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Abstract—Interactive digital matting, the process of extracting a foreground object from an image based on limited user input, is an

important task in image and video editing. From a computer vision perspective, this task is extremely challenging because it is massively

ill-posed—at each pixel we must estimate the foreground and the background colors, as well as the foreground opacity (“alpha matte”)

from a single color measurement. Current approaches either restrict the estimation to a small part of the image, estimating foreground and

background colors based on nearby pixels where they are known, or perform iterative nonlinear estimation by alternating foreground and

background color estimation with alpha estimation. In this paper, we present a closed-form solution to natural image matting. We derive a

cost function from local smoothness assumptions on foreground and background colors and show that in the resulting expression, it is

possible to analytically eliminate the foreground and background colors to obtain a quadratic cost function in alpha. This allows us to find

the globally optimal alpha matte by solving a sparse linear system of equations. Furthermore, the closed-form formula allows us to predict

the properties of the solution by analyzing the eigenvectors of a sparse matrix, closely related to matrices used in spectral image

segmentation algorithms. We show that high-quality mattes for natural images may be obtained from a small amount of user input.

Index Terms—Matting, interactive image editing, spectral segmentation.

Ç

1 INTRODUCTION

NATURAL image matting and compositing is of central
importance in image and video editing. Formally,

image matting methods take as input an image I, which is
assumed to be a composite of a foreground image F and a
background image B. The color of the ith pixel is assumed
to be a linear combination of the corresponding foreground
and background colors

Ii ¼ �iFi þ ð1� �iÞBi; ð1Þ

where �i is the pixel’s foreground opacity. In natural image
matting, all quantities on the right-hand side of the
compositing equation (1) are unknown. Thus, for a three-
channel color image, at each pixel, there are three equations
and seven unknowns.

Obviously, this is a severely underconstrained problem,
and user interaction is required to extract a good matte.
Most recent methods expect the user to provide a trimap as a
starting point; an example is shown in Fig. 1e. The trimap is
a rough (typically hand-drawn) segmentation of the image
into three regions: foreground (shown in white), back-
ground (shown in black), and unknown (shown in gray).
Given the trimap, these methods typically solve for F , B,
and � simultaneously. This is typically done by iterative
nonlinear optimization, alternating the estimation of F and
B with that of �. In practice, this means that for good
results, the unknown regions in the trimap must be as small
as possible. As a consequence, trimap-based approaches

typically experience difficulty handling images with a
significant portion of mixed pixels or when the foreground
object has many holes [19]. In such challenging cases, a
great deal of experience and user interaction may be
necessary to construct a trimap that would yield a good
matte. Another problem with the trimap interface is that the
user cannot directly influence the matte in the most
important part of the image: the mixed pixels.

In this paper, we present a new closed-form solution for
extracting the alpha matte from a natural image. We derive a
cost function from local smoothness assumptions on fore-
ground and background colors F andB and show that in the
resulting expression, it is possible to analytically eliminate F
and B, yielding a quadratic cost function in �. The alpha
matte produced by our method is the global optimum of this
cost function, which may be obtained by solving a sparse
linear system. Since our approach computes � directly and
without requiring reliable estimates for F and B, a modest
amount of user input (such as a sparse set of scribbles) is often
sufficient for extracting a high-quality matte. Furthermore,
our closed-form formulation enables one to understand and
predict the properties of the solution by examining the
eigenvectors of a sparse matrix, closely related to matrices
used in spectral image segmentation algorithms. In addition
to providing a solid theoretical basis for our approach, such
analysis can provide useful hints to the user regarding where
in the image scribbles should be placed.

1.1 Previous Work

Most existing methods for natural image matting require
the input image to be accompanied by a trimap [1], [2], [5],
[6], [14], [17], labeling each pixel as foreground, back-
ground, or unknown. The goal of the method is to solve the
compositing equation (1) for the unknown pixels. This is
typically done by exploiting some local regularity assump-
tions on F and B to predict their values for each pixel in the
unknown region. In the Corel KnockOut algorithm [2], F

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 2, FEBRUARY 2008 1

. The authors are with the School of Computer Science and Engineering, The
Hebrew University of Jerusalem, 91905, Israel.
E-mail: {alevin, danix, yweiss}@cs.huji.ac.il.

Manuscript received 7 Aug. 2006; revised 26 Mar. 2007; accepted 30 Apr.
2007; published online 16 May 2007.
Recommended for acceptance by H. Shum.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0582-0806.
Digital Object Identifier no. 10.1109/TPAMI.2007.1177.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



and B are assumed to be smooth and the prediction is based
on a weighted average of known foreground and back-
ground pixels (closer pixels receive higher weight). Some
algorithms [6], [14] assume that the local foreground and
background come from a relatively simple color distribu-
tion. Perhaps, the most successful of these algorithms is the
Bayesian matting algorithm [6], where a mixture of oriented
Gaussians is used to learn the local distribution and then �,
F , and B are estimated as the most probable ones given that
distribution. Such methods work well when the color
distributions of the foreground and the background do
not overlap, and the unknown region in the trimap is small.
As demonstrated in Fig. 1b, a sparse set of constraints could
lead to a completely erroneous matte. In contrast, although
our approach also makes certain smoothness assumptions
regarding F and B, it does not involve estimating the values
of these functions until after the matte has been extracted.

The Poisson matting method [17] also expects a trimap as
part of its input and computes the alpha matte in the mixed
region by solving a Poisson equation with the matte gradient
field and Dirichlet boundary conditions. In the global Poisson
matting method, the matte gradient field is approximated as
rI=ðF �BÞ by taking the gradient of the compositing
equation and neglecting the gradients in F and B. The matte
is then found by solving for a function whose gradients are as
close as possible to the approximated matte gradient field.
Whenever F or B is not sufficiently smooth inside the
unknown region, the resulting matte might not be correct,
and additional local manipulations may need to be applied
interactively to the matte gradient field in order to obtain a
satisfactory solution. This interactive refinement process is
referred to as local Poisson matting. As we shall see, our
method makes weaker assumptions on the behavior ofF and
B, which generally leads to more accurate mattes.

