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1. PATH-SPACE VIEW OF SPECKLE STATISTICS

Here we provide a detailed derivation for the speckle mean and
covariance, expressing them as integrals in path space. These
expressions are used in the main paper as the basis of the Monte
Carlo rendering algorithms.

Fields as path sums. Our starting point is the classical theory of
Twersky [1]: Given a scatterer configuration O(t) and its temporal
variation, we can approximate the solution to the Helmholtz
equation as the sum of contributions over all paths x⃗(t) through

O(t). That is, consider the (enumerable) set P
i,O(t)
v of all ordered

sequences:
x⃗(t) = o0(t)→ . . .→oB+1(t), (S1)

with
o0(t) = i, oB+1(t) = v, o1(t), . . . , oB(t) ∈ O(t), (S2)

where B = 0, . . . , ∞. In the notation x⃗(t) we assume that we can
track the path over time. For example, x⃗ (t1) , x⃗ (t2) denote the
position of the same particle sequence at two time instances.

Given the temporal set O(t), the scattered field at each time
instance can be expressed as

ui,O
v (t) = ∑

x⃗(t)∈P(t)i,O(t)
v

µ(⃗x) (S3)

= ∑
x⃗(t)∈P

i,O(t)
v

µ(o0(t)→o1(t))
B

∏
b=1

µ(ob−1(t)→ob(t)→ob+1(t)).

Some paths are visualized in Fig. S1. The complex-throughput
terms µ(·) describe the amplitude and phase changes at each
path segment, accounting for the scattering amplitude s and

traveled length:

µ(ob−1(t)→ob(t)→ob+1(t)) =
1

r(ob(t), ob+1(t))
ξ(ob(t)→ob+1(t))

s( ̂ob−1(t)ob(t) · ̂ob(t)ob+1(t)), (S4)

µ(o0(t)→o1(t)) =
1

r(o0(t), o1(t))
ξ(o0(t)→o1(t)). (S5)

The complex-transmission terms ξ(·) account for phase change
between path vertices ob(t), ob+1(t), defined for points at the near
field and far field, respectively, as

ξ(ob(t)→ob+1(t)) = eik|ob(t)−ob+1(t)|,

ξ(î→o(t)) = eik(î·o(t)),

ξ(o(t)→v̂) = e−ik(v̂·o(t)). (S6)

and 1/r(·) is the radial decay

r(ob(t), ob+1(t))= |ob(t)− ob+1(t)|, r(î, o(t))=1, r(o(t), v̂)=1. (S7)

We note that for a fixed configuration O(t) of scatterers, the
complex transmission ξ(ob(t)→ob+1(t)) is not attenuated as a
function of the extinction coefficient. As we see below, volumet-
ric attenuation comes into play only once we start averaging
multiple random scatterer configurations.

Speckle statistics as path integrals. Using Eq. (S3), we can now
express the mean by averaging over all particle configurations
O that can be sampled from ς:

mi
v(t) = EO

 ∑
x⃗(t)∈P(t)i,O

v

µ(⃗x(t))

 . (S8)
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Complex transmission: ξ(ob(t)→ob+1(t)) = eik|ob(t)−ob+1(t)|

Radial distance: r(ob(t), ob+1(t)) = |ob(t)− ob+1(t)|

Scattering amplitude function: s( ̂ob−1(t)ob(t) · ̂ob(t)ob+1(t))

Complex throughput: µ(ob−1(t)→ob(t)→ob+1(t)) = 1
r(ob(t),ob+1(t))

ξ(ob(t)→ob+1(t))s( ̂ob−1(t)ob(t) · ̂ob(t)ob+1(t))

Volumetric attenuation: α(ob(t), ob+1(t)) = e−
1
2

∫ 1
0 σt(βob(t)+(1−β)ob+1(t))dβ

Attenuation + radial decay: α̃(ob(t), ob+1(t)) = 1
r(ob(t),ob+1(t))

α(ob(t), ob+1(t))

Complex volumetric throughput: υ(ob−1(t)→ob(t)→ob+1(t)) = α(ob(t), ob+1(t))µ(ob−1(t)→ob(t)→ob+1(t))

Momentum transfer: γ(ôbob+1 − ôb−1ob) = e−k2D|t|∥ôbob+1−ôb−1ob∥2+ikt(ôbob+1−ôb−1ob)·U.

Table S1. Types of path contributions. Summary of notation and relationships between different throughput terms used in our Monte
Carlo algorithms.
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Fig. S1. The Twersky’s approximation: Given a scatterer in-
stantiation O, the speckle field can be approximated as a sum
of complex contributions over all paths. The path contribution
encapsulates its length and scattering events along the path.

To simplify notation, we assume particle density is stationary
over time. Thus we can neglect the time index and denote mi

v.
To define the temporal covariance we consider pairs of paths

(⃗x1(t)), (⃗x2(t)) through the same particle instantiation O(t), at two
different times.

