defocused boxes. The box width is a func- pared to previous designs. In the rest of this section we develop an
tion of the deviation between the lens focal depth and the object analytic, average-case approximation for the lattice-focal spectrum,

depth. which enables order-of-magnitude comparison to other designs. We
The OTEG f a lattice-focal | . fsi then discuss the effect of window sizeand show it is a critical pa-

ey %(Q&Jg{v_) of a lattice-focal lens is a sum of SINCs Corre- 3 meter of the construction, and implies a major difference between
sponding to the different subsquares:

our design and previous multi-focus designs [George and Chi 2003;

. Ben-Eliezer et al. 2005].
S 2RO sine (eAwk(s) —9)) sinc(eAwy(s) —S)) - ]
J Spectrum of the lattice-focal lens: The spectrum of a particu-
. (19) lar lattice focal lens can be computed numerically (Eqg. (19)), and
For a subsquare centered at aperture p@intvj), (vjx,Yy) = Figures 4 and 5 plot such a numerical evaluation. However, to
(uj(sj —s),Vj(sj —s)) denotes the phase shift of tii¢h subsquare,  allow an asymptotic order-of-magnitude comparison between lens
corresponding to its translated center. The 4D spectrum of a single designs we compute the expected spectrum over random choices of
aperture subsquare is a sinc around one point in the focal segmentihe slopesj and subsquare centefis;, vj) in Eq. (18) (note that to
Kayg,y, (—Sj o —Sj Wy, ). However since each subsquare is focused simplify the proof, the subsquares in a generic random lattice-focal
at a different slope; the summed spectra cover the focal segment are allowed to overlap and to leave gaps in the aperture area). Given
(Figure 4(f)). In contrast to the spectrum for wavefront coding, the sufficiently many subsquares, the law of large numbers applies and
lattice-focal spectrum does not spend much budget away from the& sample lattice-focal lens resembles the expected spectrum. While
focal manifold. This follows from the fact that the subsquare slopes this analysis confers insight, the expected spectrum should not be
in Eq. (18) are set to be equalirandv, therefore the entire aperture confused with the spectrum of a particular lattice-focal lens. The
area isfocal. spectrum of any particular lattice-focal instance is not equal to the

] ) ) expected one.
The lattice-focal design resembles the focus sweep in that both
distribute focus over the DOF—focus sweep over time, and the Claim 3 Consider a lattice-focal lens whose subsquare slopes
lattice-focal design over aperture area. The crucial difference is in Eq. (18) are sampled uniformly from the ran§eS/2,S/2],



and subsquares centers sampled uniformly over the aperture area
[—-A/2,A/2] x [-A/2,A/2]. For ||, |wy| > (eSA L, the expected
power spectrum asymptotically approaches

eA3

Seoey] (20)

Ell@s(ax, wy)|?] ~ (axy)

wheref is defined in Eq. (11).

Proof: Let s denote a particular scene depth of interest anaféet
denote the OTF of thg-th subsquare focused at sloge so that

the lattice-focal OTF isss = ¥ @. For a subsquare size o x
€A, the aperture area is covered fy= 1/€? subsquares. Since

themrandom variableég are drawn independently from the same
distribution, it follows that

E[|@/?]) = mE[|@ 2] + m(m— 1) E[@d] 2. (1)

The second term in Eqg. (21) is positive, and one can show it is
small relative to the first term. For simplicity we make the con-
servative approximation [F|?] ~ mE[|@!|?], and show how to

compute @ |?] below. Note that the exact lattice-focal spectrum
(Eg. (19), and the right-hand side of Eq. (21)) involves interference
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Figure 9: The lattice-focal lens with varying window sizes. Left:
Woyo-Slice atay = 0.9Q, wy = —0.9Q, through theexpectedspec-

trum. Middle: wy, y,-slice from aparticularlattice-focal lens in-
stance. Right: The defocus diameter over the depth of field. The
expected spectrum improves when the windows number is reduced,
but every particular lattice-focal lens becomes undersampled and

from the phase of each subsquare. An advantage of our approximadoes not cover the full depth range.

tion mE[|c2gj 2] is that it bypasses the need to model phase precisely.

