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Abstract

Certain simple images are known to trigger a percept of trans-
parency: the input image I is perceived as the sum of two images
I(z,y) = Li(z,y) + Ly(z,y). This percept is puzzling. First, why
do we choose the “more complicated” description with two images
rather than the “simpler” explanation I(x,y) = I1(z,y) +0 ? Sec-
ond, given the infinite number of ways to express I as a sum of two
images, how do we compute the “best” decomposition ?

Here we suggest that transparency is the rational percept of a sys-
tem that is adapted to the statistics of natural scenes. We present
a probabilistic model of images based on the qualitative statistics
of derivative filters and “corner detectors” in natural scenes and
use this model to find the most probable decomposition of a novel
image. The optimization is performed using loopy belief propa-
gation. We show that our model computes perceptually “correct”
decompositions on synthetic images and discuss its application to
real images.

1 Introduction

Figure la shows a simple image that evokes the percept of transparency. The
image is typically perceived as a superposition of two layers: either a light square
with a dark semitransparent square in front of it or a dark square with a light
semitransparent square in front of it.

Mathematically, our visual system is taking a single image I(z,y) and representing
as the sum of two images:
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When phrased this way, the decomposition is surprising. There are obviously an
infinite number of solutions to equation 1, how does our visual system choose one?
Why doesn’t our visual system prefer the “simplest” explanation I(z,y) = I (z,y)+
07
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Figure 1: a. A simple image that evokes the percept of transparency. b. A simple
image that does not evoke the percept of transparency.

Figure 1b shows a similar image that does not evoke the percept of transparency.
Here again there are an infinite number of solutions to equation 1 but our visual
system prefers the single layer solution.

Studies of the conditions for the percept of transparency go back to the very first re-
search on visual perception (see [1] and references within). Research of this type has
made great progress in understanding the types of junctions and their effects (e.g.
X junctions of a certain type trigger transparency, T junctions do not). However,
it is not clear how to apply these rules to an arbitrary image.

In this paper we take a simple Bayesian approach. While equation 1 has an infinite
number of possible solutions, if we have prior probabilities P(I1(z,y)), P(I2(z,y))
then some of these solutions will be more probable than others. We use the statistics
of natural images to define simple priors and finally use loopy belief propagation
to find the most probable decomposition. We show that while the model knows
nothing about “T junctions” or “X junctions”, it can generate perceptually correct
decompositions from a single image.

2 Statistics of natural images

A remarkably robust property of natural images that has received much attention
lately is the fact that when derivative filters are applied to natural images, the filter
outputs tend to be sparse [5, 7]. Figure 2 illustrates this fact: the histogram of the
horizontal derivative filter is peaked at zero and fall off much faster than a Gaussian.
Similar histograms are observed for vertical derivative filters and for the gradient
magnitude: |VI|.

There are many ways to describe the non Gaussian nature of this distribution
(e.g. high kurtosis, heavy tails). Figure 2b illustrates the observation made by
Mallat [4] and Simoncelli [8]: that the distribution is similar to an exponential
density with exponent less than 1. We show the log probability for densities of the
form p(z) oc e*". We assume z € [0,100] and plot the log probabilities so that
they agree on p(0),p(100). There is a qualitative difference between distributions
for which @ > 1 (when the log probability is convex) and those for which a < 1
(when it becomes concave). As figure 2d shows, the natural statistics for derivative
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Figure 2: a. A natural image. ¢ Histogram of filter outputs. e Histogram of corner
detector outputs. d,e log histograms.

filters has the qualitative nature of a distribution e=*" with a < 1.

In [9] the sparsity of derivative filters was used to decompose an image sequence as
a sum of two image sequences. Will this prior be sufficient for a single frame ? Note
that decomposing the image in figure 1a into two layers does not change the output
of derivative filters: exactly the same derivatives exist in the single layer solution
as in the two layer solution. Thus we cannot appeal to the marginal histogram of
derivative filters to explain the percept of transparency in this image.

There are two ways to go beyond marginal histograms of derivative filters. We
can either look at joint statistics of derivative filters at different locations or ori-
entations [6] or look at marginal statistics of more complicated feature detectors

(e.g. [11]).

We looked at the marginal statistics of a “corner detector”. The output of the
“corner detector” at a given location xg,y is defined as:

ctan,0) = det(Swie) (g, 5, D))

where w(z, y) is a small Gaussian window around zo, yo and I;, I, are the derivatives
of the image.

