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Abstract induce visual artifacts. In this work, we propose a new view

synthesis approach that sits halfway between these two ap-
proaches. ltis linear in the acquired images and does not

sion and graphics applications. Yet, light field acquisitie involve depth estimation. It also does not require full 4D

costly due to their high dimensionality. Existing approesh sampling. . . )
either capture the 4D space explicitly, or involve an error-  We argue that the fundamental difference behind differ-
sensitive depth estimation process. ent capture and rendering strategies can be seen as a differ-

ence in prior assumptions on light fields. Plenoptic imag-

This paper argues that the fundamental difference be-: . . ; ,
tween different acquisition and rendering techniques is a IN9 relies on a weak but general prior where the light field

difference between prior assumptions on the light field. We S considered isotropic and fully involves four degrees of

use the previously reported dimensionality gap in the 4D freedom. Since the da_ta(;s as_srL]Jrged ;obbe 4dD' a4D Se;‘Of
light field spectrum to propose a new light field prior. The Measurements is required. With depth-based view synthe-

new prior is a Gaussian assigning a non-zero variance sis, the prior is stronger but more restrictive. It assumes
mostly to a 3D subset of entries. Since there is only a low- tha_t, locally, depth is constant and the object is Lambeytia
dimensional subset of entries with non-zero variance, we Which means that the light field is constant along the angu-

can reduce the complexity of the acquisition process and!ar dimension and is locally 2D.
render the 4D light field from 3D measurement sets. More-  In this paper we propose a new light field prior which
over, the Gaussian nature of the prior leads to linear and is a tradeoff between these two approaches. It is based on
depth invariant reconstruction algorithms. the recently-observed dimensionality gap in light field3, [1
We use the new prior to render the 4D light field from a 13] which states that for Lambertian scenes with modest
3D focal stack sequence and to interpolate sparse direc-depth discontinuities, the 4D Fourier transform of the 4D
tional samples and aliased spatial measurements. In all Fay space includes only a 3D subset of entries whose energy
cases the algorithm reduces to a simple spatially invariant is significantly higher than zero. This observation has so fa

deconvolution which does not involve depth estimation. ~ Peen used to analyze and improve depth of field extension
[13] but we propose to use it for light field reconstruction

. and view synthesis. Our new prior is a Gaussian assigning

1. Introduction a non-zero variance mostly to a 3D subset of entries. Since
Light field or plenoptic imaging enables exciting com- onl_ythree degrees offreedo_m are present, measurement sets

puter vision and graphics applications such as refocusing o Which are only 3D are sufficient for interpolating the full
viewpoint changes. Light fields record the 4D set of light 4D light field. Furthermore, since the prior is Gaussian,
rays incident to the lens aperture. This can be achievedthe reconstruction and rendering algorithms are simple and
by varying the camera position on a 2D plane and captur- !megr, anddo not involve erth esnmaupthlIe the prior
ing a 2D family of 2D images [14, 7, 21], or by placing a 1S simple to use, the quality of results sits halfw_ay b_etween
microlens array in front of the sensor [1, 19].” With such the two existing approaches. The reconstruction is better
representation, rendering a novel view is a straightfodvar than with a generic 4D prior, but the 2D MOG can produce
linear operation in the acquired data, since the scene coloetter results when depth is successfully estimated.
along any light ray one wishes to render has already been We examine a number of low-dimensional acquisition
captured explicitly, and view synthesis is a simple matter schemes and show how, in conjunction with the new light
of rebinning. Unfortunately, the four-dimensional natofe  field prior, they can be used to interpolate the 4D light field
light fields makes their acquisition costly and ofteninslv ~ or to render novel viewpoints. The simplest acquisition
a spatial resolution tradeoff. This is all the more frustrgt ~ scheme considered in Sec. 3 is a focal stack sequence, a
that many operations and data are 3D in nature: LambertianlD set of images focused at a varying range of depths, pro-
scenes are three-dimensional and refocusing only involvesviding a 3D set of measurements. We show that the advan-
a depth-indexed 1D family of 2D images. An alternative tage of the focal stack is that it directly covers the norezer
strategy is standard image-based rendering or novel-viewentries of the 4D spectrum. We present a simple primal do-
generation [6, 16, 4], in which only a sparse set of images main algorithm which uses the focal stack to render images
is captured. To render a novel viewpoint, depth is estimatedfrom novel viewpoints inside the aperture area. In our al-
using a variety of computer vision techniques. However, gorithm, each focal stack image is shifted according to the
depth estimation is a complex non-linear process which candisparity of its focusing distance. The shifted images are

Acquiring and representing the 4D space of rays in the
world (the light field) is important for many computer vi-



averaged and a spatially uniform, depth-invariant decenvo
lution is applied. This algorithm relates to [2] who use two

B (we, wy) = L(we,wy, swa, swy).-

()

defocused images of a two layers scene to generate new de-

focused images without segmenting the depth layers.