Recently, several successful approaches for extracting a
foreground object from its background have been proposed
[3], [11], [13]. Both approaches translate simple user-specified
constraints (such as scribbles or a bounding rectangle) into a
min-cut problem. Solving the min-cut problem yields a hard
binary segmentation, rather than a fractional alpha matte
(Fig. 1c). The hard segmentation could be transformed into a
trimap by erosion, but this could still miss some fine or fuzzy
features (Fig. 1d). Although Rother et al. [13] do perform
border matting by fitting a parametric alpha profile in a
narrow strip around the hard boundary, this is more akin to
feathering than to full alpha matting, since wide fuzzy
regions cannot be handled in this manner.

Our approach is closely related to the colorization
method of Levin et al. [10], and the random walk alpha

matting method of Grady et al. [8]. Both of these methods
propagate scribbled constraints to the entire image by
minimizing a quadratic cost function. Here, we apply a
similar strategy, but our assumptions and cost function are
modified so as to better suit the matting problem.

A scribble-based interface for interactive matting was
proposed by Wang and Cohen [19]. Starting from a few
scribbles indicating a small number of background and
foreground pixels, they use belief propagation to iteratively
estimate the unknowns at every pixel in the image.
Although this approach has produced some impressive
results, it has the disadvantage of employing an expensive
iterative nonlinear optimization process, which might
converge to different local minima. Another scribble-based
matting approach was recently proposed by Guan et al. [9],
augmenting the random walk approach [8] with an iterative
estimation of color models.

2 DERIVATION

For clarity of exposition, we begin by deriving a closed-form
solution for alpha matting of gray-scale images. This solution
will then be extended to the case of color images in Section 2.1.

As mentioned earlier, the matting problem is severely
underconstrained. Therefore, some assumptions on the
nature of F , B, and/or � are needed. To derive our solution
for the gray-scale case, we make the assumption that both F
and B are approximately constant over a small window
around each pixel. Note that assuming that F and B are
locally smooth does not mean that the input image I is
locally smooth, since discontinuities in � can account for the
discontinuities in I. This assumption, which will be some-
what relaxed in Section 2.1, allows us to rewrite (1),
expressing � as a linear function of the image I:

�i � aIi þ b; 8i 2 w; ð2Þ

where a ¼ 1
F�B , b ¼ � B

F�B , and w is a small image window.
This linear relation is similar to the prior used in [20] and
the shape recipes of [18]. This relation suggests finding �, a,
and b that minimize the cost function

Jð�; a; bÞ ¼
X
j2I

X
i2wj
ð�i � ajIi � bjÞ2 þ �a2

j

 !
; ð3Þ

where wj is a small window around pixel j.
The cost function above includes a regularization term on

a. One reason for adding this term is numerical stability. For
example, if the image is constant in the jth window, aj and bj
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Fig. 1. (a) An image with sparse constraints: white scribbles indicate the foreground, black scribbles indicate the background. (b) Applying Bayesian

matting to such sparse input produces a completely erroneous matte. (c) Foreground extraction algorithms, such as [11], [13] produce a hard

segmentation. (d) An automatically generated trimap from a hard segmentation may miss fine features. An accurate hand-drawn trimap (e) is

required in this case to produce a reasonable matte (f). Images are taken from [19].



cannot be uniquely determined without a prior. Also,

minimizing the norm of a biases the solution toward

smoother alpha mattes (since aj ¼ 0 means that � is constant

over the jth window).
In our implementation, we typically use windows of

3� 3 pixels. Since we place a window around each pixel, the

windows wj in (3) overlap. It is this property that enables the

propagation of information between neighboring pixels. The

cost function is quadratic in �, a, and b, with 3N unknowns

for an image with N pixels. Fortunately, as we show below,

a and bmay be eliminated from (3), leaving us with a quadratic

cost in only N unknowns: The alpha values of the pixels.

Theorem 1. Define Jð�Þ as

Jð�Þ ¼ min
a;b

Jð�; a; bÞ:

Then,

Jð�Þ ¼ �TL �; ð4Þ

where L is an N �N matrix, whose ði; jÞth entry is

X
kjði;jÞ2wk

�ij �
1

jwkj
1þ 1

�
jwkj þ �

2
k

ðIi � �kÞðIj � �kÞ
 ! !

: ð5Þ

Here, �ij is the Kronecker delta, �k and �2
k are the mean and

variance of the intensities in the window wk around k, and jwkj
is the number of pixels in this window.

Proof. Rewriting (3) using matrix notation, we obtain

Jð�; a; bÞ ¼
X
k

Gk
ak
bk

� �
� ��k

����
����

2

; ð6Þ

where for every window wk, Gk is defined as a ðjwkj þ
1Þ � 2 matrix. For each i 2 wk, Gk contains a row of the

form ½Ii; 1�, and the last row of Gk is of the form ½
ffiffi
�
p
; 0�.

For a given matte �, we define ��k as a ðjwkj þ 1Þ � 1

vector, whose entries are �i for every i 2 wk and whose

last entry is zero. The elements in ��k and Gk are ordered

correspondingly.
For a given matte �, the optimal pair a�k; b

�
k inside each

window wk is the solution to the least squares problem

ða�k; b�kÞ ¼ argmin Gk
ak
bk

� �
� ��k

����
����2

ð7Þ

¼ ðGT
kGkÞ�1GT

k ��k: ð8Þ

Substituting this solution into (6) and denoting �Gk ¼
I �GkðGT

kGkÞ�1GT
k , we obtain

Jð�Þ ¼
X
k

��Tk
�GT
k

�Gk ��k

and some further algebraic manipulations show that the

ði; jÞth element of �GT
k

�Gk may be expressed as

�ij �
1

jwkj
1þ 1

�
jwkj þ �

2
k

ðIi � �kÞðIj � �kÞ
 !

