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Abstract

Blind deconvolution is the recovery of a sharp version of
a blurred image when the blur kernel is unknown. Recent
algorithms have afforded dramatic progress, yet many as-
pects of the problem remain challenging and hard to under-
stand. The goal of this paper is to analyze and evaluate re-
cent blind deconvolution algorithms both theoretically and
experimentally. We explain the previously reported failure
of the naive MAP approach by demonstrating that it mostly
favors no-blur explanations. On the other hand we show
that since the kernel size is often smaller than the image
size a MAP estimation of the kernel alone can be well con-
strained and accurately recover the true blur.

The plethora of recent deconvolution techniques makes
an experimental evaluation on ground-truth data important.
We have collected blur data with ground truth and com-
pared recent algorithms under equal settings. Additionally,
our data demonstrates that the shift-invariant blur assump-
tion made by most algorithms is often violated.

1. Introduction
Blind deconvolution is the problem of recovering a sharp

version of an input blurry image when the blur kernel is
unknown [13]. Mathematically, we wish to decompose a
blurred imagey as

y = k ⊗ x (1)

wherex is a visually plausible sharp image, andk is a non
negative blur kernel, whose support is small compared to
the image size. This problem is severely ill-posed and there
is an infinite set of pairs(x, k) explaining any observedy.
For example, One undesirable solution that perfectly satis-
fies eq. 1 is the no-blur explanation:k is the delta (identity)
kernel andx = y. The ill-posed nature of the problem im-
plies that additional assumptions onx or k must be intro-
duced.

Blind deconvolution is the subject of numerous papers
in the signal and image processing literature, to name a few
consider [1, 11, 24, 17, 19] and the survey in [13]. Despite
the exhaustive research, results on real world images are
rarely produced. Recent algorithms have proposed to ad-
dress the ill-posedness of blind deconvolution by character-
izingx using natural image statistics [18, 4, 16, 9, 10, 3, 22].
While this principle has lead to tremendous progress, the
results are still far from perfect. Blind deconvolution algo-
rithms exhibit some common building principles, and vary

in others. The goal of this paper is to analyze the prob-
lem and shed new light on recent algorithms. What are the
key challenges and what are the important components that
make blind deconvolution possible? Additionally, which as-
pects of the problem should attract further research efforts?

One of the puzzling aspects of blind deconvolution is
the failure of the MAP approach. Recent papers empha-
size the usage of a sparse derivative prior to favor sharp im-
ages. However, a direct application of this principle has
not yielded the expected results and all algorithms have
required additional components, such as marginalization
across all possible images [18, 4, 16], spatially-varying
terms [10, 21], or solvers that vary their optimization en-
ergy over time [21]. In this paper we analyze the source of
the MAP failure. We show that counter-intuitively, the most
favorable solution under a sparse prior is usually a blurry
image and not a sharp one. Thus, the global optimum of the
MAP approach is the no-blur explanation. We discuss so-
lutions to the problem and analyze the answers provided by
existing algorithms. We show that one key property mak-
ing blind deconvolution possible is the strong asymmetry
between the dimensionalities ofx andk. While the number
of unknowns inx increases with image size, the dimension-
ality of k remains small. Therefore, while a simultaneous
MAP estimation of bothx andk fails, a MAP estimation of
k alone (marginalizing overx), is well constrained and re-
covers an accurate kernel. We suggest that while the sparse
prior is helpful, the key component making blind deconvo-
lution possible is not the choice of prior, but the thought-
ful choice of estimator. Furthermore, we show that with
a proper estimation rule, blind deconvolution can be per-
formed even with a weak Gaussian prior.

Finally, we collect motion-blurred data with ground
truth. This data allows us to quantitatively compare re-
cent blind deconvolution algorithms. Our evaluation sug-
gest that the variational Bayes approach of [4] outperforms
all existing alternatives. This data also shows that the shift
invariance convolution model involved in most existing al-
gorithms is often violated and that realistic camera shake
includes in-plane rotations.

2. MAPx,k estimation and its limitations
In this papery denotes an observed blurry image, which

is a convolution of an unknown sharp imagex with an un-
known blur kernelk, plus noisen (this paper assumes i.i.d.
Gaussian noise):

y = k ⊗ x + n. (2)

1



Using capital letters for the Fourier transform of a signal:

Yω = KωXω + Nω. (3)

The goal of blind deconvolution is to infer bothk andx
given a single inputy. Additionally,k is non negative, and
its support is often small compared to the image size.

The simplest approach is a maximum-a-posteriori
(MAPx,k

1) estimation, seeking a pair(x̂, k̂) maximizing:

p(x, k|y) ∝ p(y|x, k)p(x)p(k). (4)

For simplicity of the exposition, we assume a uniform prior
on k. The likelihood termp(y|x, k) is the data fitting term
log p(y|x, k) = −λ‖k ⊗ x − y‖2. The priorp(x) favors
natural images, usually based on the observation that their
gradient distribution is sparse. A common measure is

log p(x) = −
X

i

|gx,i(x)|α + |gy,i(x)|α + C (5)

wheregx,i(x) andgy,i(x) denote the horizontal and vertical
derivatives at pixeli (we use the simple[−1 1] filter) and
C is a constant normalization term. Exponent valuesα < 1
lead to sparse priors and natural images usually correspond
to α in the range of[0.5, 0.8] [23]. Other choices include a
Laplacian priorα = 1, and a Gaussian priorα = 2. While
natural image gradients are very non-Gaussian, we examine
this model because it enables an analytical treatment.

The MAPx,k approach seeks(x̂, k̂) minimizing

(x̂, k̂) = arg min
x,k

λ‖k ⊗ x − y‖2 +
X

i

|gx,i(x)|α + |gy,i(x)|α.

(6)
Eq. (6) reveals an immediate limitation:

Claim 1 Let x be an arbitrarily large image sampled from
the prior p(x), andy = k ⊗ x. The pair(x, k) optimizing
the MAPx,k score satisfies|x| → 0 and|k| → ∞.

Proof: For every pair(x, k) we use a scalars to define a
new pairx′ = s · x, k′ = 1/s · k with equal data fitting
‖k⊗ x− y‖2 = ‖k′ ⊗ x′ − y‖2. While the data fitting term
is constant, the prior term improves ass → 0.

This observation is not surprising. The most likely image
under the prior in Eq. (5) is a flat image with no gradients.
One attempt to fix the problem is to assume the mean inten-
sity of the blurred and sharp images should be equal, and
constrain the sum ofk:

∑
i ki = 1. This eliminates the zero

solution, but usually the no-blur solution is still favored.
To understand this, consider the 1D signalsx in Fig. 1

that were convolved with a (truncated) Gaussian kernelk∗

of standard deviation4 pixels. We compare two interpreta-
tions: 1) the true kernel:y = k∗ ⊗ x. 2) the delta kernel
(no blur)y = k0 ⊗ y. We evaluate the− log p(x, k|y) score
(Eq. (6)), while varying theα parameter in the prior.

For step edges (Fig. 1(a)) MAPx,k usually succeeds. The
edge is sharper than its blurred version and while the Gaus-
sian prior favors the blurry explanation, appropriate sparse
priors (α < 1) favor the correct sharp explanation.

1We keep estimation variables in subscript to distinguish between a
MAP estimation of bothx andk, to a MAP estimation ofk alone.
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Figure 1. The MAPx,k score evaluated on toy 1D signals. Left:
sharp and blurred signals. Right: sum of gradients− log p(x) =
P

i
|gi(x)|α as a function ofα.

15 × 15 windows 25 × 25 windows 45 × 45 windows
3% 1% 0%

Figure 2. MAPx,k failure on real image windows. Windows in
which the sharp explanation is favored are marked in red. The
percent of windows in which the sharp version is favored decreases
with window size.

In contrast, Fig. 1(b) presents a narrow peak. Blurring
reduces the peak height, and as a result, the Laplacian prior
α = 1 favors the blurryx (k is delta) because the absolute
sum of gradients is lower. Examining Fig. 1(b-right) sug-
gests that the blurred explanation is winning for smallerα
values as well. The sharp explanation is favored only for
low alpha values, approaching a binary penalty. However,
the sparse models describing natural images are not binary,
they are usually in the rangeα ∈ [0.5, 0.8] [23].