We also show how the dimensionality-gap prior can help
interpolate the light field from measurements that are spars
or aliased, in both directional (Sec. 4) and spatial (Sec. 5)
dimensions. We present simple reconstruction algorithms
which also reduce to depth invariant deconvolution.

2. Light field priors

2.1. Background on light fields

The 4D light field L(z, y, u,v) parameterizes each ray
by its intersection with two parallel planass and xy,
known as thalirectional and spatial dimensions. Usually
the viewpoint (or camera aperture) is positioned and gtifte
along theuv plane, whilexy is a scene plane.

In light field space, the set of light rays emerging from
a single point lie on a plane whose slope is a function of
depth. If the scene is Lambertian, all rays emerging from a
point have the same color and we can express:

@

where Ly, ., (z,y) denotes a 2D view from the point
(w0, v0), Lugvo(x,y) L(z,y,ug,v0). The slopes is
s = (d — dy)/d whered is the object depth and, the
distance between thes andxy planes.
A standard lens focused at slop@verages rays emerg-
ing from points at the corresponding depth, all lying on a
slopes plane in light field space. The recorded image is:

B*(z,y) = // L(z + us,y + vs,u,v)dudv, (2)
(u,v)ED(A,0)

where D(r, p) denotes a disc of radiuscentered at point

p, and A is the aperture radius. If the scene depghis
locally constant, we substitute Eq. (1) into Eq. (2) and get
that B* (z, y) equals

L(I7y7u7 U) = LUO-,’UU(m - S(u - u0)7y - 8(’[} - UO))?

IID(A,O) Lug,vo (T + souo + u(s — so0),y + sovo + v(s — so))dudv
= Lug.vo (2, Y) ® sars—emzaz D(Als — sol, (souo, sovo)).

That is, the recorded full aperture imagé(x, y) is a con-
volution of a pinhole viewL,,, ., (z,y) with a PSF¢, =
D(Als — sol, (souo, sovo)). The PSF is a disc whose radius
is proportional to the difference between the focus depth
and the object deptky. The disc center is shifted according
to the disparity shift of that viewpointsouo, sovo).

Consider the 4D Fourier transform of the 4D light field,
denoted byﬁ(wm,wy,wu,wv)l. For a Lambertian planar
scene of slope, the light field L is constant along direction
s. As a result, the Fourier transfori includes non zero
entries only on the 2D plane of entries of the form [18]

(4)

Equivalently, for an infinitely wide aperture, the 2D spec-
trum of a 2D image focused at depths a slice from the
4D spectrum [18]:

Wy = SWg, Wy = SWy.

1We denote by the Fourier transform of a signal.

Following [12], in an abstract way, we can express the
sensor measuremeritas a liner projection of a ray space
vector/: b = T¢ + n, where the matrixI” expresses the
mapping between light rays to sensor measurements.and
is the imaging noise.T" is often rank deficient.  In this
framework, recovering the light fielélfrom b is a Bayesian
estimation problem which should account for prior knowl-
edge on light fields. The choice of prior is critical because i
affects the amount of required measurements, the simplicit
of the estimation process, and the quality of the results.

2.2. Existing light field priors

We argue that the fundamental difference between cap-
turing and rendering strategies can be seen as a difference
between prior assumptions. This classifies existing rebear

into two main categories.

The first type of prior treats the spatial and directional
dimensions of the light field isotropically, and it mostly
assumes that the signal is smooth. As it assumes 4 de-
grees of freedom, capturing a 4D measurement set is re-
quired [14, 7, 21, 1, 19]. The smoothness assumption can
be expressed as a Gaussian prior on the light field which is
diagonal in the frequency domain:

>

W Wy , Wy ;W

|L(w17 Wy, Wu, w’U)|2

logp(L) = —0.5 + const.