:

Summing over k yields the expression in (5). tu

2.1 Color Images

A simple way to apply the cost function to color images is to
apply the gray-level cost to each channel separately.
Alternatively, we can replace the linear model (2) with a
4D linear model

�i �
X
c

acIci þ b; 8i 2 w; ð9Þ

where c sums over color channels. The advantage of this
combined linear model is that it relaxes our previous
assumption that F and B are constant over each window.
Instead, as we show below, it is enough to assume that in a
small window each of F and B is a linear mixture of two
colors; in other words, the valuesFi in a small window lie on a
single line in the RGB color space,Fi ¼ �iF1 þ ð1� �iÞF2, and
the same is true for the background values Bi. In what
follows, we refer to this assumption as the color line model.

Such a model is useful since it captures, for example, the
varying shading on a surface with a constant albedo.
Another example is a situation where the window contains
an edge between two uniformly colored regions both
belonging to the background or the foreground. In Fig. 2,
we illustrate this concept by plotting local RGB distribu-
tions from a real image. Furthermore, Omer and Werman
[12] demonstrated that in many natural images the pixel
colors in the RGB space tend to form a relatively small
number of elongated clusters. Although these clusters are
not straight lines, their skeletons are roughly linear locally.

Theorem 2. If the foreground and background colors in a window
satisfy the color line model, we can express

�i ¼
X
c

acIci þ b; 8i 2 w:

Proof. Substituting into (1) the linear combinations Fi ¼
�Fi F1 þ ð1� �Fi ÞF2 and Bi ¼ �Bi B1 þ ð1� �Bi ÞB2, where
F1, F2, B1, and B2 are constant over a small window, we
obtain

Ici ¼ �ið�Fi F c
1 þ ð1� �Fi ÞFc

2 Þ þ ð1� �iÞð�Bi Bc
1 þ ð1� �Bi ÞBc

2Þ:

Let H be a 3� 3 matrix whose cth row is ½Fc
2 þBc

2;
F c

1 � Fc
2 ; B

c
1 �Bc

2�. Then, the above may be rewritten as

H
�i
�i�

F
i

ð1� �iÞ�Bi

2
4

3
5 ¼ Ii �B2;

where Ii and B2 are 3� 1 vectors representing three color
channels. We denote by a1; a2; a3 the elements in the first
row of H�1 and by b the scalar product of the first row of
H�1 with the vectorB2. We then obtain �i ¼

P
c a

cIi þ b.tu
Using the 4D linear model (9), we define the following

cost function for the matting of RGB images

Jð�; a; bÞ ¼
X
j2I

X
i2wj

�i �
X
c

acjI
c
i � bj

 !2

þ�
X
c

ac
2

j

0
@

1
A: ð10Þ

Similar to the gray-scale case, ac and b can be eliminated
from the cost function, yielding a quadratic cost in the �
unknowns alone:

Jð�Þ ¼ �TL �: ð11Þ
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Here, L is an N �N matrix, whose ði; jÞth element is

X
kjði;jÞ2wk

�ij �
1

jwkj
ð1þ ðIi � �kÞð�k þ

�

jwkj
I3Þ�1ðIj � �kÞ

� �
;

ð12Þ
where �k is a 3� 3 covariance matrix, �k is a 3� 1 mean

vector of the colors in a windowwk, and I3 is the 3� 3 identity

matrix.
We refer to the matrix L in (5) and (12) as the matting

Laplacian. Note that the elements in each row ofL sum to zero

and, therefore, the null space of L includes the constant

vector. If � ¼ 0 is used, the null space of L also includes every

color channel of I (as each of the color channels can be

expressed as a linear function of itself, for example, by setting
a1 ¼ 1, a2 ¼ a3 ¼ b ¼ 0).

Apart from the mathematical justification, the intuition
behind our cost function is that the matte may be represented
locally as a linear combination of the image color channels, as
illustrated by the three representative examples shown in
Fig. 3. The first example is a window with rather uniform
foreground and background colors. In this case, the alpha
matte has a strong normalized correlation with the image,
and it may be generated by multiplying one of the color
channels by a scale factor and adding a constant. In the second
example, the alpha matte is constant over the entire window.
Regardless of the complexity of the image texture in this
window, we can obtain the constant alpha by multiplying the
image channels by zero and adding a constant. This trivial
case is important, as it demonstrates some of the power of the
4D linear model. Since a typical matte is constant (zero or one)
over most image windows, the matte in such windows may
be expressed as a linear function of the image in a trivial way,
regardless of the exact color distribution and whether the
color line model holds or not. Finally, we present a window
with nonuniform alpha, where in addition, the background
contains an edge. Since the edge contrasts in the different
color channels are different, by scaling the color channels
appropriately, our model is able to actually cancel the
background edge.

3 CONSTRAINTS AND USER INTERFACE

In our system, the user-supplied constraints on the matte may
be provided via a scribble-based GUI or a trimap. The user
uses a background brush (black scribbles in our examples) to
indicate background pixels ð� ¼ 0Þ and a foreground brush
(white scribbles) to indicate foreground pixels ð� ¼ 1Þ.

To extract an alpha matte matching the user’s con-
straints, we solve for

� ¼ argmin �TL �þ � �T � bTS
� 	

DS ð�� bSÞ; ð13Þ

where � is some large number, DS is a diagonal matrix
whose diagonal elements are one for constrained pixels and
zero for all other pixels, and bS is the vector containing the
specified alpha values for the constrained pixels and zero
for all other pixels.

