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Figure 1: Material acquisition: (a) Our setup captures the speckle patterns produced by a scattering volume under coherent laser illumination.
We capture two such speckle images following a small tilt of the illumination beam. From the correlations between these two speckle images
we can directly estimate the phase function of the material, bypassing costly optimization. (b) We use a validation material whose phase
function is precisely known and compare it to the one estimated with our algorithm, showing good agreement. We compare that against a
naive estimate, which assumes the material is thin enough so that light paths scatter only once, and uses the total intensity of light scattered at
different angles as an estimate for the phase function. (c) To visually assess the difference between the naive intensity-based estimate of the
phase function 𝜌 and our accurate reconstruction, we used both phase functions to render a simple test scene of a scattering cube. The true
phase function is narrower than the naive estimate, and the cube appears more translucent.

ABSTRACT
In material acquisition we want to infer the internal properties

of materials from the way they scatter light. In particular, we are

interested in measuring the phase function of the material, govern-

ing the amount of energy scattered towards different directions.

This phase function has been shown to carry a lot of information

about the type and size of particles dispersed in the medium, and is

therefore essential for its characterization.

Previous approaches to this task have relied on computationally

costly inverse rendering optimization. Alternatively, if the material

can be made optically thin enough so that most light paths scatter

only once, this optimization can be avoided and the phase function

can be directly read from the profile of light scattering at different

angles. However, in many realistic applications, it is not easy to

slice or dilute the material so that it is thin enough for such a single

scattering model to hold.

In this work we suggest a simple closed-form approach for ac-

quiring material parameters from thick samples, avoiding costly
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optimization. Our approach is based on imaging the material of

interest under coherent laser light and capturing speckle patterns.

We show that memory-effect correlations between speckle patterns

produced under nearby illumination directions provide a gating

mechanism, allowing us to measure the singly scattered component

of the light, even when observing thick samples where most light

is scattered multiple times.

We have built an experimental prototype capable of measuring

phase functions over a narrow angular cone. We test the accuracy

of our approach using validation materials whose ground truth

phase function is known; and we use it to capture a set of everyday

materials.

CCS CONCEPTS
• Computing methodologies → 3D imaging; Computational
photography.

KEYWORDS
Material acquisition, scattering, speckles, memory effect.

ACM Reference Format:
Marina Alterman Evgeniia Saiko Anat Levin . 2022. Direct acquisition

of volumetric scattering phase function using speckle correlations . In SIG-
GRAPH Asia 2022 Conference Papers (SA ’22 Conference Papers), December
6–9, 2022, Daegu, Republic of Korea. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3550469.3555379

https://doi.org/10.1145/3550469.3555379
https://doi.org/10.1145/3550469.3555379


SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Marina Alterman Evgeniia Saiko Anat Levin

1 INTRODUCTION
Scattering refers to the propagation of light in media composed

of small discrete scatterers, usually particles of varying refractive

properties. As an incident illumination propagates through the

medium, it will interact with scatterers multiple times, and each

such interaction will change its direction. Scattering is commonly

encountered when visible light interacts with a large variety of

materials, for instance biological tissues, minerals, the atmosphere

and clouds, cosmetics, and many industrial chemicals.

Material acquisition refers to the task of recovering the intrinsic

properties of such materials from their appearance, that is, given

some measurement of the light they scatter. The task is of great

value in many application settings. For example, in tissue imaging

it can be used to detect tumors and classify them as malignant or

non-malignant [Boas et al. 2001]; and in blood analysis, to recover

diagnostically important parameters such as red and white blood

counts [Berne and Pecora 2000; Durduran et al. 2010]; in mate-

rial science and fabrication applications, to validate the fidelity of

manufactured material samples [Sumin et al. 2019]; and in flow

cytometry and particle sizing applications, to infer the chemical

composition of nanodispersions [Pine et al. 1990].

Inverse radiative transport [Bal 2009] is studied in graphics,

physics, chemistry, and biomedical sciences. Existing algorithms for

acquiring scattering materials can be roughly classified into three

categories. Methods based on the diffusion approximation consider

optically thick media where high-order scattering is dominant. This

allows for simpler inference and has been used for the acquisition

of both homogeneous [Farrell et al. 1992; Jensen et al. 2001; Munoz

et al. 2011; Papas et al. 2013] and heterogeneous materials [Boas

et al. 2001; Cheong et al. 1990; Donner et al. 2008; Liu et al. 2020;

Tuchin 2000; Wang et al. 2008]. However, it introduces ambiguities

between different parameters [Wyman et al. 1989; Zhao et al. 2014].

At the other extreme, methods based on the single scattering
approximation assume that the unknown medium is so optically

thin that all photons scatter only once. This allows directly mea-

suring scattering parameters of media such as smoke and thin or

dilutable liquids [Fuchs et al. 2007; Gu et al. 2008; Hawkins et al.

2005; Narasimhan et al. 2006]. While the single scattering model

makes parameter extraction direct and simple, not every material

of interest is thin enough for this assumption to hold.

A third class of methods attempts to bridge the gap between

the single scattering and the diffusion extremes, and seeks to use

scattered paths of all lengths. They search for material parame-

ters that explain input images of interest, when plugged into a

Monte-Carlo simulator [Dutre et al. 2006; Novak et al. 2018]. These

methods use various optimization schemes [Antyufeev 2000; Levis

et al. 2015, 2017; Leyre et al. 2014; Prahl et al. 1993], where the mod-

ern approaches include differentiable rendering [Che et al. 2020;

Gkioulekas et al. 2016, 2013; Khungurn et al. 2015; Nimier-David

et al. 2020, 2019; Nindel et al. 2021; Velinov et al. 2018; Zhang et al.

2019] and machine learning [Che et al. 2020; Sde-Chen et al. 2021;

Zheng et al. 2021]. While the approach can handle thicker materials,

the need to simulate multiple scattering events for every candidate

parameter set results in heavy computation.

In this work we relax this computational burden. For the first

time, we propose a technique that can extract the phase function of

a homogeneous material in closed-form. This direct extraction does

not require thin, single scattering samples, and applies to materials

of medium optical thickness. This is made possible by exploiting

speckle statistics formed under coherent laser illumination.