UEJ w w w
The variancejgm,wywu,wv is high for low frequencies(g%d
low for high frequencies (Fig. 1(a)). If the range of depthsii
the scene is bounded, plenoptic sampling theory [5, 10, 18]
further allows for a smarter sampling pattern.

However, capturing the full 4D light field directly seems
redundant. The second type of prior assumes that depth
is locally constant, and conditioning on depth there are

(3only two degrees of freedom in defining the surface tex-

ture. Levinet al. [12] express such assumptions in priors
terminology and suggest a mixture of 2D Gaussians model.
Conditioning on depthy(L|s) is Gaussian, and diagonal in
the frequency domain. From Eq. (4), when depth is given,
there is non-zero frequency content only at entries of the
formw, = sw,,w, = sw,. Hence there is only a 2D set of
entries with non-zero variance, one non-zero variance en-
try in eachw, ,-slice (Figure 1(b)). In the general model,
the mixture components index over all possible depth maps:
p(L) = [ p(s)p(L|s)ds. This prior constrains the light field
tighter than the general 4D Gaussian prior above. How-
ever, inference is more complicated since the correct mix-
ture component, or the scene depth, needs to be estimated.
Given depth, one can render the scene from multiple view-
points [6, 16, 4]. One can also improve the quality of the 2D
image, for example by using the aliased plenoptic camera
measurements [15, 3] for super resolution. Similarly, one
can use a depth dependent PSF to partially remove defocus
blur [11, 20, 13].
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Figure'1. Priors on the 4D light field. Each subplot repre:scamlzwu_,;L,O-slice,ﬁwmoYy0 (wu,wy). The outer axes vary the spatial frequency
Wzo,y0» 1-€., the slicing position. The inner axes of each subjlet, of each slice, vary..,.,. The intensity at each point visualizes the
varianceaim_ywuww at the corresponding spectrum entry. (a) Classical sigratessing prior assuming a smooth 4D signal, assigning
non-zero variance to all 4D entries within a range| < Smaz|wz|, [wo| < Smaz|wy| (in this fig, Smaz = 1). (b) One mixture component
from a MOG prior. Conditioning on depth we have a Gaussiaorprith only a 2D set of non-zero entries. (c) A Gaussian pdierved

from the dimensionality gap with a 3D set of non-zero entries

The focal segments thickness is determined by the spac-
ing A, , between samples on theg,, w, frequency axes,
which is inversely proportional to the primal aperture viadt
With denser spacing the segments are thinner and the prior
is tighter. In Fig 1(c) the resolution is low (only7 x 17
viewpoint samples included) and the segments are thick.

This new prior does not constrain the light field as tightly
as a 2D MOG. However, the Gaussianity of the prior leads
o — to significantly simpler reconstruction algorithms whick w
o investigate below. In contrast, in [13] the dimensionality
Figure 2. (a) One view from a light field. (c) The observed powe gap was used with a 2D MOG prior, where depth is esti-
spectrum. In each,, ,,-slice we observe energy mostly along mated, and applied for depth of field extension. This paper
1D focal segments. (b) The accumulated histogram of enesgy a explores a different application of the dimensionality gap
a function of distance from the focal segment, for the topdefl depth-invariant light field reconstruction.
top center subplots. Ové8% of the energy is included withih Given a Gaussian prior on the light field, estimating the
pixel from the center. light field ¢ from the camera data reduces to solving a
linear system, or equivalently, minimizing a quadratictcos

o

8wy [we

2.3. The dimensionality gap as a low dimensional 1 s
Gaussian prior ¢ = arg min F|\T£ —bF+ "0 e (8)

We suggest a new light field prior which is a tradeoff be- \yhere7 is the measurement matrix? the noise variance
tween the two priors discussed above. It is Gau53|a.n.but iN-and C' the prior covariance. Since the dimensionality gap
volves mostly 3D freedom degrees, thereby constralnlngthepriOr permits non-zero variance to a 3D set of entries, a
light field tighter than the 4D model. Additionally, having 7 matrix which measures a 3D data should provide a well
a Gaussian prior allows for simple linear inference, withou ,oseq reconstruction. However, since the unknown vector
explicit depth estimation. Our prior is based on the dimen- i, £q_(8) is 4D, solving the system explicitly is impractica
sionality gap property of the light field derived in [13, 18]. 514 we seek approximate strategies. As part of the approx-

Recall that an object at slopegenerates frequency con-  imation, the algorithms described below ignore energy off
tent only along a 2D subspace of the 4D light field (Eq 4). the focal segments. This restriction, however, is due to the
Since depth is only a 1D variable, a Lambertian scene with gnnroximate reconstruction, and is not an intrinsic limita
piecewise constant depth has frequency content along a 3Qjon, of the 3D Gaussian prior. The prior itself does permit
subset of entries of the form low non-zero variance on off-focal-segment entries.