Since the above cost is quadratic in alpha, the global
minimum may be found by differentiating (13) and setting
the derivatives to zero. This amounts to solving the
following sparse linear system

ðLþ �DSÞ� ¼ �bS: ð14Þ

Theorem 3. Let I be an image formed from F and B according to
the compositing equation (1), and let �� denote the true alpha
matte. If F and B satisfy the color line model in every local
window wk and if the user-specified constraints S are
consistent with ��, then �� is an optimal solution for the
system (13), where L is constructed with � ¼ 0.

Proof. Since � ¼ 0, if the color line model is satisfied in every
window wk, it follows from the definition (10) that
Jð��; a; bÞ ¼ 0 and, therefore, Jð��Þ ¼ ��TL�� ¼ 0. tu
We demonstrate this in Fig. 4. The first image (Fig. 4a) is a

synthetic example that was created by compositing computer
simulated (monochromatic) smoke over a simple back-
ground with several color bands, which satisfies the color
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Fig. 2. Local patches selected from a real image and the RGB plots of
their color distributions.



line model. The black-and-white scribbles show the input
constraints. The matte extracted by our method (Fig. 4b) is
indeed identical to the ground-truth matte. The second
example (Fig. 4c) is a real image, with fairly uniform
foreground and background colors. By scribbling only two
black-and-white points, a high-quality matte was extracted
(Fig. 4d).

Note that Theorem 3 states only necessary but not
sufficient conditions for recovering the true alpha matte.
This is the case, since the null space of L may contain
multiple solutions, and it is up to the user to provide a
sufficient number of constraints to ensure that solving (13)
yields the correct alpha matte. For example, constraining
the system to output the true matte in Fig. 4a required a
setting constraint inside every connected component.

3.1 Additional Scribbling Brushes

To provide the user with more flexible control over the
output, we add additional types of brushes for specifying
constraints at regions containing mixed pixels. One simple
constraint may be set by explicitly specifying the values of F

and B under the scribble (by cloning them from other
locations in the image). This gives a constraint on � in the
scribbled area, computable directly from the compositing
equation (1). Another constraint type is when the artist
indicates that F and B are constant but unknown under the
scribble. This tells the system that the linear relationship (9)
should hold for all the pixels covered by the scribble, rather
than only inside each 3� 3 window. This adds to (12) an
additional larger window that contains all of the pixels under
the scribble. The usage of these two brushes is illustrated in
Fig. 5. If only black-and-white scribbles are used (Fig. 5a),
there is no way to specify background constraints for the parts
of the background partially visible through the fine gaps in
the hair. As a result, these gaps are not captured by the
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Fig. 3. Local linear relations between alpha windows and image windows.

Fig. 4. Matting examples. (a) and (c) Input images with sparse

constraints. (b) and (d) Extracted mattes.

Fig. 5. Using additional scribbling brushes. (a) Input image. (b) Simple

background (black) and foreground (white) scribbles. (c) Scribbling

foreground and background colors explicitly. (d) Marking wider

neighborhoods.



recovered matte (Fig. 5b). To overcome this, the user may pick
some blond and brown colors from the neighboring pixels
(Fig. 5c) and specify them as the foreground and background
colors in that region. The matte produced from these
constraints succeeds in capturing the partial visibility of the
background. Alternatively, the user may place a scribble
(gray scribble in Fig. 5d) indicating that this area should be
treated as a single large neighborhood, causing the brown
pixels showing through the hair to be treated the same as the
brown pixels outside. In the results section, we show that
these additional brushes are also useful for the challenging
tasks of extracting mattes for shadows and smoke.

4 PARAMETERS

To gain a better understanding of our method, we illustrate
here the effect of the different parameters on the alpha
reconstruction.

First, we demonstrate the effect of �, which is the weight of
the regularization term on a in (3). There are two reasons for
having this term. The first reason is numerical stability. For
example, if the image is constant in the jth window, aj and bj
cannot be uniquely determined without a prior. Also,
minimizing the norm of a biases the solution toward
smoother alpha mattes (since aj ¼ 0 means that � is constant
over the jth window). In Fig. 6, we demonstrate the effect of �
on the resulting matte. Our input image consists of two noisy
areas and was scribbled with two vertical lines. In Fig. 6, we
show three different mattes that were obtained using three
different values of �. We also plot the different mattes using a
one-dimensional profile of one of the rows. For comparison,
we also plot the profile of the input image scaled to the
[0, 1] range. We can see that when � is small the sharpness of
the recovered matte matches the profile of the edge in the
input image, but the matte also captures the image noise. For
large � values, the image noise is indeed ignored, but the
recovered alpha is oversmoothed. In our implementation, we

usually used � ¼ 0:17 to 0:15, since real images are normally
not as noisy as the above example.

Fig. 6 demonstrates the fact that � is an important
parameter in our system, which controls the amount of
noise versus the amount of smoothing in the solution.
Although many of our theoretical results in this paper only
hold for the case � ¼ 0, it should be noted that, in practice,
as � approaches zero, our method will typically fail to
produce a constant matte in textured or noisy regions.

Another parameter that affects the results is the window
size. We usually construct the matting Laplacian using
3� 3 windows. Using wider windows is more stable when
the color line model holds, but the chance of encountering
windows that deviate from the color line model grows when
the windows are larger. This is illustrated in Fig. 7. The matte
of the image was recovered using both 3� 3 and
5� 5 windows. The mattes are shown in Figs. 7b and 7c,
respectively. It may be seen that the matte in Fig. 7c contains
some errors. The reason is that some of the 5� 5 windows
deviate from the color line model since their areas cover three
differently colored background strips, whereas the
3� 3 windows are small enough and never cover more than
two strips. On the other hand, in Fig. 8, the fact that
5� 5 windows can cover three different strips is useful as
that helps the foreground constraint (the white scribble) to
propagate to the entire striped texture region (Fig. 8c).
(Despite the fact that two blue pixels in different strips are not
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Fig. 6. Computing a matte using different � values.