Traditional computer graphics approaches have studied mate-

rial acquisition under incoherent illumination, which is typically

produced under natural illumination, LED, and in general when

imaging resolution is not very high. Incoherent illumination usually

results in smoothly-varying intensity distributions, often referred

to as translucent appearance, and is well modeled by classical geo-

metric optics models of light. In contrast, under coherent imaging
conditions, obtained using laser light imaged in high magnifica-

tion, the wave nature of light leads to speckles, which appear as

pseudo-random high variations in the captured intensity images.

Despite their random appearance, speckles have strong statistical

properties such as the memory effect (ME), implying that speckles

formed under nearby illuminations are correlated shifted versions

of each other, see Fig. 1(a). These fascinating properties have drawn

a lot of attention in the literature [Akkermans and Montambaux

2007; Baydoun et al. 2016; Berkovits and Feng 1994; Dougherty

et al. 1994; Feng et al. 1988; Freund and Eliyahu 1992; Fried 1982;

Osnabrugge et al. 2017] and have been the subject of multiple

textbooks [Erf 1978; Goodman 2007; Jacquot and Fournier 2000;

Kaufmann 2011]. The ME property has been exploited in multiple

settings, in particular for seeing through scattering layers, bypass-

ing very heavy aberration [Alterman et al. 2021; Bertolotti et al.

2012; Chang and Wetzstein 2018; Edrei and Scarcelli 2016a,b; Katz

et al. 2014; Takasaki and Fleischer 2014]. In this work we explore a

very different, novel application of the memory effect.

To this end, we start from a recent theoretical result by Bar et
al. [2021], showing that under certain imaging conditions speckle

correlations act as a gating mechanism, allowing an isolation of

single-scattering light paths. By exploiting this theoretical result,

we propose that as single-scattering light energy is proportional

to the phase function, speckle correlations can produce a closed-

form estimate of such phase functions. While the usage of single

scattering models under previous incoherent imaging conditions

requires that the material would indeed be thin enough so that

most light paths scatter only once, with our coherent approach, we

can isolate singly-scattered light from thicker materials samples,

where most light paths scatter multiple times.

Our approach takes as input two speckle images of the same

material target, captured following a small tilt of the illumination

beam, and uses them to estimate local correlations. We demonstrate

that our framework can recover phase functions, even frommaterial

samples thick enough to exhibit 8 scattering events in a typical light-

path. We have built a proof-of-concept lab prototype, which can

acquire phase functions within a narrow cone of 8
◦
. We validate

our approach against ground truth materials with known scattering

parameters, and use it to measure a set of everyday materials.

Our approach applies mostly to viscous or solid materials, be-

cause it requires two sequential images of the same material, cap-

tured without any Brownian motion of internal scattering particles.

We note, however, that solids have formed so far the hardest test-

case for material acquisition, as most liquids can be easily diluted

to match a single-scattering model [Narasimhan et al. 2006].
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2 BACKGROUND
Notations: we use bold letters for vectors (e.g., 3D points o). We

use a top arrow to denote direction vectors (unit norm 3D vectors),

e.g. ®v. We use circumflex to denote the first two coordinates of a

unit norm 3D vector, namely its projection to the 𝑥𝑦 plane. e.g.

v̂ denotes the 𝑥𝑦 coordinates of the 3D vector ®v. These are also

known as the 𝑥𝑦 direction cosines.

2.1 Material representation and acquisition
Representation. Scattering materials are usually composed of

small particles with different refractive properties. We use a sta-

tistical description of the bulk optical properties of the medium.

In particular, the extinction coefficient 𝜎𝑡 describes the extinction

cross section of the scattering particles per unit volume, which is

proportional to the density of scattering particles in the material. It

is the sum of the scattering and absorption coefficients 𝜎𝑡 = 𝜎𝑠 +𝜎𝑎 ,
which model, respectively, the portion of energy that is scattered

and absorbed per unit length along the path. The phase function of

the material 𝜌 (acos(®i · ®v)) describes the amount of energy scattered

by a scatterer illuminated from direction î toward direction v̂. 𝜌 is a

function of the scatterers’ shape and refractive index. For spherical

particles it can be computed using Mie theory formulas [Bohren

and Huffman 1983; Frisvad et al. 2007; van de Hulst 1981]. It is

often assumed that 𝜌 is rotationally invariant in the sense that it

depends only on the inner product (®i · ®v) of the illumination and

viewing directions rather than on absolute directions. It is com-

mon to characterize the phase function by an anisotropy parameter

−1 ≤ 𝑔 ≤ 1, where 𝑔 = 0 corresponds to scattering equally in all

directions, and𝑔 = 1 to fully forward scattering. The mean free path

(MFP) of the material is defined as the average distance that light

travels in the volume between two successive scattering events,

and can be shown to equal the inverse of the extinction coefficient,

𝑀𝐹𝑃 = 1/𝜎𝑡 . Given a scattering volume, it is common to express

its geometric dimensions relative to the MFP. For example, a vol-

ume has optical depth 𝑂𝐷 = 2 if its thickness is 2 ·𝑀𝐹𝑃 , meaning

that light traveling through the volume undergoes on average two

scattering events.

In this work we are interested in measuring the phase function

𝜌 , and will not address 𝜎𝑡 , 𝜎𝑠 , 𝜎𝑎 . We model 𝜌 as a general function

and do not assume low-order parameterizations, such as a Henyey-

Greenstein phase function [Henyey and Greenstein. 1941]

Phase function using single scattering models. A basic strategy

for measuring phase functions [Narasimhan et al. 2006] is using

optically thin samples where most light paths scatter only once. In

this case, if we illuminate the material from direction ®i and image

from direction ®v, the amount of measured energy is equivalent

to the phase function at angle acos(®i · ®v) (after accounting for

foreshortening and other geometric factors). In the paraxial regime

we can approximate this angle as the length of the displacement

vector 𝝉 = v̂ − î, and acos(®i · ®v) ≈ |𝝉 |, see Fig. 3(a). This model fails

as material thickness increases and light scatters multiple times.

