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Abstract
Acquiring and representing the 4D space of rays in the

world (the light field) is important for many computer vi-
sion and graphics applications. Yet, light field acquisition is
costly due to their high dimensionality. Existing approaches
either capture the 4D space explicitly, or involve an error-
sensitive depth estimation process.

This paper argues that the fundamental difference be-
tween different acquisition and rendering techniques is a
difference between prior assumptions on the light field. We
use the previously reported dimensionality gap in the 4D
light field spectrum to propose a new light field prior. The
new prior is a Gaussian assigning a non-zero variance
mostly to a 3D subset of entries. Since there is only a low-
dimensional subset of entries with non-zero variance, we
can reduce the complexity of the acquisition process and
render the 4D light field from 3D measurement sets. More-
over, the Gaussian nature of the prior leads to linear and
depth invariant reconstruction algorithms.

We use the new prior to render the 4D light field from a
3D focal stack sequence and to interpolate sparse direc-
tional samples and aliased spatial measurements. In all
cases the algorithm reduces to a simple spatially invariant
deconvolution which does not involve depth estimation.

1. Introduction
Light field or plenoptic imaging enables exciting com-

puter vision and graphics applications such as refocusing or
viewpoint changes. Light fields record the 4D set of light
rays incident to the lens aperture. This can be achieved
by varying the camera position on a 2D plane and captur-
ing a 2D family of 2D images [14, 7, 21], or by placing a
microlens array in front of the sensor [1, 19]. With such
representation, rendering a novel view is a straightforward
linear operation in the acquired data, since the scene color
along any light ray one wishes to render has already been
captured explicitly, and view synthesis is a simple matter
of rebinning. Unfortunately, the four-dimensional natureof
light fields makes their acquisition costly and often involves
a spatial resolution tradeoff. This is all the more frustrating
that many operations and data are 3D in nature: Lambertian
scenes are three-dimensional and refocusing only involves
a depth-indexed 1D family of 2D images. An alternative
strategy is standard image-based rendering or novel-view
generation [6, 16, 4], in which only a sparse set of images
is captured. To render a novel viewpoint, depth is estimated
using a variety of computer vision techniques. However,
depth estimation is a complex non-linear process which can

induce visual artifacts. In this work, we propose a new view
synthesis approach that sits halfway between these two ap-
proaches. It is linear in the acquired images and does not
involve depth estimation. It also does not require full 4D
sampling.

We argue that the fundamental difference behind differ-
ent capture and rendering strategies can be seen as a differ-
ence in prior assumptions on light fields. Plenoptic imag-
ing relies on a weak but general prior where the light field
is considered isotropic and fully involves four degrees of
freedom. Since the data is assumed to be 4D, a 4D set of
measurements is required. With depth-based view synthe-
sis, the prior is stronger but more restrictive. It assumes
that, locally, depth is constant and the object is Lambertian,
which means that the light field is constant along the angu-
lar dimension and is locally 2D.

In this paper we propose a new light field prior which
is a tradeoff between these two approaches. It is based on
the recently-observed dimensionality gap in light fields [18,
13] which states that for Lambertian scenes with modest
depth discontinuities, the 4D Fourier transform of the 4D
ray space includes only a 3D subset of entries whose energy
is significantly higher than zero. This observation has so far
been used to analyze and improve depth of field extension
[13] but we propose to use it for light field reconstruction
and view synthesis. Our new prior is a Gaussian assigning
a non-zero variance mostly to a 3D subset of entries. Since
only three degrees of freedom are present, measurement sets
which are only 3D are sufficient for interpolating the full
4D light field. Furthermore, since the prior is Gaussian,
the reconstruction and rendering algorithms are simple and
linear, anddo not involve depth estimation. While the prior
is simple to use, the quality of results sits halfway between
the two existing approaches. The reconstruction is better
than with a generic 4D prior, but the 2D MOG can produce
better results when depth is successfully estimated.

We examine a number of low-dimensional acquisition
schemes and show how, in conjunction with the new light
field prior, they can be used to interpolate the 4D light field
or to render novel viewpoints. The simplest acquisition
scheme considered in Sec. 3 is a focal stack sequence, a
1D set of images focused at a varying range of depths, pro-
viding a 3D set of measurements. We show that the advan-
tage of the focal stack is that it directly covers the non-zero
entries of the 4D spectrum. We present a simple primal do-
main algorithm which uses the focal stack to render images
from novel viewpoints inside the aperture area. In our al-
gorithm, each focal stack image is shifted according to the
disparity of its focusing distance. The shifted images are
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averaged and a spatially uniform, depth-invariant deconvo-
lution is applied. This algorithm relates to [2] who use two
defocused images of a two layers scene to generate new de-
focused images without segmenting the depth layers.