The speckle field for each particle configuration is an average
of complex throughput as in Eq. (S3), hence, by combining Eq. (7)
of the main paper with Eq. (S3) the covariance is obtained by
averaging these over all moving particle configurations sampled
from the bulk material densities:

Ci1,i2
v1,v22

(t1, t2)=EO

 ∑
x⃗1(t1)∈P

i1,O(t1)
v1 ,

x⃗2(t2)∈P
i2,O(t2)
v2

µ(⃗x1 (t1)) ·µ(⃗x2 (t2))
∗

−mi1
v1
· mi2

v2

∗
. (S9)

By exchanging the order of expectation and summation in

Eq. (S8) and Eq. (S9), we have:

mi
v =

∫
Pi

v

p(⃗x)µ(⃗x) d⃗x, (S10)

Ci1,i2
v1,v2

(t1, t2) =
∫∫

P
i1,t1
v1 ,Pi2,t2

v2

c⃗x1 ,⃗x2 (t1, t2) d⃗x1 (t1) d⃗x2 (t2)

−mi1
v1

mi2
v2

∗
, (S11)

with

c⃗x1 ,⃗x2 (t1, t2) = p(⃗x1 (t1) , x⃗2 (t2)) · µ(⃗x1 (t1)) · µ(⃗x2 (t2))
∗
, (S12)

where now the space P
i,t
v includes paths with vertices

o1(t), . . . , oB(t) that can be anywhere in the volume V at time t,
not only on fixed particle locations. Unlike P

i,O(t)
v , P

i,t
v is not

an enumerable space, thus summation is replaced with inte-
gration. Each path sequence follows displacement sequences
∆⃗1

t2−t1
= x⃗1 (t2) − x⃗1 (t1) and ∆⃗2

t2−t1
= x⃗2 (t2) − x⃗2 (t1). The

term p(⃗x1 (t1) , x⃗2 (t2)) is the probability that all vertices on both
x⃗1 (t1) , x⃗2 (t2) are included in the same sampled particle configu-
ration O at two different time instances, and their displacements
∆⃗1

t2−t1
, ∆⃗2

t2−t1
come from the motion distribution T .

In the following sections, we show that mi
v can be computed

in closed form, and we greatly simplify the path integral for
Ci1,i2

v1,v2 (t1, t2) by characterizing the pairs of paths that have non-
zero contributions.

A. The speckle mean
Evaluating the speckle mean is addressed by standard textbooks
on scattering [2, 3]. We present these results here.

We consider a source at o1. As this wave scatters, we want to
evaluate the average contribution of all paths x⃗ starting at o1 and
arriving at a second point o2. As derived in [3], the averages
can be expressed analytically as∫

P
o2
o1

p(⃗x)µ(⃗x) d⃗x = α(o1, o2) · µ(o1→o2), (S13)

where µ is defined as in Eq. (S4). The volumetric attenuation α is
the probability of getting from o1 to o2 without encountering
other particles, and equals for the near-field and far-field cases,
respectively:

α(o1, o2)= e−
1
2

∫ 1
0 σt(βo1+(1−β)o2)dβ,

α(î, o)= e−
1
2

∫ ∞
0 σt(o1−βî)dβ. (S14)
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Fig. S2. Paths for speckle mean. (a) The average contribution
of all paths connecting o1 and o2 (dashed lines) reduces to the
contribution of the direct path (solid line). (b) We numerically
simulate the speckle mean for the setup in the inset. We sample
multiple particle configurations, use a wave equation solver to
compute the field scattered from a source at point o1 to a sensor
at point o2, and average the solutions. The empirical mean of the
scattered fields agrees with the speckle mean computed using
Eq. (S13).

For a homogeneous medium, α(o1, o2) = exp(− 1
2 σt|o2 − o1|).

The factor 1/2 in the exponent of Eq. (S14) makes α the square
root of the volumetric attenuation term in standard radiative
transfer. Intuitively, this is because we deal with the field rather
than intensity.

The main intuition behind Eq. (S13) is that, as most paths
contribute essentially random complex phases, they cancel each
other out. Therefore, the total field from o1 to o2 equals the field
that travels only along the direct path between the two points,
attenuated by the exponentially decaying probability α(o1, o2),
see Fig. S2(a). This exponential decay is the result of the phase
cancellations between many paths.

In particular, the speckle mean mi
v of Eq. (S10) is

mi
v = α(i, v) · µ(i → v). (S15)

The main consequence of this section is that computing the
speckle mean becomes a direct illumination problem, which can
be solved analytically without the need for path integration. In
Fig. S2(b), we numerically evaluate the speckle mean by aver-
aging multiple solutions of the wave equation as in Eq. (4) of
the main paper, showing a good agreement with the analytic
formula of Eq. (S15). We note that, as the speckle mean decays
exponentially with the distance, in most cases it is negligible,
making the computation of covariance the main challenge in
simulating speckle. We discuss this next.

B. The speckle covariance
We have shown in Eq. (S11) that the speckle covariance can be
expressed as an integral over pairs of paths x⃗1 (t1) from i1 to v1
at time t1 and x⃗2 (t2) from i2 to v2 at time t2. Unlike the mean,
there is no closed-form expression for this integral. However, we
can considerably simplify Eq. (S11) by characterizing the pairs of
paths x⃗1, x⃗2 for which its integrand c⃗x1 ,⃗x2 (t1, t2) is non-zero, as
well as deriving a simple formula for c⃗x1 ,⃗x2 (t1, t2) for those pairs.
Some of the arguments we use are discussed in Mishchenko et
al. [3]. Our end result is a path-integral expression for covariance
that lends itself to Monte Carlo integration.

For ease of notation, w.l.o.g. we consider two time instances
of the form t1 = −t/2, t2 = t/2. We denote the mean particle
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Fig. S3. Path pairs for speckle covariance: (a) A naive approach
for computing speckle covariance would sum path contributions
over all pairs of paths from i1 to v1 and from i2 to v2. However
most such paths have random phases and do not contribute
to the correlation. (b) Path segments between nodes ob, ob+1
on path x⃗1, which are not shared by path x⃗2, and vice versa.
It can be proved that all such path segments average to the
direct path from ob to ob+1. (c) As a result, the path integral can
be reduced to consider only path pairs sharing all their nodes.
Note that if we are computing correlations at two different time
instances t1, t2, the path x⃗1 traces the position of the scatterer at
time instance t1 and the path x⃗2 traces its position at time t2. (d)
We can further simplify the covariance estimate and consider
only the mean paths, so the path pairs perfectly share all their
central segments. Around each node in the path we analytically
integrate the contribution of all possible motions.

position by

ō =
1
2
(o (t1) + o (t2)) , (S16)

so that o (t1) = ō − 1/2∆t, o (t2) = ō + 1/2∆t.