2.2 Speckle correlations
Consider a volume with scattering particles as in Fig. 1(a). We de-

note by 𝐼 î (v̂) the intensity scattered by a material illuminated from

direction®i toward viewing direction ®v, when parameterized by their

Figure 2: Notation: Speckle images obtained on the sensor plane,
from two illumination directions î1, î2. Notice ME correlations be-
tween the two speckle patterns. We mark one pair of viewing di-
rections v̂1, v̂2 satisfying the ME conditions of Eq. (2), and the corre-
sponding displacements 𝚫,𝝉 .

2D projections î and v̂. Assuming the same particle instantiation

is illuminated from directions î1, î2, and considering two viewing

directions v̂1, v̂2, we define the speckle covariance as:

C
î1,î2
v̂1,v̂2 ≡ 𝐸

[
𝐼 î

1

(v̂1) · 𝐼 î
2

(v̂2)
]
− 𝐸

[
𝐼 î

1

(v̂1)
]
· 𝐸

[
𝐼 î

2

(v̂2)
]
, (1)

where the expectation is taken with respect to multiple realizations

of random media with the same statistical properties (multiple

samples from the same bulk material parameters).

The memory effect of speckles states that two speckle fields

generated by nearby illumination directions are correlated shifted

versions of each other. That is, for small displacements 𝚫 = î2 − î1,
we have 𝐼 î

1 (v̂) ≈ 𝐼 î
2 (v̂ +𝚫), as illustrated in Fig. 2. This correlation

decays as material thickness or illuminators’ displacement increase.

The accurate way to calculate the covariance defined in Eq. (1) is

by numerically solving wave equations [Thierry et al. 2015; Treeby

and Cox. 2010; Yee 1966]. However, in this work we are interested

in direct expressions relating them to material parameters.

Classical speckle theory developed by Twersky [1964] suggests

that the covariance can be expressed as an analytic integral over

the space of path-pairs 𝑝1 from ®i1 to ®v1 and 𝑝2 from ®i2 to ®v2, as
illustrated in Fig. 3(b). As in classical ray tracing formulation, each

path has a throughput, as the energy along the path is attenuated

in proportion to its length, the extinction coefficient and scattering

phase function. However, in a coherent setting the throughput is a
complex number, whose phase is proportional to the path length.

Due to the large variation of path lengths, most path pairs contribute

complex numbers with rather random phases, and the average

of such complex numbers is zero. Indeed, [Bar et al. 2019] prove

analytically that many path pairs can be omitted. Based on this

observation they can derive an efficient path sampling scheme,

focusing only on path pairs that share their nodes, as illustrated in

Fig. 3(c). The reduced path-integral is evaluated using Monte-Carlo

ray tracing algorithms [Dutre et al. 2006; Novak et al. 2018].

In [Bar et al. 2021], it was further suggested that many of the

longer path pairs still contribute random phases, and in fact, most

correlation can be attributed to single scattering paths, of the form

𝑝1 = ®i2→o→®v2, 𝑝2 = ®i2→o→®v2 (Fig. 3(d)). This simplification is

the ray analogous of the first Born approximation [Newton 2002].

Its main advantage is that unlike the full set of path pairs, which
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Figure 3: Single scattering correlations: (a) For a thin sample, most light paths do not scatter more than once. The intensity scattering at angle
𝝉 = v̂1 − î1 is proportional to the phase function 𝜌 ( |𝝉 | ) . (b-c) Attempting to explain speckle correlation using path pairs. (b) The complete
description includes all pairs of paths from ®i1 to ®v1 and from ®i2 to ®v2. (c) Most such pairs are uncorrelated, and MC rendering algorithms
only integrate path pairs sharing all intermediate nodes. (d) In practice, many of the path pairs in (b) are still uncorrelated and [Bar et al.
2021] suggests to approximate correlation by considering only path pairs that scatter at a single location. (e-f) Comparing between the exact
correlation and the single scattering approximation of Claim 1. As we increase illuminator displacement 𝚫, single scattering becomes exact
even at the thicker optical depth demonstrated in (f). For ease of visualization all curves were normalized to have the same maximum.

should be evaluated using Monte-Carlo sampling, single scattering

paths can be evaluated in closed-form, to be summarized below.

While the result can be generalized, to simplify notation we con-

sider illumination and viewing directions in the paraxial regime,

forming a small angle with the optical 𝑧-axis. As reported in the

literature, non-zero correlation is present mostly when the displace-

ment between (the 𝑥𝑦 projections of) the illumination directions

equals the displacement between viewing directions î2− î1 = v̂2−v̂1.
We parameterize these illumination and viewing pairs using the 2D

displacement vectors 𝚫,𝝉 (see Figs. 2 and 3(d)):

𝚫 ≡ î2 − î1 = v̂2 − v̂1, 𝝉 ≡ v̂1 − î1 = v̂2 − î2, (2)

encoding the angle between the two illumination vectors and the

angle between the illumination and viewing directions, respectively.

With this notation we can consider the phase function 𝜌 ( |𝝉 |) at
angle 𝝉 . Finally, we denote the illumination wavelength by 𝜆 and

the wave-number as 𝑘 = 2𝜋/𝜆. With this notation, [Bar et al. 2021]

derive an analytic expression for the single scattering correlation.

Claim 1. Consider a scattering slab of thickness 𝐿. A single scat-
tering approximation to the speckle correlation (Eq. (1)) reduces to:

C (𝝉 ,𝚫) =
(
𝜌 ( |𝝉 |)𝐿𝜎𝑠𝑒−𝜎𝑡𝐿sinc

(
𝑘𝐿

2

(𝚫 · 𝝉 )
))

2

. (3)

In Sec. 3 we propose that based on this formula, the phase func-

tion of the material can be read from correlation measurements.

Evaluating the single scattering approximation. In Fig. 3(e-f) we

numerically evaluate the accuracy of this single-scattering approx-

imation. We compare correlations produced by the closed-form

expression in Claim 1 to those produced by a full Monte-Carlo

simulator [Bar et al. 2019], which we treat as exact as it was exhaus-

tively compared against an accurate wave optics solver [Thierry

et al. 2015]. We simulate a forward-scattering phase function, which

is common in many materials, such as tissue [Igarashi et al. 2007;

Tuchin 2000].