Recall that the PSF from each subsquare is a box filter and the OTF
is a sinc. If thej-th subsquare is focusedst

@ (@y)|? = e*A%sin (eAwx(s—s)))sin@(eAwy (s—j)) . (22)

Since the subsquare slopes are drawn uniformly ffe®/2,S/2],
the expected spectrum is obtained by averaging Eq. (22)spver

4pd 1S/2

< 75/23"1('2 (eAwx(sj — 9)) siné (eAwy(sj —9)) ds; .
(23)

E[| @2 =

To compute this integral we make use of the following identity: for
a 2D vector = (rq,r2),

00

/ Sin(rat)sinc(rt)dt —

B(rl)

Irl

If —S/2 <s< S/2 andSis large, we can assume that the integration

boundaries of Eq. (23) are sufficiently lafgend asymptotically
approximate Eq. (23) with the unbounded integration of Eq. (24):

(24)

B apd 152
E[\@‘z}:% S/Zs,inc? (eAwx(sj —9)) siné (eAwy(sj — ) ds;
$4A4 S/2+s . .
-5 _S/2+Ssmc2 (eAaxs)) sin¢ (eAays;) ds;
L EAB(wy)
Syl

(25)

Eq. (20) now follows from Eq. (25), after multiplying by the num-
ber of subsquaresy = . []

2Note that the approximation in Eg. (25) is reasonable|dgf, || >
(SeA)~L. The approximation is crude at the low frequencies but becomes
accurate at higher frequencies, for which the MTF approathe desired
fall off. Furthermore, note that at the exact integration riaries § =
+S/2) one gets only half of the contrast. Thus, in practice, drueikl setS
a bit higher than the actual depth range to be covered.

Optimal subsquare size: ~ According to Claim 3, the expected
power spectrum of a lattice-focal lens increases with window size
¢ (Fig. 9). For larger subsquares the sinc blur around the central
focal segment is narrower, so more energy is concentrated on the
focal segment. However, it is clear that we cannot makebitrar-

ily large. When the number of subsquares is small, the expected
power spectrum is high, but there are not enough samples to cover
the full focal segment (Figure 9(a)). On the other hand, when the
number of subsquares is too large, every subsquare has wide sup-
port around the main focal segment, leading to lower energy on the
focal segment (Fig. 9(c)).

Posed another way, each subsquare is focused at a different point
in the depth range, and provides reasonable coverage over the sub-
range of depths for which it achieves a defocus diameter of less
than 1 pixel (Fig. 9, rightmost column). The subsquares’ arrange-
ment is undersampled if the minimum defocus diameter for some
depth range is above 1 pixel, and redundant when the subsquares’
effective depth coverage overlap. In the optimal arrangement each
depth is covered by exactly one subsquare.

We derive the minimal number of windows providing full coverage
of the depth of field, resulting in an optimet.

Claim 4 The maximal subsquare size which allows full spectrum
coverage is

g = (Ax) /3. (26)

Proof: If the spacing between spatial samplesAisthe maxi-
mal frequency we need to be concerned witl2i8/2 = S/(4A).
For window sizes we obtain J/sz subsquares. |If the slopes of
the subsquares are equally spaced over the range2,S/2], the
spacing between samples in the frequency domain=sQSe2.
Using subsquares of widtBA, we convolve the samples with
singeAux)singeAwy). For full coverage, we thus requigA <
1/1, implying:

£ < (A) Y3, 27



Large depth rangeS(= 2) Small depth rangeS(= 0.1)
Wavefront coding Lattice-focal Wavefront coding Lattice-focal

Discussion of lens spectra: ~ The lattice-focal lens with an op-  Figure12: wy, y,-slice (atwy, = 0.9Q, wy, = —0.9Q) for two depth

timal window size achieves the highest power spectrum (i.e., clos- ranges defined by slope bounds-& (left) and S= 0.1 (right). For

est to the upper bound) among all computational imaging designs the smaller range, the difference between the focal segment and the

listed in Table 2. While the squared MTFs for wavefront coding full bounding square is lower, and the spectra for wavefront coding

and focus sweep fall offjuadratically as a function ofwyy, for and the lattice-focal lens are more similar.

