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Abstract. When we take a picture through transparent glass the image
we obtain is often a linear superposition of two images: the image of the
scene beyond the glass plus the image of the scene reflected by the glass.
Decomposing the single input image into two images is a massively ill-
posed problem: in the absence of additional knowledge about the scene
being viewed there are an infinite number of valid decompositions. In this
paper we focus on an easier problem: user assisted separation in which
the user interactively labels a small number of gradients as belonging to
one of the layers.

Even given labels on part of the gradients, the problem is still ill-posed
and additional prior knowledge is needed. Following recent results on the
statistics of natural images we use a sparsity prior over derivative filters.
We first approximate this sparse prior with a Laplacian prior and obtain
a simple, convex optimization problem. We then use the solution with the
Laplacian prior as an initialization for a simple, iterative optimization for
the sparsity prior. Our results show that using a prior derived from the
statistics of natural images gives a far superior performance compared to
a Gaussian prior and it enables good separations from a small number
of labeled gradients.

1 Introduction

Figure 1(a) shows the room in which Leonardo’s Mona Lisa is displayed at
the Louvre. In order to protect the painting, the museum displays it behind a
transparent glass. While this enables viewing of the painting, it poses a problem
for the many tourists who want to photograph the painting (see figure 1(b)).
Figure 1(c) shows a typical picture taken by a tourist1 : the wall across from
the painting is reflected by the glass and the picture captures this reflection
superimposed on the Mona-Lisa image.

A similar problem occurs in various similar settings: photographing window
dressings, jewels and archaeological items protected by glass. Professional pho-
tographers attempt to solve this problem by using a polarizing lens. By rotating

1 All three images are taken from www.studiolo.org/Mona/MONA09.htm
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Fig. 1. (a),(b) The scene near the Mona Lisa in the Louvre. The painting is housed
behind glass to protect it from the many tourists. (c) A photograph taken by a tourist
at the Louvre. The photograph captures the painting as well as the reflection of the
wall across the room. (d) The user assisted reflection problem. We assume the user has
manually marked gradients as belonging to the painting layer or the reflection layer
and wish to recover the two layers.

the polarizing lens appropriately, one can reduce (but not eliminate) the reflec-
tion. As suggested in [2, 8] the separation can be improved by capturing two
images with two different rotations of the polarizing lens and taking an optimal
linear combination of the two images. An alternative solution is to use mul-

tiple input images [11, 4] in which the reflection and the non-reflected images
have different motions. By analyzing the movie sequence, the two layers can be
recovered. In [13], a similar approach is applied to stereo pairs.

While the approaches based on polarizing lenses or stereo images may be
useful for professional photographers, they seem less appealing for a consumer-
level application. Viewing the image in figure 1(c), it seems that the information
for the separation is present in a single image. Can we use computer vision to
separate the reflections from a single image ?

Mathematically, the problem is massively ill-posed. The input image I(x, y)
is a linear combination of two unknown images I1(x, y), I2(x, y):

I(x, y) = I1(x, y) + I2(x, y) (1)

Obviously, there are an infinite number of solutions to equation 1: the num-
ber of unknowns is twice the number of equations. Additional assumptions are
needed. On the related problem of separating shading and reflectance, impressive
results have been obtained using a single image [12, 3]. These approaches make
use of the fact that edges due to shading and edges due to reflectance have differ-
ent statistics (e.g. shading edges tend to be monochromatic). Unfortunately, in
the case of reflections, the two layers have the same statistics, so the approaches
used for shading and reflectance are not directly applicable. In [5], a method
was presented that used a prior on images to separate reflections with no user
intervention. While impressive results were shown on simple images, the tech-
nique used a complicated optimization that often failed to converge on complex
images.



In this paper, we present a technique that works on arbitrarily complex im-
ages but we simplify the problem by allowing user assistance. We allow the user
to manually mark certain edges (or areas) in the image as belonging to one of
the two layers. Figure 1(d) shows the Mona Lisa image with manually marked
gradients: blue gradients are marked as belonging to the Mona Lisa layer and
red are marked as belonging to the reflection layer. The user can either label
individual gradients or draw a polygon to indicate that all gradients inside the
polygon belong to one of the layers. This kind of user assistance seems quite
natural in the application we are considering: imagine a Photoshop plugin that
a tourist can use to post-process the images taken with reflections. As long as
the user needs only to mark a small number of edges, this seems a small price
to pay.