We plot correlation as a function of the scattering angle 𝝉 =

(𝜏𝑥 , 0) (see definition in Eq. (2)), for a few values of illuminator

displacements and two material thicknesses. For reasons that will

be explained next, we consider illuminators displacement in the

orthogonal direction, of the form 𝚫 = (0,Δ𝑦). In the first case

(Fig. 3(e)), 𝑂𝐷 = 1 and thus most light paths scatter only once.

Indeed the closed-form single scattering expression agrees with the

exact MC covariance for all Δ𝑦 values. In the second case 𝑂𝐷 = 4

(Fig. 3(f)), and most light paths scatter multiple times. When the

illuminators displacement isΔ𝑦 = 0, the two imageswe compare are

identical, and it can be shown [Alterman et al. 2021] that correlation

equals the total, multi-path intensity scattered to that direction.

If the optical depth is larger than 1, long paths contribute a lot

to the intensity, leading to a clear gap with the single scattering

approximation. However, as the displacements Δ𝑦 between the

illuminators increase, the single scattering expression becomes

an accurate approximation to the covariance, because long path

pairs originated at two different directions î1, î2 exhibit larger phase
variations, and hence they decorrelate and do not contribute to the

covariance.

We acknowledge, however, that Eq. (3) also shows that correla-

tion decays exponentially with 𝜎𝑡𝐿, which is essentially the optical

depth of the material. As a result, the single scattering approxi-

mation is only useful in low to medium optical depths. For very

large ODs, very limited correlation is actually present between the

images, and cannot be reliably measured.

3 PHASE FUNCTION FROM SPECKLES
In this work we explore an important practical application of the

theoretical result of [Bar et al. 2021]. For intuition, note that in a

single scattering event, when light scatters from direction î1 toward
direction v̂1 in direction 𝝉 = v̂1− î1, the amount of scattered light is

determined by the phase function at the angle 𝜌 ( |𝝉 |). If correlation
can isolate single scattering paths, then as Eq. (3) states, correlation

measured at different scattering angles is proportional to the phase

function. As a result, by detecting correlation between speckle patterns
at different scattering angles we can directly read the phase function
of the material. This has a big practical advantage, because even in

scattering volumes of medium thickness, one can extract the phase

function without a computationally demanding inverse rendering

optimization [Gkioulekas et al. 2013].
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1 (v̂) (c) 𝐼 î

2 (v̂) (d) 𝐼 î
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Figure 4: Imaging setup and correlation estimation: (a) A 4f system with two lenses and a sample between them. An illumination source is
varied at the focal plane of the first lens to generate a directional beam. Scattered waves are captured by a sensor at the focal plane of the 2nd
lens. (b) Speckle image 𝐼 î

1 (v̂) from the first illumination, the saturated pixels correspond to the direction î1. (c) Speckle image 𝐼 î
2 (v̂) from the

second illumination. We zoom on the speckle pattern in two local windows, one of them displaced horizontally relative to the saturated region,
while the other is displaced vertically. The horizontal window exhibits better correlation than the vertical window. (d) Image (c) shifted to
match (b). (e) Local correlations between (b) and (d), evaluated as in Eq. (4), demonstrating the anisotropic shape of the correlation. Correlation
is stronger along the horizontal axis than along the vertical axis. Correlation at the very central angles is corrupted by the ballistic term.

Acquisition setup. Our imaging system is visualized in Fig. 4(a).

We use a 4f system consisting of two lenses of focal length 𝑓 sepa-

rated by distance 2𝑓 , and place the scattering slab halfway between

them. We illuminate the system with the output of a fibered laser

(632nm), acting as a coherent point light source, placed at the focal

plane of the first lens (i.e. the plane at distance 𝑓 before it). This

generates a collimated beam illuminating the sample. The point

source is placed on a 2D translation stage, allowing us to translate

it laterally along the focal plane. By translating the point source we

can tilt the illumination beam, illuminating the sample in different

angles. Similarly, we place a 2D sensor at distance 𝑓 after the second

lens, so that each sensor pixel measures a directional view of the

scattering target, (as all rays emerging from the scene at a certain

direction merge into one sensor point on the focal plane). Therefore,

for each illumination angle î, we can capture on the sensor plane

an image 𝐼 î (v̂) corresponding to a dense set of viewing directions

v̂. For simplicity, we assume that the optical axis of the imaging

system is aligned with the z axis.

Empirical correlations. In Fig. 4 we demonstrate a typical acqui-

sition. We move the illumination source vertically, and capture two

speckle images 𝐼 î
1 (v̂), 𝐼 î2 (v̂) from two illumination directions. The

speckle spread in Fig. 4(b-c) is limited to a circle corresponding

to the aperture of the acquisition lens. We shift 𝐼 i
2

by 𝚫 to get

𝐼 i
2 (v̂ + 𝚫) (Fig. 4(d)), so that the speckle features are aligned.

To compute the correlation at scattering angle 𝝉 , we want to look
at the product of the two images in Fig. 4(b,d). However, looking at

the product at a single pixel would provide a very noisy estimate of

the correlation, due to the large variation among speckle patterns.

Moreover, when a lot of multiply scattered light is present, the

correlation can be rather weak, and its detection is even more sen-

sitive to noise. To eliminate the noise we need to average multiple

measurements. For that we use spatial averaging and estimate

C (𝝉 ) =
1

𝑁

∑︁
𝜻 ∈𝑊

𝐼 î
1

(î1 + 𝝉 + 𝜻 ) · 𝐼 î
2

(î1 + 𝝉 + 𝜻 + 𝚫) (4)

− 1

𝑁

∑︁
𝜻 ∈𝑊

𝐼 i
1

(î1 + 𝝉 + 𝜻 ) · 1

𝑁

∑︁
𝜻 ∈𝑊

𝐼 î
2

(î1 + 𝝉 + 𝜻 + 𝚫),

where𝑊 denotes a local window around 𝝉 , and 𝑁 is the number

of pixels in that window. Larger windows reduce noise but also

reduce the resolution at which we measure the phase function. In

practice, in our implementation we used 100 × 100 pixel windows,

where the grain of individual speckle features is about 2 pixels. The

total aperture diameter is about 4000 pixels. In Appendix Fig. 7

we test the effect of this window size. To further reject noise, we

imaged multiple samples of the same material and averaged the

correlations produced by such pairs as in Eq. (1). We discuss this

and other implementation details in App. A.