The last signal considered in Fig. 1(c) is a row cropped
from a natural image, illustrating that natural images con-
tain a lot of medium contrast texture and noise, correspond-
ing to the narrow peak structure. This dominates the statis-
tics more than step edges. As a result, blurring a natural
image reduces the overall contrast and, as in Fig. 1(b), even
sparse priors favor the blurryx explanation.
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Figure 3. (a) Comparison of gradient histograms for blurredand
unblurred images sampled fromp0(x). Blur reduces the aver-
age gradient magnitude. (b) Expected negative likelihood reduces
(probability increases) with blur.

To confirm the above observation, we blurred the image
in Fig. 2 with a Gaussian kernel of standard deviation3 pix-
els. We compared the sum of the gradients in the blurred
and sharp images usingα = 0.5. For 15 × 15 windows
the blurred image is favored over97% of the windows, and
this phenomenon increases with window size. For45 × 45
windows, the blurred version is favored at all windows. An-
other observation is that if the sharp explanation does win,
it happens next to significant edges.

To understand this, note that blur has two opposite ef-
fects on the image likelihood: 1) it makes the signal deriva-
tives less sparse, and that reduces the likelihood. 2) It re-
duces the derivatives variance and that increases its likeli-
hood. For very specific images, like ideal step edges, the
first effect dominants and blur reduces the likelihood. How-
ever, for most natural images the second effect is stronger
and blur increases the likelihood. To illustrate this, letx0

be a sequence sampled i.i.d. fromp0(x0
i ) ∝ e−γ|x0

i |
α

, xℓ a
sequence obtained by convolvingx0 with a widthℓ box fil-
ter (normalizing the kernel sum to1), andpℓ its probability
distribution. The expected negative log likelihood (effect-
ing the MAPx,k) of xℓ under the sharp distributionp0 is:
Epℓ [− log p0(xℓ)] = −

∫
pℓ(x) log p0(x)dx. Fig. 3(a) plots

pℓ for α = 0.5, and Fig. 3(b) the expected likelihood as a
function ofℓ. The variance is reduced by convolution, and
hence the negative log-likelihood reduces as well.

Revisiting the literature on the subject, Ferguset al. [4]
report that their initial attempts to approach blind deconvo-
lution with MAPx,k failed, resulting in either the original
blurred explanation or a binary two-tone image, depending
on parameter tunings.

Algorithms like [10, 9] explicitly detect edges in the im-
age (either manually or automatically), and seek a kernel
which transfers these edges into binary ones. This is mo-
tivated by the example in Fig. 2, suggesting that MAPx,k

could do the right thing around step edges. Another algo-
rithm which makes usage of this property is [21]. It opti-
mizes a semi-MAPx,k score, but explicitly detects smooth
image regions and reweights their contribution. Thus, the
MAPx,k score is dominated by edges. We discuss this algo-
rithm in detail in the appendix. Earlier blind deconvolution

papers which exploit a MAPx,k approach avoid the delta so-
lution using other assumptions which are less applicable for
real world images. For example, [1] assumesx contains an
object on a flat background with a known compact support.

All these examples highlight the fact that the prior alone
does not favor the desired result. The source of the problem
is that for allα values, the most likely event of the prior
in Eq. (5) is the fully flat image. This phenomenon is ro-
bust to the exact choice of prior, and replacing the model
in Eq. (5) with higher order derivatives or with more so-
phisticated natural image priors [20, 25] does not change
the result. We also note that the problem is present even if
the derivatives signal is sampled exactly fromp(x) and the
prior is perfectly correct in the generative sense.

In the next section we suggest that, to overcome the
MAPx,k limitation, one should reconsider the choice of es-
timator. We revisit a second group of blind deconvolution
algorithms derived from this idea.

3. MAPk estimation
The limitations of MAP estimation in the case of few

measurements have been pointed out many times in esti-
mation theory and statistical signal processing [12, 2]. In-
deed, in the MAPx,k problem we can never collect enough
measurements because the number of unknowns grows with
the image size. In contrast, estimation theory tells us [12]
that, given enough measurements, MAP estimators do ap-
proach the true solution. Therefore, the key to success is
to exploit a special property of blind deconvolution: the
strong asymmetry between the dimensionalities of the two
unknowns. While the dimensionality ofx increases with
the image size, the support of the kernel is fixed and small
relative to the image size. The imagey does provide a large
number of measurements for estimatingk. As we prove
below, for an increasing image size, a MAPk estimation of
k alone (marginalizing overx) can recover the true kernel
with an increasing accuracy. This result stands in contrast
to Claim 1 which stated that a MAPx,k estimator continues
to fail even as the number of measurements goes to infin-
ity. This leads to an alternative blind deconvolution strat-
egy: use a MAPk estimator to recover the kernel and, given
the kernel, solve forx using a non blind deconvolution al-
gorithm.

Before providing a formal proof, we attempt to gain an
intuition about the difference between MAPk and MAPx,k

scores. A MAPk estimator selectŝk = arg maxk p(k|y),
wherep(k|y) = p(y|k)p(k)/p(y), andp(y|k) is obtained
by marginalizing overx, and evaluating the full volume of
possiblex interpretations:

p(y|k) =

Z

p(x, y|k)dx. (7)

To see the role of marginalization, consider the scalar blind
deconvolution problem illustrated in [2]. Suppose a scalar
y is observed, and should be decomposed asy = k · x + n.
Assume a zero mean Gaussian prior on the noise and signal,
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Figure 4. A toy blind deconvolution problem with one scalary =
kx+n (replotted from [2]). (a) The joint distributionp(x, k|y). A
maximum is obtained forx → 0, k → ∞. (b) The marginalized
scorep(k|y) produce an optimum closer to the truek∗. (c) The
uncertainty ofp(k|y) reduces given multiple observationsyj =
kxj + nj .

x ∼ N(0, σ2), n ∼ N(0, η2). Then

P (x, k|y) ∝ e
− 1

2η2
|kx−y|2− x2

2σ2 . (8)

Fig. 4(a) illustrate the 2D distributionP (x, k|y). Unsur-
prisingly, it is maximized byx → 0, k → ∞. On the other
hand,p(y|k) is the integral over allx explanations:

P (y|k) ∝

Z

e
− 1

2η2
|kx−y|2− x2

2σ2 dx. (9)

This integral is not maximized byk → ∞. In fact, if we

consider the first term only
∫

e
− 1

2η2
|kx−y|2

dx, it clearly fa-
vors k → 0 values because they allow a larger volume
of possiblex values. To see that, note that for everyk
and everyǫ > 0 the size of the set ofx values satisfying
|kx − y| < ǫ is 2ǫ/k, maximized ask → 0. Combining
the two terms in (9) leads to an example in the middle of
the range, and we show in Sec. 3.2.1 thatx ≈ σ, which
make sense becausex now behaves like a typical sample
from the prior. This is the principle of genericity described
in Bayesian terms by [2]. Fig. 4(b) plotsP (y|k), which is
essentially summing the columns of Fig. 4(a).

Now consider blur in real images: for the delta kernel
there is only a single solutionx = y satisfyingk ⊗ x = y.
However, while the delta spectrum is high everywhere, the
true kernel is usually a low pass, and has low spectrum val-
ues. Referring to the notation of Eq. (3), ifKω = 0, an
infinite subspace of possible explanations is available as
Xω can be arbitrary (and with noise, any low|Kω| val-
ues increase the uncertainty, even if they are not exactly0).
Hence, the true kernel gets an advantage in thep(y|k) score.

We prove that for sufficiently large images,p(k|y) is
guaranteed to favor the true kernel.

Claim 2 Letx be an arbitrarily large image, sampled from
the prior p(x), andy = k ⊗ x + n. Thenp(k|y) is maxi-
mized by the true kernelk∗. Moreover, ifargmaxk p(y|k)
is unique,p(k|y) approaches a delta function2.

2Note that Claim 2 does not guarantee that the MAPk is unique. For
example, if the kernel support is not constrained enough, multiple spatial
shifts of the kernel provide equally good solutions. The problem can be
easily avoided by a weak prior onk (e.g. favoring centered kernels).

Proof: We divide the image into small disjoint windows
{y1, ..., yn} and treat them as i.i.d. samplesyj ∼ p(y|k∗).
We then selectkML = argmaxk

∏
j p(yj |k). Applying

the standard consistency theorem for maximum likelihood
estimators [12] we know that given enough samples, the ML
approaches the true parameters. That is, whenn → ∞

p(kML({y1
, ..., y

n}) = k
∗) → 1. (10)

Due to the local form of the priorp(x) (Eq. (5)), tak-
ing sufficiently far away disjoint windows will ensure that
p(y|k) ≈

∏
j p(yj |k). Thus,p(y|k) is maximized bykML.