(W, Wy, Way, wo) |38 1 Wy = SWa, Wy = SWy. @ .
Figure 2 visualizes the spectrum of areal light field. Despit 3. Novel views from a focal stack
the many occlusions, in each,, ,,-slice we can notice en- Our first light field acquisition strategy is a 3D focal
ergy mostly along a 1D focal segment. Fig 2(b) plots cumu- stack. We show that the advantage of a focal stack is that
lative histogram of energy as a function of distance from the it directly covers the non-zero entries of the 4D spectrum.
focal segment. Ove¥8% of the energy is concentrated up We show that the 4D light field can be rendered in a lin-
to one entry away from the focal segment. A Gaussian prior ear and depth invariant manner from a focal stack sequence.
based on the dimensionality gap allows non-zero varianceFor that we describe an algorithm for rendering a 2D view
mostly in a 3D subset of frequencies (Fig 1(c)). Ly, v (z,y). The rendering is limited to viewpoints within



(a) Focal stack imgs (b) Viewpoint (c) PSF (d) Average image (e) Our reconstarcti  (f) Ground truth reference
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Figure 3. lllustrating novel view rendering on a synthetierse. (a) A few images from the focal stack sequence (all frententral view
point), (b-f) A few novel viewpoints rendered from the fosshck sequence without any depth estimation.
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the aperture areguo,v9) € D(A,0). To simplify the andf = phase(z + iy).

derivation we start with the primal domain. In Sec. 3.2 we

provide a frequency domain interpretation. Proof: For an object at depth, we can use Eg. (3) and
3.1. Primal domain derivation express the average image as a convolution of the desired

D — A4S0 H
Our rendering algorithm works as follows. Given a de- sharp one(z, y) ® Lug,uo (@, y) With

up,v0

sired view point(ug,vo), we shift each focal stack im- =~ /smam 1 D(Als— B B J
age by the disparity of its focusing depthug, svo), and %o = s, m2|s— s0|2A2 (Als=sol, ((s=s0)uo, (s=s0)vo))ds,
compute an average imad&z,y) = >, B, s, Where (11)

Bs (z,y) = B*(x — suo,y — svo) is an image shifted ~ WNereSy.in, Sma. denote the minimal and maximal slopes

bﬁ‘;ig“ sup) (the amount of shift depends on the focus dis- 1" the focal stack. We change the integration variable by
' definings’ = s—sg, S/

i . / _
tance of the image and not on the object depth in the scene; d hatso min d_ Smwé—so, ‘gmam = S'rﬁam_SO
therefore the shift is a parameter of the imaging apparatus2d Nnote thatyy , is independent ok, up to the exact

and is independent of scene content). We show that the avintégration boundaries:

erage image3(z, y) is an (almost) shift invariant convolu- ‘ S 1

tion of the desired viewL,, ., (z, y). Therefore, it can be w0, vo /, WD(A|SI|7 (s'uo,s'vo))ds’.  (12)
recovered with a spatially invariant deconvolutiaithout Smin

estimating the scene depth We show that if the slope boundaries are sufficiently far

For the central viewpointug, vo) = (0,0) no shifthap- ~ from the object depth, that is§,.;;, << so << Spaa, the
pens and we sum the focal stack as it is. This average imagdntégration boundaries are negligible ang}, ,, is nearly
is equivalent to the input from a focus sweep camera [9, 17] slope invariant. For a poirtr, y) the minimal slopes for
which varies the focus distance during exposure, and waswhich(z,y) is included in the dis© (Als'}, (s"uo, s'vo)) is

shown to be a depth invariant convolution of an ideal pin- Suo.vo (%, ) defined in eq 10. For everf > sy, v, (2, 1),
hole image. Below we show that this is true for any view- we get an energy contribution proportional to the disc area:

2| /(2 42 imi buti
point. Intuitively, for an infinitely wide aperture only the t1|\// é”,|f//6|1| lfle s)'fo\r/vvsh?fkts? similar co(ntnbutu;n 'If'rr?er?e?oergea-
image focused at the right depth is sharp, all other focal g f12) can be written as<' T Fuo,00 (7L, Y-
stack images are flat. Therefore shifting the correct depth — ’

image by the correct disparity is sufficient. 50 . Shas 1 / —Sim 1 )
Figure 3 visualizes average images and the depth- oo (@ Y) = S (3§ e ds’ + f, 0y s
invariant deconvolution results, demonstrating closeagr =t (S(zl S+ —T— — T )
ment with a ground truth reference. ’ ’ min mas
; ; ; — (; + %) . (13)
Claim1 For a Lambertian scene with locally-constant m2AZ \s(zy) © s(—z,—y)

depth, the average image is a shift-invariant convolutibn o

; . where the last approximation is accurate when the integra-
the desired viewB(z, ¥) = Puy.vo @ Lug v, (T,Y). PP g

tion boundariess,,;., Smaz are large relative tag. D

The PSFpy, v, is approximately depth invariant: The proof of Claim 1 shows that the PSFs at different
Gy w0 () & (7242500 00 (2,9)) (12 A% 50000 (—23 —1)) slopes are equivalent up to an additive termi by, ;,, +

owsa(®:8) & r 8 or(9) (4% o ’ y_) ©  1/S!... This term is small when the focal stack range
wheres., ., (z,y) is the smalless for which (z,y) is in- [Spnin, Smaz] iS large with respect to the object depth. For
cluded in the disdD(s A, (sug, svp)). Explicitly: the PSF to be slope-invariant we wants, . + 1/5/. ..
Sugvo (@) = y/(Asin(asin(1/A(cos(8)vo — sin(8)uo)) +6) —vo) to be at the same order of magnitude as the imaging noise.

(10) Figure 3(c) visualizes PSFs. Note that the PSF is invariant



Claim 2 Let L, ., (w.,w,) denote the 2D Fourier trans-

form of a desired VieWL., v, (%, Y). Lug.v (We, wy) €quals
the average of the Fourier transforms of all shifted focal
stack images multiplied by a function,, , (1o, vo) which
depends omyg, vy, w,, w, but does not depend on

Figure 4. Novel viewpoints inside the aperture, renderetnfa R .
focal stack. Animation is available on the project webpage. Liug wo (Wes wy) = Xws ,, (W0, v0) / Biug.svo (Wa, wy)ds. (15)

Since convolution is multiplication in the frequency do-
main, Eq. (15) simply implies that we average the spectra of
all shifted focal stack images and deconvolve with a kernel
independent of. This is equivalent to the primal domain
algorithm described above.

Proof: From the definition of the Fourier transform, a 2D
view from (ug,vo) can be obtained by multiplying the 4D
spectrum with the wave>™*(«w«uo+wwvo) projecting along

Figure 5. Rendering artifacts at occlusion boundaries wfoich the w, , w, dimensions (which provides 2D data), and then
the spatially-invariant convolution model fails. computing a 2D inverse Fourier transform. That is:

to depths, but depends on the (known) viewpoifty, vo). i _ // 2milwuuotwovo) f () dod

For the central viewuo, vo) = (0,0) the PSF is the radi- " (e ) ‘ (o s, wo ).
ally symmetric kerneboo(x,y) = 1/|(z,y)|. For other  we define new integration variables = (w,w,*9

viewpoints the kernel drifts along the viewpoint direction Wywy )/ |way|? t = (Wywy — Wewy)/|wey|?. The dimen-

Results: Fig. 4 shows crops from novel viewpoints gen- sionality gap implies thaL is zero fort # 0. Therefore

erated from a focal stack sequence, consisting0of /2.0 Eg. (16) is equivalent to:

images. The sequence covers a slope rang§,of, = . i vow)s ¢

—0.23, Spmae = 0.23 while the actual objects lie in slope  Lug,vo (W, wy) = |Wac,y|/e 0L T ] (W Wy, SWa, Swy )ds.

range[—0.09, 0.09]. Several sequences with viewpoint ani- o . .

mat?or[ws are avalltl;\ble on the p(r:'leeCt webpage P Where the multiplicative factotv,, | is the Jacobian (()H?'le
The dimensionality gap model is violated by occlusion Nnew integration variables. The 1D segmenfadver which

boundaries and when the scene is non-Lambertian. Fig-We integrate in Eq. (17) is exactly the part covered by the

ure 5 zooms in some imperfect reconstructions at occlusionfocal stack sequence. For an infinite-aperture focal stack

boundaries. In contrast, in our examples we did not detectwe can substitute Eqg. (5) in Eq. (17) and get

artifacts caused by non-Lambertian objects. Apparently, . o .