In App. C we derive an analytic expression for the signal to noise

ratio at which C (𝝉 ) can be detected:

SNR =
𝑁 |C (𝝉 ) |2

𝐸 [𝐼 î1 (î1 + 𝝉 )]4
, (5)

where the denominator corresponds to the averaged intensity in

the image region. The SNR improves when the number of averaged

pixels 𝑁 increases. More importantly, Eq. (5) implies that the SNR

decreases when the ratio between the actual correlation C (𝝉 ) and
the overall measured intensity is lower. Thus, an estimate of C (𝝉 )
is noisier as the optical depth of the material increases, as according

to Eq. (3), correlation decays with 𝑂𝐷 . However, below we explain

that for a given𝑂𝐷 , some selections of the illumination and viewing

directions lead to better correlation estimates.

Selecting measurement directions. As stated in Sec. 2, we follow

previous work and consider rotationally invariant phase functions,

which depend only on |𝝉 |, the magnitude of the angle between

the illumination and viewing directions, rather than on its exact

orientation.We note, however, that even if the scattering is isotropic

and 𝜌 is rotationally invariant, the correlation in Eq. (3) is not
rotationally invariant. According to Eq. (3), some selections of 𝝉
would lead to a lower correlation than others, due to the 𝑠𝑖𝑛𝑐 term.

Thus, out of all 𝝉 directions with the same magnitude |𝝉 |, we can
select directions which are expected to produce higher correlations

in Eq. (3), by selecting the illuminator to viewpoint displacement 𝝉
to be orthogonal to the illuminators displacement 𝚫:

(𝚫 · 𝝉 ) = 0. (6)

Fig. 4(e) visualizes the windowed correlations of Eq. (4). We see

high correlation along the horizontal axis, and correlation decays

when moving along the vertical axis. As we shift the source verti-

cally, this agrees with Eq. (6), stating that the correlation is maximal

when 𝚫,𝝉 are orthogonal. As another way to see this, the insets of
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Fig. 4(b,c) zoom on two speckle windows. For a window displaced

horizontally, speckle patterns under the two illuminations resemble

each other, while for a vertical displacement, no visual similarity is

observed. According to Claim 1, if we move along the horizontal

axis, the correlation values we read are proportional to the phase

function of the material.

Ballistic light. When light propagates through a scattering vol-

ume, a significant part of the energy is scattered, but depending

on the OD, some amount of ballistic light continues in the original

direction. Since our acquisition setup is based on a 4f relay, the

ballistic light is focused in a small number of pixels. Despite the

fact that this is an exponentially small portion of the overall energy,

as this energy is focused at a small number of pixels, these ballistic

pixels are highly saturated, as can be seen in Fig. 4(b,c). As the

energy of the ballistic term at these pixels is much higher than the

energy of the scattered light, it heavily corrupts scattered values,

even when HDR capture is used. We elaborate on this problem in

App. A. The ballistic pixels correspond to small 𝝉 values, and as a

result, the smaller angles of the phase function cannot be measured.

At the other end, the lens aperture limits the maximal scattering

angle we could measure to about 8
◦
. Thus, our current setup only

measures a limited portion of the phase function. One can remove

this restriction with a more complicated acquisition setup that

would allow rotating the camera around the sample, but we did not

implement it for this proof-of-concept demonstration.

4 RESULTS
4.1 Validation materials
To validate our approach we generated two scattering materials, by

dispersing two types of micro-spheres in agarose: 10𝜇𝑚 diameter

SiO2, and 4𝜇𝑚 polystyrene. To avoid scattering at the surface inter-

face, we sandwich the material between two microscope glass slides

to generate flat boundaries. We used micron-precision spacing stick-

ers (ThermoFisher AB0578) between the two slides to ensure they

are parallel, and the sample thickness is uniform. These stickers

are of thickness 250𝜇𝑚 and we used 1 − 2 layers depending on the

material of interest. We use Snell’s law to correct the ingoing and

outgoing ray directions, accounting for the refractive indices of the

agar, glass and air.

We estimate the optical depth of the material by measuring

the ratio between the intensity of an unscattered light (without

a sample), and the ballistic term. This is an approximation since

the ballistic term is somewhat aberrated. For the two validation

materials, absorption is negligible.

As particle diameter and refractive index are known, we can

compute the phase function usingMie theory [Bohren and Huffman

1983; Frisvad et al. 2007]. In Fig. 5 we plot the estimated correlations

for a few illuminator displacements. At Δ𝑦 = 0 the correlation

involves all multiple scattering paths, and for thick samples this is

very different from the ground truth phase function. However, as the

displacementΔ𝑦 increases the correlation can be attributed to single

scattering paths alone, and empirical correlation agrees well with
the ground truth. We have repeated the measurement with multiple

slices of the same material, at various thicknesses, all showing good

agreement with the ground truth. We could estimate the correlation

even at𝑂𝐷 = 7, where most paths scatter much more than once. As
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Figure 5: Validation results: We compare speckle correlations ac-
quired with our setup to the ground truth phase function computed
using Mie theory. For small illumination displacements 𝚫, the cor-
relation contains multiple scattering. As 𝚫 increases, correlation is
only attributed to single scattering and is well matched with the
Mie function. Correlation can isolate single scattering even in thick
samples with𝑂𝐷 = 7. Top row: 10𝜇𝑚 Si02 particles, and lower row
4𝜇𝑚 polystyrene, both mixed with agarose. For each material we
demonstrate two samples at different thicknesses.
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Figure 6: Everyday materials: Speckle correlation measured from
various everyday materials. While we do not have a ground truth
reference, we measured both a thin and a thick sample of the same
material. Isolating single scattering correlation on the thinner sam-
ple is simpler, and we compare it with the correlations extracted
from the thicker samples. Materials where the thinner reference is
not a real single scattering one are marked with asterisk. vertical
axis uses log scale.

discussed above, when material thickness increases the correlation

estimate is noisier. Appendix Fig. 11 demonstrates a failure case.
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4.2 Common materials
After validation, we used our approach for acquiring the phase

functions of various everyday materials. We plot some results in

Fig. 6, and Appendix Fig. 10. While we do not have ground truth,

we prepared both a thin and a thicker sample of the same material.