Fig. 7. Computing a matte using different window sizes. (a) Input marks.

(b) 3� 3 windows. (c) 5� 5 windows.

Fig. 8. Computing a matte using different window sizes. (a) Input marks.
(b) Windows of size 3� 3. (c) Windows of size 5� 5. (d) Windows of size
3� 3 computed at coarser resolution. (e) Simple interpolation of (d).
(f) Interpolating the a and b parameters corresponding to the matte in (d)
and applying them to obtain a matte for the finer image.



direct neighbors, they are neighbors in the induced graph
due to the fact that the window is large enough.) Such
propagation does not occur when using 3� 3 windows, as
shown in Fig. 8b.

Even in cases for which wider windows are useful, their
usage increases computation time since the resulting system
is less sparse. To overcome this, we consider the linear
coefficients in (9) that relate an alpha matte to an image. The
coefficients obtained using wide windows on a fine-resolu-
tion imagearesimilar to thoseobtained withsmallerwindows
on a coarser image. Therefore, we can solve for the alpha matte
using 3� 3 windows on a coarse image and compute the
linear coefficients that relate it to the coarse image channels.
We then interpolate the linear coefficients and apply them to
the finer resolution image. The alpha matte obtained using
this approach is similar to the one that would have been
obtained by solving the matting system directly on the fine
image with wider windows. To demonstrate this, Fig. 8d
shows the alpha matte that was obtained when3� 3windows
were used on the image in Fig. 8a after downsampling it by a
factor of two. Ifwe just upsamplethis alphamattebyafactor of
two, we get the blurred alpha matte shown in Fig. 8e. On the
other hand, if we compute theaand bvalues relating the small
alpha (Fig.8d) to the image, upsample them andapply them to
the finer resolution image, we get the sharp matte in Fig. 8f,
which is almost identical to the one in Fig. 8c, obtained using
5� 5 windows.

5 SPECTRAL ANALYSIS

The matting Laplacian matrix L is a symmetric semidefinite
matrix, as evident from Theorem 1 and its proof. This
matrix may also be written as L ¼ D�W , where D is a
diagonal matrix Dði; iÞ ¼

P
j W ði; jÞ, and W is a symmetric

matrix whose off-diagonal entries are defined by (12). Thus,
the matrix L has the same form as the graph Laplacian used
in spectral methods for segmentation but with a novel
affinity function given by (12). For comparison, the typical
way to define the affinity function (for example, for image
segmentation using normalized cuts [15]) is to set

WGði; jÞ ¼ e�kIi�Ijk
2=�2

; ð15Þ

where � is a global constant (typically chosen by hand). This
affinity is large for nearby pixels with similar colors and
approaches zero when the color difference is much greater
than �. The random walk matting algorithm [8] uses a
similar affinity function for the matting problem, but the
color distance between two pixels is taken after applying a
linear transformation to their colors. The transformation is
image dependent and is estimated using a manifold
learning technique.

In contrast, by rewriting the matting Laplacian as
L ¼ D�W , we obtain the following affinity function,
which we refer to as “the matting affinity:”

WMði; jÞ ¼X
kjði;jÞ2wk

1

jwkj
1þ ðIi � �kÞ �k þ

�

jwkj
I3

� ��1

ðIj � �kÞ
 !

:
ð16Þ

We note that by using the term affinity here, we somewhat
extend its conventional usage: Although standard affinities

are usually nonnegative, the matting affinity may also
assume negative values.

To compare the two affinity functions WG and WM, we
examine the eigenvectors of the corresponding Laplacians,
since these eigenvectors are used by spectral segmentation
algorithms for partitioning images.

Fig. 9 shows the second smallest eigenvector (the first
smallest eigenvector is constant in both cases) for both
Laplacian matrices on three example images. For the matting
affinity, we present eigenvectors with two � values (� ¼ 0:17

and �¼0:15). The first example is a simple image with
concentric circles of different colors. In this case, the
boundaries between regions are very simple, and all
Laplacians capture the transitions correctly. The second
example is an image of a peacock. The global � eigenvector
(used by standard spectral clustering algorithms) fails to
capture the complex fuzzy boundaries between the peacock’s
tail feathers and the background. In contrast, the matting
Laplacian’s eigenvector (constructed using � ¼ 0:15) sepa-
rates the peacock from the background very well, as this
Laplacian explicitly encodes fuzzy cluster assignments.
When the matting Laplacian is constructed using � ¼ 0:17,
the eigenvector is similar to the input image and, in addition
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Fig. 9. Smallest eigenvectors of Laplacians corresponding to different

affinity functions.



to the peacock, also captures some of the vegetation in the
background. The last example is the noisy step function in
Fig. 6. In this case, the eigenvector corresponding to � ¼ 0:17

captures all of the image noise, whereas using a larger
� results in a less noisy eigenvector. However, an appropriate
choice of a global � yields an eigenvector with a perfect step
function. This is an excellent result if the goal is a hard
segmentation, but if the goal is a soft alpha matte, it is
preferable to have an edge whose smoothness is proportional
to the smoothness of the edge in the input image, so the
matting eigenvector might be more appropriate. Thus,
designing a good matting affinity is not equivalent to
designing a good affinity for hard segmentation.

5.1 The Eigenvectors as Guides

Although the matting problem is ill posed without some
user input, the matting Laplacian matrix contains a lot of
information on the image even before any constraints have
been provided, as demonstrated in the previous section.