Even when the user marks a small number of edges, the problem is still ill-
posed. Consider an image with a million pixels and assume the user marks a
hundred edges. Each marked edge gives an additional constraint for the problem
in equation 1. However, with these additional equations, the total number of
equations is a only million and a hundred, far less than the two million unknowns.
Unless the user marks every single edge in the image, additional prior knowledge
is needed.

Following recent studies on the statistics of natural scenes [7, 9], we use a
prior on images that is based on the sparsity of derivative filters. We first ap-
proximate this prior with a Laplacian prior and this approximation enables us to
find the most likely decomposition using convex optimization. We then use the
Laplacian prior solution as an initial guess for a simple, iterative optimization
of the sparsity prior. We show that by using a prior derived from the statistics
of natural scenes, one can obtain excellent separations using a small number of
labeled gradients.

2 Statistics of natural images

A remarkably robust property of natural images that has received much attention
lately is the fact that when derivative filters are applied to natural images, the
filter outputs tend to be sparse [7, 9, 17]. Figure 2(a-d) illustrates this fact: the
histogram of the vertical derivative filter is peaked at zero and fall off much
faster than a Gaussian. These distributions are often called “sparse” and there
are a number of ways to formulate this property mathematically , (e.g. in terms
of their tails or their kurtosis).

We will follow Mallat [6] and Simoncelli [10] in characterizing these distribu-
tions in terms of the shape of their logarithm. As shown in figure 2(b,d), when we
look at the logarithm of the histogram the curve is always below the straight line
connecting the maximum and minimum values. This should be contrasted with
the Gaussian distribution (that is always above the straight line) or the Lapla-
cian distribution (that is simply a straight line in the log domain) (figure 2(e)).
In [5] it was shown that the fact that the log distribution is always below the
straight line, is crucial for obtaining transparency decompositions from a single
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Fig. 2. (a),(c) input images. (b),(d) log-histogram of dy derivative. A robust property of
natural images is that the log-histograms of derivative filters lie below the straight line
connecting the minimal and maximal values. We refer to such distributions as sparse
(e) Log probabilities for distributions of the form e

−x
α

. The Gaussian distribution is
not sparse (it is always above the straight line) and distributions for which α < 1
are sparse. The Laplacian distribution is exactly at the border between sparse and
non sparse distributions. (f) Matching a mixture model to a filter output histogram.
The mixture parameters were selected to maximize the likelihood of the histogram. A
mixture of Laplacians is sparse even though the individual components are not.

image. Distributions that are above the straight line will prefer to split an edge
of unit contrast into two edges (one in each layer) with half the contrast, while
distributions below the line will prefer decompositions in which the edge only
appears in one of the layers but not in the other. We will refer to distributions
that have this property in the log domain as being sparse.



Wainwright and Simoncelli [15] have suggested describing the histograms
of natural images with an infinite Gaussian mixture model. By adding many
Gaussians, each with a mean at zero but with different variances one can obtain
sparse distributions. This can also be achieved by mixing only two distributions:
a narrow distribution centered on zero and a broad distribution centered on zero
will give a sparse distribution. Figure 2(f) shows a mixture of two Laplacian
distributions:

Pr(x) =
π1

2s1

e−|x|/s1 +
π2

2s2

e−|x|/s2 (2)

Although the Laplacian distributions are not sparse based on our definition,
the mixture is. For the experiments in this paper, the mixture parameters were
learned from real images. That is, the parameters were selected to maximize the
likelihood of the histogram of derivative filters, as in Figure 2(f). The learned
values we found are s1 = 0.01, s2 = 0.05, π1 = 0.4, π2 = 0.6.

Given the histograms over derivative filters, we follow [16] in using it to define
a distribution over images by assuming that derivative filters are independent
over space and orientation so that our prior over images is given by:

Pr(I) =
∏

i,k

Pr(fi,k · I) (3)

where f · I denotes the inner product between a linear filter f and an image I,
and fi,k is the k’th derivative filter centered on pixel i. The derivative filters set
we use includes two orientations (horizontal and vertical) and two degrees (i.e.
first derivative filters as well as second derivative). The probability of a single
derivative is given by equation 2.

Equation 3 gives the probability of a single layer. We follow [5] in defining
the probability of a decomposition I1, I2 as the product of the probabilities of
each layer (i.e. assuming the two layers are independent).