The thinner samples allow for a better correlation estimate, and we

use them as a reference, while plotting correlation curves measured

from the thicker samples. As before, at small illuminator displace-

ments Δ𝑦 the correlation is not free of multiple scattering paths,

but as Δ𝑦 increases, single scattering dominates and the correlation

matches the one measured from an optically thinner sample.

For some of the tested materials, the thin samples are single-

scattering (measured OD around 1). However, not all materials

could be made sufficiently thin. Figs. 6 and 10 mark with asterisks

materials where a single scattering reference was not achieved.

As another way of assessing the quality of the estimate, we note

that for 𝝉 values orthogonal to 𝚫, the single scattering correlation

formula in Claim 1 does not depend on 𝚫. In practice, for small

Δ𝑦 values the correlations estimated from pairs at different Δ𝑦

displacements do vary with Δ𝑦 , because they include multiply

scattered light. However, as Δ𝑦 increases, correlations for different

Δ𝑦 values are consistent, see e.g. the yellow and purple curves in

the figure. This agreement implies that at such Δ𝑦 values, we have

managed to isolate the single scattering component of the light,

and we can use these correlations as an estimate of the true phase

function.

In App. B we fitted the correlation-based phase functions of

Fig. 6 with a Henyey-Greenstein model [Henyey and Greenstein.

1941], and provide a table summarizing anisotropy parameters. We

compare these with a simpler, intensity-based estimate of the phase

function as we explain next.

Code and data. are available for public usage at this URL.

4.3 Rendering visualization
In Fig. 1(c) and Appendix Fig. 12 we visualize the difference be-

tween the phase function estimated from speckle correlations and

the naive estimation from intensity profiles. Intensity estimation

simply assumes the material is thin enough to be treated as singly

scattered, and hence the intensity scattered to different angles is

the phase function. As explained by [Alterman et al. 2021], this is

equivalent to the Δ𝑦 = 0 curve in the previous figures. We fitted

both estimates with a Henyey-Greenstein phase function [Henyey

and Greenstein. 1941], and used it in a Mitsuba renderer to render

a simple scene, consisting of a scattering cube and a diffused basis

plane. An incoherent illumination source is located behind the cube,

and light scattering through this cube casts some shadow on the

basis plane. While the difference between the correlation-based

and intensity-based phase estimate may seem small when plotted

as a function of angle, the small gap translates into a significant

appearance difference.

5 DISCUSSION
We present a simple approach for reading the phase function of a

volumetric-scatteringmaterial from the correlation between speckle

patterns, produced when the material is imaged under coherent

laser illumination. We show that speckle correlations serve as a

gating mechanism, which can isolate single-scattering light paths.

Thus, even in thick samples where most light paths scatter multiple

times, the correlated portion can be explained by single scattering

paths. This singly-scattered correlation is proportional to the phase

function. We have validated our approach against ground truth

materials, demonstrating accurate agreement.

Below we discuss remaining limitations.

Optical thickness. Our approach can estimate phase functions

from material samples of modest optical depth. This restriction

results from the fact that as OD increases, correlation is weaker,

and its estimation is noise sensitive. In our current implementation

we managed to measure materials of OD below 8.

Angular range. Our current proof-of-concept implementation

only covers a limited range of angles. The largest scattering angle is

limited by the camera aperture, and in our setup it is about 8
◦
. Our

attempts to increase the aperture resulted in too many aberrations.

Capturing larger angles would require a more complex setup that

can rotate the camera around the sample, as in [Gkioulekas et al.

2016]. From the other end, the very forward scattering angles are

precluded by ballistic light.

Estimating material density. Another important component of

material acquisition is the estimation of 𝜎𝑡 , 𝜎𝑠 , 𝜎𝑎 , or equivalently,

the estimation of particle density and absorption. Ideally, 𝜎𝑡 can

be computed by measuring the sample thickness 𝐿 and the ratio

between the maximal intensity of the ballistic light and the actual

power of the laser (measured without any material). However, as

the ballistic light is aberrated, this provides a coarse estimate.

Solid samples. Our approach requires two successive images of

the same material imaged without any Brownian motion of internal

particles, as such motion will reduce the correlation between the

measured speckles. This can effectively be achieved with viscous

or solid materials. However, these materials are actually the main

open challenge, as liquids can easily be diluted and measured as

in [Narasimhan et al. 2006].

Tissue. One of the more interesting applications of material ac-

quisition is distinguishing between different types of tissue, e.g. for

tumor detection. However, tissue is not yet covered by our model.

The first issue is that we assume a flat interface and ignore any

scattering and refraction at the surface boundary. In practice, tissue

surface is not flat and a lot of scattering happens at the boundary.

Additionally, in contrast to our isotropic scattering assumption,

tissue exhibits significant anisotropy due to orientated tissue fibers.
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Direct material acquisition using speckle correlations
Supplementary Appendix
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Figure 7: Window size: Correlations computed, with different win-
dow sizes 𝑤 for spatial averaging. For smaller window size the cor-
relation is noisy, and for very large ones the phase function is over
smoothed. This result corresponds to the top left sample of Fig. 5,
demonstrating 10𝜇𝑚 beads at𝑂𝐷 = 4.5, correlation for Δ𝑦 = 5.4𝑜 .

A IMPLEMENTATION DETAILS
Setting illumination diameter. To build a speckle acquisition sys-

tem, one should adjust the resolution of individual speckle features

(namely the speckle grain) to be about 1-2 pixels wide. This is a

combination of two conflicting goals. On the one hand, if the speck-

les are smaller then a pixel, their contrast is blurred. On the other

hand, if speckle features are much larger than a pixel, this is also

sub-optimal as it reduces the number of different speckle samples

we collect on the sensor. As the speckles we measure are in the

Fourier plane, their size is inversely controlled by the diameter of

the beam illuminating the scattering sample. In our implementa-

tion, with a 10.5𝑐𝑚 focal length, a 5.5𝜇𝑚 pixel pitch and a 632𝑛𝑚

illumination, we used a 3𝑚𝑚 beam diameter.