This suggests that looking at some of the smallest
eigenvectors of the matting Laplacian can guide the user
where to place scribbles. For example, the extracted matte and
the smallest eigenvectors tend to be piecewise constant over
the same regions. If the values inside a segment in the
eigenvector image are coherent, a single scribble within such
a segment should suffice to propagate the desired value to the
entire segment. On the other hand, areas where the
eigenvector’s values are less coherent correspond to more
“difficult” regions in the image, suggesting that more
scribbling efforts might be required there. We note, however,
that a basic strategy for scribble placing is just to examine the
input image and place scribbles on regions with different
colors. This is also evident by the fact that when the matting
Laplacian is constructed using � ¼ 0, the null space of the
matting Laplacian will contain the three color channels.

Fig. 10 illustrates how a scribbling process may be guided
by the eigenvectors. By examining the two smallest eigen-
vectors (Figs. 10a and 10b), we placed a scribble inside each

region exhibiting coherent eigenvector values (Fig. 10c). The
resulting matte is shown in Fig. 10d. Note that the scribbles in
Fig. 10c were our first and single attempt to place scribbles on
this image.

Stated somewhat more precisely, the alpha matte may be
predicted by examining some of the smaller eigenvectors of
the matting Laplacian, since an optimal solution to (13) will be
to a large degree spanned by the smaller eigenvectors. In fact,
it is possible to bound the weight of the larger eigenvectors in
the optimal solution, as a function of the ratios of the
corresponding eigenvalues.

Theorem 4. Let v1; . . . ; vN be the eigenvectors of the matting
Laplacian (12) with eigenvalues �1 � �2 � � � � � �N . Let S be
the subset of scribbled pixels, with scribble values si, i 2 S. We
denote by xðSÞ the restriction of the vector x to the scribbled
pixels (so that xðSÞ is an jSj-dimensional vector). Let � be the
optimal matte, and suppose � is expressed with respect to the
eigenvectors basis as � ¼

PN
k¼1 akvk.

If the scribbles are spanned by the K smallest eigenvectors
sðSÞ ¼

PK
k¼1 bkvkðSÞ, then for every j > K

a2
j �

PK
k¼1 b

2
k

�j
� kbk

2�k
�j

:

Proof. Let � ¼
PK

k¼1 bkvk. Then, � satisfies �ðSÞ ¼ sðSÞ.
Since � is the optimal solution � ¼ arg min�TL� such
that �ðSÞ ¼ sðSÞ, we must have that �TL� � �TL�. Since
the Laplacian matrix L is positive semidefinite, the
eigenvectors v1; . . . ; vN are orthogonal. Therefore,

�TL� ¼
XN
k¼1

a2
k�k; ð17Þ

�TL� ¼
XK
k¼1

b2
k�k ð18Þ

and as a result, for every j: a2
j�j �

PK
k¼1 b

2
k � kbk

2�K . tu

Corollary 1. If the scribbles are spanned by the null space of L,
the optimal solution will also lie in the null space of L.

Proof. Let K be the dimension of the null space. Using
the previous theorem’s notation, for every j > K,
a2
j � kbk

2�K ¼ 0, and the optimal solution is spanned
by the K null-space eigenvectors. tu
The above implies that the smoothness of the recovered

alpha matte will tend to be similar to that of the smallest
eigenvectors of L.

6 OPTIMIZATION

The optimization problem defined by (13) is one of
minimizing a quadratic cost function subject to linear
constraints, and the solution can therefore be found by
solving a sparse set of linear equations.

For the results shown here, we solve the linear system
using Matlab’s direct solver (the “backslash” operator),
which takes 20 seconds for a 200� 300 image on a 2.8 GHz
CPU. Processing large images using Matlab’s solver is
impossible due to memory limitations. To overcome this,
we use a coarse-to-fine scheme. We downsample the image
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Fig. 10. Smallest eigenvectors (a) and (b) are used for guiding scribble

placement (c). The resulting matte is shown in (d).



and the constraints and solve at a lower resolution. The
recovered alpha matte is then interpolated to the finer
resolution: alpha values are thresholded and pixels with
alpha close to zero or one are clamped and considered as
constrained in the finer resolution. Constrained pixels may be
eliminated from the system, reducing the system size. For
that, we note that within the constrained areas, there is no
need to enforce the local linear models. Therefore, when
computing the matting Laplacian matrix (5), (12), we sum
only windows wk that contain at least one unconstrained
pixel. Aside from efficiency, clamping alpha values to zero or
one is also useful in avoiding oversmoothed alpha mattes,
and we used such clamping to produce the results in Fig. 16d.
We note, however, that clamping the alpha values in a coarse-
to-fine approach has the negative side effect that long thin
structures such as strains of hair may be lost.

It should be noted that solving linear systems with this
structure is a well-studied problem [8], [16]. We have also
implemented a multigrid solver for matte extraction. The
multigrid solver runs in a couple of seconds even on very
large images but with a small degradation in matte quality.
Therefore, a multigrid solver enables the system to operate
as an interactive tool. The user can place constraints,
examine the resulting matte, and add constraints in image
areas that require further refinement.

The eigenvectors of the matting Laplacian depend only
on the input image and are independent of the user’s
constraints. It is not necessary to compute them, unless the
user wishes to use them for guidance in scribble placement,
as described earlier. In this case, they only need to be
computed once, possibly as part of the initialization that
takes place when a new image is loaded. Recently, there has
been much research on efficient methods for the computa-
tion of eigenvectors (for example, [4]), partly in response to
the growing interest in normalized cuts image segmentation
and other spectral clustering methods.