Valid pairs of paths. Intuitively the covariance is not affected
by independent path pairs x⃗1 (t1) , x⃗2 (t2), and hence, as derived
below, the dependent path pairs we need to consider in practice
are only the ones sharing their vertices.

Consider, as in Fig. S3(b), the set of path pairs x⃗1(t), x⃗2(t) that
have an arbitrary number of vertices, but share only vertices
o1, . . . , oB. Then, as in Sec. A, we expect all the different path
segments from ob to ob+1 to average to the direct path between
these points. Mishchenko et al. [3] prove that indeed all path
pairs with disjoint vertices collapse to their joint vertices, and the
covariance integral can reduce to the family of path pairs sharing
all their vertices, as in Fig. S3(c). To formulate this argument we
consider the space P(t) of sub-paths x⃗s = ō1 → · · · → ōB, and
displacements ∆⃗t = ∆t1, . . . , ∆tB where B = 1, . . . , ∞, and each
vertex ō can be everywhere in V . We can evaluate the covariance
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integral of Eq. (S11) by considering only path pairs of the form:

x⃗1 (- t
2
)
= i1→ x⃗s − 1/2∆⃗t→v1,

x⃗2 ( t
2
)
= i2→ x⃗s + 1/2∆⃗t→v2. (S17)

Claim S1 The covariance integral of Eq. (S11) can be evaluated using
only joint path pairs

Ci1,i2
v1,v2

(
- t

2 , t
2
)
=

∫∫
P(t)

c⃗xs ,∆⃗t

(
- t

2 , t
2
)

d∆⃗t d⃗xs, (S18)

where the average contribution of all pairs of paths sharing vertices
o1, . . . , oB is

c⃗xs ,∆⃗t

(
- t

2 , t
2
)
=

B

∏
b=0

fb, (S19)

and

fb =



υ(i1 →o1
(
- t

2
)
)υ(i2 →o1

( t
2
)
)∗, for b = 0

p(∆tb)σs(ōb+1)υ(ob−1
(
- t

2
)
→ob

(
- t

2
)
→ob+1

(
- t

2
)
)·

υ(ob−1
( t

2
)
→ob

( t
2
)
→ob+1

( t
2
)
)∗, for 1 ≤ b ≤ B − 1

p(∆tB)υ(oB−1
(
- t

2
)
→oB

(
- t

2
)
→v1)·

υ(oB−1
( t

2
)
→oB

( t
2
)
→v2)

∗, for b = B
(S20)

with

υ(ob−1(t) → ob(t) → ob+1(t)) = α(ob(t), ob+1(t))
· µ(ob−1(t)→ob(t)→ob+1(t)), (S21)

υ(o0(t) → o1(t)) = α(o0(t), o1(t)) · µ(o0(t) → o1(t)). (S22)

The proof can be found in [3] and we do not review it here. We
note however, that the integral considers only subpaths of length
B ≥ 1 that have scattered in at least one particle. We neglect
direct paths of length B = 0 as those are directly equivalent to
the mean mi1

v1 mi2
v2 , which is subtracted in Eq. (S11).

To compare the integral in Eq. (S18) to the original integral
in Eq. (S11) we note that when all path pairs are included the
path contribution is the complex throughput µ(·) of Eq. (S4)
and Eq. (S5). In the above claim only joint path pairs are consid-
ered, but the complex throughput µ(·) is replaced by the complex
volumetric throughput term υ(·), which multiplies the complex
throughput with the volumetric attenuation of Eq. (S14). This
exponential attenuation is a result of integration over the space
of disjoint path segments.

To recap, the complex volumetric throughput is the prod-
uct of these factors: (i) the radial decay (ii) the volumetric at-
tenuation α; (iii) the complex transmission ξ, whose phase is
proportional to the path segment length; and (iv) the scattering
amplitude function s due to a change of direction (for paths with
B > 1). For example:

υ(ob−1(t) → ob(t) → ob+1(t)) =
1

r(ob(t), ob+1(t))
α(ob(t), ob+1(t))·

ξ(ob(t)→ob+1(t))s( ̂ob−1(t)ob(t) · ̂ob(t)ob+1(t)) (S23)

The different terms are summarized in Table S1.
The contribution of joint path pairs, given by Eq. (S19), is

Markovian and can be computed analytically. When t1 = t2

the paths x⃗1 (t1) , x⃗2 (t2) share all their central segments and the
formula simplifies considerably. In particular, the lengths of the
central segments 1 ≤ b ≤ B − 1 on both paths are equal and so
is their phase

ξ(ob
(
- t

2
)
→ob+1

(
- t

2
)
) = ξ(ob

( t
2
)
→ob+1

( t
2
)
), (S24)

hence

υ(ob−1
(
- t

2
)
→ ob

(
- t

2
)
→ ob+1

(
- t

2
)
)·

υ(ob−1
( t

2
)
→ ob

( t
2
)
→ ob+1

( t
2
)
)∗ (S25)

is a positive real number with no imaginary part, rather than a
complex number.