3 Optimization

We are now ready to state the problem formally. We are given an input image
I and two sets of image locations S1, S2 so that gradients in location S1 belong
to layer 1 and gradients in location S2 belong to layer 2. We wish to find two
layers I1, I2 such that:

1. the two layers sum to form the input image I = I1 + I2

2. the gradients of I1 at all locations in S1 agree with the gradients of the input
image I and similarly the gradients of I2 at all locations in S2 agree with
the gradients of I.

Subject to these two constraints we wish to maximize the probability of the
layers Pr(I1, I2) = Pr(I1) Pr(I2) given by equation 3.

Our approximation proceeds in two steps. We first approximate the sparse
distribution with a Laplacian prior. This leads to a convex optimization problem
for which the global maximum can be found using linear programming. We then
use the solution with a Laplacian prior as an initial condition for a simple,
iterative maximization of the sparse prior.



3.1 Exactly maximizing a Laplacian prior using linear programming

Under the Laplacian approximation, we approximate Pr(I) with an approximate
P̃r(I) defined as:

˜Pr(I) =
∏

i,k

e−|fi,k·I| (4)

To find the best decomposition under the Laplacian approximation we need
to minimize:

J(I1, I2) =
∑

i,k

|fi,k · I1|+ |fi,k · I2| (5)

subject to the two constraints given above: that I1 + I2 = I and that the two
layers agree with the labeled gradients. This is an L1 minimization with linear
constraints. We can turn this into an unconstrained minimization by substituting
in I2 = I − I1 so that we wish to find a single layer I1 that minimizes:

J2(I1) =
∑

i,k

|fi,k · I1|+ |fi,k · (I − I1)| (6)

+λ
∑

i∈S1,k

|fi,k · I1 − fi,k · I|

+λ
∑

i∈S2,k

|fi,k · I1|

where the last two terms enforce the agreement with the labeled gradients.

This minimization can be performed exactly using linear programming. This
is due to the fact that the derivatives are linear functions of the unknown image.
To see this, define v to be a vectorized version of the image I1 then we can
rewrite J2 as:

J2(v) = ‖Av − b‖1 (7)

where ‖ ‖1 is the L1 norm, the matrix A has rows that correspond to the deriva-
tive filters and the vector b either has input image derivatives or zero so that
equation 7 is equivalent to equation 6.

Minimization of equation 7 can be done by introducing slack variables and
solving:

Min :
∑

i(z
+

i + z−i )
Subject to :

Av + (z+ − z−) = b
z+ ≥ 0, z− ≥ 0

The idea is that at the optimal solution one of the variables z+

i , z−i is zero,
and the over is equal to |Ai→v − bi|. The above problem is a standard linear
programming one and we use the LOQO [14] linear programming package to
solve it.



3.2 Optimization of the sparse prior using iterated linear

programming

To find the most likely decomposition under the sparse prior we need to maximize
the probability of the two layers as given by equation 3. Using the same algebra
as in the previous section this is equivalent to finding a vector v that minimizes:

J3(v) =
∑

i

ρ (Ai→v − bi) (8)

where ρ(x) is the log probability shown in figure 2. ρ(x) is similar to a robust
error measure and hence minimizing J3 is not a convex optimization problem.
Nevertheless, using EM we can iteratively solve convex problems.

Since we use a mixture model to describe the sparse prior, we can use
expectation-maximization (EM) [1] to iteratively improve the probability of a
decomposition. We introduce a binary hidden variable hi for every row of the
matrix A that denotes which Laplacian generated the measurement in bi. In the
E step we calculate the expectation of hi and in the M step we use this ex-
pected value and optimize an expected complete data log likelihood. A standard
derivation shows that the EM algorithm reduces to:

– E step. calculate two weights w1, w2 for every row of the matrix A:

wj(i) ∝
πj

sj
e−|Ai→v−bi|/sj (9)

the proportion constant is set so that w1(i) + w2(i) = 1 for all i.
– M step: perform an L1 minimization given by:

v∗ ← arg min
v
‖DAv −Db‖1 (10)

with D a diagonal matrix whose elements are given by:

D(i, i) = w1(i)/s1 + w2(i)/s2 (11)

At every iteration, we are provably decreasing the cost function J3 in equa-
tion 8. The optimization in the M step was performed using the same linear
programming software as in the Laplacian approximation. 3 EM iterations are
usually sufficient.