Also, if we select am times larger imagey′, p(y′|k) =
p(y|k)m. Thus, ifp(y|k) < maxk p(y|k) thenp(y|k) → 0.
Finally, if p(k∗) > 0, thenkMAP , kML are equal on large
images sincearg maxk p(y|k) = arg maxk p(y|k)p(k),
and thus,kMAP → k∗. Similarly, if maxk p(y|k) is unique,
p(k|y) approaches a delta function.

Fig. 4(c) plotsp(y|k) for a scalar blind deconvolution
task withN observationsyj = kxj +nj, illustrating that as
N increases, the uncertainty around the solution decreases
(compare with Fig. 4(b)).

3.1. The loss function perspective

As another way to understand the difference between the
MAPx,k and MAPk estimators, we return to the definition
of a Bayesian estimator. A Bayesian estimator involves a
loss functionL(x̂ − x, k̂ − k) on both parameters, specify-
ing the price for an estimation error. The expected loss is
minimized by:

(x̂, k̂) = arg min

ZZ

p(x, k|y)L(x̂ − x, k̂ − k)dxdk. (11)

One simple choice of loss function yielding the MAPx,k so-
lution is the Dirac delta loss function:L(x̂ − x, k̂ − k) =

1 − δ

(
(x̂, k̂) − (x, k)

)
. The limitations of this loss have

been pointed out many times [12, 2]. This “all or nothing”
loss is too harsh for many signal processing applications, as
it completely ignores all information around the mode. In-
stead, it is common to use loss functions that increase more
smoothly with estimation error, such as the mean squared
error (MSE) loss:L(x, k) = |x − x̂|2 + |k − k̂|2, or a ro-
bustified loss like the MLM [2].

Claim 3 If p(k|y) has a unique maxima, then for large im-
ages a MAPk estimator followed by aMMSEx image es-
timation, is equivalent to a simultaneous MMSEx,k estima-
tion of bothx andk3.

3If multiple solutions with equal probability exist, MMSEx,k and
MAPk are not fully equivalent, and MMSEx,k leads to undesired averag-
ing. On the other hand, MAPk avoids the problem by picking one solution.



Proof: The mean squared error is minimized by the mean,
and in our case MMSEx,k provides

x̂ =

∫∫
p(x, k|y)x dxdk

=

∫∫
p(k|y)p(x|y, k)x dxdk

=

∫
p(k|y)µ(k)dk (12)

whereµ(k) =
∫

p(x|y, k)xdx, is a “non blind” MMSEx

estimation ofx given k. From Claim 2,p(k|y) is a delta
function and thus:̂x = µ(kMAP ).

3.2. Examples of MAPk estimation
Claim 2 reduces to a robust blind deconvolution strategy:

use MAPk estimator to recoverkMAP = argmaxk p(k|y),
and then usekMAP to solve forx using some non blind
deconvolution algorithm. To illustrate the MAPk approach,
we start with the simple case of a Gaussian prior onp(x),
as it permits a derivation in closed form.

3.2.1 The Gaussian prior

The prior onX in Eq. (5) is a convolution and thus diago-
nal in the frequency domain. IfGx, Gy denote the Fourier
transform of the derivativesgx, gy, then:

X ∼ N(0, diag(σ2

ω)) σ
2

ω = β(‖Gx,ω‖
2 +‖Gy,ω‖

2)−1
. (13)

Note that since a derivative filter is zero at low frequencies
and high at higher frequencies, this is similar to the classical
1/f2 power spectrum law for images. Denoting noise vari-
ance byη, we can expressp(X, Y ; K) = p(Y |X ; K)p(X)
as:

p(X, Y ; K) ∝ e
− 1

2η2
‖KωXω−Yω‖2− 1

2σ2
ω

‖Xω‖2

. (14)

(see the appendix for details). Conditioned onk, the mean
and mode of a Gaussian are equal:

X
MAP
ω =

„

|Kω|
2 +

η2

σ2
ω

«−1

K
T
ω Yω. (15)

Eq. (15) is the classic Wiener filter [7]. One can also in-
tegrateX and expressp(Y |K) analytically. This is also a
diagonal zero mean Gaussian with

Y ∼ N(0, diag(φ2

ω)), φ
2

ω = σ
2

ω|Kω|
2 + η

2
. (16)

Eq. (16) is maximized whenφ2
ω = |Yω |

2, and for blind
deconvolution, this implies:

|K̂ω|
2 = max

„

0,
|Yω|

2 − η2

σ2
ω

«

. (17)

The image estimated usinĝK satisfies|Xω|
2 ≈ σ2

ω. There-
fore MAPk does not result in a trivialX = 0 solution as
MAPx,k would, but in a solution whose variance matches

the prior varianceσ2, that is, a solution which looks like a
typical sample from the priorp(X).

Another way to interpret the MAPk, is to note that

log p(Y |K) = log p(XMAP
, Y ; K)−

1

2

X

ω

log

„

|Kω|
2

η2
+

1

σ2
ω

«

+C

(18)
Referring to Eq. (14), the second term is just the log deter-
minant of the covariance ofp(X |Y ; K). This second term
is optimized whenKω = 0, i.e. by kernels with more blur.
That is, log p(Y |K) is equal to the MAPx,k score of the
mode plus a term favoring kernels with blur.

The discussion above suggests that the Gaussian MAPk

provides a reasonable solution to blind deconvolution. In
the experiment section we evaluate this algorithm and show
that, while weaker than the sparse prior, it can provide ac-
ceptable solutions. This stands in contrast to the complete
failure of a MAPx,k approach, even with the seemingly bet-
ter sparse prior. This demonstrates that a careful choice of
estimator is actually more critical than the choice of prior.

Note that Eq. (17) is accurate if every frequency is esti-
mated independently. In practice, the solution can be fur-
ther constrained, because the limited spatial support ofk
implies that the frequency coefficients{Kω} are linearly
dependent. Another important issue is that Eq. (17) pro-
vides information on the kernel power spectrum alone but
leaves uncertainty about the phase. Many variants of Gaus-
sian blind deconvolution algorithms are available in the im-
age processing literature (e.g. [11, 17]) but in most cases
only symmetric kernels are considered since their phase is
known to be zero. However, realistic camera shake kernels
are usually not symmetric. In the appendix we describe a
Gaussian blind deconvoltion algorithm which attempts to
recover non symmetric kernels as well.

3.2.2 Approximation strategies with a sparse prior

The challenge with the MAPk approach is that for a general
sparse prior,p(k|y) (Eq. (7)) cannot be computed in closed
form. Several previous blind deconvolution algorithms can
be viewed as approximation strategies for MAPk, although
the authors might not have motivated them in this way.

A simple approximation is proposed by Levin [16], for
the 1D blur case. It assumes that the observed deriva-
tives of y are independent (this is usually weaker than
assuming independent derivatives ofx): log p(y|k) =∑

i log p(gx,i(y)|k). Sincep(gx,i(y)|k) is a 1D distribu-
tions, it can be expressed as a 1D table, or a histogramhk.
The independence assumption implies that instead of sum-
ming over image pixels, one can expressp(y|k) by sum-
ming over histogram bins:

log p(y|k) =
X

i

log p(gx,i(y)|k) =
X

j

hj log(hk
j ) (19)

whereh denotes the gradients histogram in the observed im-
age andj is a bin index. In a second step, note that maximiz-
ing Eq. (19) is equivalent to minimizing the histogram dis-



tance between the observed and expected histogramsh,hk.
This is because the Kullback Leibler divergence is equal to
the negative log likelihood, plus a constant that does not de-
pend onk (the negative entropy):

DKL(h, h
k) =

X

j

hj log(hj) −
X

j

hj log(hk
j ). (20)

Since the KL divergence is non-negative, the likelihood is
maximized when the histogramsh, hk are equal. This very
simple approach is already able to avoid the delta solution
but as we demonstrate in Sec. 4.1 it is not accurately identi-
fying the exact filter width.

A stronger approximation is the variational Bayes mean-
field approach taken by Ferguset al. [4]. The idea is to
build an approximating distribution with a simpler paramet-
ric form:

p(x, k|y) ≈ q(x, k) =
Y

i

q(gi,x(x))q(gi,y(x))
Y

j

q(kj). (21)

Sinceq is expressed in the gradient domain this does not
recoverx directly. Thus, they also pick the MAPk kernel
from q and then solve forx using non blind deconvolution.