We also show how the dimensionality-gap prior can help
interpolate the light field from measurements that are sparse
or aliased, in both directional (Sec. 4) and spatial (Sec. 5)
dimensions. We present simple reconstruction algorithms
which also reduce to depth invariant deconvolution.

2. Light field priors
2.1. Background on light fields

The 4D light fieldL(x, y, u, v) parameterizes each ray
by its intersection with two parallel planesuv and xy,
known as thedirectional andspatial dimensions. Usually
the viewpoint (or camera aperture) is positioned and shifted
along theuv plane, whilexy is a scene plane.

In light field space, the set of light rays emerging from
a single point lie on a plane whose slope is a function of
depth. If the scene is Lambertian, all rays emerging from a
point have the same color and we can express:

L(x, y, u, v) = Lu0,v0
(x− s(u− u0), y − s(v − v0)), (1)

where Lu0,v0
(x, y) denotes a 2D view from the point

(u0, v0), Lu0,v0
(x, y) = L(x, y, u0, v0). The slopes is

s = (d − d0)/d whered is the object depth andd0 the
distance between theuv andxy planes.

A standard lens focused at slopes averages rays emerg-
ing from points at the corresponding depth, all lying on a
slopes plane in light field space. The recorded image is:

B
s(x, y) =

ZZ

(u,v)∈D(A,0)

L(x+ us, y + vs, u, v)dudv, (2)

whereD(r, p) denotes a disc of radiusr centered at point
p, andA is the aperture radius. If the scene depths0 is
locally constant, we substitute Eq. (1) into Eq. (2) and get
thatBs(x, y) equals

RR

D(A,0)
Lu0,v0

(x+ s0u0 + u(s− s0), y + s0v0 + v(s− s0))dudv

= Lu0,v0
(x, y) ⊗ 1

π2|s−s0|2A2D(A|s− s0|, (s0u0, s0v0)). (3)

That is, the recorded full aperture imageBs(x, y) is a con-
volution of a pinhole viewLu0,v0

(x, y) with a PSFφs =
D(A|s− s0|, (s0u0, s0v0)). The PSF is a disc whose radius
is proportional to the difference between the focus depths
and the object depths0. The disc center is shifted according
to the disparity shift of that viewpoint,(s0u0, s0v0).

Consider the 4D Fourier transform of the 4D light field,
denoted byL̂(ωx, ωy, ωu, ωv)

1. For a Lambertian planar
scene of slopes, the light fieldL is constant along direction
s. As a result, the Fourier transform̂L includes non zero
entries only on the 2D plane of entries of the form [18]

ωu = sωx, ωv = sωy. (4)

Equivalently, for an infinitely wide aperture, the 2D spec-
trum of a 2D image focused at depths is a slice from the
4D spectrum [18]:

1We denote bŷ the Fourier transform of a signal.

B̂
s(ωx, ωy) = L̂(ωx, ωy, sωx, sωy). (5)

Following [12], in an abstract way, we can express the
sensor measurementsb as a liner projection of a ray space
vectorℓ: b = T ℓ + n, where the matrixT expresses the
mapping between light rays to sensor measurements andn
is the imaging noise.T is often rank deficient. In this
framework, recovering the light fieldℓ from b is a Bayesian
estimation problem which should account for prior knowl-
edge on light fields. The choice of prior is critical because it
affects the amount of required measurements, the simplicity
of the estimation process, and the quality of the results.

2.2. Existing light field priors
We argue that the fundamental difference between cap-

turing and rendering strategies can be seen as a difference
between prior assumptions. This classifies existing research
into two main categories.

The first type of prior treats the spatial and directional
dimensions of the light field isotropically, and it mostly
assumes that the signal is smooth. As it assumes 4 de-
grees of freedom, capturing a 4D measurement set is re-
quired [14, 7, 21, 1, 19]. The smoothness assumption can
be expressed as a Gaussian prior on the light field which is
diagonal in the frequency domain:

log p(L) = −0.5
X

ωx,ωy,ωu,ωv

|L̂(ωx, ωy , ωu, ωv)|
2

σ2
ωx,ωy,ωu,ωv

+ const.

(6)The varianceσ2
ωx,ωy,ωu,ωv

is high for low frequencies and
low for high frequencies (Fig. 1(a)). If the range of depths in
the scene is bounded, plenoptic sampling theory [5, 10, 18]
further allows for a smarter sampling pattern.