the lattice-focal lens the squared MTF only falls lffearly. Fur-

thermore, while the squared MTFs for wavefront coding and focus ) )

sweep scale withA2, for the lattice-focal lens the squared MTF  followed by Wa\éefronttc%dlng, theln_ focus sweeép. Nﬂte that 5'”;?3 _
) . . 1/3 we use a square aperture, several imaging systems have more hori-

scales withA®/2. siill, there exists a gap ¢ASd) /% between the zontal and vertical frequency content. This leads to horizontal and

power spectrum of the lattice-focal lens and the upper bound. It

- ; vertical structure in the reconstructions of Figure 10, particularly
should be noted that the advantage of the lattice-focal lens is asymp-ticeaple in the standard lens and the wavefront coding results.
totic and is most effective for large depth of field ranges. When the
depth range of interest is small the difference is less noticeable, asin Figure 11 we simulate the effect of varying the depth range. The

If we plug the optimak™* from Eq. (26) into Eq. (20) we conclude
that the expected power spectrum of a lattice-focal lens with opti-
mal window size is:

- 2 A8/3
Efl s, wy)|7] = mﬁ(ﬁky) . (28)

demonstrated below. planar object was positioned si= —0.5, and the camera parame-
ters were adjusted to cover a narrow depth radge0.1 (Fig. 11,
Compact support in other designs: From the above discus-  top row) and a wider rang®= 2 (Fig. 11, second row). When the

sion, the aperture area should be divided more or less equally intofocus sweep, wavefront coding and lattice-focal lens are adjusted
elements focused at different depths. However, beyond equal are t0 a narrower depth range their performance significantly improves,
we also want the aperture regions focused at each depth to besince they now distribute the same budget over a narrower range.

grouped together. Eq. (20) indicates that the expected power spec
trum is higher if we use few wide windows, rather than many small

ones. This can shed some light on earlier multi-focus designs. For
example, [George and Chi 2003] use annular focus rings, and [Ben

The difference between the designs becomes more critical when the
depth range is large. Figure 12 visualizegg,y,-slice for bothS
values. ForS= 0.1, the length of the focal segment is so short
that there is little difference between the segment and its bounding

Eliezer et al. 2005] use multiplexed subsquares, but multiple non- : !

adiacent subs uar]es are asgi ned the sqame focal len thp In botgauare: Thus, with a smaller depth range the wavefront coding lens
) q g gth. "N BOULers less of penalty for spending its budget on afocal regions.

cases, the support of the aperture area focused at each depth is not

at all compact, leading to sub-optimal MTFs. ) ) )
Mapping slope ranges to physical distances: Assume that the

. camera has sensor resolutidp = 0.007mm, and that we use an
5 Experiments f = 85mm focal length lens focused at demih= 70cm. This

We first perform a synthetic comparison between extended depth ofdepth also specifies the location of theight field plane. The DOF
field approaches. We then describe a prototype construction of thelS defined by the rangelmin, dmaq corresponding to slopesS)2.

lattice-focal | dd trat | extended-DOF i ) From Eq. (2), the depth range can be expressed) A8 + S/2),
attice-locatiens and demonstrate real extende images yielding a DOF of [35,c0]cm for S= 2 and [66.2,74.3]cm for

i i S=0.1. The pixel size in the light field i& = Ag/M, where

51 Simulation M = f/(do — f) = 0.13 is the magnification. We set the effective
We start with a synthetic simulation using spatially-invariant first aperture sizéA to 100\ = 100Q/M = 50.6mm, which corre-
order (paraxial) optics. The OTFs in this simulation are computed sponds tof /1.68. The subsquares number and focal lengths are
numerically with precision, and do not rely on the approximate for- selected such that for each point in the depth range, there is ex-
mulas in Table 2 . actly one subsquare achieving defocus diameter of less than one