A third way to approximate the MAPk is the Laplace
approximation [2], which is a generalization of Eq. (18):

log p(y|k) ≈ log p(xMAP
, y; k) −

1

2
log |A| + C (22)

A =
∂2

∂xi∂xj

log p(x, y; k)|x=xMAP . (23)

The Laplace approximation states thatp(y|k) can be ex-
pressed by the probability of the modexMAP plus the log
determinant of the variance around the mode. As discussed
above, higher variance is usually achieved whenk con-
tains more zero frequencies, i.e. more blur. Therefore, the
Laplace approximation suggests thatp(y|k) is the MAPx,k

score plus a term pulling toward kernels with more blur. Un-
fortunately, in the non Gaussian case the covariance matrix
isn’t diagonal and exact inversion is less trivial. Some ear-
lier blind deconvolution approaches [24, 19] can be viewed
as simplified forms of a blur favoring term. For example,
they bias towered blurry kernels by adding a term penaliz-
ing the high frequencies ofk or with an explicit prior on
the kernel. Another approach was exploit by Bronsteinet
al. [3]. They note that in the absence of noise and with in-
vertible kernelsp(k|y) can be exactly evaluated for sparse
priors as well. This reduces to optimizing the sparsity of the
image plus the log determinant of the kernel spectrum.

4. Evaluating blind deconvolution algorithms
In this section we qualitatively compare blind deconvo-

lution strategies on the same data. We start with a synthetic
1D example and in the second part turn to real 2D motion.

4.1. 1D evaluation
As a first test, we use a set of1000 signals of size10× 1

cropped from a natural image. These small 1D signals al-
low us to evaluate the marginalization integral in Eq. (7)
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Figure 5.log p(y|k) scores using various approximation strategies
on 1D image signals. Successful algorithms locate the minimum
score at the true kernel width, denoted by the dashed line.

exactly even for a sparse prior. The signals were convolved
with a 5-tap box filter (cyclic convolution was used) and
an i.i.d. Gaussian noise with standard deviation0.01 was
added. We explicitly search over the explanations of all box
filters of sizeℓ = 1, .., 7 taps (all filters normalized to 1).
The explicit search allows comparison of the score of dif-
ferent blind deconvolution strategies without folding in op-
timization errors. (In practice optimization errors do have
a large effect on the successes of blind deconvolution algo-
rithms.)

The exact− log p(y|k) score is minimized by the true
box widthℓ = 5.

We tested the zero sheet separation (e.g. [14]), an earlier
image processing approach with no probabilistic formula-
tion. This algorithm measures the Fourier magnitude ofy at
the zero frequencies of each box filterk. If the image was
indeed convolved with that filter, low Fourier content is ex-
pected. However, this approach considers the zero frequen-
cies alone ignoring all other information, and is known to
be noise sensitive. It is also limited to kernel families from
a simple parametric form and with a clear zeros structure.

Supporting the example in Sec. 2, a pure MAPx,k ap-
proach (p(y|k) ≈ p(xMAP , y|k)) favors no-blur (ℓ = 1).
Reweighting the derivative penalty around edges can im-
prove the situation, but the delta solution still provides a
noticeable local optimum.

The correct minimum is favored with a variational Bayes
approximation [4] and with the semi Laplace approxima-
tion of [3]. The independence approximation [16] is able to
overcome the delta solution, but does not localize the solu-
tion very accurately (minimum atℓ = 4 instead ofℓ = 5.)
Finally, the correct solution is identified even with the poor
image prior provided by a Gaussian model, demonstrating
that the choice of estimator (MAPx,k v.s. MAPk), is more
critical than the actual prior (Gaussian v.s. sparse).

Since claim 2 guaranties success only for large images,
we attempt to evaluate how large an image should be in
practice. Fig. 6 plots the uncertainty inp(k|y) for multi-
ple random samples ofN 10 × 1 columns. The probability
is tightly peaked at the right answer for as little asN = 20
columns. The search space in Fig. 6 is limited to the single
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Figure 6. The uncertainty in kernel estimation decreses with more
samples. For as little atN = 20 columns it is already tightly
peaked at the true answer.

(a) (b)

Figure 7. Ground truth data acquisition. (a) Calibration image.
(b) Smear of points at 4 corners, demonstrating that the spatially
uniform blur model is violated.

parameter family of box filters. In real motion deblurring
one searches over a larger family of kernels and a larger
uncertainty is expected.

4.2. 2D evaluation
To compare blind deconvolution algorithms we have col-

lected blurred data with ground truth. We capture a sharp
version a planar scene (Fig. 7(a)) by mounting the camera
on a tripod, as well as a few blurred shots. Using the sharp
reference we solve for a non-negative kernelk minimizing
‖k⊗x−y‖2. The scene in Fig. 7(a) includes high frequency
noise patterns which helps stabilizing the constraints onk.
The central area of the frame includes four real images used
as input to the various blind deconvolution algorithms.

We first observed that assuming a uniform blur over the
image is not realistic even for planar scenes. For exam-
ple Fig. 7(b) shows traces of points at4 corners of an im-
age captured by a hand-held camera, with a clear variation
between the corners. This suggests that an in-plane rota-
tion (rotation around the z-axis) is a significant component
of human hand shake. Yet, since a uniform assumption is
made by most algorithms, we need to evaluate them on data
which obeys their assumption. To capture images with spa-
tially invariant blur we placed the camera on a tripod, lock-
ing theZ-axis rotation handle of the tripod but loosening
theX andY handles. We calibrated the blur of8 such im-
ages and cropped4 255×255 windows from each, leading
to 32 test images displayed in Fig. 8 and available online4.

4www.wisdom.weizmann.ac.il/˜levina/papers/LevinEtalCVPR09Data.zip

Figure 8. Ground truth data:4 images and8 blur kernels, resulting
in 32 test images
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Figure 9. Evaluation results: Cumulative histogram of the decon-
volution error ratio across test examples.

We used an85mm lens and a0.3 seconds exposure. The
kernels’ support varied from10 to 25 pixels.

We can measure the SSD error between a deconvolved
output and the ground truth. However, wider kernels result
in larger deconvolution error even with the true kernel. To
normalize this effect, we measure the ratio between decon-
volution error with the estimated kernel and deconvolution



with the truth kernel. In Fig. 9 we plot the cumulative his-
togram of error ratios (e.g. binr = 3 counts the percentage
of test examples achieving error ratio below3). Empirically,
we noticed that error ratios above 2 are already visually im-
plausible. The dataset and all deconvolution results are
included at the end of this manuscript.

We have evaluated the algorithms of Ferguset al. [4] and
Shanet al. [21] (each using the authors’ implementation),
as well as MAPk estimation using a Gaussian prior (de-
scribed in the appendix), and a simplified MAPx,k approach
constraining

∑
ki = 1 (we used coordinate descent, iterat-

ing between holdingx constant and solving fork, and then
holdingk constant and solving forx using the sparse decon-
volution algorithm of [15]). The algorithms of [16, 10, 3]
were not tested because the first was designed for 1D mo-
tion only, and the others focus on smaller blur kernels.

We made our best attempt to adjust the parameters of
Shanet al. [21], but run all test images with equal parame-
ters. Ferguset al. [4] used Richardson-Lucy non blind de-
convolution in their code. Since this algorithm is a source
for ringing artifacts, we improved the results using the ker-
nel estimated by the authors’ code with the (non blind)
sparse deconvolution of [15]. Similarly, we used sparse de-
convolution with the kernel estimated by Shanet al.

The bars in Fig. 9 and the visual results in the appendix
suggest that Ferguset al.’s algorithm [4] significantly out-
performs all other alternatives. Many of the artifacts in the
results of [4] can be attributed to the Richardson-Lucy non
blind deconvolution artifacts, or to non uniform blur in their
test images. Our comparison also suggests that applying
sparse deconvolution using the kernels outputted by Shan
et al. [21] improves their results. As expected, the naive
MAPx,k approach outputs small kernels approaching the
delta solution.

5. Discussion
This paper analyzes the major building blocks of recent

blind deconvolution algorithms. We illustrate the limita-
tion of the simple MAPx,k approach, favoring the no-blur
(delta kernel) explanation. One class of solutions involves
explicit edge detection. A more principled strategy exploits
the dimensionality asymmetry, and estimates MAPk while
marginalizing overx. While the computational aspects in-
volved with this marginalization are more challenging, ex-
isting approximations are powerful.