Spacing glass slides. In our implementation we cast a sample

of the target material sandwiched between two microscope glass

slides. We used spacing stickers (gene frames from ThermoFisher

scientific AB0578) to ensure the two slides are actually parallel and

the sample thickness is uniform. The stickers have a thickness of

250𝜇𝑛 and an open area of 28 × 17 mm. For some of the optically

thick materials we tested, the 250𝜇𝑚 spacing translated into a very

large OD. As we also tried to get real single scattering references, in

some cases we just used tape layers whose thickness was measured

at about 40𝜇𝑚. The result, however, is less uniform than the spacing

stickers.

Capturing multiple images. If we capture two images of the same

sample and compute their empirical product as in Eq. (4), we often

still get a noisy estimate to the speckle correlation, because the

number of samples we have in a 100 × 100 pixel window is limited.

This is especially a problem when the 𝑂𝐷 is high and correlation

is weak relative to the overall scattered energy.

In Fig. 7 we test the effect of the window size on the estimated

covariance. As the number of pixels 𝑁 in the window increase, less

noise is present. However, if the window is too wide, the structure

of the phase function is blurred out.
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Figure 8: Full hardware setup: Top row: Our hardware lab setup. The
setup consists of two 4f systems, which we implement using 4 macro
lenses (Nikon 105 mm f/2.8D). Lower row: A schematic of our setup.
The first 4f system relays the laser source through the aperture to the
illumination plane. The scattering sample is located at the Fourier
plane of a the imaging lens. We use a camera on the opposite side of
the sample, focused at infinity. This part corresponds to a 4f system
around the sample.

To improve correlation estimation, we want more than one sam-

ple of the samematerial so that we can average the empirical speckle

products from multiple samples as in Eq. (1). With an illumination

beam diameter of 3𝑚𝑚 we could illuminate multiple locations on

the 28×17 mm sample and capture multiple speckle images. To this

end we place our sample on a motorized translation stage, shift it,

and capture multiple images. In practice not all translated images

are good—the sample may contain some air bubbles, and also, de-

spite the usage of spacing stickers, its thickness is not fully uniform.

To filter out the bad images, we look at the maximal energy of the

ballistic term, and reject images in which the ballistic term is too

far from the median.

To allow translating the sample independently of the 3𝑚𝑚 aper-

ture, we effectively built two relay systems and placed the aperture

at a plane conjugate to the sample plane, see Fig. 8.

Registering speckle images. Another issue we had to address is

that the lens introduced some aberration. Thus, converting a pixel

at position 𝑥𝑦 to direction is not a simple inverse tan function.

Without accounting for this distortion, the correlations cannot be

detected. Our goal is to compute correlations between images 𝐼 î
1 (v̂),

𝐼 î
2 (v̂) taken under different illumination directions. We start by

detecting the strongest pixel in each image, which corresponds to

the directions î1, î2 and compute the shift 𝚫 = î2 − î1. We globally

shift 𝐼 î
2 (v̂) by 𝚫 as in Fig. 4(d), but due to optical distortions, this

is usually not enough to actually align the images. As a result, in

different image positions we still see some local shifts between the
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Figure 9: Aberrations of the ballistic light (a) Aberrations due to
surface imperfections of the sample. The center of the ballistic term
is not a symmetric Jinc. (b) Reflections and flare in a direct image of
the laser (no scattering sample). These may not be negligible when
added to the scattered speckle values. Note that the two images in
(a,b) zoom on a different part of the sensor.

two speckle images. To account for this, for every 100×100 window

we average, we first try to locally shift the windows by a few pixels

to maximize the correlation.

Validation-sample preparation. To prepare validation materials

we mixed agarose powder with distilled water, and added precision

micro spheres. We mixed the hot blend using the Vortex mixer

that blends fluids very thoroughly. After the blend cools down, this

results in micro spheres embedded uniformly in an agarose gel.

We used silica (SiO2) micro spheres of 10𝜇𝑚 sold in powder and

4𝜇𝑚 polystyrene latex particles in liquid suspension. Both were

provided by Merck.

Ballistic problems. Despite the fact that the ballistic term is an

exponentially small portion of the overall energy, in our 4f relay

all ballistic light is focused in a small set of pixels. Thus, pixels

corresponding to ballistic light are highly saturated, as can be seen

in Fig. 4(b,c). In theory, for a circular illumination beam the ballistic

term can be modeled as a Jinc function, and we have tried to use

HDR capture and subtract it from the speckle image. This is not

practical for two reasons, visualized in Fig. 9. The first problem

is demonstrated in Fig. 9(a). As our aperture is circular we expect

the ballistic term to look like a radially symmetric Jinc function.

However, as demonstrated in Fig. 9(a), often we do not achieve

this exact shape. This is due to the fact that despite our attempts

to generate flat surface boundaries using microscope glass-slides,

the sample is not sufficiently uniform, either because the glass is

not of sufficiently high precision, or because the leading medium

is not truly uniform. For the validation materials, the precision of

the agarose is high, yet some small volumetric variations in the

index of refraction are present. This is even more of a problem with

various everyday materials, which are not designed to be uniform

in any scientific standard. A second problem is demonstrated in

Fig. 9(b), showing a long exposure image of the laser light going

directly to the camera, without any sample. Some flare and other

inter-reflections through the optics are visible. While these are

orders of magnitude weaker with respect to the maximum of the

ballistic term, they are not always negligible with respect to the

scattered wavefront, because the scattered light is weaker than the
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Figure 10: Additional materials: Speckle correlationmeasured from
various common materials. While we do not have a ground truth
reference, we measured both a thin and a thick sample of the same
material. Isolating the single scattering correlation on the thinner
sample is easier. We compare it with the correlations extracted from
the thicker samples. Small 𝚫 displacements involve multiple scat-
tering, but with larger ones, correlation is mostly due to single scat-
tering light, and matches the reference from the thinner sample. ∗

stands for materials where the thinner reference is not a real single
scattering one. y-axis is plotted using log scale.

maximal value of the ballistic term. As a result, a small amount of

flare can heavily corrupt the speckle measurements.

B ADDITIONAL RESULTS
Fig. 10 follows on Fig. 6, demonstrating acquired phase function

from additional materials. Note that the milk sample in Fig. 10 is

mixed with agarose powder to solidify it, as we cannot measure

liquids.