) ) ] ) pixel. The subsquare number is given by Eq. (26), in this simu-
Our simulation use# = 100\ and considers two depth of field  |ation m = 100 aperture subsquares wih= 2, andm = 16 sub-
ranges given bys=2 andS= 0.1. Assuming a planar scene, squares witf5=0.1. To set the focal lengths of each subsquare we
we synthetically convolved an image with the PSF of each design selectm equally spaced slopes in the rangg—S/2,S/2]. A slope
addlng_ i.i.d. GaUSSIB_In noise with Standar.d de\/.lampﬁt. 0004 Sj is mapped to a physica| demh according to Eq (2) To make
Non-blind deconvolution was performed using Wiener filtering and  the j-th subsquare focus at depi]%we select its focal length; ac-

the results are visualized in Figures 10 and 11. We set the free pa-cording to the Gaussian lens formulat f1 = 1/d; + 1/ds (where
rameters of each design to best match the depth range—for examy_ genotes the sensor-to-lens distance). J

ple, we adjust the parabola widdh(in Eg. (5)), and select the opti-
mal subsquare size of the lattice-focal lens. The standard and codeds 2 |mplementation
lenses were focused at the middle of the depth rangg,-a.

. imul he eff f ina the depth of th Hardware construction: To demonstrate our design we have
In Figure 10 we simulate the effect of varying the depth of the ob- it 5 prototype lattice-focal lens. Our construction provides a

ject. Using cameras tuned for depth rarge 2, we positioned  60f of concept showing that a lattice-focal lens can be imple-
the planar object &= 0 (Fig. 10, top row) and = —0.9 (Fig. 10, mented in practice and lead to reasonably good results, however

bottom row). As expected, higher spectra improve the visual qual- it is not an optimized or fully-characterized system.
ity of the deconvolution. Standard and coded lenses obtain excel-

lent reconstructions when the object is positioned at the focus slopeAs shown in Figure 13, our lattice-focal lens mounts to a main
s= 0, but away from the focus depth the image deconvolution can- lens using the standard threaded interface for a lens filter. The sub-
not recover much information. Focus sweep, wavefront coding and squares of the lattice-focal lens were cut from BK7 spherical plano-
the lattice-focal lens achieve uniform reconstruction quality across convex lens elements using a computer-controlled saw. The squares
depth. The best reconstruction is obtained by our lattice-focal PSF, are of size 3 x 5.5mm and thickness 3mm. By attaching our
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Figure 10: Synthetic comparison of image reconstruction at different object ddpihsow: object depth s- 0, Bottom row: object depth
s= —0.9 Standard and coded lenses produce high quality reconstruction for gaetodt the focus depth, but a very poor one away from
the focus depth. Focus sweep, wavefront coding and the lattice focaldeimsm equally across depth. The highest quality reconstruction
produced by our lattice-focal lens.

Standard Lens Coded aperture - Focus sweep Wavefrontcoding  attica-focal -

Figure 11: Synthetic comparison of image reconstruction when camera paransetesasljusted for different depth ranges. Top row: narrow
depth range bounded by=S0.1, Bottom row: wider range bounded by=S2. Most designs improve when they attempt to cover a narrower
range. The difference between the designs is more drastic at large debs.

lattice-focal lens to a high-quality main lens (Canon 85mm f1.2L), Given a fixed budget ofm subsquares of a given width, we can
we reduce aberrations. Since most of the focusing is achieved byinvert the arguments in Sec. 4 and determine the DOF it can
the main lens, our new elements require low focal powers, and cor- cover in the optimal way. As discussed at the end of Sec. 5.1
respond to very low-curvature surfaces with limited aberrations (in and illustrated in Figure 9(b), for every point in the optimal
our prototype, the subsquare focal lengths varied from 1m to 10m). DOF, there is exactly one subsquare achieving defocus diam-
. . eter of less than 1 pixel. This constraint also determines the
In theory the lattice-focal element should be placed in the plane of ;4.4 length for each of these subsquares. For our prototype
the main lens aperture or at one of its images, e.g., the entrance oy focused the main lens at 180cm and chose subsquare focal
exit pupils. To avoid dlsassgmbllng the main Igens to access theselengths covering a depth range [60,180cm. Given the limited
planes, we note that a sufficiently narrow stop in front of the main ayajlapility of commercial plano-convex elements, our subsquares’
lens redefines a new aperture plane. This lets us attach our |att'ce'coverage was not perfectly uniform, and we used focal lengths of
focal I(_ens at the front, where the StOp reqUIred to define a new aper- 10000,5000,4000,3000,2500,2000,1750,1500,1300,1200mm,
ture still let us use 60% of the lens diameter. plus one flat subsquare (infinity focal length). However, for a

The minimal subsquare size is limited by diffraction. Since a custom-manufactured lens this would not be a limitation.