7 RECONSTRUCTING F AND B

Having solved for�, it is also usually necessary to reconstruct
F and, in some cases, alsoB. One approach for reconstructing
F and B is to solve (9) for the optimal a and b given � using
least squares. However, in order to extractF andB fromaand
b, there is an additional matting parameter that should be
recovered (� in the proof of Theorem 2). For complex
foreground and background patterns, such a reconstruction
may produce noisy results, and therefore, we solve for F and
B using the compositing equation, introducing some explicit
smoothness priors on F and B. The smoothness priors are

stronger in the presence of matte edges. Specifically, we
minimize a system of the form

min
X
i2I

X
c

ð�iFc
i þ ð1� �iÞBc

i � Ici Þ
2

þj�ix j
�
Fc
ix

	2 þ
�
Bc
ix

	2

 �

þ j�iy j
�
Fc
iy

	2 þ
�
Bc
iy

	2

 �

;

ð19Þ

where Fc
ix

, Fc
iy

, Bc
ix

, and Bc
iy

are the x and y derivatives of Fc

and Bc, and �ix and �iy are the matte derivatives. We note
that for a fixed �, the cost (19) is quadratic, and its minimum
may be found by solving a sparse set of linear equations.
Given the solution of F and B, the � solution can be further
refined, but in practice, we have observed this is not
required. Fig. 11 shows an alpha matte and F and B images
recovered in this way.

8 RESULTS

In all examples presented in this section, the scribbles used in
our algorithm are presented in the following format: black-
and-white scribbles are used to indicate the first type of hard
constraints on �. Red scribbles represent places in which
foreground and background colors were explicitly specified.
Finally, gray scribbles are used to represent the third type of
constraint—requiring a and b to be constant (without
specifying their exact value) within the scribbled area.

8.1 Visual Comparisons

Fig. 12 presents matting results on images from the
Bayesian matting work [6]. Our results appear visually
comparable to those produced by Bayesian matting.
Whereas the Bayesian matting results use a trimap, each
of our results was obtained using a sparse set of scribbles.

In Fig. 13, we extract mattes from a few of the more
challenging examples presented in the Poisson matting
paper [17]. For comparison, the Poisson and Bayesian
matting results provided in [17] are also shown.1

Fig. 14 shows the mattes extracted using our technique
on two challenging images used in [19] and compares our
results to several other recent algorithms. It can be seen that
our results on these examples are comparable in terms of
visual quality to those of [19], even though we use a far
simpler algorithm. Global Poisson matting cannot extract a
good matte from a sparse set of scribbles although its
performance with a trimap is quite good. The random walk
matting algorithm [8] also minimizes a Laplacian but uses
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1. The authors thank Leo Jia for providing them with the images and
results.

Fig. 11. Foreground and background reconstruction: (a) input, (b) Alpha matte, (c) foreground reconstruction, (d) background reconstruction, and
(e) F composited over a novel background.



an affinity function with a global scaling parameter and,
hence, has a particular difficulty with the peacock image.

Fig. 15 presents compositing examples using our algo-
rithm for some images from the previous experiments. We
show compositing both over a constant background and
over natural images.

Fig. 16 shows an example (from [19]) where Wang and
Cohen’s method fails to extract a good matte from sparse
scribbles due to color ambiguity between the foreground
and the background. The same method, however, is able to
produce an acceptable matte when supplied with a trimap.
Our method produces a cleaner but also imperfect matte
from the same set of scribbles, but adding a small number of
additional scribbles results in a better matte. (To produce
this result, we applied clamping of alpha values as
described in Section 6.)

Fig. 17 shows another example (a close-up of the Koala
image from [17]), where there is an ambiguity between

foreground and background colors. In this case, the matte
produced by our method is clearly better than the one
produced by the Wang-Cohen method. To better understand
why this is the case, we show an RGB histogram of
representative pixels from the F andB scribbles. Some pixels
in the background fit the foreground color model much better
than the background one (one such pixel is marked red in
Fig. 17b and indicated by an arrow in Fig. 17d). As a result,
such pixels are classified as foreground with a high degree of
certainty in the first stage. Once this error has been made, it
only reinforces further erroneous decisions in the vicinity of
that pixel, resulting in a white clump in the alpha matte.

Since our method does not make use of global color models
forF andB, it can handle ambiguous situations such as that in
Fig. 17. However, there are also cases where our method fails
to produce an accurate matte for the very same reason. Fig. 18
shows an actress in front of a background with two colors.
Even though the black B scribbles cover both colors, the
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Fig. 12. Comparison with Bayesian matting [6]. (a) Input image. (b) Trimap. (c) Bayesian matting result (obtained from the Bayesian Matting Web

page). (d) Scribbles. (e) Our result.

Fig. 13. Result on Poisson matting examples. (a) Input image. (b) Bayesian matting (obtained from the Poisson matting paper). (c) Poisson matting

(obtained from the Poisson matting paper). (d) Our result. (e) Scribbles.



generated matte includes parts of the background (between
the hair and the shoulder on the left). In such cases, the user
would have to add another B scribble in that area.

To demonstrate the limitations of our approach in the
presence of insufficient user input, consider the examples in
Fig. 19. Only three dots of constraints were provided, and the
resulting matte is some interpolation from black to white,
adapting to the image texture. The source of the problem is
demonstrated by the synthetic example in the second row in
Fig. 19. In this example, the input image consists of three
regions, only two of which are constrained. The system is then
free to assign the middle unconstrained region any average
nonopaque gray value. The core of this problem is that
although our quadratic cost places strong assumptions on the
foreground and background distributions, it imposes no
restrictions on �. Thus, it searches for continuous solutions
without taking into account that for a mostly opaque
foreground object, the matte should be strictly zero or one
over most of the image.