Figures 2e,f show the histogram of this corner operator on a typical natural image.
Again, note that it has the qualitative statistic of a distribution e=* for a < 1.

To get a more quantitative description of the statistics we used maximum likelihood
to fit a distribution of the form P(z) = £e %*" to gradient magnitudes and corner
detector histograms in a number of images. We found that the histograms shown




in figure 2 are typical: for both gradients and corner detectors the exponent was
less than 1 and the exponent for the corner detector was smaller than that of the
gradients. Typical exponents were 0.7 for the derivative filter and 0.25 for the corner
detector. The scaling parameter a of the corner detector was typically larger than
that of the gradient magnitude.

3 Simple prior predicts transparency

Motivated by the qualitative statistics observed in natural images we now define a
probability distribution over images. We define the log probability of an image by
means of a probability over its gradients:

log P(I,, I,) = —log Z = Y (|VI(z,y)|* + ne(z,y)?) (3)
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with a = 0.7, 8 = 0.25. The parameter 7 was determined by the ratio of the scaling
parameters in the corner and gradient distributions.

Given a candidate decomposition of an image I into I1 and I = I — I; we define
the log probability of the decomposition as the sum of the log probabilities of the
gradients of I; and I». Of course this is only an approximation: we are ignoring
dependencies between the gradients across space and orientation. Although this is
a weak prior, one can ask: is this enough to predict transparency? That is, is the
most probable interpretation of figure 1a one with two layers and the most probable
decomposition of figure 1b one with a single layer?

Answering this question requires finding the global maximum of equation 3. To
gain some intuition we calculated the log probability of a one dimensional family
of solutions. We defined s(x,y) the image of a single white square in the same
location as the bottom right square in figure la,b. We considered decompositions
of the form I; = vs(z,y),Is = I — I; and evaluated the log probability for values of
7 between —1 and 2.

Figure 3a shows the result for figure la. The most probable decomposition is the
one that agrees with the percept: v = 1 one layer for the white square and another
for the gray square. Figure 3b shows the result for figure 1b. The most probable
decomposition again agrees with the percept: v = 0 so that one layer is zero and
the second contains the full image.

3.1 The importance of being non Gaussian

Equation 3 can be verbally described as preferring decompositions where the total
edge and corner detector magnitudes are minimal. Would any cost function that
has this preference give the same result?

Figure 3c shows the result with a = 8 = 2 for the transparency figure (figure 1a).
This would be the optimal interpretation if the marginal histograms of edge and
corner detectors were Gaussian. Now the optimal interpretation indeed contains
two layers but they are not the ones that humans perceive. Thus the non Gaussian
nature of the histograms is crucial for getting the transparency percept. Similar
“non perceptual” decompositions are obtained with other values of a, 5 > 1.

We can get some intuition for the importance of having exponents smaller than
1 from the following observation which considers the analog of the transparency
problem with scalars. We wish to solve the equation a + b = 1 and we have a prior
over positive scalars of the form P(x).



Figure 3: a-b. negative log probability (equation 3) for a sequence of decompo-
sitions of figure la,b respectively. The first layer is always a single square with
contrast v and the second layer is shown in the insets. c. negative log probability
(equation 3) for a sequence of decompositions of figure la with a = § = 2.

Observation: The MAP solution to the scalar transparency problem is obtained
with a =1,b=0 or a = 0,b =1 if and only if log P(x) is concave.

The proof follows directly from the definition of concavity.

4 Optimization using loopy BP

Finding the most likely decomposition requires a highly nonlinear optimization. We
chose to discretize the problem and use max-product loopy belief propagation to find
the optimum. We defined a graphical model in which every node g; corresponded to
a discretization of the gradient of one layer I; at that location ¢; = (g;z, g,-y)T. For
every value of g; we defined f; which represents the gradient of the second layer at
that location: f; = (I, I;)T — gi. Thus the two gradients fields {g;}, {fi} represent
a valid decomposition of the input image I.

The joint probability is given by:
P(g) = %H Wi(g:) H Wijki(9ir 955 9k 91) (4)
i <ijkl>
where < ijkl > refers to four adjacent pixels that form a 2z2 local square.
The local potential ¥;(g;) is based on the histograms of derivative filters:
U;(g;) = eZl9l"=1F1%)/T (5)
where T is an arbitrary system “temperature”.