In the general case, however, we are interested in correla-
tions at two different time instances, in which case the pairwise
path contribution c⃗xs ,∆⃗t

(
- t

2 , t
2
)
, is complex. We can still simplify

Eq. (S20) considerably as described next. First, we assume that
the particle motion is considerably lower than the mean free
path (the average distance between successive particles on a
path). In this case, to a first order approximation:

α(ob
(
- t

2
)

, ob+1
(
- t

2
)
) ≈ α(ob

( t
2
)

, ob+1
( t

2
)
), (S26)

r(ob
(
- t

2
)

, ob+1
(
- t

2
)
) ≈ r(ob

( t
2
)

, ob+1
( t

2
)
), (S27)

for 0 ≤ b ≤ B, and:

s( ̂ob−1
(
- t

2
)

ob
(
- t

2
)
· ̂ob

(
- t

2
)

ob+1
(
- t

2
)
) ≈

s( ̂ob−1
( t

2
)

ob
( t

2
)
· ̂ob

( t
2
)

ob+1
( t

2
)
) (S28)

for 1 ≤ b ≤ B, where at the end nodes we plug o0
(
- t

2
)
= i1,

o0
( t

2
)
= i2, oB+1

(
- t

2
)
= v1, oB+1

( t
2
)
= v2. For directional

sources and sensors, ̂̂io1 is just the direction î.
The complex transmission ξ cannot be dismissed, as phase

differences between the paths are the main cause for the reduc-
tion in correlation. We can still approximate the phase difference
in a simpler way, summarized in the following claim.

Claim S2 The complex transmission ξ of paths sharing their central
segments can be approximated as

B

∏
b=0

ξ(ob
(
- t

2
)
→ob+1

(
- t

2
)
) · ξ(ob

( t
2
)
→ob+1

( t
2
)
)∗ ≈

B

∏
b=1

eik( ¯̂ob ōb+1− ¯̂ob−1 ōb)·∆tb , (S29)

where for the start and end nodes we plug above ō0 = 1/2(i1 + i2)
and ōB+1 = 1/2(v1 + v2).

Proof: Since the mean particle motion is considerably lower than
the mean free path, we estimate for 1 ≤ b ≤ B − 1

ξ(ob
(
- t

2
)
→ob+1

(
- t

2
)
) · ξ(ob

( t
2
)
→ob+1

( t
2
)
)∗ =

eik
(∣∣∣ob

(
- t

2

)
−ob+1

(
- t

2

)∣∣∣−∣∣∣ob

( t
2

)
−ob+1

( t
2

)∣∣∣) ≈

eik
((

ob+1

(
- t

2

)
−ob

(
- t

2

))
¯̂ob ōb+1−

(
ob+1

( t
2

)
−ob

( t
2

))
¯̂ob ōb+1

)
=

eik((∆t b−∆t b+1) ¯̂ob ōb+1), (S30)
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for b = 0 and for point sources

ξ(o0
(
- t

2
)
→o1

(
- t

2
)
) · ξ(o0

( t
2
)
→o1

( t
2
)
)∗ =

eik
(∣∣∣i1−o1

(
- t

2

)∣∣∣−∣∣∣i2−o1

( t
2

)∣∣∣) ≈

eik
((

o1

(
- t

2

)
−i1

)
î1 ō1−

(
o1

( t
2

)
−i2

)
î2 ō1

)
=

eik((i1−ō1)î1 ō1−(i2−ō1)î2 ō1−0.5∆t1(î1 ō1+î2 ō1)) =

eik(|i1−ō1|−|i2−ō1|−0.5∆t1(î1 ō1+î2 ō1)) ≈

ξ(o0
(
- t

2
)
→ō1) · ξ(o0

( t
2
)
→ō1)

∗e−ik·∆t1·
̂i1+i2

2 ō1 , (S31)

and for directional sources

eik
(

î1·o1

(
- t

2

)
−î2·o1

( t
2

))
=

eik(î1·(ō1−0.5∆t1)−î2·(ō1+0.5∆t1)) =

ξ(o0
(
- t

2
)
→ō1) · ξ(o0

( t
2
)
→ō1)

∗e−ik·∆t1·
î1+î2

2 . (S32)

Similarly for b = B

ξ(oB
(
- t

2
)
→oB+1

(
- t

2
)
) · ξ(oB

( t
2
)
→oB+1

( t
2
)
)∗ ≈

ξ(ōB→oB+1
(
- t

2
)
) · ξ(ōB→oB+1

( t
2
)
)∗eik·∆t B · ¯̂oB ōB+1 , (S33)

Substituting Eqs. (S30–S33) in Eq. (S29) we get

B

∏
b=0

ξ(ob
(
- t

2
)
→ob+1

(
- t

2
)
) · ξ(ob

( t
2
)
→ob+1

( t
2
)
)∗ ≈

ξ(o0
(
- t

2
)
→ō1) · ξ(o0

( t
2
)
→ō1)

∗

ξ(ōB→oB+1
(
- t

2
)
) · ξ(ōB→oB+1

( t
2
)
)∗

B

∏
b=0

eik(∆t b−∆t b+1) ¯̂ob ōb+1 =

ξ(o0
(
- t

2
)
→ō1) · ξ(o0

( t
2
)
→ō1)

∗

ξ(ōB→oB+1
(
- t

2
)
) · ξ(ōB→oB+1

( t
2
)
)∗

B

∏
b=1

eik∆t b( ¯̂ob ōb+1− ¯̂ob−1 ōb),

(S34)

where ∆t0 = ∆tB+1 = 0.
With the help of the above claim we can approximate the

path contribution as

c⃗xs ,∆⃗t

(
- t

2 , t
2
)
=

B

∏
b=0

f A
b , (S35)

with

f A
b =



υ(ō2→ō1→i1) · υ(ō2→ō1→i2)
∗ · σs(ō1), for b = 0

p(∆t1) · eik
(
̂̄o1 ō2− ̂1/2(i1+i2),ō1

)
·∆t b ·

α̃(ō1, ō2)
2 · σs(ō2), for b = 1

p(∆tb) · eik( ¯̂ob ōb+1− ¯̂ob−1 ōb)·∆tb · ρ( ¯̂ob−1ōb · ¯̂obōb+1)·

α̃(ōb, ōb+1)
2 · σs(ōb+1), for 2 ≤ b ≤ B − 1

p(∆tB) · eik
(

̂ōB ,1/2(v1+v2)− ¯̂oB−1 ōB

)
·∆t B ·

υ(ōB−1→ōB→v1) · υ(ōB−1→ōB→v2)
∗, for b = B

(S36)

where we shorten notation by using

α̃(ōb, ōb+1) =
1

r(ōb, ōb+1)
α(ōb, ōb+1). (S37)