However, capturing the full 4D light field directly seems
redundant. The second type of prior assumes that depth
is locally constant, and conditioning on depth there are
only two degrees of freedom in defining the surface tex-
ture. Levinet al. [12] express such assumptions in priors
terminology and suggest a mixture of 2D Gaussians model.
Conditioning on depth,p(L|s) is Gaussian, and diagonal in
the frequency domain. From Eq. (4), when depth is given,
there is non-zero frequency content only at entries of the
form ωu = sωx, ωv = sωy. Hence there is only a 2D set of
entries with non-zero variance, one non-zero variance en-
try in eachωx,y-slice (Figure 1(b)). In the general model,
the mixture components index over all possible depth maps:
p(L) =

∫
p(s)p(L|s)ds. This prior constrains the light field

tighter than the general 4D Gaussian prior above. How-
ever, inference is more complicated since the correct mix-
ture component, or the scene depth, needs to be estimated.
Given depth, one can render the scene from multiple view-
points [6, 16, 4]. One can also improve the quality of the 2D
image, for example by using the aliased plenoptic camera
measurements [15, 3] for super resolution. Similarly, one
can use a depth dependent PSF to partially remove defocus
blur [11, 20, 13].
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Figure 1. Priors on the 4D light field. Each subplot represents aωx0,y0
-slice,L̂ωx0,y0

(ωu, ωv). The outer axes vary the spatial frequency
ωx0,y0

, i.e., the slicing position. The inner axes of each subplot,i.e., of each slice, varyωu,v. The intensity at each point visualizes the
varianceσ2

ωx,ωyωuωv
at the corresponding spectrum entry. (a) Classical signal-processing prior assuming a smooth 4D signal, assigning

non-zero variance to all 4D entries within a range|ωu| ≤ Smax|ωx|, |ωv | ≤ Smax|ωy | (in this fig,Smax = 1). (b) One mixture component
from a MOG prior. Conditioning on depth we have a Gaussian prior with only a 2D set of non-zero entries. (c) A Gaussian priorderived
from the dimensionality gap with a 3D set of non-zero entries.
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Figure 2. (a) One view from a light field. (c) The observed power
spectrum. In eachωx0,y0

-slice we observe energy mostly along
1D focal segments. (b) The accumulated histogram of energy as
a function of distance from the focal segment, for the top left and
top center subplots. Over98% of the energy is included within1
pixel from the center.

2.3. The dimensionality gap as a low dimensional
Gaussian prior

We suggest a new light field prior which is a tradeoff be-
tween the two priors discussed above. It is Gaussian but in-
volves mostly 3D freedom degrees, thereby constraining the
light field tighter than the 4D model. Additionally, having
a Gaussian prior allows for simple linear inference, without
explicit depth estimation. Our prior is based on the dimen-
sionality gap property of the light field derived in [13, 18].

Recall that an object at slopes generates frequency con-
tent only along a 2D subspace of the 4D light field (Eq 4).
Since depth is only a 1D variable, a Lambertian scene with
piecewise constant depth has frequency content along a 3D
subset of entries of the form

(ωx, ωy , ωu, ωv)|∃s : ωu = sωx, ωv = sωy. (7)

Figure 2 visualizes the spectrum of a real light field. Despite
the many occlusions, in eachωx0,y0

-slice we can notice en-
ergy mostly along a 1D focal segment. Fig 2(b) plots cumu-
lative histogram of energy as a function of distance from the
focal segment. Over98% of the energy is concentrated up
to one entry away from the focal segment. A Gaussian prior
based on the dimensionality gap allows non-zero variance
mostly in a 3D subset of frequencies (Fig 1(c)).

The focal segments thickness is determined by the spac-
ing ∆ωu,v

between samples on theωu, ωv frequency axes,
which is inversely proportional to the primal aperture width.
With denser spacing the segments are thinner and the prior
is tighter. In Fig 1(c) the resolution is low (only17 × 17
viewpoint samples included) and the segments are thick.

This new prior does not constrain the light field as tightly
as a 2D MOG. However, the Gaussianity of the prior leads
to significantly simpler reconstruction algorithms which we
investigate below. In contrast, in [13] the dimensionality
gap was used with a 2D MOG prior, where depth is esti-
mated, and applied for depth of field extension. This paper
explores a different application of the dimensionality gap:
depth-invariant light field reconstruction.

Given a Gaussian prior on the light field, estimating the
light field ℓ from the camera datab reduces to solving a
linear system, or equivalently, minimizing a quadratic cost:

ℓ = arg min
1

η2
‖Tℓ− b‖2 + ℓ

T
C

−1
ℓ. (8)

whereT is the measurement matrix,η2 the noise variance
andC the prior covariance. Since the dimensionality gap
prior permits non-zero variance to a 3D set of entries, a
T matrix which measures a 3D data should provide a well
posed reconstruction. However, since the unknown vector
in Eq. (8) is 4D, solving the system explicitly is impractical
and we seek approximate strategies. As part of the approx-
imation, the algorithms described below ignore energy off
the focal segments. This restriction, however, is due to the
approximate reconstruction, and is not an intrinsic limita-
tion of the 3D Gaussian prior. The prior itself does permit
low non-zero variance on off-focal-segment entries.