We have collected motion blur data with ground truth
and quantitatively compared existing algorithms. Our com-
parison suggests that the variational Bayes approxima-
tion [4] significantly outperforms all existing alternatives.

The conclusions from our analysis are useful for direct-
ing future blind deconvolution research. In particular, we
note that modern natural image priors [20, 25] do not over-
come the MAPx,k limitation (and in our tests did not change
the observation in Sec. 2). While it is possible that blind
deconvolution can benefit from future research on natural
image statistics, this paper suggests that better estimators

for existing priors may have more impact on future blind
deconvolution algorithms. Additionally, we observed that
the popular spatially uniform blur assumption is usually un-
realistic. Thus, it seems that blur models which can relax
this assumption [22] have a high potential to improve blind
deconvolution results.
Acknowledgments: We thank the Israel Science Foun-
dation, the Royal Dutch/Shell Group, NGA NEGI-1582-
04-0004, MURI Grant N00014-06-1-0734, NSF CAREER
award 0447561. Fredo Durand acknowledges a Microsoft
Research New Faculty Fellowship and a Sloan Fellowship.

6. Appendix A: Blind deconvolution with a
Gaussian prior

To complete section 3.2.1 of the main paper, we provide
a detailed derivation of a MAPk estimation algorithm us-
ing a Gaussian prior. The simple analytic treatment of a
Gaussian prior is attractive both from a computational view-
point and from a research viewpoint, as it affords intuition.
While the algorithm is not as powerful as sparse deconvo-
lution algorithms, it approaches the solution using second
order statistics alone.

To derive the Gaussian algorithm, we rewrite the gener-
ative model explicitly for a Gaussian prior and, to simplify
notation, use the frequency domain.

p(Y|X;K): The spatial i.i.d. Gaussian observation noise
is invariant to the frequency basis change. Therefore

(Yω|Xω ; Kω) ∼ N(KωXω , η
2) (24)

whereη denotes the noise variance.

p(X): The prior onX uses a convolution and is diago-
nal in the frequency domain. IfGx, Gy denote the Fourier
transform of the derivative filtersgx, gy, the convolution and
Parseval’s theorems result in

∑
i |gx,i(x)|2 + |gy,i(x)|2 =∑

ω |Gx,ωXω|
2 + |Gy,ωXω|

2. ThereforeX follows a zero
mean Gaussian distribution with diagonal covariance:

X ∼ N(0, diag(σ2

ω)) σ
2

ω = β(‖Gx,ω‖
2 +‖Gy,ω‖

2)−1
. (25)

(the scaleβ can be fitted based on the derivative histogram
in a natural image). Note that since a derivative filter is zero
at the low frequencies and high at the higher frequencies,
this is very similar to the classical1/f2 power spectrum
law (and our algorithm produced very similar results with
an explicit1/f2 prior).

MAPx estimation:

X
MAP = arg max p(X, Y ; K) = arg max p(Y |X; K)p(X).

(26)



(a) Ground truth (b) Independent estimation (c)Smoothing PWS (d) Compact support constraint
Figure 10. Power spectrum estimation and the compact support constraint. Top: power spectrum, Bottom: kernel in primaldomain

Therefore, solving for the MAPx (using Eqs. (24,25)) is a
least square minimization:

XMAP
ω = argmin

1

η2
‖KωXω − Yω‖

2 +
1

σ2
ω

‖Xω‖
2(27)

XMAP
ω =

(
|Kω|

2 +
η2

σ2
ω

)−1

KT
ω Yω . (28)

Eq. (28) is essentially the famous Wiener filter [7]. The
prior term in Eq. (28) pulls the estimation toward zero,
pulling stronger at high frequencies where the expected sig-
nal magnitude is small (σω → 0) and noise contribution
is higher. When the filter valueKω = 0, the signal value
cannot be recovered and the prior leads the estimation to
Xω = 0.

p(Y): One can also integrateX and expressp(Y |K) an-
alytically. This is also a diagonal zero mean Gaussian with

Y ∼ N(0, diag(φ2

ω)), φ
2

ω = σ
2

ω|Kω|
2 + η

2
. (29)

Given Eqs. (24-29), we can return to blind deconvolu-
tion. If we were to estimate every frequencyKω indepen-
dently, we could differentiate Eq. (29) and conclude it is
maximized whenφ2

ω = |Yω|
2, which results in:

|Kω|
2 = max(0,

|Yω|
2 − η2

σ2
ω

). (30)

Eq. (30) essentially states that the optimalK leads to an
X whose power spectrum equals the expected power spec-
trumσ2. However, for frequenciesω in which the observed
signal value is below the noise variance (i.e.|Yω|

2 < η2),
the estimator acknowledges thatKω cannot be recovered
and outputs 0. Below we make usage of this point to de-
rive a coarse-to-fine algorithm. In Fig. 10(b) we show the

filter estimated using Eq. (30). The estimation nicely resem-
bles the overall shape and power spectrum of the true filter
(Fig. 10(a)) but is far too noisy to be acceptable. This noise
is not surprising as every component ofK was estimated
from a single measurement.

The signal processing literature [12] addresses the prob-
lem of power spectrum estimation (also known as the
periodigram), suggesting that the power spectrum of the
observed signalY should be smoothed before applying
Eq. (30). While such smoothing operation increases the
bias of the estimation, it significantly reduces its variance.
Fig. 10(c) demonstrates the estimation from a smoothed
power spectrum. One can note that as smoothing reduces
the fluctuation in the frequency domain, the support of the
filter in the primal domain becomes more compact. This
leads to another important property of the problem that was
ignored so far: while Eq. (30) estimate every Fourier coef-
ficient independently, the number of free parameters to esti-
mate inK is much smaller than the image size, since a typ-
ical filter is assumed to have only a small compact support.
Fig. 10(d) presents the estimated kernel, once a compact
support was enforced (according to the algorithm described
below). This constraint significantly increases the stability
of the estimation.

6.1. Phase estimation
While Eq. (30) defines the power spectrum ofK, it

leaves us with a complete ambiguity regarding its phase.
In fact, for every solutionK, X such thatYω = KωXω and
for any phase vectorθω, the pairK̃ω = Kωeiθω , X̃ω =
Xωe−iθω is an equally valid solution, satisfyingYω =

K̃ωX̃ω. The prior onX does not help resolving this am-
biguity – as the Gaussian prior in Eq. (25) depends only
on the power spectrum,p(X̃) = p(X). However, while ev-
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Figure 11. Coarse to fine kernel estimation. (a) Ground truth. (b-f) estimated kernels with decreasingη values

(a) Deconvolution with correct filter (b) Deconvolution with mirrored filter

Figure 12. Mirroring ambiguity with second order statistics

ery phase can maintain the convolution model, most random
phase choices destroy the finite support ofK. The question
of estimating the signal phase given the power spectrum has
a long history in signal processing. [8] states that for most
of kernels, a finite support constraint uniquely defines the
signal phase, up to (1) shift and (2) flipping (mirroring).
While a shift ambiguity in deconvolution is reasonable and
does not effect the visual quality of the deconvolved image,
deconvolving the image with the mirrored filter leads to no-
ticeable artifacts, as illustrated in Fig. 12. For the imple-
mentation in this paper we escape this ambiguity by notic-
ing that while the original imagex (in the spatial domain) be
non negative, deconvolvingy with the mirrored filter often
leads to negativex values. Yet, this ambiguity highlights
one of the weaknesses of second order statistics. While
the second order statistics of the images in Fig. 12(a,b) are
equal, it is clear that every simple sparse measure will fa-
vor Fig. 12(a). Nevertheless, we show that the second order
statistics plus finite support constraint can get us surpris-
ingly close to the true solution.

While a bounded support constraint removes most phase
ambiguity, recovering the phase algorithmically is not a
trivial question. A popular gradient based optimization
scheme is the Gerchberg-Saxton [6, 5] algorithm. This algo-
rithm initializes the kernel phase randomly, and then alter-
nates between primal-frequency transformations, enforcing
the finite support constraint in the primal domain and the
required power spectrum in the frequency domain.

6.2. EM optimization
Applying the Gerchberg-Saxton algorithm [6, 5] to the

independent power spectrum estimated from Eq. (29) pro-
vides a reasonable initialization for our algorithm. We then

proceed with an EM algorithm. The E-step computed the
expected mean and variance for the deblurred imageX . The
M-step uses the second order statistics ofX to solve for
k, enforcing two constraints: the finite support constraint
discussed above, plus the simple requirement that the blur
kernelk (in the spatial domain) is non negative.