normal lens starts being diffraction-limited around B2 aper-

ture [Goodman 1968], we can fit about 100 subsquares within an Calibration: ~ To calibrate the lattice-focal lens, we used a planar
f/1.2 aperture. To simplify the construction, however, our pro- white noise scene and captured a stack of 30 images for different
totype included only 12 subsquares. The DOF this allowed us to depths of the scene. Given a blurred and sharp pair of imBgés
cover was small and, as discussed in Sec. 5.1, in this range theat depthd, we solved for the kernely minimizing |@ ® l4 — By|.
lattice-focal lens advantage over wavefront coding is limited. Still, We show the recovered PSF at 3 depths in Figure 13. As discussed
our prototype demonstrates the effectiveness of our approach. in Sec. 4, the PSF is a superposition of boxes of varying sizes, but
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Figure 14: Comparison between a lattice-focal lens and a standard lens, both forrawaperture (f/16) and for the same aperture size
as our lattice-focal lens prototype (#). All photos were captured with equal exposure time, so tH6 fmage is very noisy. The standard
f /4 image is focused at the white book, but elsewhere produces a defomasgE The lattice-focal output is sharper over the entire scene.

the wrong PSF leads to convolution error, we can locally score the
explanation provided by PSg around pixel as:

Ei(d) = [Bi — Bqil®+A [p(gxi(la) +p(0yi(la)] (30)

whereBy = @ ® 143. We regularize the local depth scores using
a Markov random field (MRF), then generate an all-focus image
using the Photomontage algorithm of Agarwala et al. [2004].

90cm

150cm

Results:  In Figure 14 we compare the reconstruction using our
lattice-focal lens with a standard lens focused at the middle of the
depth range (i.e., the white book). Using a narrow apertfifé),

the standard lens produces a very noisy image, since we held ex-
posure time constant over all conditions. Using the same aperture
size as our prototypef(4), the standard lens resolves a sharp im-
age of the white book, but the rest of the scene is defocused. For
the purpose of comparison, we specified the depth layers manually
Figure 13: Our prototype lattice-focal lens and PSFs calibrated at and deconvolved both the standard and lattice-focal images with
three depths. The prototype attaches to the main lens like a stan-PSFs corresponding to the true depth. Because the spectrum of
dard lens filter. The PSFs are a sum of box filters from the different the lattice-focal lens is higher than a standard lens across the depth
subsquares, where the exact box width is a function of the deviation"ange, greater detail can be resolved after deconvolution.

between the subsquare focal depth and the object depth. Figure 15 shows all-focus images and depth maps captured using

our lattice-focal lens. More results are available orflin&ince
the MRF of Agarwala et al. [2004] seeks invisible seams, the layer
'transitions usually happen at low-texture regions and not at the ac-
tual contours. Despite the MRF’s preference for piecewise-constant
depth structures we handle continuous depth variations, as shown in
Depth estimation:  Given the calibrated per-depth PSFs, we de- the rightmost column of Figure 15.
blur an image using sparse deconvolution [Levin et al. 2007]. This o ) )
algorithm computes the latent imateas The results in Figure 15 were obtained fully automatically. How-
ever, depth estimation can fail, especially next to occlusion bound-
_ i _R2 . : aries, which present a general problem for all computational
la argnlwln\qh 21-B+A Iz [p(gx_l(l)) +p(gy,.(l))} » (29) extended-DOF systems [Dowski and Cathey 1995; Nagahara et al.
2008; Levin et al. 2007; Veeraraghavan et al. 2007]. While a princi-
wheregy i, gy denote horizontal and vertical derivatives of tkib pled solution to this problem is beyond the scope of this paper, most
pixel, p is a robust function, andl is a weighting coefficient. artifacts can be eliminated with simple manual layer refinement.

180cm

the exact arrangement of boxes varies with depth. For comparison
we did the same calibration using a standard lens as well.