3. Novel views from a focal stack
Our first light field acquisition strategy is a 3D focal

stack. We show that the advantage of a focal stack is that
it directly covers the non-zero entries of the 4D spectrum.
We show that the 4D light field can be rendered in a lin-
ear and depth invariant manner from a focal stack sequence.
For that we describe an algorithm for rendering a 2D view
Lu0,v0

(x, y). The rendering is limited to viewpoints within
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Figure 3. Illustrating novel view rendering on a synthetic scene. (a) A few images from the focal stack sequence (all fromthe central view
point), (b-f) A few novel viewpoints rendered from the focalstack sequence without any depth estimation.

the aperture area(u0, v0) ∈ D(A, 0). To simplify the
derivation we start with the primal domain. In Sec. 3.2 we
provide a frequency domain interpretation.

3.1. Primal domain derivation
Our rendering algorithm works as follows. Given a de-

sired view point(u0, v0), we shift each focal stack im-
age by the disparity of its focusing depth(su0, sv0), and
compute an average imagēB(x, y) =

∑
s B

s
su0,sv0

, where
Bs

su0,sv0
(x, y) = Bs(x− su0, y − sv0) is an image shifted

by (su0, sv0) (the amount of shift depends on the focus dis-
tance of the image and not on the object depth in the scene,
therefore the shift is a parameter of the imaging apparatus
and is independent of scene content). We show that the av-
erage imagēB(x, y) is an (almost) shift invariant convolu-
tion of the desired viewLu0,v0

(x, y). Therefore, it can be
recovered with a spatially invariant deconvolutionwithout
estimating the scene depth.

For the central viewpoint(u0, v0) = (0, 0) no shift hap-
pens and we sum the focal stack as it is. This average image
is equivalent to the input from a focus sweep camera [9, 17]
which varies the focus distance during exposure, and was
shown to be a depth invariant convolution of an ideal pin-
hole image. Below we show that this is true for any view-
point. Intuitively, for an infinitely wide aperture only the
image focused at the right depth is sharp, all other focal
stack images are flat. Therefore shifting the correct depth
image by the correct disparity is sufficient.

Figure 3 visualizes average images and the depth-
invariant deconvolution results, demonstrating close agree-
ment with a ground truth reference.

Claim 1 For a Lambertian scene with locally-constant
depth, the average image is a shift-invariant convolution of
the desired view̄B(x, y) = φu0,v0

⊗ Lu0,v0
(x, y).

The PSFφu0,v0
is approximately depth invariant:

φu0,v0
(x, y) ≈

`

π2A2su0,v0
(x, y)

´−1
+

`

π2A2su0,v0
(−x,−y)

´−1
,

(9)
wheresu0,v0

(x, y) is the smallests for which (x, y) is in-
cluded in the discD(sA, (su0, sv0)). Explicitly:

su0,v0
(x, y) = y/(Asin(asin(1/A(cos(θ)v0−sin(θ)u0))+θ)−v0)

(10)

andθ = phase(x+ iy).

Proof: For an object at depths0 we can use Eq. (3) and
express the average image as a convolution of the desired
sharp one:B̄(x, y) = φs0

u0,v0
⊗ Lu0,v0

(x, y) with

φs0
u0,v0

=

Z Smax

Smin

1

π2|s − s0|2A2
D(A|s−s0|, ((s−s0)u0, (s−s0)v0))ds,

(11)
whereSmin, Smax denote the minimal and maximal slopes
in the focal stack. We change the integration variable by
definings′ = s−s0,S′

min = Smin−s0, S
′

max = Smax−s0
and note thatφs0

u0,v0
is independent ofs0 up to the exact

integration boundaries:

φ
s0

u0,v0
=

Z S′

max

S′

min

1

π2|s′|2A2
D(A|s′|, (s′u0, s

′
v0))ds

′
. (12)

We show that if the slope boundaries are sufficiently far
from the object depth, that is:Smin << s0 << Smax, the
integration boundaries are negligible andφs0

u0,v0
is nearly

slope invariant. For a point(x, y) the minimal slopes for
which(x, y) is included in the discD(A|s′|, (s′u0, s

′v0)) is
su0,v0

(x, y) defined in eq 10. For everys′ > su0,v0
(x, y),

we get an energy contribution proportional to the disc area:
1/(π2|s′|2A2). We get a similar contribution from nega-
tive s′ values for whichs′ < −su0,v0

(−x,−y). Therefore
Eq. (12) can be written as:

φs0
u0,v0

(x, y) =
R S′

max

s(x,y)
1

π2|s′|2A2 ds
′ +

R −S′

min

s(−x,−y)
1

π2|s′|2A2 ds
′

= 1
π2A2

“

1
s(x,y)

+ 1
s(−x,−y)

− 1
S′

min

− 1
S′

max

”

→ 1
π2A2

“

1
s(x,y)

+ 1
s(−x,−y)

”

. (13)

where the last approximation is accurate when the integra-
tion boundariesSmin, Smax are large relative tos0.