E-step: Applying Eq. (28):

< Xω > =

(
|Kω|

2 +
η2

σ2
ω

)−1

KT
ω Yω (31)

< XT
ω Xω > =

(
|Kω|

2 +
η2

σ2
ω

)
+ < Xω >T < Xω >(32)

M-step Transform< X > and< XX > to the spatial
domain and solve fork minimizing< k ⊗ x − y > subject
to finite support and non negativity.

To express this minimization, suppose thatk is anl × l
filter. We denote byxwi

the l × l window around thei’th
pixel, such thatyi =

∑
j∈wi

kjxj . Let A be anm × l2 ma-
trix whose rows are the windowsxwi

, andm is the number
of windows included in the image. Ifx, y are known, the
best filterk is the one minimizing

‖Ak(:) − y(:)‖2 = k(:)T
A

T
Ak(:) − 2y(:)T

Ak(:) + y(:)T
y(:)

s.t. k ≥ 0.

(33)

Note that the number of unknowns in this system is equal to
the kernel sizel2, which is much lower than the number of
pixels in the image. In practice we do not precisely know
x, but from theE-stp we have access to< AT A > and
< A >.

This is a quadratic minimization subject to linear con-
straints, and thus a convex problem that can be solved using
quadratic programming.

6.3. Coarse-to-fine
Ferguset al. [4] estimated the kernel in a coarse-to-fine

scheme. In our case, Eq. (29) provides an easy way to im-
plement this. We initialize the optimization with a high
noise varianceη. As a result all frequencies with observa-
tion below the noise variance (usually the high frequencies)
are set to zero, and we mostly optimize the low frequencies
of the kernel. Once the low frequency optimization starts to



converge we gradually reduce the noise varianceη, allow-
ing more and more bands of frequencies to be nailed down.
The kernels estimated with varyingη values are illustrated
in Fig. 11.

7. Appendix B: Shanet al.’s algorithm
We discuss the blind deconvolution algorithm of [21] and

try to understand how it is working. This algorithm attempts
to optimize a semi-MAPx,k score, seeking a solutionk, x
that minimizes:

λ‖x − y‖2 +
X

i

wi|gx,i(x)|α + wi|gy,i(x)|α. (34)

There are two main components that distinguish this algo-
rithm from a naive MAPx,k optimization: edge reweighting
and iterative update of the likelihood weight.

Edge rewighting: One main component that prevents
Eq. (34) from outputting the delta solution is the usage of
non uniform weightswi on the gradient penalty. The au-
thors explicitly detect low contrast image regions and in-
crease their smoothness penalty.

To test this idea, we have implemented a simplified coor-
dinate descent variant of the algorithm. We attempt to mini-
mize the cost in Eq. (34), alternating between minimization
with respect tox and minimization with respect tok (hold-
ing the other constant). We useα = 0.8 for the sparse prior,
and solve forx using iterative reweighted least squares, as
in [15]. Gradients are reweighted using an edge detector.
We emphasize that the goal of our implementation is to test
the basic idea of a MAPx,k approach with edge reweight-
ing, and not to reproduce the algorithm of [21] exactly. This
algorithm involves a sophisticated number of additional de-
tails which affect the final output. Our observation is that
while edge reweighting helps in avoiding the delta solution,
edge rewighting alone is not always sufficient.

Iterative likelihood update: Another important compo-
nent in [21] is to start the optimization with a low likelihood
weightλ, and gradually increase it during subsequent iter-
ations. To understand this, Fig. 13 shows an image decon-
volved with two kernels - the true kernel and a delta kernel.
We have performed the deconvolution with a set ofλ values
and compared the sum of gradients in the deconvolved im-
age. Examining Fig. 13 we note that for lowλ values, there
is no need to explain all low contrast texture iny. These
low contrast details are interpreted as noise, and the result-
ing latent imagex is piecewise constant with step edges.
Given the piecewise constant structure, the derivatives re-
sponse is low. Therefore, for lowλ values the true blur is
indeed favored over the delta kernel. However, the situation
is usually inverted when the likelihood weight is increased
to a realistic level, and a delta kernel wins.

The fact that the true kernel is favored when the like-
lihood weight is low can help steer the algorithm toward

λ = 0.12 λ = 0.13 λ = 0.15

P

|gi(x)|0.8 = 543
P

|gi(x)|0.8 = 418
P

|gi(x)|0.8 = 397

P

|gi(x)|0.8 = 539
P

|gi(x)|0.8 = 415
P

|gi(x)|0.8 = 398

Figure 13. Non blind deconvolution using a delta kernel (top) and
the true kernel (bottom), with increasing likelihood (datafitting
term) weight. The estimated image is piecewise constant with low
likelihood weight, while fine details are added as the weightin-
creases. The true kernel achieves a lower score with low weight,
but realistic likelihood weight is favoring the delta solution.

the desired solution. As suggested by [21], we have initial-
ized our coordinate descent algorithm with a lowλ value
and gradually increased it during iterations. Sinceλ is ini-
tially low the algorithm is steered toward the true kernel and
whenλ is increased, the algorithm is already trapped in a lo-
cal minimum and does not move significantly away from it.
Some iterations from our coordinate descent implementa-
tion are available in Fig. 14. To evaluate this, Fig. 14(f) il-
lustrates the likelihood changes during optimization. While
λ is updated during optimization, at the end we traced back
the kernels estimated in previous iterations, and evaluated
their score using the final realistic (high)λ value. Fig. 14(f)
plots the scores with this finalλ. The interesting observa-
tion is that the score of the solution is increasing during
optimization and the score of the first iteration (a delta ker-
nel) is actually better than the final one. That is, by chang-
ing likelihood weight during optimization, the algorithm is
steered toward alocal minimumof the cost in Eq. (34), but
this local minimum often happens to be the desired one.

As another way to evaluate this, we blurred the image in
Figs.13,14 with a box kernel of width13 pixels. We have
computed the MAPx,k score for this image, varying two pa-
rameters: the kernel (running over box filters of size1 to
15 pixels) and the likelihood weightλ. The 2D surfaces of
scores is visualized in Fig. 15. Two ridges are observed,
and one can also notice that while the minima with the delta
solution is much lower, the ridge from the lowλ values is
leading toward the true kernel local minima, and not toward
the delta solution.
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Figure 14. coordinate descent Kernel optimization with an edge reweighted MAPx,k score. Likelihood weight is increased during opti-
mization.

Figure 15. -MAPx,k scores as a function of likelihood weightλ
and kernel width (dark values favored).
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[24] E. Thiébaut and J.-M. Conan. Strict a priori constraints for
maximum-likelihood blind deconvolution.J. Opt. Soc. Am.
A, 12(3):485–492, 1995.

[25] Y. Weiss and W. T. Freeman. What makes a good model of
natural images? InCVPR, 2007.



input Ground truth
SSD err=32.2, err ratio=1

Deconvolution with ground truth kernel

SSD err=38.4, err ratio=1.19
Ferguset al.

SSD err=83.5, err ratio=2.59
Shanet al.

SSD err=69.2, err ratio=2.14
Shanet al. kernel, sparse deconv

SSD err=188.5, err ratio=5.84
MAPx,k, edges reweighting

SSD err=211.9, err ratio=6.57
MAPx,k, no edges reweighting

SSD err=162.5, err ratio=5.04
Gaussian

Figure 16. Comparing deconvolution algorithms, im 1, kernel 1



input Ground truth
SSD err=37.0, err ratio=1

Deconvolution with ground truth kernel

SSD err=39.3, err ratio=1.06
Ferguset al.

SSD err=72.0, err ratio=1.94
Shanet al.

SSD err=53.6, err ratio=1.44
Shanet al. kernel, sparse deconv

SSD err=166.4, err ratio=4.49
MAPx,k, edges reweighting

SSD err=264.7, err ratio=7.14
MAPx,k, no edges reweighting

SSD err=168.5, err ratio=4.54
Gaussian

Figure 17. Comparing deconvolution algorithms, im 1, kernel 2



input Ground truth
SSD err=25.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=28.7, err ratio=1.13
Ferguset al.

SSD err=41.6, err ratio=1.64
Shanet al.

SSD err=38.7, err ratio=1.52
Shanet al. kernel, sparse deconv

SSD err=82.7, err ratio=3.26
MAPx,k, edges reweighting

SSD err=122.1, err ratio=4.81
MAPx,k, no edges reweighting

SSD err=39.6, err ratio=1.56
Gaussian

Figure 18. Comparing deconvolution algorithms, im 1, kernel 3



input Ground truth
SSD err=59.9, err ratio=1

Deconvolution with ground truth kernel

SSD err=135.5, err ratio=2.26
Ferguset al.