Since the PSF varies over depth, rough depth estimation is required  3Note that despite the discussion in [Levin et al. 2009b], wipley a
for deblurring. If an image region is deconvolved with a PSF cor- MAP approach that scores a depthbased on the besg explanation
responding to the incorrect depth, the result will include ringing alone. The reason this approach works here is that a dellaratjon is ab-
artifacts. To estimate depth, we start by deconvolving the entire sent from the search space, and there is a roughly equal vafisatutions
image with the stack of all depth-varying PSFs, and obtain a stack around all PSFgy.

of candidate deconvolved imagék;}. Since deconvolution with 4“www.wisdom.weizmann.ac.il/"levina/papers/lattice



Standard lens

Lattice-focal lens

Figure 15: Partially defocused images from a standard lens, compared with an all-éddosage and depth map produced by the lattice-focal
lens.

Figure 16: Synthetic refocusing using the coarse depth map estimated with the latticéefosal

Relying on depth estimation to decode an image from a lattice-focal port around the focal segment, reducing the height of the spectrum
lens is a disadvantage compared to depth-invariant solutions, but iton the focal segment itself.
also allows coarse depth recovery. In Figure 16 we used the rough

depth map to synthetically refocus a scene post exposure. We have focused on spectra magnitude, which dominates the de-
convolution quality. However, the accuracy of depth estimation is
6 Discussion important as well. Wavefront coding and focus sweep cameras have

an important advantage that they bypass the need to estimate depth.

This paper analyzes extended depth of field systems in light field Onthe other hand, the lattice-focal lens has the benefit of recovering
space. We show that while effective extended DOF systems seeka rough depth map in addition to an all-focused image. One future
high spectrum content, the maximal possible spectrum is bounded.fesearch question is whether the higher spectrum of the lattice-focal
The dimensionality gap between the 4D light field and the 3D focal !e€ns can also be achieved with a depth-invariant design.

manifold is a key design factor, and to maximize spectrum content . i
lenses should concentrate their energy in the focal manifold of the Acknowledgments: ~ We thank the Israel Science Foundation,
light field spectrum. We analyze existing computational imaging the Royal Dutch/Shell Group, NGA NEGI-1582-04-0004, MURI
designs and show that some do not follow this principle, while oth- Grant NO0014-06-1-0734, NSF CAREER award 0447561. F. Du-
ers do not achieve a high spectrum over the depth range. Guided byand acknowledges a Microsoft Research New Faculty Fellowship
this analysis we propose the lattice-focal lens, accounting for the @nd a Sloan Fellowship. S. Hasinoff acknowledges the NSERC
dimensionality gap. This allows us to achieve defocus PSFs with PDF program.

higher spectra compared to previous designs.

However, the lattice-focal lens does not fully achieve the upper Appendix: Spectra derivations

bound. One open question is whether better designs exist, whethe
the upper bound could be tighter, or both. Our intuition is that the
upper bound could be tighter. The proof of Claim 2 is based on . .
the assumption that akix A primal support is devoted to every fre- ~ Claim 5 For an aperture of size A A and exposure length, the
quency point. However, the fact that the integration surface has to total energy in eachu, y,-slice is bounded by %A

“cover” a full family of slopes implies that the aperture area has

to be divided between all slopes. Thus the primal support of each // i 2dcada, < A2 . 31
slope is much smaller thak which implies a wider frequency sup- [Ke o (01 €0) [ “denu ey < (1)

r o
Below we complete the budget and spectra derivation of Sec. 3.



Proof: The proof reviews the budget proof in [Levin et al. 2008c]. ~ shift (resulting from the translation of the subsquare center):
Note thatke, , (wu, @) is the 2D Fourier transform of: . !
k) (ax, wy, @, ) = e2A%e™ 2T sing e Ay, )singeAw,) -
[ — 2wy, X+ - (39)
// k(x Y, u,v)e 2 oY) dxdy. (32) As in the proof of Claim 3, we note that[lg] affects very low
frequencies only, so we use Eq. (21) to approximate

For every clear aperture poift) <A/2, |v| <A/2:

. 1.
2 2 E[k? ~ SE[Kk] (40)
‘// K(X,Y, u,v)e—Zi"(%X%%/oy)dxM < ‘// K(X, Y, u,v)dxd% <1. gz 4
E°AT . .
(33) = 7S|nc"(sAwu)smcz(sAax,) , (41)

Where the first inequality follows from the fact that a phase change

does not increase magnitude, and the second inequality followswhere the number of subsquares j’$2_tand the factor 12 repre-
from the unit energy through every clear aperture point (see also sents the probability of a blocked subsquare. By selecting an OTF-
Egs. (13) and (14)). slice, Eq. (38) follows] |