The proof of Claim 1 shows that the PSFs at different
slopes are equivalent up to an additive term of1/S′

min +
1/S′

max. This term is small when the focal stack range
[Smin, Smax] is large with respect to the object depth. For
the PSF to be slope-invariant we want1/S′

min + 1/S′

max

to be at the same order of magnitude as the imaging noise.
Figure 3(c) visualizes PSFs. Note that the PSF is invariant



Figure 4. Novel viewpoints inside the aperture, rendered from a
focal stack. Animation is available on the project webpage.

Figure 5. Rendering artifacts at occlusion boundaries, forwhich
the spatially-invariant convolution model fails.

to depths0 but depends on the (known) viewpoint(u0, v0).
For the central view(u0, v0) = (0, 0) the PSF is the radi-
ally symmetric kernelφ0,0(x, y) = 1/|(x, y)|. For other
viewpoints the kernel drifts along the viewpoint direction.

Results: Fig. 4 shows crops from novel viewpoints gen-
erated from a focal stack sequence, consisting of40 f/2.0
images. The sequence covers a slope range ofSmin =
−0.23, Smax = 0.23 while the actual objects lie in slope
range[−0.09, 0.09]. Several sequences with viewpoint ani-
mations are available on the project webpage2.

The dimensionality gap model is violated by occlusion
boundaries and when the scene is non-Lambertian. Fig-
ure 5 zooms in some imperfect reconstructions at occlusion
boundaries. In contrast, in our examples we did not detect
artifacts caused by non-Lambertian objects. Apparently,
most scenes are sufficiently Lambertian within the narrow
angle of a camera aperture.

3.2. Frequency domain derivation
The Fourier version of our algorithm is straightforward

because we have seen that the spectrum of a view with an
infinite aperture – an image of a focal stack – is a slice of the
4D light field spectrum. This means that the set of images of
the focal stack directly provides the set of slices that com-
prise the 3D focal manifold. That is, for infinite aperture,
according to Eq. (5)B̂s(ωx, ωy) = L̂(ωx, ωy, sωx, sωy).
Therefore, given a 3D focal stack data, we can construct the
4D light field spectrum. We place the focal stack spectra
at entriesL̂(ωx, ωy, sωx, sωy), and set the rest of the en-
tries to zero. A finite aperture image approximates this and
provides a slice from a blurred version of the 4D spectrum

˜̂
L(ωx, ωy, ωu, ωv) = L̂(ωx, ωy, ωu, ωv) ⊗ ψ̂(ωu, ωv), (14)

whereψ̂(ωu, ωv) is the 2D Fourier transform of the aperture
(a disc in the primal domainψ(u, v) = D(A, 0)). Below we
rederive our rendering algorithm in the frequency domain.

2www.wisdom.weizmann.ac.il/˜levina/papers/dimgap/

Claim 2 Let L̂u0,v0
(ωx, ωy) denote the 2D Fourier trans-

form of a desired viewLu0,v0
(x, y). L̂u0,v0

(ωx, ωy) equals
the average of the Fourier transforms of all shifted focal
stack images multiplied by a functionχωx,y

(u0, v0) which
depends onu0, v0, ωx, ωy but does not depend ons:

L̂u0,v0
(ωx, ωy) = χωx,y (u0, v0)

Z

s

B̂
s
su0,sv0

(ωx, ωy)ds. (15)

Since convolution is multiplication in the frequency do-
main, Eq. (15) simply implies that we average the spectra of
all shifted focal stack images and deconvolve with a kernel
independent ofs. This is equivalent to the primal domain
algorithm described above.

Proof: From the definition of the Fourier transform, a 2D
view from (u0, v0) can be obtained by multiplying the 4D
spectrum with the wavee2πi(ωuu0+ωvv0), projecting along
theωu, ωv dimensions (which provides 2D data), and then
computing a 2D inverse Fourier transform. That is:

L̂u0,v0
(ωx, ωy) =

ZZ

e
2πi(ωuu0+ωvv0)

L̂(ωx, ωy, ωu, ωv)dωudωv.

(16)We define new integration variabless = (ωxωu +
ωyωv)/|ωxy|

2, t = (ωyωu − ωxωv)/|ωxy|
2. The dimen-

sionality gap implies that̂L is zero fort 6= 0. Therefore
Eq. (16) is equivalent to:

L̂u0,v0
(ωx, ωy) = |ωx,y|

Z

e
2πi(u0ωx+v0ωy)s

L̂(ωx, ωy , sωx, sωy)ds.