most scenes are sufficiently Lambertian within the narmow Lug,v, (Wa, wy) = |way| [ €27 (0watv000)s B3 (4w, )ds

angle of a camera aperture. = |way| [ Bluy sonds, (18)

where the last equality follows from the fact that a phase
change in the frequency domain is a shift in the primal

. fa s .
infinite aperture — an image of a focal stack —is a slice ofthendomam and therefords® (w;,w,) times a phase change

2mi(ugws+v u.)y S -
4D light field spectrum. This means that the set of images of €. (vowatrows)s is the Fourier transform of the shifted ver

3.2. Frequency domain derivation

The Fourier version of our algorithm is straightforward
because we have seen that the spectrum of a view with a

the focal stack directly provides the set of slices that com- SION B2,y e, For the infinite aperture case, we choose
prise the 3D focal manifold. That is, for infinite aperture, Xw.,(0,%) = |wzy| and get the desired Eq. (15). That
according to Eq. (5)B° (waywy) = L(wm,wm 8wz, SWy)- is, the 2D spectra of the desired vidw, ,, (wg, wy) is the

Therefore, given a 3D focal stack data, we can construct theaverage spectrum of all shifted focal stack spectra, decon-
4D light field spectrum. We place the focal stack spectra volved with the slope-invariant functiop
at entriesL(w,, wy, sw., sw,), and set the rest of the en- In the finite aperture case, the focal stack images are

tries to zero. A finite aperture image approximates this and sjices from a convolved spectrum (defined in Eq. (14)),
provides a slice from a blurred version of the 4D spectrum
B (wg,wy) = L(wm, wy, SWy, Swy). Consider the Fourier

i(wmwy7wu7¢dv) = L(wa, wy, Wu, wo) @ Y(wu,ws),  (14) transform oﬁ[; along a slice:
Whe_re(/?(wu,wv)_ is the 2D Fourier transform of the aperture X, (110, v0) = /627ri(u0@m+v0@y)s,¢”)(swx7Swy)d87 (19)
(adiscin the primal domaip(u, v) = D(A,0)). Below we

rederive our rendering algorithm in the frequency domain. where(@,, @) = (we,wy)/|ws.y|. We can use the convo-
2ywww.wisdom.weizmann.ac.il/levina/papers/dimgap/ lution theorem and express convolution withas multipli-




Viewpoints sampled on a circle V|ewp0|nts sampled on a grid

Reconstruction, view 1 Reconstruction, view 2 Ground trutew 2

(b) Reconstructed |mages Figure 8. Rendering novel viewpoints from a circular samgfie

Figure 6. Reconstructing the light field from a sparse sarmple viewpoints. See the project webpage for animation.

viewpoints. For good reconstruction all entries of the skmgp iff viewpoint (u,v) is captured. From the sparse set of

pattern projected at any direction should be high. A sangpfiat-  views, we synthetically render a focal stack sequence by
tern in a circle provides higher quality reconstruction qamed to integrating along slope (Eq. (2)). Given the focal stack

a grid, because a grid projected vertically (red projecthonthe  sequence we apply the exact algorithm described in the pre-
right) has many zero entries. vious sections: shift each image by the desired disparity,

compute the interpolated image and apply depth invariant

0 deconvolution. However, since the aperture shape is differ
- ent, we deconvolve with a different PSF.
1 ¢ In Sec. 3 we have shown that in the frequency do-
e main we need to multiply the,,w, entry with x,,, = =
Figure 7. Quadllnear |nterpolat|on of a novel viewpointegivthe |Wzy|/XZu,,y(U0a vg). Obviously this deconvolution is well

sparse viewpoint sample of Fig 6-right. Objects at the mfee
plane are recovered well, but away from the reference plias-a
ing is observed.