The fourway potential: ¥;;k:(9:, 95, 9k, 91) is based on the histogram of the corner
operator:

— o~/ T(det(9i9] +9;97 +ani +a19] )P +det(fi I+ 55 1]+ 1 fi +1157)P)

(6)
To enforce integrability of the gradient fields the fourway potential is set to zero
when g¢;,9;, gk, i violate the integrability constraint (cf. [3]).

Uiini(9is 95> Gk 1)

The graphical model defined by equation 4 has many loops. Nevertheless motivated
by the recent results on similar graphs [2, 3] we ran the max-product belief propa-
gation algorithm on it. The max-product algorithm finds a gradient field {g;} that
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Figure 4: Output of the algorithm on synthetic images. The algorithm effectively

searches over an exponentially large number of possible decompositions and chooses
decompositions that agree with the percept.

is a local maximum of equation 4 with respect to a large neighbourhood [10]. This
gradient field also defines the complementary gradient field {f;} and finally we in-
tegrate the two gradient fields to find the two layers. Since equation 4 is completely
symmetric in {f} and {g} we break the symmetry by requiring that the gradient
in a single location g;, belong to layer 1.

In order to run BP we need to somehow discretize the space of possible gradients
at each pixel. Similar to the approach taken in [2] we use the local potentials to
sample a small number of candidate gradients at each pixel. Since the local potential
penalizes non zero gradients, the most probable candidates are g; = (I, I,) and
gi = (0,0). We also added two more candidates at each pixel g; = (I,,0) and
9; = (0,I,). With this discretization there are still an exponential number of
possible decompositions of the image. We have found that the results are unchanged
when more candidates are introduced at each pixel.

Figure 4 shows the output of the algorithm on the two images in figure 1. An
animation that illustrates the dynamics of BP on these images is available at
www.cs.huji.ac.il/ ~yweiss. Note that the algorithm is essentially searching expo-
nentially many decompositions of the input images and knows nothing about “X
junctions” or “T junctions” or squares. Yet it finds the decompositions that are
consistent with the human percept.

Will our simple prior also allow us to decompose a sum of two real images 7 We
first tried a one dimensional family of solutions as in figure 3. We found that for
real images that have very little texture (e.g. figure 5b) the maximal probability
solution is indeed obtained at the perceptually correct solution. However, nearly
any other image that we tried had some texture and on such images the model failed
(e.g. 5a). When there is texture in both layers, the model always prefers a one layer
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Figure 5: When we sum two arbitrary images (e.g. in a.) the model usually prefers
the one layer solution. This is because of the texture that results in gradients and
corners at every pixel. For real images that are relatively texture free (e.g. in b.)
the model does prefer splitting into two layers (c. and d.)

decomposition: the input image plus a zero image. To understand this failure,
recall that the model prefers decompositions that have few corners and few edges.
According to the simple “edge” and “corner” operators that we have used, real
images have edges and corners at nearly every pixel so the two layer decomposition
has twice as many edges and corners as the one layer decomposition. To decompose
general real images we need to use more sophisticated features to define our prior.

Even for images with little texture standard belief propagation with synchronous
updates did not converge. Significant manual tweaking was required to get BP to
converge. First, we manually divided the input image into smaller patches and ran
BP separately on each patch. Second, to minimize discretization artifacts we used
a different number of gradient candidates at each pixel and always included the
gradients of the original images in the list of candidates at that pixel. Third, to
avoid giving too much weight to corners and edges in textured regions, we increased
the temperature at pixels where the gradient magnitude was not a local maximum.
The results are shown at the bottom of 5. In preliminary experiments we have found
that similar results can be obtained with far less tweaking when we use generalized
belief propagation to do the optimization.

5 Discussion

The percept of transparency is a paradigmatic example of the ill-posedness of vision:
the number of equations is half the number of unknowns. Nevertheless our visual
systems reliably and effectively compute a decomposition of a single image into
two images. In this paper we have argued that this perceptual decomposition may



correspond to the most probable decomposition using a simple prior over images
derived from natural scene statistics.

We were surprised with the mileage we got out of the very simple prior we used: even
though it only looks at two operators (gradients, and cornerness) it can generate
surprisingly powerful predictions. However, our experiments with real images show
that this simple prior is not powerful enough. In future work we would like to
add additional features. One way to do this is by defining features that look for
“texture edges” and “texture corners” and measuring their statistics in real images.
A second way to approach this is to use a full exponential family maximum likelihood
algorithm (e.g. [11]) that automatically learned which operators to look at as well
as the weights on the histograms.
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