8.2 Quantitative Comparisons

To obtain a quantitative comparison between the algorithms,
we performed an experiment with synthetic composites for
which we have the ground-truth alpha matte. We randomly
extracted 2,000 subimages from the image shown in Fig. 20.
We used each subimage as a background and composited
over it a uniform foreground image using two different alpha

mattes: The first matte is computer simulated smoke, most
of which is partially transparent; the other matte is a part of
a disk, mostly opaque with a feathered boundary. The
mattes are shown in Fig. 20. Consequently, we obtained
4,000 composite images, two of which are shown in Fig. 20.
On this set of images, we compared the performance of four
matting algorithms: Wang and Cohen, global Poisson
matting, random walk matting, and our own (using
3� 3 windows with no pyramid). All algorithms were
provided a trimap as input. Examples of the trimaps and
the results produced by the different methods are shown in
Fig. 20. For each algorithm, we measured the summed
absolute error between the extracted matte and the ground
truth. Fig. 20 plots the average error of the four algorithms as a
function of the smoothness of the background (specifically,
we measured the average gradient strength, binned into
10 bins). When the background is smooth, all algorithms
perform well with both mattes. When the background
contains strong gradients, global Poisson matting performs
poorly (recall that it assumes that background and fore-
ground gradients are negligible). Of the remaining algo-
rithms, our algorithm consistently produced the most
accurate results.

8.3 Shadow Matting

Fig. 21 presents additional applications of our technique. In
particular, the red marks specifying the foreground and
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Fig. 14. A comparison of alpha mattes extracted by different algorithms. Images (a), (c), (e), (g), (i), (k), (m), and (o) are taken from [19]. The
remaining images were generated by our own implementation of the respective methods. (a) Peacock scribbles. (b) Poisson from scribbles.
(c) Wang-Cohen. (d) Our result. (e) Peacock trimap. (f) Poisson from trimap. (g) Bayesian. (h) Random walk. (i) Fire scribbles. (j) Poisson from
scribbles. (k) Wang-Cohen. (l) Our result. (m) Fire trimap. (n) Poisson from trimap. (o) Bayesian. (p) Random walk.



background color may be used to extract shadow and smoke.

In the top row, the red scribbles on the shadow specify that the

foreground color is black. In the bottom row, the red scribble

on the smoke indicates that the foreground color is white (in

both cases, the background color for the red scribbles was

selected from neighboring uncovered pixels). These sparse

constraints on � were then propagated to achieve the final

matte. Note that shadow matting cannot be directly achieved

with matting algorithms that initialize foreground colors

using neighboring pixels, since no neighboring black pixels

are present. Note also that the shadow area captures a

significant amount of the image area, and it is not clear how to

specify a good trimap in this case. The smoke example was

processed also in [5], but in their case, a background model

was calculated using multiple frames.

An alternative approach for shadow extraction is to use

the shadow composition equation proposed in [7]:

I ¼ �Lþ ð1� �ÞS;

where I is the input image, L is the lit image, S is the shadow
image, and� is the shadow density matte. We consider the image
in Fig. 22. We first place black-and-white scribbles on the man
and extract him from the background. We are then left with
the background image in Fig. 22c from which we would like to
extract the shadow. This enables us to place black scribbles
inside the shadow area and white scribbles outside. Those
scribbles are used for computing the shadow mask � in
Fig. 22d. We can use the two mattes (Figs. 22b and 22d) to
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Fig. 15. Some compositing examples using �, F , and B extracted by our
algorithm. (a) Compositing with a constant background. (b) Compositing
over natural images.

Fig. 16. An example (from [19]) with color ambiguity between foreground
and background. (a) Scribbles and matte by [19]. (b) Results from [19]
using a trimap. (c) Our result with scribbles similar to those in (a). (d) Our
results with a few additional scribbles.



paste both the man and his shadow over a novel background,

as shown in Fig. 22e. The double compositing follows the

following formula:

Inew ¼ �F þ ð1� �Þð1� sþ s�BnewÞ;

where s is some scalar 0 < s < 1 controlling the shadow

strength. To the best of our knowledge, this is the first attempt

to address shadow matting using an interactive interface.

9 DISCUSSION

Matting and compositing are tasks of central importance in

image and video editing and pose a significant challenge for

computer vision. Although this process by definition requires

user interaction, the performance of most existing algorithms

deteriorates rapidly as the amount of user input decreases. In

this paper, we have introduced a cost function based on the

assumption that foreground and background colors vary
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Fig. 17. An example with ambiguity between F and B. (a) Scribbles.

(b) Wang-Cohen. (c) Our result. (d) RGB histogram of F (red) and B

(blue) pixels.

Fig. 18. Failure due to lack of a color model.

Fig. 19. Limitations in the lack of sufficient user input.

Fig. 20. A quantitative comparison using two ground-truth mattes. The errors are plotted as a function of the average gradient strength of the

background, binned into 10 bins. To produce these results, we used our own implementation of the respective methods, using the parameter values

specified in the original papers.



smoothly and showed how to analytically eliminate the
foreground and background colors to obtain a quadratic cost
function in alpha. The resulting cost function is similar to cost
functions obtained in spectral methods to image segmenta-
tion but with a novel affinity function that is derived from the
formulation of the matting problem. The global minimum of
our cost function may be found efficiently by solving a sparse
system of linear equations. Our experiments on real and
synthetic images show that our algorithm clearly outper-
forms other algorithms that use quadratic cost functions,
which are not derived from the matting equations. Further-
more, our results are competitive with those obtained by
much more complicated nonlinear cost functions. However,
compared to previous nonlinear approaches, we can obtain
solutions in a few seconds, and we can analytically prove the
properties of our solution and provide guidance to the user by
analyzing the eigenvectors of our operator.

Although our approach assumes smoothness in fore-
ground and background colors, it does not assume a global
color distribution for each segment. Our experiments have
demonstrated that our local smoothness assumption often
holds for natural images. Nevertheless, it would be
interesting to extend our formulation to include additional
assumptions on the two segments (for example, global
models, local texture models, and so forth). The goal is to

incorporate more sophisticated models of foreground and

background but still obtain high-quality results using

simple numerical linear algebra.
Finally, the implementation of our matting algorithm and

all examples presented in this paper are available for public

usage at http://people.csail.mit.edu/alevin/matting.tar.gz.
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