(17)Where the multiplicative factor|ωxy| is the Jacobian of the
new integration variables. The 1D segment ofL̂ over which
we integrate in Eq. (17) is exactly the part covered by the
focal stack sequence. For an infinite-aperture focal stack
we can substitute Eq. (5) in Eq. (17) and get

L̂u0,v0
(ωx, ωy) = |ωxy|

∫
e2πi(u0ωx+v0ωy)sB̂s(ωx, ωy)ds

= |ωxy|
∫
B̂s

su0,sv0
ds, (18)

where the last equality follows from the fact that a phase
change in the frequency domain is a shift in the primal
domain and thereforêBs(ωx, ωy) times a phase change
e2πi(u0ωx+v0ωy)s is the Fourier transform of the shifted ver-
sion B̂s

su0,sv0
. For the infinite aperture case, we choose

χωx,y
(u0, v0) = |ωxy| and get the desired Eq. (15). That

is, the 2D spectra of the desired vieŵLu0,v0
(ωx, ωy) is the

average spectrum of all shifted focal stack spectra, decon-
volved with the slope-invariant functionχ.

In the finite aperture case, the focal stack images are

slices from a convolved spectrum˜̂L (defined in Eq. (14)),

Bs(ωx, ωy) =
˜̂
L(ωx, ωy, sωx, sωy). Consider the Fourier

transform ofψ̂ along a slice:

χ
′
ωxy

(u0, v0) =

Z

e
2πi(u0ω̄x+v0ω̄y)s

ψ̂(sω̄x, sω̄y)ds, (19)

where(ω̄x, ω̄y) = (ωx, ωy)/|ωx,y|. We can use the convo-
lution theorem and express convolution witĥψ as multipli-



Viewpoints sampled on a circle Viewpoints sampled on a grid

(a) Sampling pattern projected in different directions

(b) Reconstructed images

Figure 6. Reconstructing the light field from a sparse sampleof
viewpoints. For good reconstruction all entries of the sampling
pattern projected at any direction should be high. A sampling pat-
tern in a circle provides higher quality reconstruction compared to
a grid, because a grid projected vertically (red projectionon the
right) has many zero entries.

Figure 7. Quadlinear interpolation of a novel viewpoint given the
sparse viewpoint sample of Fig 6-right. Objects at the reference
plane are recovered well, but away from the reference plane alias-
ing is observed.

cation withχ′. That is:
Z

e
2πi(u0ωx+v0ωy)s ˜̂

L(ωx, ωy, sωx, sωy)ds =

χ
′
ωxy

(u0, v0)

Z

e
2πi(u0ωx+v0ωy)s

L̂(ωx, ωy, sωx, sωy)ds

(20)

Definingχωx,y
= |ωxy|/χ

′

ωx,y
we get the desired relation

in Eq. (15). Eqs. (17) and (18) follow in a similar way.
In this derivation we assumed infinite integration bound-

aries, but as for the primal domain, there is an additional
approximation here following from the fact that the focal
stack sequence only covers a finite slope range.

4. Novel views from a sparse set of viewpoints
The advantage of the focal stack is that it directly cov-

ers the non-zero parts of the spectrum. However, the di-
mensionality gap prior can help reconstruct the light field
from other low dimensional sample sets. In this section
we discuss sparse directional samples and in the following
one aliased spatial samples. We show that a small adapta-
tion of the algorithm from the previous section applies in
these cases as well. The acquisition setup considered here
captures only a sparse subset of views on theuv plane, in-
stead of a full 2D set of viewpoints captured by classical
systems [14, 21].

Reviewing the derivation from the previous section we
note that it is valid for any aperture shape, only the defini-
tions ofψ̂ andχ′ change. If we are given a subset of direc-
tional samples, we can treat them as holes in the aperture,
and their union defines a new aperture. That is,ψ(u, v) = 1

Reconstruction, view 1 Reconstruction, view 2 Ground truth, view 2

Figure 8. Rendering novel viewpoints from a circular sampleof
viewpoints. See the project webpage for animation.

iff viewpoint (u, v) is captured. From the sparse set of
views, we synthetically render a focal stack sequence by
integrating along slopes (Eq. (2)). Given the focal stack
sequence we apply the exact algorithm described in the pre-
vious sections: shift each image by the desired disparity,
compute the interpolated image and apply depth invariant
deconvolution. However, since the aperture shape is differ-
ent, we deconvolve with a different PSF.

In Sec. 3 we have shown that in the frequency do-
main we need to multiply theωx, ωy entry with χωx,y

=
|ωxy|/χ

′

ωx,y
(u0, v0). Obviously this deconvolution is well

posed when|χ′

ωx,y
(u0, v0)| is large. Below we derive an

exact formula forχ′ and attempt to understand which view-
point sampling patterns lead to a well posed reconstruction.

Claim 3 Letρ denote a 1D projection of the apertureψ:

ρ(cos(θ),sin(θ))(r) =

Z

ψ(cos(θ)t+sin(θ)r, sin(θ)t−cos(θ)r)dt.