Since the aperture sizeA€, the total norm is bounded by: Eq. (41) suggests that, ignoring diffraction, the sensor spatial res-
5 olution implies a tradeoff in selecting the optimal hole size. If
ey i X 2 we use small holes, the power spectrum of the aperture is wider,
// ‘// k(xy,u,v)e o %y)dXd% dudvsA®.  (34) and wider spectrum implies that more budget is spread away from
the main focal segment (indeed Eq. (38) shows that the expected
By Parseval's theorem, the square integral is the same in the dualspectrum is multiplied by and decreases whenis small). On

and the primal domains, thus: the other hand, the expected power spectrunﬁ Gdlls off like
siné(eAw,)sin(eAwy). That is, since the lens is focused only
// \k%y (ay, wv)lzd%dax/ < AZ (35) at a single depth, to have spectral content at slopes corresponding
w to other depths, the spectrum of the aperture must be sufficiently

wide, implying that a small hole sizeis needed.

[

Standard lens:

; -1
Claim 6 The power spectrum of a standard lens focused at depth €1&im 8 For [, |ay| > (SA 7, the power spectrum of the focus
So with aperture A< A is sweep camera asymptotically approaches

Focus sweep:

(e, )2 = Alsin (A(s— so))sin(A(s— o)) . (36) P A;ggyf , (42)
8

Proof: A lens focused at slop® is modeled by a linear integration  \here a(|ay|) is a bounded multiplicative factor in the range
surfacec(u,v) = (sou, V). If the surface were infinite, the Fourier 1,v2): '

transform would be an impulse at, = —Soax, Wy = —Sowy. Given

the finite aperture we need to convolve that with a sinc, and thus a(lwy|) = % ) (43)
k(a, wy, wy, wy) = A“SINGA(wy — So))Sind(A(wy — Sofw)):ﬁ)
Eq. (36) follows by selecting an OTF-sli (@ Proof: The spectrum of a standard lens focused at stgjie
2 . .
The wy, y,-slices in Figure 4(b) reveals a sinc around the point A’sindAux(so — 5))sindAay (s - 9)) - (44)

wy = —Sox, Wy = —Swy. Note that reducing the aperture size
A increases the sinc width and minimizes defocus blur. However,
given a fixed exposure length it also reduces the amount of light col-
lected, which reduces the MTF. Indeed, the sinc height in Eq. (36)
decreases for smallérvalues.

The spectrum of a focus sweep is obtained by averaging Eq. (44)
oversp. To compute this integral we make use of the following
identity: for a 2D vector = [r1,r2],

@ . a(lr
/ singryt)sindrot)dt = |(r|\ D . (45)
Coded aperture: A coded aperture is constructed with a standard o
lens, w.l.0.g. focused at slogg= 0. We construct a coded aperture

by dividing the aperture into squares of sez&x ¢A and randomly If —S/2 <'s < S/2 andSlarge enough we use Eq. (45) and get:

blocking each subsquare with probability2l The expected power A2 (S2
spectrum can then be computed analytically. a(wxy) = sl SingAwx(so — S))sind Awy (o — 5))ds

’ -8/2
Claim 7 For alens focused aps= 0, the expected power spectrum A2 [S/2+s
of a random coded aperture with holes si&zZex €A is = 3 sing Aaxsp)sindAwySp)ds

—S/2+s
- N .
Ell@s(axy) 2] ~ Tsmcz(sAsay)smcz(eAscw) . (38) . % . (46)
y

Proof: We expres — ki whereki is the 4D spectrum of an ~ Taking the power of Eq. (46) provides Eq. (“48).

individual subsquare. For an unblocked hole centereg.ap we
can expresg! analytically as the transform of a box times a phase 5The approximation is reasonable fos|, |w,| > (SA~L.