SSD err=604.5, err ratio=10.08
Shanet al.

SSD err=583.2, err ratio=9.72
Shanet al. kernel, sparse deconv

SSD err=497.6, err ratio=8.29
MAPx,k, edges reweighting

SSD err=645.4, err ratio=10.76
MAPx,k, no edges reweighting

SSD err=315.7, err ratio=5.26
Gaussian

Figure 19. Comparing deconvolution algorithms, im 1, kernel 4



input Ground truth
SSD err=20.7, err ratio=1

Deconvolution with ground truth kernel

SSD err=27.1, err ratio=1.30
Ferguset al.

SSD err=45.8, err ratio=2.21
Shanet al.

SSD err=40.6, err ratio=1.96
Shanet al. kernel, sparse deconv

SSD err=64.3, err ratio=3.10
MAPx,k, edges reweighting

SSD err=110.5, err ratio=5.33
MAPx,k, no edges reweighting

SSD err=53.78, err ratio=2.59
Gaussian

Figure 20. Comparing deconvolution algorithms, im 1, kernel 5



input Ground truth
SSD err=15.9, err ratio=1

Deconvolution with ground truth kernel

SSD err=44.45, err ratio=2.79
Ferguset al.

SSD err=104.8, err ratio=6.58
Shanet al.

SSD err=94.0, err ratio=5.90
Shanet al. kernel, sparse deconv

SSD err=59.4, err ratio=3.73
MAPx,k, edges reweighting

SSD err=202.4, err ratio=12.71
MAPx,k, no edges reweighting

SSD err=172.9, err ratio=10.8
Gaussian

Figure 21. Comparing deconvolution algorithms, im 1, kernel 6



input Ground truth
SSD err=24.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=212.3, err ratio=8.73
Ferguset al.

SSD err=414.1, err ratio=17.04
Shanet al.

SSD err=401.0, err ratio=16.5
Shanet al. kernel, sparse deconv

SSD err=103, err ratio=4.2
MAPx,k, edges reweighting

SSD err=412, err ratio=16.9
MAPx,k, no edges reweighting

SSD err=376, err ratio=15.5
Gaussian

Figure 22. Comparing deconvolution algorithms, im 1, kernel 7



input Ground truth
SSD err=30, err ratio=1

Deconvolution with ground truth kernel

SSD err=53, err ratio=1.7
Ferguset al.

SSD err=458, err ratio=15.2
Shanet al.

SSD err=450, err ratio=15.0
Shanet al. kernel, sparse deconv

SSD err=327, err ratio=10.8
MAPx,k, edges reweighting

SSD err=458, err ratio=15.2
MAPx,k, no edges reweighting

SSD err=559, err ratio=18.6
Gaussian

Figure 23. Comparing deconvolution algorithms, im 1, kernel 8



input Ground truth
SSD err=43, err ratio=1

Deconvolution with ground truth kernel

SSD err=55, err ratio=1.2
Ferguset al.

SSD err=162, err ratio=3.6
Shanet al.

SSD err=150, err ratio=3.4
Shanet al. kernel, sparse deconv

SSD err=248, err ratio=5.6
MAPx,k, edges reweighting

SSD err=272, err ratio=6.1
MAPx,k, no edges reweighting

SSD err=79, err ratio=1.8
Gaussian

Figure 24. Comparing deconvolution algorithms, im 2, kernel 1



input Ground truth
SSD err=50.6, err ratio=1

Deconvolution with ground truth kernel

SSD err=64.3, err ratio=1.2
Ferguset al.

SSD err=191, err ratio=3.7
Shanet al.

SSD err=175, err ratio=3.4
Shanet al. kernel, sparse deconv

SSD err=343, err ratio=6.7
MAPx,k, edges reweighting

SSD err=348, err ratio=6.8
MAPx,k, no edges reweighting

SSD err=164, err ratio=3.2
Gaussian

Figure 25. Comparing deconvolution algorithms, im 2, kernel 2



input Ground truth
SSD err=40, err ratio=1

Deconvolution with ground truth kernel

SSD err=52.7, err ratio=1.3
Ferguset al.

SSD err=88, err ratio=2.1
Shanet al.

SSD err=84, err ratio=2.0
Shanet al. kernel, sparse deconv

SSD err=169, err ratio=4.1
MAPx,k, edges reweighting

SSD err=185, err ratio=4.5
MAPx,k, no edges reweighting

SSD err=129, err ratio=3.1
Gaussian

Figure 26. Comparing deconvolution algorithms, im 2, kernel 3



input Ground truth
SSD err=79, err ratio=1

Deconvolution with ground truth kernel

SSD err=123, err ratio=1.5
Ferguset al.

SSD err=195, err ratio=2.4
Shanet al.

SSD err=182, err ratio=2.3
Shanet al. kernel, sparse deconv

SSD err=481, err ratio=6.1
MAPx,k, edges reweighting

SSD err=574, err ratio=7.26
MAPx,k, no edges reweighting

SSD err=189, err ratio=2.4
Gaussian

Figure 27. Comparing deconvolution algorithms, im 2, kernel 4



input Ground truth
SSD err=26, err ratio=1

Deconvolution with ground truth kernel

SSD err=38, err ratio=1.4
Ferguset al.

SSD err=106, err ratio=3.9
Shanet al.

SSD err=100, err ratio=3.7
Shanet al. kernel, sparse deconv

SSD err=141, err ratio=5.2
MAPx,k, edges reweighting

SSD err=161, err ratio=6
MAPx,k, no edges reweighting

SSD err=89, err ratio=3.3
Gaussian

Figure 28. Comparing deconvolution algorithms, im 2, kernel 5



input Ground truth
SSD err=20, err ratio=1

Deconvolution with ground truth kernel

SSD err=84, err ratio=4.2
Ferguset al.

SSD err=198, err ratio=9.9
Shanet al.

SSD err=186, err ratio=9.3
Shanet al. kernel, sparse deconv

SSD err=227, err ratio=11.3
MAPx,k, edges reweighting

SSD err=260, err ratio=13
MAPx,k, no edges reweighting

SSD err=84, err ratio=4.2
Gaussian

Figure 29. Comparing deconvolution algorithms, im 2, kernel 6



input Ground truth
SSD err=39, err ratio=1

Deconvolution with ground truth kernel

SSD err=153, err ratio=3.8
Ferguset al.

SSD err=322, err ratio=8.2
Shanet al.

SSD err=315, err ratio=8.0
Shanet al. kernel, sparse deconv

SSD err=266, err ratio=6.7
MAPx,k, edges reweighting

SSD err=551, err ratio=14
MAPx,k, no edges reweighting

SSD err=296, err ratio=7.5
Gaussian

Figure 30. Comparing deconvolution algorithms, im 2, kernel 7



input Ground truth
SSD err=43, err ratio=1

Deconvolution with ground truth kernel

SSD err=92, err ratio=2.1
Ferguset al.

SSD err=362, err ratio=8.2
Shanet al.

SSD err=513, err ratio=11.7
Shanet al. kernel, sparse deconv

SSD err=421, err ratio=9.6
MAPx,k, edges reweighting

SSD err=522, err ratio=11.9
MAPx,k, no edges reweighting

SSD err=161, err ratio=3.6
Gaussian

Figure 31. Comparing deconvolution algorithms, im 2, kernel 8



input Ground truth
SSD err=31.2, err ratio=1

Deconvolution with ground truth kernel

SSD err=37.4, err ratio=1.2
Fergus et al.

SSD err=99.9, err ratio=3.2
Shan et al.

SSD err=83.5, err ratio=2.6
Shan et al. kernel, sparse deconv

SSD err=101.4, err ratio=3.2
MAPx,k, edges reweighting

SSD err=211.2, err ratio=6.7
MAPx,k , no edges reweighting

SSD err=110.5, err ratio=3.5
Gaussian

Figure 1. Comparing deconvolution algorithms, im 3, kernel 1



input Ground truth
SSD err=35.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=39.1, err ratio=1.1
Fergus et al.

SSD err=91.9, err ratio=2.6
Shan et al.