(21)Then:
χ
′
ωx,y

(u0, v0) = ρ(−ω̄y,ω̄x)(u0ω̄x + v0ω̄y). (22)

where(ω̄x, ω̄y) = (ωx, ωy)/|ωx,y|.

Proof: χ′ was defined in Eq. (19) as

χ
′
ωxy

(u0, v0) =

Z

e
2πi(u0ω̄x+v0ω̄y)s

ψ̂(sω̄x, sω̄y)ds. (23)

That is, we take a 1D slice from̂ψ along the direction
(ω̄x, ω̄y) and compute its inner product with a wave. This
is equivalent to computing a specific entry (which depends
on (u0, v0)) from its Fourier transform. According to
the Fourier slice theorem [18], this is equivalent to pro-
jecting the primal apertureψ along the orthogonal direc-
tion. The aperture projectionρ is defined in Eq. (21) and
χ′

ωx,y
(u0, v0) is simplyρ(−ω̄y,ω̄x)(u0ω̄x + v0ω̄y).

Therefore, to achieve a stable deconvolution at all view-
points(u0, v0), we require that all entries ofρ be high for
every projection direction. This understanding allows us
to compare viewpoint sampling patterns. If we distribute
the sampled viewpoints on a grid (Fig 6, right), the projec-
tion has many zero entries in the harmonic directions (e.g.
vertical projection illustrated in Fig 6). To obtain stablein-
version, we want a sampling pattern with dense projections
at every direction. Such projections can be obtained with
a pseudo-random noise pattern. Another option is to sam-
ple a circle of viewpoints (Fig 6, left). We chose a circular
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Figure 9. (a) The spectrum of an aliased light field, demonstrating replicas of focal segments. (b-e) Upsampling of a viewfrom the aliased
light field of [15]. (b) Bicubic up sampling, corresponding to a 4D prior. (c-d) The upsampling of [15], corresponding to a2D prior
conditioned on slope. High resolution is obtained at the correct depth, but other depths are blurred (tree blurred in (c), car blurred in (d)).
(e) Our upsampling with a 3D prior. We improve resolution at all depths, but not as well as (c-d) which account for one givendepth.

sample in our implementation because it has another useful
property: it can be shown that the depth invariant PSF in
the primal domain is equivalent to the one obtained from a
normal focal stack sequence, which was derived in claim 1.
Figure 6(b) demonstrates two novel views generated from
such sampling patterns. Not surprisingly, the reconstruction
from circular samples is better than from a grid.

In Figure 7 we also applied a standard quadlinear ray in-
terpolation [14] to interpolate viewpoints from the sparse
viewpoints grid of Fig 6-right. Objects on the reference
plane are sharp, but away from it aliasing is observed.

Results: In figure 8 we used light fields from the Stanford
dataset3. The data include grids of17×17 views. However,
we used only an outer circle of64 views and can render any
view in the interior of this circle. Viewpoint animation is
available on the project webpage.

5. Spatial resolution enhancement
We have seen that using the dimensionality gap prior one

can interpolate sparse directional samples. We now show
that a similar algorithm applies to the spatial dimension. Let
L̂(ωx, ωy, ωu, ωv) denote a high-resolution light field with
spatial resolutionkΩ (i.e. |ωx| ≤ kΩ/2, |ωy| ≤ kΩ/2).
We measure a spatially aliased versionL̂0(ωx, ωy, ωu, ωv),
whose spatial dimension is under-sampled by a factor ofk,
i.e., in L̂0, ωx,y are in the range|ωx| ≤ Ω/2, |ωy| ≤ Ω/2.
We want to inferL̂ from the measured̂L0. While previ-
ous work demonstrated light field super resolution involving
depth knowledge [15, 3], our goal is to increase resolution
without depth estimation.

Aliasing due to under-sampling causesL̂0 to be com-
posed of a sum of replicas from̂L:

L̂
0(ωx, ωy, ωu, ωv) =

k−1
X

i,j=0

L̂(ωx + iΩ, ωy +jΩ, ωu, ωv), (24)

where the shifted frequenciesωx + iΩ, ωy + jΩ are taken
modulokΩ/2. Informally, aliasing means that the coeffi-
cients of the missing high frequencies are scattered some-
where in the light field. In the general case (under a 4D
prior assumption) there is no way to tell them apart from the

3http://lightfield.stanford.edu/lfs.html

primary spectrum. However, under a 3D prior we know that
most coefficients should be zero. Therefore, a non-zero co-
efficient observed away from the focal segments is a likely
replica.