In the above formula we could simplify the expression for the
central segments (2 ≤ b ≤ B − 1) because the same vertices are
shared between the paths x⃗1, x⃗2. For the first and last segments
the path segments are different. Eq. (S36) considerably simplifies
the path contribution compared to Eq. (S20), but still in order to
evaluate the covariance of Eq. (S18) we need to integrate over
the space of all sub-paths x⃗s and all displacement sequences
∆⃗t. Unfortunately, the integration over sub-paths does not lend
itself to an analytical solution, and is usually performed using
Monte Carlo sampling as we show in the next section. However,
assuming the displacements follow a Gaussian distribution as
defined in the main paper, we can analytically integrate the
space of all displacements for each central subpath.

Claim S3

c⃗xs ≡
∫

c⃗xs ,∆⃗t
d∆⃗t =

B

∏
b=0

f I
b , (S38)

with

f I
b =



υ(ō2→ō1→i1) · υ(ō2→ō1→i2)
∗ · σs(ō1), for b = 0

γ(̂̄o1, ō2 − ̂1/2(i1 + i2), ō1)·

α̃(ō1, ō2)
2 · σs(ō2), for b = 1

γ( ̂ōb, ōb+1 − ̂ōb−1, ōb) · ρ( ¯̂ob−1ōb · ¯̂obōb+1)·

α̃(ōb, ōb+1)
2 · σs(ōb+1) for 2 ≤ b ≤ B − 1

γ( ̂ōB, 1/2(v1 + v2)− ̂ōB−1, ōB) · υ(ōB−1→ōB→v1)·

υ(ōB−1→ōB→v2)
∗, for b = B

(S39)

with

γ( ¯̂obōb+1 − ¯̂ob−1ōb) =

e−k2D|t|∥ ¯̂ob ōb+1− ¯̂ob−1 ōb∥2+ikt( ¯̂ob ōb+1− ¯̂ob−1 ōb)·U. (S40)

Proof: Our derivation is based on the following integral relation,
showing that for any vector y ∈ R3:

E∆t

[
eik·y·∆t

]
=

∫
∆t∈R3

p(∆t)eik·y·∆t

=
∫

∆t∈R3

e−
1
2 (∆t−t·U)T Σ(∆t−t·U)eik·y·∆t

(2π)1.5 det (Σ)0.5

= e−k2D|t|·∥y∥2+ikt·y·U.

(S41)

To compute the desired integral over the displacement se-
quences of Eq. (S38), we review the original definition of c⃗xs ,∆⃗t
in Eq. (S35), and note that since the displacement of every node
on the path is sampled independently, we can switch between
the multiplication and integration operations, and express

c⃗xs =
∫

c⃗xs ,∆⃗t
d∆⃗t =

∫ B

∏
b=0

f A
b d∆⃗t = f A

0

B

∏
b=1

∫
f A
b d∆tb. (S42)
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For 2 ≤ b ≤ B − 1, we substitute Eq. (S36) in Eq. (S42)∫
f A
b d∆tb =∫

p(∆tb) · eik( ¯̂ob ōb+1− ¯̂ob−1 ōb)·∆t b ·

ρ( ¯̂ob−1ōb · ¯̂obōb+1) · α̃(ōb, ōb+1)
2 · σs(ōb+1)d∆tb =

ρ( ¯̂ob−1ōb · ¯̂obōb+1) · α̃(ōb, ōb+1)
2 · σs(ōb+1)·∫

p(∆tb) · eik( ¯̂ob ōb+1− ¯̂ob−1 ōb)·∆t b d∆tb =

ρ( ¯̂ob−1ōb · ¯̂obōb+1) · α̃(ōb, ōb+1)
2 · σs(ōb+1)·

e−k2D|t|·∥( ¯̂ob ōb+1− ¯̂ob−1 ōb)∥2+ikt·( ¯̂ob ōb+1− ¯̂ob−1 ōb)·U =

f I
b ,

(S43)

where the integral is solved according to Eq. (S41) for y =

¯̂obōb+1 − ¯̂ob−1ōb. Similarly, we get∫
f A
1 d∆t1 = f I

1 ,
∫

f A
B d∆tB = f I

B, (S44)

and by setting f I
0 = f A

0 , we get

c⃗xs = f I
0

B

∏
b=1

f I
b =

B

∏
b=0

f I
b . (S45)

Following Claim S3 we can express the covariance as the
integral over the space P of static subpaths x⃗s

Ci1,i2
v1,v2

(
- t

2 , t
2
)
=

∫
P

c⃗xs
(
- t

2 , t
2
)

d⃗xs (S46)

where the average contribution of all pairs of paths sharing
vertices o1, . . . , oB is

c⃗xs
(
- t

2 , t
2
)
=

B

∏
b=0

f I
b (S47)

2. ESTIMATING SPECKLE COVARIANCES

We include here the complete Monte Carlo sampling algorithm
that estimates the speckle covariances. This follows the deriva-
tion in the main text, along with accurate handling of special
cases, such as paths of length 1, and absorption. In Alg. S1 we
consider homogeneous volumes with uniform material density,
in which case sampling from α(ōb−1, ōb)

2 · σs(ōb) reduces to a
straightforward sampling from an exponential distribution. For
heterogeneous, spatially varying densities one should sample
using a Woodcock tracking scheme [4], as described in Alg. S2.