SSD err=64.6, err ratio=1.8
Shan et al. kernel, sparse deconv

SSD err=254.2, err ratio=7.1
MAPx,k, edges reweighting

SSD err=287.9, err ratio=8.1
MAPx,k , no edges reweighting

SSD err=223.9, err ratio=6.3
Gaussian

Figure 2. Comparing deconvolution algorithms, im 3, kernel 2



input Ground truth
SSD err=18.8, err ratio=1

Deconvolution with ground truth kernel

SSD err=21.5, err ratio=1.1
Fergus et al.

SSD err=34.7, err ratio=1.8
Shan et al.

SSD err=31.3, err ratio=1.6
Shan et al. kernel, sparse deconv

SSD err=95.4, err ratio=5.1
MAPx,k, edges reweighting

SSD err=115.0, err ratio=6.1
MAPx,k , no edges reweighting

SSD err=39.8, err ratio=2.1
Gaussian

Figure 3. Comparing deconvolution algorithms, im 3, kernel 3



input Ground truth
SSD err=45.2, err ratio=1

Deconvolution with ground truth kernel

SSD err=87.5, err ratio=1.9
Fergus et al.

SSD err=601.4, err ratio=13.3
Shan et al.

SSD err=580.6, err ratio=12.8
Shan et al. kernel, sparse deconv

SSD err=596.0, err ratio=13.2
MAPx,k, edges reweighting

SSD err=589.9, err ratio=13.0
MAPx,k , no edges reweighting

SSD err=204.6, err ratio=4.5
Gaussian

Figure 4. Comparing deconvolution algorithms, im 3, kernel 4



input Ground truth
SSD err=15.2, err ratio=1

Deconvolution with ground truth kernel

SSD err=22.0, err ratio=1.4
Fergus et al.

SSD err=39.9, err ratio=2.6
Shan et al.

SSD err=33.7, err ratio=2.2
Shan et al. kernel, sparse deconv

SSD err=84.09, err ratio=5.5
MAPx,k, edges reweighting

SSD err=113.3, err ratio=7.4
MAPx,k , no edges reweighting

SSD err=50.6, err ratio=3.3
Gaussian

Figure 5. Comparing deconvolution algorithms, im 3, kernel 5



input Ground truth
SSD err=10.6, err ratio=1

Deconvolution with ground truth kernel

SSD err=33.6, err ratio=3.1
Fergus et al.

SSD err=84.9, err ratio=7.9
Shan et al.

SSD err=71.2, err ratio=6.6
Shan et al. kernel, sparse deconv

SSD err=156.1, err ratio=14.6
MAPx,k, edges reweighting

SSD err=209.6, err ratio=19.6
MAPx,k , no edges reweighting

SSD err=80, err ratio=7.5
Gaussian

Figure 6. Comparing deconvolution algorithms, im 3, kernel 6



input Ground truth
SSD err=16.9, err ratio=1

Deconvolution with ground truth kernel

SSD err=139.8, err ratio=8.2
Fergus et al.

SSD err=326.5, err ratio=19.2
Shan et al.

SSD err=315.3, err ratio=18.6
Shan et al. kernel, sparse deconv

SSD err=237.5, err ratio=14.0
MAPx,k, edges reweighting

SSD err=394.8, err ratio=23.3
MAPx,k , no edges reweighting

SSD err=175.0, err ratio=10.3
Gaussian

Figure 7. Comparing deconvolution algorithms, im 3, kernel 7



input Ground truth
SSD err=29.9, err ratio=1

Deconvolution with ground truth kernel

SSD err=57.6, err ratio=1.9
Fergus et al.

SSD err=462.8, err ratio=15.4
Shan et al.

SSD err=515.4, err ratio=17.2
Shan et al. kernel, sparse deconv

SSD err=430.3, err ratio=14.4
MAPx,k, edges reweighting

SSD err=490.5, err ratio=16.4
MAPx,k , no edges reweighting

SSD err=197.1, err ratio=6.5
Gaussian

Figure 8. Comparing deconvolution algorithms, im 3, kernel 8



input Ground truth
SSD err=27.1, err ratio=1

Deconvolution with ground truth kernel

SSD err=41.1, err ratio=1.5
Fergus et al.

SSD err=120.1, err ratio=4.4
Shan et al.

SSD err=99.1, err ratio=3.6
Shan et al. kernel, sparse deconv

SSD err=116.7, err ratio=4.3
MAPx,k, edges reweighting

SSD err=173.3, err ratio=6.3
MAPx,k , no edges reweighting

SSD err=113.7, err ratio=4.1
Gaussian

Figure 9. Comparing deconvolution algorithms, im 4, kernel 1



input Ground truth
SSD err=41.5, err ratio=1

Deconvolution with ground truth kernel

SSD err=92.8, err ratio=2.2
Fergus et al.

SSD err=204.3, err ratio=4.9
Shan et al.

SSD err=180.8, err ratio=4.3
Shan et al. kernel, sparse deconv

SSD err=240.2, err ratio=5.7
MAPx,k, edges reweighting

SSD err=244.1, err ratio=5.8
MAPx,k , no edges reweighting

SSD err=120.7, err ratio=2.9
Gaussian

Figure 10. Comparing deconvolution algorithms, im 4, kernel 2



input Ground truth
SSD err=14.5, err ratio=1

Deconvolution with ground truth kernel

SSD err=18.1, err ratio=1.2
Fergus et al.

SSD err=40.8, err ratio=2.8
Shan et al.

SSD err=33.6, err ratio=2.3
Shan et al. kernel, sparse deconv

SSD err=65.9, err ratio=4.5
MAPx,k, edges reweighting

SSD err=89.3, err ratio=6.1
MAPx,k , no edges reweighting

SSD err=68.2, err ratio=4.6
Gaussian

Figure 11. Comparing deconvolution algorithms, im 4, kernel 3



input Ground truth
SSD err=42.0, err ratio=1

Deconvolution with ground truth kernel

SSD err=13,251, err ratio=316.8
Fergus et al.

SSD err=457, err ratio=10.9
Shan et al.

SSD err=430, err ratio=10.3
Shan et al. kernel, sparse deconv

SSD err=425, err ratio=10.1
MAPx,k, edges reweighting

SSD err=806, err ratio=19.3
MAPx,k , no edges reweighting

SSD err=124, err ratio=2.9
Gaussian

Figure 12. Comparing deconvolution algorithms, im 4, kernel 4



input Ground truth
SSD err=15.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=20.0, err ratio=1.3
Fergus et al.

SSD err=44.5, err ratio=2.9
Shan et al.

SSD err=35.8, err ratio=2.3
Shan et al. kernel, sparse deconv

SSD err=55.1, err ratio=3.6
MAPx,k, edges reweighting

SSD err=81.5, err ratio=5.3
MAPx,k , no edges reweighting

SSD err=40.9, err ratio=2.7
Gaussian

Figure 13. Comparing deconvolution algorithms, im 8, kernel 5



input Ground truth
SSD err=18.6, err ratio=1

Deconvolution with ground truth kernel

SSD err=46.7, err ratio=2.5
Fergus et al.

SSD err=138.9, err ratio=7.4
Shan et al.

SSD err=121.4, err ratio=6.5
Shan et al. kernel, sparse deconv

SSD err=132.8, err ratio=7.1
MAPx,k, edges reweighting

SSD err=176.1, err ratio=9.4
MAPx,k , no edges reweighting

SSD err=89.5, err ratio=4.8
Gaussian

Figure 14. Comparing deconvolution algorithms, im 4, kernel 6



input Ground truth
SSD err=16.3, err ratio=1

Deconvolution with ground truth kernel

SSD err=504.3, err ratio=30.9
Fergus et al.

SSD err=333.6, err ratio=20.4
Shan et al.

SSD err=318.8, err ratio=19.5
Shan et al. kernel, sparse deconv

SSD err=288.2, err ratio=17.6
MAPx,k, edges reweighting

SSD err=342.9, err ratio=21.0
MAPx,k , no edges reweighting

SSD err=301.6, err ratio=18.5
Gaussian

Figure 15. Comparing deconvolution algorithms, im 4, kernel 7



input Ground truth
SSD err=27.6, err ratio=1

Deconvolution with ground truth kernel

SSD err=786.5, err ratio=28.4
Fergus et al.

SSD err=392.3, err ratio=14.1
Shan et al.

SSD err=377.9, err ratio=13.6
Shan et al. kernel, sparse deconv

SSD err=345.7, err ratio=12.5
MAPx,k, edges reweighting

SSD err=393.1, err ratio=14.2
MAPx,k , no edges reweighting

SSD err=524.5, err ratio=18.9
Gaussian

Figure 16. Comparing deconvolution algorithms, im 4, kernel 8