Eq. (24) defines theT measurement matrix from Eq. (8),
and we obtain the Bayesian reconstruction ofL̂ under a
Gaussian prior as the minimization of
1

η2

˛

˛

˛L̂0(ωx, ωy, ωu, ωv) −
Pk−1

i,j=0 L̂(ωx + iΩ, ωy + jΩ, ωu, ωv)
˛

˛

˛

2
+

Pk−1
i,j=0

|L̂(ωx+iΩ,ωy+jΩ,ωu,ωv)|2

σ(ωx+iΩ,ωy+jΩ,ωu,ωv)2
(25)

That is, a Bayesian reconstruction redistributes the value
of L̂0(ωx, ωy, ωu, ωv) between the replica entries in pro-
portion to their variance. In a nutshell, if the prior vari-
ance of one replica entry is sufficiently higher than others
(i∗, j∗) = argmaxσ(ωx+iΩ, ωy +jΩ, ωu, ωv), the recon-
struction assigns the measuredL̂0(ωx, ωy, ωu, ωv) value to
L̂(ωx + i∗Ω, ωy + j∗Ω, ωu, ωv) and almost zero to all other
replica entries.

If a 4D Gaussian prior is used, the variance is higher
for small spatial frequencies and the highest variance is ob-
tained ati∗ = 0, j∗ = 0. Therefore, the reconstruction
copiesL̂0 in the low frequencies of̂L and zero at all new
high frequency entries. No extra information is gained from
the aliasing. Figure 10(a) visualizes the expected recon-
struction error, which is indeed low in the middle and high
at the periphery. On the other hand, if the depth is known
and we use a 2D Gaussian prior, there is non-zero variance
only for entries of the formωu = sωx, ωv = sωy. In
this case one can obtain a significantly better reconstruc-
tion [15]. If |s| 6= 0 the replicas do not cover each other,
that is, the set of entries{(ωx + iΩ, ωy + jΩ, ωu, ωv)}

k
i,j=1

do not contain more than one entry of the formωu =
sωx, ωv = sωy, and the required frequency coefficients can
be recovered (Fig. 10(b)). In fact, [15] extracts a focused
view from the aliased samples using that exact property, but
it applies the primal domain version of it: projecting, in-
stead of slicing.

Our 3D Gaussian prior can resolve replicas better than
the 4D prior, but not as accurately as a 2D prior does when
depth is known. Anωx0,y0

-slice of the aliased light field
L̂0 is the sum ofk2 ωx0,y0

-slices ofL̂. For eachωx,y-slice,
the prior assigns non-zero variance to a 1D set of entries
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Figure 10. Expected reconstruction error for different priors, for
an upsampling factork = 2. We plot reconstruction error for 2D
spectrum slices of the form̂L(ωx, ωy, sωx, sωy), providing the
reconstruction quality for a 2D image of an object at slopes (the
axes of each subplot varyωx, ωy). The 4D prior obtains high error
at reconstructing high spatial frequencies. For slopes = 0.5, 2D
and 3D priors can reduce the error, but our 3D prior fails to recover
the harmonic directions. At slopess = 0, all priors cannot resolve
high frequencies. The sensitivity around the harmonic orientations
reduces when the resolution on theωu, ωv axes is higher (left).

on the focal segment, whose orientation is(ωx, ωy). In the
subplots of Fig. 9(a) we can clearly observe replicas of fo-
cal segments at different orientations. The replicas are well
separated when for different(i, j) values, the orientations of
the lines(ωx + iΩ, ωy + jΩ) are sufficiently different. The
focal segment orientations are different for most(ωx, ωy)
orientations, but not at the harmonic directions. For exam-
ple, if ωx = 0, the segments(ωx + 0Ω, ωy + jΩ) are verti-
cal for allj values, which means that the replicas cover each
other and cannot be resolved. Indeed, the reconstruction
error in figure 10(c) is low except at the harmonic direc-
tions. Figure 10 also illustrates that the sensitivity around
the harmonic directions reduces when the focal segments
are thinner. As discussed in Sec. 2.3, this happens when the
ωu, ωv axes resolution is higher.

While the replica analysis is carried in the frequency
domain, we prefer to work in the primal domain to avoid
boundary artifacts. As an approximation, we use the algo-
rithm from the previous sections: generate a focal stack se-
quence (which are also the super-resolved images of [15]
for given depths), average and apply depth-invariant de-
convolution. Fig. 9 illustrates super-resolution on the data
of [15]. Given the right depth the 2D Gaussian prior pro-
duces the best results, but objects at other depths are highly
blurred. Our 3D Gaussian prior improves resolution at all
depths. While the quality is worse than the 2D Gaussian,
it is significantly better than naive upsampling with a 4D
prior.

6. Discussion
In this paper we have proposed a new light field prior

derived from the dimensionality gap: a Gaussian assign-
ing non-zero variance mostly to a 3D subset of frequen-

cies. Since only three degrees of freedom exist, capturing
3D data is sufficient and there is no need to sample the en-
tire 4D space explicitly. The fact that the prior is Gaussian
allows for simple depth invariant reconstruction algorithms.
Acknowledgments: The authors acknowledge B.S.F. sup-
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