In Fig. S4 we perform an equal-sample comparison of path
tracing algorithms with and without next-event estimation.
When next-event estimation is used one can use an infinites-
imally small sensor. Without this, the quality of the estimate
is largely dependent on the size of the sensor used in the sim-
ulation, where with wider sensors the probability that paths
will reach the sensor is higher, and hence estimation noise de-
creases. We run each MC simulation for 1000 times using 5× 107

samples (where a path of length B is counted as B samples),
and in Fig. S4 we plot the mean and variance of the different
experiments. The simulation considers temporal-only correla-
tions, where path-tracing without next-event estimation uses the
MCX implementation [5], and next-event estimation uses our

Algorithm S1: Monte Carlo covariance rendering for homoge-
neous volumes.

▷Initialize covariance estimate.
Set C = 0.
for iteration = 1 : N do

▷Sample a subpath:
▷Sample first vertex.

Sample point ō1 with the probability q1(ō1).
▷Update covariance with single scattering path.

Update C += 1
q1(ō1)

γ( ̂ō1, 1/2(v1 + v2)− ̂1/2(i1 + i2), ō1)·
υ(v1→ō1→i1) · υ(v2→ō1→i2)

∗ · σs.
▷Continue tracing the subpath.

▷Sample first direction.
Sample direction ω̂1 and compute the probability q1(ō1, ω̂1).

▷Sample second vertex of subpath.
Sample distance d ∼ σte−σtd.
Set point ō2 = ō1 + d · ω̂1.
Set b = 2.
Set f I

0 = υ(ō2→ō1→i1) · υ(ō2→ō1→i2)
∗ · σs(ō1).

Set γ0 = γ(̂̄o1, ō2 − ̂1/2(i1 + i2), ō1).
Set γ1 = γ2 = 1.
while ōb inside medium do

▷Account for absorption.
Sample scalar a ∼ Unif[0, 1].
if a > σs/σt then

▷Terminate subpath at absorption event.
break

end
if b ≥ 3 then

▷Update momentum transfer.
γb = γb−1 · γ( ¯̂ob−1ōb − ̂ōb−2ōb−1).

end
▷Update covariance with next-event estimation.

Set γB = γ( ̂ōb, 1/2(v1 + v2)− ̂ōb−1, ōb).
Set f I

B = γB · υ(ōb−1→ōb→v1) · υ(ōb−1→ōb→v2)
∗.

Update C += 1
q1(ō1 ,ω̂1)

· f I
0 · γ0 · f I

B · γb−1.
▷Sample next vertex of subpath.

▷Sample direction from phase function.
Sample direction ω̂b ∼ ρ(ω̂b−1 · ω̂b).

▷Sample free path.
Sample distance d ∼ σte−σtd.

▷Create next vertex of subpath.
Set point ōb+1 = ōb + d · ω̂b.
Set b = b + 1.

end
end

▷Produce final covariance estimate.
Update C = 1

N C.
return C.

own implementation. While the mean of all approaches agree,
without next-event estimation small sensors exhibit very large
noise variance. This noise reduces with wider sensors.

At the moment our proof of concept implementation is not as
fast as MCX [5]. We hope that some of the ideas introduced for
temporal-only MC [6–8], as well as incoherent path tracing ideas
developed in computer graphics [9–11] can be incorporated into
a fully efficient spatio-temporal Monte Carlo simulator.

3. SAMPLING A SPECKLE FIELD

In this section we formally prove that fields sampled using our
approach have the desired covariance. As mentioned in the
main paper, we assume we are given a list of J sources i1, . . . , iJ ,
sensors v1, . . . , vJ , and time indices t1, . . . , tJ , and wish to sample

J complex numbers ui1
v1 , . . . , uiJ

vJ that have the same covariance
as computed by the MC algorithm that computes covariances
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Algorithm S2: Monte Carlo covariance rendering for heteroge-
neous volumes.

▷Initialize covariance estimate.
Set C = 0.
Set σt,max = max σt(o)
for iteration = 1 : N do

▷Sample a subpath:
▷Sample first vertex.

Sample point ō1 with the probability q1(ō1).
▷Update covariance with single scattering path.

Update C += 1
q1(ō1)

γ( ̂ō1, 1/2(v1 + v2)− ̂1/2(i1 + i2), ō1)·
υ(v1→ō1→i1) · υ(v2→ō1→i2)

∗ · σs(ō1).
▷Continue tracing the subpath.

▷Sample first direction.
Sample direction ω̂1 and compute the probability q1(ō1, ω̂1).
Set b = 2.
Set f I

0 = υ(ō2→ō1→i1) · υ(ō2→ō1→i2)
∗ · σs(ō1).

Set γ0 = γ(̂̄o1, ō2 − ̂1/2(i1 + i2), ō1).
Set γ1 = γ2 = 1.
do

▷Perform Woodcock tracking step for next vertex of subpath.
Set d = 0.
do

Sample scalars χ1 ∼ Unif[0, 1], χ2 ∼ Unif[0, 1].
d += − log(χ1 + 1)/σt,max.
Set point ōb = ōb−1 + d · ω̂b−1.

while ōb inside medium or χ2 ≤ σt(ōb)/σt,max;
▷Account for absorption.

Sample scalar a ∼ Unif[0, 1].
if a > σs(ōb)/σt(ōb) or ōb outside medium then

▷Terminate subpath.
break

end
if b ≥ 3 then

▷Update momentum transfer.
γb = γb−1 · γ( ¯̂ob−1ōb − ̂ōb−2ōb−1).

end
▷Update covariance with next-event estimation.