posed wherjx;,,  (uo,vo)| is large. Below we derive an

exact formula fory’ and attempt to understand which view-
point sampling patterns lead to a well posed reconstruction

cation withy'. That is: Claim 3 Letp denote a 1D projection of the apertuge

/e2ﬂi(ugw1+vowy)si(wz7u}y7chmswy)ds _ P(cos(6),sin(8)) (T /1/) (cos(0)t+sin(0)r, sin(0)t—cos(0)r)dt.
(20)  Then: (21)
x'wzy(uo, Vo) / 62”Z(u°“’m+”°“’y)sﬁ(ww7wy, Swa, Swy)ds X;I,y(um V0) = P(—a,,@,) (UoWaz + Voly). (22)

Defining x., , = |wayl/x,,, , We get the desired relation where(ws, Wy) = (wa, wy)/|we -

in Eq. (15). Egs. (17) and (18) follow in a similar way. Proof: y’ was defined in Eq. (19) as

In this derivation we assumed infinite integration bound-
aries, but as for the primal domain, there is an additional / :/ 2mi(uo@e+00@)5 (0 a5 Y 23
approximation here following from the fact that the focal X, (10, 00) c (s, sy ). (23)
stack sequence only covers a finite slope rafige. That is, we take a 1D slice fromp along the direction

. . - (w4, wy) and compute its inner product with a wave. This

4. Novel views from a sparse set of viewpoints is equivalent to computing a specific entry (which depends

The advantage of the focal stack is that it directly cov- on (ug,vo)) from its Fourier transform. According to
ers the non-zero parts of the spectrum. However, the di-the Fourier slice theorem [18], this is equivalent to pro-
mensionality gap prior can help reconstruct the light field jecting the primal aperturé along the orthogonal direc-
from other low dimensional sample sets. In this section tion. The aperture projectiop is defined in Eg. (21) and
we discuss sparse directional samples and in the followingy/, y(u07 vg) is SIMply p(_g, o, (uo@s + vowy) ][]
one aliased spatial samples. We show that a small adapta- Therefore, to achieve a stable deconvolution at all view-
tion of the algorithm from the previous section applies in points(ug, vy), we require that all entries gf be high for
these cases as well. The acquisition setup considered hergvery projection direction. This understanding allows us

captures only a sparse subset of views onun@lane, in-  to compare viewpoint sampling patterns. If we distribute
stead of a full 2D set of viewpoints captured by classical the sampled viewpoints on a grid (Fig 6, right), the projec-
systems [14, 21]. tion has many zero entries in the harmonic directions (e.g.

Reviewing the derivation from the previous section we vertical projection illustrated in Fig 6). To obtain stalite
note that it is valid for any aperture shape, only the defini- version, we want a sampling pattern with dense projections
tions of > andy’ change. If we are given a subset of direc- at every direction. Such projections can be obtained with
tional samples, we can treat them as holes in the aperturea pseudo-random noise pattern. Another option is to sam-
and their union defines a new aperture. Thatig, v) = 1 ple a circle of viewpoints (Fig 6, left). We chose a circular
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(a) Aliased light field spectrum (b) Bicubic (c-d) Given dept (e) Dimensionality gap
Figure 9. (a) The spectrum of an aliased light field, dematisiy replicas of focal segments. (b-e) Upsampling of a viiem the aliased
light field of [15]. (b) Bicubic up sampling, corresponding & 4D prior. (c-d) The upsampling of [15], corresponding tax prior
conditioned on slope. High resolution is obtained at thesmirdepth, but other depths are blurred (tree blurred ind@) blurred in (d)).
(e) Our upsampling with a 3D prior. We improve resolution latlapths, but not as well as (c-d) which account for one gidepth.

sample in our implementation because it has another usefuprimary spectrum. However, under a 3D prior we know that
property: it can be shown that the depth invariant PSF in most coefficients should be zero. Therefore, a non-zero co-
the primal domain is equivalent to the one obtained from a efficient observed away from the focal segments is a likely
normal focal stack sequence, which was derived in claim 1. replica.
Figure 6(b) demonstrates two novel views generated from  Eq. (24) defines thé measurement matrix from Eq. (8),
such sampling patterns. Not surprisingly, the reconsionct  and we obtain the Bayesian reconstruction/ofinder a
from circular samples is better than from a grid. Gaussian prior as the minimization of