Figure 4(d) displaysw, y,-slices from the power spectrum of a GEORGE, N.,AND CHI, W. 2003. Computational imaging with the
focus sweep camera. On one hand, this spectrum is concen- logarithmic asphere: theory. Opt. Soc. Am. A 2@260-2273.
trated around the main focal segment, with the same narrow width . ) .
achieved by the upper bound in Fig. 4(a). However, the magnitude GOOPMAN, J. W. 1968 Introduction to Fourier OpticsMcGraw-
of the focus sweep is significantly lower. In fact, the total energy at ~ Hill Book Company.

everywy, y,-slice is much lower than the budget of Claim 5, thatis: Gy, X., GORTLER, S. J.,AND COHEN, M. F. 1997. Polyhedral
geometry and the two-plane parameterizationEGSR

L 2 2
//‘kwxo.yo(“h?w"” da,day <A”. (47) HASINOFF, S.,AND KUTULAKOS, K. 2008. Light-efficient pho-
tography. INECCV.
To understand why, recall that the upper bound in Claim 5 is ob- .
tained by noting that whex y are integrated, the magnitude of the HAUSLER, G. 1972. A method to increase the depth of focus by
projection integral is bounded by 1 (Eq. (33)). And indeed, when WO step image processin@ptics Communication$842.
the 4D lens kernel is a delta function ofv, that integral is equal HorN, B. K. P. 1968. Focusing. Tech. Rep. AIM-160, Mas-
to 1. By contrast, the effective 4D kernel for a focus sweep cam-  gachusetts Institute of Technology. '
era is the average of standard-lens 4D kernels over all depths, and
therefore is not a delta function. When such a non-delta kernel is LEVIN, A., FERGUS R., DURAND, F., AND FREEMAN, W. 2007.
multiplied by a wave of the forng=2™M@x+@y) interference and Image and depth from a conventional camera with a coded aper-
phase cancelations significantly reduce the magnitude of the inte- ture. SIGGRAPH

gral, and Eq. (33) is far below 1. LEVIN, A., FREEMAN, W., AND DURAND, F. 2008. Understand-

ing camera trade-offs through a Bayesian analysis of light field

Wavefront coding: projections. INECCV.
Claim 9 For a slope sc [-S/2,S/2], the power spectrum of a  LEVIN, A., FREEMAN, W., AND DURAND, F. 2008. Understand-
wavefront coding lens asymptotically approaches ing camera trade-offs through a Bayesian analysis of light field
5 projections.MIT CSAIL TR 2008-049
“ A
|@s(ex, wy)|2 ~ (48) LEVIN, A., SAND, P., GHO, T. S., DURAND, F.,AND FREEMAN,

ooy W. T. 2008. Motion invariant photograph@IGGRAPH

. . . . LEVIN, A., HASINOFF, S., GREEN, P., DURAND, F.,AND FREE-
Proof: A wavefront coding lens is a cubic refractive element (as MAN , W. 2009. 4D frequency analysis of computational cameras
reported in [Dowski and Cathey 1995]). From Snell's law, the o gepth of field extensionMIT CSAIL TR 2009-019
integration surface is determined by the lens normal. Therefore

the integration surface is a separable parabglav) = (auz,avz). LEVIN, A., WEISS, Y., DURAND, F., AND FREEMAN, W. 2009.
The parabola widtla can be set such that the parabola slope cov- ~ Understanding and evaluating blind deconvolution algorithms.
ers the slope range of interdstS/2,S/2], implying a= S/(2A). In CVPR

The power spectrum of a 1D parabola as computed in [Levin et al.

LEvoOy, M., AND HANRAHAN, P. M. 1996. Light field rendering.
In SIGGRAPH

NAGAHARA, H., KUTHIRUMMAL, S., ZHou, C., AND NAYAR,
S. 2008. Flexible Depth of Field Photography. HECV.

NG, R. 2005. Fourier slice photographfyIGGRAPH

2008c] is

k(oo ) |? ~ |6|%\<S/2|a&\ : (49)

A
Sax
The 2D parabola case is a separable extension:

N A2

k(o, wy, wy, 2" 5 o) . (50 OGDEN, J., ADELSON, E., BERGEN, J. R.,AND BURT, P. 1985.

(e, e, s, )| Plonfay| " @I=TATlen=52] (50) Pyramid-based computer graphi®CA Engineer 306, 4-15.
If se [-S/2,5/2], we can slice Eq. (50) to get Eq. (48). PapouLls, A. 1974. Ambiguity function in fourier opticslournal

i of the Optical Society of America A 6479-788.
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