Set γB = γ( ̂ōb, 1/2(v1 + v2)− ̂ōb−1, ōb).
Set f I

B = γB · υ(ōb−1→ōb→v1) · υ(ōb−1→ōb→v2)
∗.

Update C += 1
q1(ō1 ,ω̂1)

· f I
0 · γ0 · f I

B · γb−1.
▷Sample direction from phase function at ōb.

Sample direction ω̂b ∼ ρ(ω̂b−1 · ω̂b; ōb).
Set b = b + 1.

while true;
end

▷Produce final covariance estimate.
Update C = 1

N C.
return C.

directly. That is, for every j, k,

E
[
u

ij
vj · uik

vk

∗]− E
[
u

ij
vj

]
· E

[
uik

vk

]∗
= C

ij ,ik
vj ,vk (tj, tk) (S48)

To do this we sample N subpaths x⃗s,n. For each subpath we

Algorithm S3: Sampling temporal displacements

Set ∆t1 = 0.
for j = 2 : J do

Set dt = tj − tj−1.
Sample a 3D vector w from a unit normal distribution.
Set ∆dt =

√
2 · D|dt| · w + dt · U.

Set ∆tj = ∆tj−1 + ∆dt.
end
Set ∀j, o

(
tj
)
= ō − ∆0 + ∆tj .

return {o
(
tj
)
}J

j=1.

sample a sequence of temporal displacements ∆⃗n
tj

from T . We

Mean Standard deviation

E
[C

i,i v,
v
(0

,t
)]

0 10 20 30 40 50
0

2

4

6
#10-3

√ V
ar
[C

i,i v,
v
(0

,t
)]

0 25 50
0

0.005

0.01

t[µs] t[µs]

With next-event estimation.

Without next-event estimation, 
sensor diameter 2mm.

Without next-event estimation, 
sensor diameter 1mm.

Without next-event estimation, 
sensor diameter 0.2mm.

Fig. S4. An equal-sample comparison of path tracing algorithms
with and without next-event estimation. We compute temporal-
only correlations (Ci,i

v,v(0, t)) with both approaches and plot the
mean and variance. While at the limit of many samples all algo-
rithms produce the same correlation, when each algorithm is run
for 5× 107 samples only, the estimation of small sensors without
next-event estimation is very noisy. This noise reduces when
we increase sensor size. Next-event estimation can simulate in-
finitesimally small sensors. The simulation uses the parameters
of Fig. 5(b) from the main paper, δ =2 cm.

define N × J paths

x⃗n
j (tj) = ij→⃗xs,n + ∆⃗n

tj
→vj (S49)

We define the sampled fields as the sum of contributions from
these paths. Each path has a phase proportional to its length and
we also need to take into account the attenuation and scattering
amplitude function at the first and last segments, as those are
not sampled by q. This leads to the fields

u
ij
vj =

1
N

N

∑
n=1

u
n,ij
vj (S50)

with

u
n,ij
vj =

√
σs(ōn

1 )

q1(ōn
1 , ω̂n

1 )
s(îj, ōn

1 · ̂̄on
1 , ōn

2 ) · s( ̂ōn
B−1, ōn

B ·̂̄on
B, vj)

· α̃(ij, ōn
1 ) · α̃(ōn

B, vj)
B

∏
b=0

ξ(on
b (tj)→on

b+1(tj)) (S51)

The displacement sampling algorithm is described in Alg.
S3. Without the loss of generality, we assume that {tj}

J
j=1 is a

non-decreasing sequence. The homogeneous and heterogeneous
versions of the field sampling algorithm are summarized in
Algs. S4 and S5, along with a more detailed handling of special
cases such as paths of length 1.

Claim S4 For zero-mean fields where mij

vj = 0, the rendering strategy
of Eq. (S50) follows the covariance

C
ij ,ik
vj ,vk

(
- t

2 , t
2
)
=

∫
P

c⃗xs
(
- t

2 , t
2
)

d⃗xs (S52)

Proof: We provide the proof assuming we attempt to sample

zero-mean fields E[u
ij
vj ] = 0. As the different paths are sampled



Research Article Vol. X, No. X / X 2023 / Optica 8

Algorithm S4: Monte Carlo field rendering for homogeneous
volumes .

▷Initialize field estimate.
Set u = 0.
for iteration = 1 : N do

Sample random phase ζ ∼ Unif[0, 1].
Set z = e2πiζ .

▷Sample first vertex of subpath.
Sample point ō1 with the probability q1(ō1).

▷Sample temporal displacements.
{o1

(
tj
)
}J

j=1 = TemporalDisplacement(ō1).
▷Update field with single scattering path.

Update ∀j, uj += z ·
√

σs(o1(tj))
q1(ō1)

·
υ(ij→o1

(
tj
)
)υ(ij→o1

(
tj
)
→vj).

▷Continue tracing the subpath.
▷Sample first direction.

Sample direction ω̂1 and compute the probability q1(ō1, ω̂1).
▷Sample second vertex of subpath.

Sample distance d ∼ σte−σtd.
Set point ō2 = ō1 + d · ω̂1.
Set b = 2.
Set ∀j, δj = 0.
while ōb inside medium do

▷Account for absorption.
Sample scalar a ∼ Unif[0, 1].
if a > σs/σt then

▷Terminate subpath at absorption event.
break

end
▷Sample temporal displacements.

{ob
(
tj
)
}J

j=1 = TemporalDisplacement(ōb).
Update ∀j, δj += |ob

(
tj
)
− ob−1

(
tj
)
|.

Sample random phase ζ ∼ Unif[0, 1].
Set ∀j, zj = e2πiζ+kiδj .

▷Update field with next-event estimation.