In Figure 7 we also applied a standard quadlinear ray in- 1, ‘io(wz,wy,wu,wv) — R w4 09 wy + G, wu, w)
terpolation [14] to interpolate viewpoints from the sparse " e )
viewpoints grid of Fig 6-right. Objects on the reference R e (25)
plane are sharp, but away from it aliasing is observed. _ _ cooTm

i . . That is, a Bayesian reconstruction redistributes the value

Results: Infigure 8 we used light fields from the Stanford ¢ L%(wy, wy, wy,w,) between the replica entries in pro-
dataset. The datainclude grids aff x 17 views. However,  portion to their variance. In a nutshell, if the prior vari-
we used only an outer circle 6ft views and can renderany  ance of one replica entry is sufficiently higher than others
view in the interior of this circle. Viewpoint animationis  (;+ jx) = arg max o (wy, 4+, wy + j, wy, w,), the recon-
available on the project webpage. ‘

2
+

struction assigns the measuré@i(wx, Wy, Wy, wy) Value to

5. Spatial resolution enhancement L(wg +1*Q, wy + j*Q, wy, wy) and almost zero to all other

. . . . . replica entries.
We have seen that using the dimensionality gap prior one P

int lat directional | W h If a 4D Gaussian prior is used, the variance is higher
can Interpolaté sparse directional sSamples. VW& Now SNOW, - g 4| spatial frequencies and the highest varianceis ob
that a similar algorithm applies to the spatial dimensioet L

. - e i , tained ati* = 0,j* = 0. Therefore, the reconstruction
L{wg, wy, wu,wy) denote a high-resolution light field with copiesL? in the low frequencies of and zero at all new
spatial resolutloer_ (ie. |_wI| < kﬂp' |wy| < k€2/2). high frequency entries. No extra information is gained from
We measure a spatially aliased versighw,, wy, wu, wy), the aliasing. Figure 10(a) visualizes the expected recon-
whose spatial dimension is under-sampled by a factés, of  stryction error, which is indeed low in the middle and high
i.e.,,inL% w,, areinthe rangév,| < /2, |w,| < Q/2. at the periphery. On the other hand, if the depth is known
We want to inferl, from the measured.’. While previ- and we use a 2D Gaussian prior, there is non-zero variance
ous work demonstrated light field super resolution invalvin ~ only for entries of the formv, = sw,,w, = sw,. In
depth knowledge [15, 3], our goal is to increase resolution this case one can obtain a significantly better reconstruc-
without depth estimation. tion [15]. If |s| # 0 the replicas do not cover each other,
Aliasing due to under-sampling causB8 to be com-  thatis, the set of entrief(w, +iQ, wy + jQ, wu, wn)}i ;-
posed of a sum of replicas froi do not contain more than one entry of the fqt:m =
swy,wy = Swy, and the required frequency coefficients can

k—1 .
-0 _ - . ) be recovered (Fig. 10(b)). In fact, [15] extracts a focused
Lo (we, @y, wu, w0) = ]Z::O Lws i, @y 450w, w0), (24 Viaw from the aliased samples using that exact property, but

it applies the primal domain version of it: projecting, in-
stead of slicing.

Our 3D Gaussian prior can resolve replicas better than
the 4D prior, but not as accurately as a 2D prior does when
depth is known. Anv,, ,.-slice of the aliased light field

LY is the sum of? w,, ,,-slices ofL. For eachu,. ,-slice,
3http://lightfield.stanford.edu/Ifs.html the prior assigns non-zero variance to a 1D set of entries

where the shifted frequencies + i, w, + j{! are taken
modulokQ/2. Informally, aliasing means that the coeffi-
cients of the missing high frequencies are scattered some
where in the light field. In the general case (under a 4D
prior assumption) there is no way to tell them apart from the
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Figure 10. Expected reconstruction error for differenopsi for
an upsampling factok = 2. We plot reconstruction error for 2D
spectrum slices of the form(w,, wy, sw, swy), providing the
reconstruction quality for a 2D image of an object at slef¢he
axes of each subplot vawy,, w,). The 4D prior obtains high error
at reconstructing high spatial frequencies. For slepe 0.5, 2D
and 3D priors can reduce the error, but our 3D prior fails toker
the harmonic directions. At slopas= 0, all priors cannot resolve
high frequencies. The sensitivity around the harmonicraigons
reduces when the resolution on the, w, axes is higher (left).

on the focal segment, whose orientationidg, @,). In the

cies. Since only three degrees of freedom exist, capturing
3D data is sufficient and there is no need to sample the en-
tire 4D space explicitly. The fact that the prior is Gaussian
allows for simple depth invariant reconstruction algamith
Acknowledgments: The authors acknowledge B.S.F. sup-
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