In our validation materials there is not much absorption and

whenever a light path interacts with a scattering particle it actu-

ally scatters to a new direction. In contrast, some of the common

materials in Figs. 6 and 10 do absorb light. Hence the multiply

scattered light is attenuated compared to the singly scattered light.

This absorption makes the detection of single scattering correlation

less noisy, even in larger ODs. In Fig. 11 we demonstrate failure

case, where we attempt to estimate the correlation from a very

thick sample, of 𝑂𝐷 = 11. This correlation is too noisy to be of any

practical usage.

For the phase functions in Figs. 6 and 10, we use the measured 8
◦

angular cone to fit a parametric Henyey-Greenstein model [Henyey

and Greenstein. 1941]. We summarize the anisotropy parameters

of these functions in Table 1. We compare these values with the

anisotropy parameter of a naive estimate from intensity profiles.

In Fig. 12 we visualize the effect of phase function accuracy when

used for rendering, see discussion in Sec. 4.3 of the main paper.
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Figure 11: Noisy correlation result: Thick clay with𝑂𝐷 = 11.1, at
this thickness the correlation computed is too noisy to be of practice
usage.

Material name 𝑔 (intensity) 𝑔 (correlation)
10𝜇𝑚 SiO2 0.94 0.97

4𝜇𝑚 polystyrene 0.91 0.93

Lotion 0.85 0.90

Honey 0.93 0.96

Wax 0.88 0.93

Toothpaste 0.88 0.92

2lip 0.94 0.97

Milk 0.87 0.92

Mustard 0.79 0.87

Date 0.91 0.95

Conditioner 0.93 0.96

Clay 0.87 0.92

Table 1: Summarizing the anisotropy parameter 𝑔 for measured
phase functions. We fit the measured phase functions in Figs. 6
and 10 with a parametric Henyey-Greenstein model [Henyey and
Greenstein. 1941] and summarize the numerical values.

Lotion Intensity, 𝑔 = 0.85 Lotion Correlation, 𝑔 = 0.9

Figure 12: Rendering with estimated phase function: Visualizing
appearance differences, for a phase function estimated from speckle
correlation vs. a naive estimate from intensity profile. We use a
lotion sample from Fig. 6 of the main paper.

C SIGNAL TO NOISE RATIO IN COVARIANCE
ESTIMATION

Here we explain Eq. (5) of the main paper, and derive the signal to

noise ratio we expect to achieve, when estimating covariance em-

pirically from speckle images. For that, let us consider two complex

random variables 𝑢1, 𝑢2, representing the complex speckle fields

scattered from the same medium under two different illumination

directions. It has been previously noted [Goodman 2007] that due

to the central limit theorem, speckle fields follow a multi-variate

Gaussian distribution. We thus assume that 𝑢1, 𝑢2 are sampled from

a zero mean Gaussian distribution with covariance(
𝐶11 𝐶12

𝐶∗
12

𝐶11

)
(7)

where we assume that the two images have the samemean intensity

𝐸 [|𝑢1 |2] = 𝐸 [|𝑢2 |2] = 𝐶11. Note that 𝐶11 is a real positive number.

In contrast, 𝐶12 = 𝐸 [𝑢1 · 𝑢∗
2
] can be complex.

A camera measures only the intensity of the speckle fields |𝑢1 |2,
|𝑢2 |2. From these intensities we want to estimate the covariance,

and we thus define a new random variable

𝑋 = ( |𝑢1 |2 −𝐶11) ( |𝑢2 |2 −𝐶11). (8)

For simplicity we assume here that the mean intensity𝐶11 is known,

through in practice we also estimate it from the speckle image. The

SNR in the estimation of 𝑋 is defined as

𝑆𝑁𝑅(𝑋 ) = 𝐸 [𝑋 ]2
𝑉𝑎𝑟 [𝑋 ] . (9)

Some derivation shows that 𝐸 [𝑋 ] = |𝐶12 |2, and

𝑉𝑎𝑟 [𝑋 ] = 1

16

(
62𝐶2

11
|𝐶12 |2 + 63|𝐶12 |4 + 15𝐶4

11

)
(10)

Usually the correlation between the two speckle fields is not exact.

Hence, covariance is smaller than the mean intensity and |𝐶12 | <
𝐶11. Thus, the largest term in Eq. (10) is 𝐶4

11
, and we simplify it by

neglecting the first two terms. We thus express the SNR as

𝑆𝑁𝑅(𝑋 ) = |𝐶12 |4

𝐶4

11

. (11)

To relate this to Eq. (5) of the main paper, we note that the cor-

relation between speckle intensity we aim to detect is essentially

C (𝝉 ) = 𝐸 [𝑋 ] = |𝐶12 |2. Also, the mean speckle intensity is 𝐶11.

Finally, if we average 𝑁 independent speckle measurements, the

SNR is scaled by 𝑁 . This is because basic statistics implies that

when N independent samples 𝑋1, . . . 𝑋𝑛 of a random variable 𝑋 are

averaged,

𝐸

[
1

𝑁

∑︁
𝑛

𝑋𝑛

]
= 𝐸 [𝑋 ] (12)

𝑉𝑎𝑟

[
1

𝑁

∑︁
𝑛

𝑋𝑛

]
=

1

𝑁
𝑉𝑎𝑟 [𝑋 ] (13)

In Fig. 7 we test the effect of the window size on the estimated

covariance. As predicted by theory, as the number of pixels 𝑁 in

the window increase, less noise is present. However, if the window

size is too big the structure of the phase function is blurred out. As

discussed above, to further eliminate noise, we capture multiple

speckle images of the same homogenious material sample.

D COMPONENTS LIST
Our lab setup is composed of the following optical elements. For

the laser light source we used a HeNe Laser, 632.8 nm, 21 mW

(HNL210LB) from Thorlabs, coupled into an optical fiber. Two 4f

relay systems are composed of four macro lenses (Nikon 105 mm

f/2.8D). To capture speckle images we used the high resolution

(6576 × 4384 pixels) Mono CCD Lumenera Camera (Lt29059HM),
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with 5.5 × 5.5𝜇m pixels. To translate the laser source and the scat-

tering sample we used motorized translation stages from Thorlabs.
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