Update ∀j, uj += zj ·
√

σs(ob(tj))
q1(ō1 ,ω̂1)

·

υ(o2
(
tj
)
)→o1

(
tj
)
)→ij)υ(ob−1

(
tj
)
→ob

(
tj
)
→vj)

▷Sample next vertex of subpath.
▷Sample direction from phase function.

Sample direction ω̂b ∼ ρ(ω̂b−1 · ω̂b).
▷Sample free path.

Sample distance d ∼ σte−σtd.
▷Create next vertex of subpath.

Set point ōb+1 = ōb + d · ω̂b.
Set b = b + 1.

end
end

▷Produce final field with correct mean.

Update ∀j, uj = m
ij
vj +

√
1
N uj.

return u.

independently there is no correlation between the contribution

of different paths u
n,ij
vj , and we can express

E
[
u

ij
vj · uik

vk

∗]
= E

[
1

N2 ∑
n

u
n,ij
vj · ∑

n
un,ik

vk

∗
]

= E
[
u

n,ij
vj · un,ik

vk

∗]
. (S53)

The expectation can be expressed as the integral over the path
sampling probability q∫

x⃗s,n ,⃗∆tj

q(⃗xs,n)p(∆⃗tj , ∆⃗tk )u
n,ij
vj · un,ik

vk

∗
(S54)

with
q(ōb) = α̃(ōb−1, ōb)

2 · σs(ōb). (S55)

Algorithm S5: Monte Carlo field rendering for heterogeneous
volumes.

▷Initialize field estimate.
Set u = 0.
Set σt,max = max σt(o)
for iteration = 1 : N do

Sample random phase ζ ∼ Unif[0, 1].
Set z = e2πiζ .

▷Sample first vertex of subpath.
Sample point ō1 with the probability q1(ō1).

▷Sample temporal displacements.
{o1

(
tj
)
}J

j=1 = TemporalDisplacement(ō1).
▷Update field with single scattering path.

Update ∀j, uj += z ·
√

σs(o1(tj))
q1(ō1)

·
υ(ij→o1

(
tj
)
)υ(ij→o1

(
tj
)
→vj).

▷Continue tracing the subpath.
▷Sample first direction.

Sample direction ω̂1 and compute the probability q1(ō1, ω̂1).
Set b = 2.
Set ∀j, δj = 0.
do

▷Perform Woodcock tracking step for next vertex of subpath.
Set d = 0.
do

Sample scalars χ1 ∼ Unif[0, 1], χ2 ∼ Unif[0, 1].
d += − log(χ1 + 1)/σt,max.
Set point ōb = ōb−1 + d · ω̂b−1.

while ōb inside medium or χ2 ≤ σt(ōb)/σt,max;
▷Account for absorption.

Sample scalar a ∼ Unif[0, 1].
if a > σs(ōb)/σt(ōb) or ōb outside medium then

▷Terminate subpath.
break

end
▷Sample temporal displacements.

{ob
(
tj
)
}J

j=1 = TemporalDisplacement(ōb).
Update ∀j, δj += |ob

(
tj
)
− ob−1

(
tj
)
|.

Sample random phase ζ ∼ Unif[0, 1].
Set ∀j, zj = e2πiζ+kiδj .

▷Update field with next-event estimation.

Update ∀j, uj += zj ·
√

σs(ob(tj))
q1(ō1 ,ω̂1)

·

υ(o2
(
tj
)
)→o1

(
tj
)
)→ij)υ(ob−1

(
tj
)
→ob

(
tj
)
→vj)

▷Sample direction from phase function.
Sample direction ω̂b ∼ ρ(ω̂b−1 · ω̂b; ōb).
Set b = b + 1.

while true;
end

▷Produce final field with correct mean.

Update ∀j, uj = m
ij
vj +

√
1
N uj.

return u.

q(ω̂b|ōb) = ρ( ¯̂ob−1ōb · ¯̂obōb+1). (S56)

Substituting the path sampling distribution q defined by
Eq. (S55) and Eq. (S56) as well as Claim S2, we get that the
above expectation reduces to

∫
x⃗s,n ,⃗∆tj

p(∆⃗tj , ∆⃗tk )
B

∏
b=0

f A
b (S57)

as defined in Eq. (S36). Following Claim S3 the integration
over displacements results in the terms f I

b from Eq. (S39), and
we end with the desired covariance of Eq. (S52). So far we

have only considered zero-mean fields where m
ij
vj = 0. This

is usually the case as the field is a complex number. The only
exception is when the sensor vj accumulates some ballistic light
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from ij. In Alg. S4 we ensure the fields we sample are zero mean
by sampling a complex phase at every scattering event. This
does not change the covariance as the same random phase is
added both to x⃗n,j and x⃗n,k. After averaging all paths we add

the desired mean m
ij
vj , which can be computed in closed form as

explained above.
Fig. S5 simulates a few speckle fields sampled using this

algorithm, while varying a few material parameters.
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Fig. S5. Sampling speckle images: we use Alg. S4 to sample speckle images with consistent spatio-temporal variations. We demonstrate
three speckle images under different illumination directions. Note how the speckle shift with illumination angle, demonstrating
memory effect correlations. In subsequent columns the illumination is fixed and we visualize temporal variation of the speckle pattern.
In our simulation the volume is illuminated by a plane wave starting at î1 = 0° and tilting at angular intervals of 0.007°. The simulated
motion includes a mixture of linear and Brownian components with Ux = 25 cm/s, D = 2× 10−8 cm2/s, temporal images are sampled
at intervals of 25 µs. Particles have MFP = 250 µm and isotropic scattering (g = 0). The different rows repeat this simulation while
varying the following parameters. (b) MFP = 150 µm, (c) MFP = 500 µm, (d) g = 0.9, (e) Ux = 0, (f) Ux = 40 cm/s, (g) D = 0, (h) D =
10 × 10−8 cm2/s
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