4 Results

We show results of our algorithm on five images of scenes with reflections. Four
of the images were downloaded from the internet and we had no control over the
camera parameters or the compression methods used. For color images we ran
the algorithm separately on the R,G and B channels.

Figures 3, 4 and 5 show the input images with labeled gradients, and our
results. In Figures 4,5 we compare the Laplacian prior and the sparse prior,
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Fig. 3. Results: (a) input image. (b-c) decomposition.

versus the number of labeled points. The Laplacian prior gives good results
although some ghosting effects can still be seen (i.e. there are remainders of
layer 2 in the reconstructed layer 1). These ghosting effects are fixed by the
sparse prior. Good results can be obtained with a Laplacian prior when more
labeled gradients are provided. Figures 6, 7 compares the Laplacian prior with a
Gaussian prior (i.e. minimizing ‖Av− b‖ under the L2 norm ) using both simple
and real images. The non sparse nature of the Gaussian distribution is highly
noticeable, causing the decomposition to split edges into two low contrast edges,
rather then putting the entire contrast in one of the layers.



(a) (b)

(c) (d)

(e) (f)

Fig. 4. Comparing Laplacian prior(first iteration results) with a sparse prior. When a
few gradients are labeled (left) the sparse prior gives noticeably better results. When
more gradients are labeled (right), the Laplacian prior results are similar to the sparse
prior. (a-b) labeled input images. (c-d) decomposition with Laplacian prior. (e-f) de-
composition using a sparse prior.

The images in figure 5 were separated automatically in [11] using multiple
images. An advantage of using multiple images is that they can deal better with
saturated regions (e.g. the cheekbone of the man in the image that is superim-
posed on the white shirt of the woman) since the saturated region location varies
along the sequence. However, working with a single image, we cannot recover
structure in saturated regions.

In Fig 8 the technique was applied for removing shading artifacts. For this
problem, the same algorithm was applied in the log-domain.

5 Discussion

Separating reflections from a single image is a massively ill-posed problem. In this
paper we have focused on slightly easier problem in which the user marks a small
number of gradients as belonging to one of the layers. This is still an ill-posed
problem and we have used a prior derived from the statistics of natural scenes:
that derivative filters have sparse distributions. We showed how to efficiently find
the most probable decompositions under this prior using linear programming.
Our results show the clear advantage of a technique that is based on natural
scene statistics rather than simply assuming a Gaussian distribution.
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Fig. 5. Comparing Laplacian prior(first iteration results) with a sparse prior. When a
few gradients are labeled (left) the sparse prior gives noticeably better results. When
more gradients are labeled (right), the Laplacian prior results are similar to the sparse
prior. (a-b) labeled input images. (c-d) decomposition with Laplacian prior. (e-f) de-
composition using a sparse prior.

(a) (b) (c) (d) (e)

Fig. 6. (a) A very simple image with two labeled points. (b-c) The Laplacian prior
gives the correct results for this image while the Gaussian prior (c-d) does not. The
Gaussian prior prefers to split edges into two low contrast edges.

Since we are using an off-the-shelf linear programming package, we are not
taking advantage of the spatial properties of the optimization problem. The cur-
rent run time of the linear programming for images of size 240x320 is a few
minutes on a standard PC. We have not performed an extensive comparison of
linear programming packages so that with other packages the run times may
be significantly faster. We are currently working on deriving specific algorithms
for minimizing L1 cost functions on image derivatives. Since this is a convex



(a) (b)

Fig. 7. Gaussian prior results: (a) results on the second column of fig4. (b) results on
the second column of fig5.

(a) (b) (c) (d)

Fig. 8. Removing shading artifacts (a) original image. (b) labeled image. (c-d) decom-
position

problem, local minima are not an issue and so a wide range of iterative algo-
rithms may be used. In preliminary experiments, we have found that a multigrid
algorithm can minimize such cost functions significently faster. We are also in-
vestigating using a mixture of Gaussians rather than a mixture of Laplacians to
describe sparse distributions. This leads to M steps in which L2 minimizations
need to be performed, and there are a wide range of efficient solvers for such
minimizations.

We are also investigating the use of other features other than derivatives
to describe the statistics of natural images. Our experience shows that when
stronger statistical models are used, we need less labeled points to achieve a
good separation. We hope that using more complex statistical models will still
enable us to perform optimization efficiently. This may lead to algorithms that
separate reflections from a single image, without any user intervention.
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