
Visual Odometry and Map Correlation
Anat Levin∗ and Richard Szeliski

Microsoft Research

Abstract
In this paper, we study how estimates of ego-motion

based on feature tracking (visual odometry) can be im-
proved using a rough (low accuracy) map of where the ob-
server has been. We call the process of aligning the vi-
sual ego-motion with the map locations as map correlation.
Since absolute estimates of camera position are unreliable,
we use stable local information such as change in orien-
tation to perform the alignment. We also detect when the
observer’s path has crossed back on itself, which helps im-
prove both the visual odometry estimates and the alignment
between the video and map sequences. The final alignment
is computed using a graphical model whose MAP estimate
is inferred using loopy belief propagation. Results are pre-
sented on a number of indoor and outdoor sequences.

1 Introduction
Tracking visual features observed from a moving cam-

era has long been used to estimate camera pose and location
(ego-motion) [7, 15]. In the robotics community, this pro-
cess is often called visual odometry [9]. Under favorable
conditions, estimates of ego-motion based on such tracks
can be quite accurate over the short run, but suffer from ac-
cumulated errors over longer distances, in addition to suffer-
ing from the well-known pose and scale ambiguities [9, 16].

A complementary source of information, such as ground
control points, absolute distance measurements, or GPS is
needed to compensate for these inaccuracies. However,
such information may not be readily available, i.e., it pre-
supposes working with surveying equipment or having good
lines of sight to GPS satellites. In many situations, being
able to rely solely on visual data is preferable, leading to a
simpler, less expensive system, and enabling the interpreta-
tion of existing video footage.

In this paper, we examine how a rough hand-drawn map
indicating where the observer has traveled can be integrated
with feature-based ego-motion estimates to yield a more ac-
curate estimate of absolute location. Our main application
is the creation of real-world video-based tours of interest-
ing architectural and outdoor locations [20]. In such situa-
tions, low-resolution maps are often readily available, and
pre-planning a route by drawing on the map is usually done

∗Current address: The Hebrew University of Jerusalem, Israel

in any case so that a good camera trajectory can be deter-
mined ahead of time.

The main problem is how to accurately align vision-
based ego-motion estimates with 2D map locations. If the
ego-motion estimates themselves were reasonably accurate
to begin with, e.g., up to an unknown similarity or affine
transform from the ground truth, this process would be
straightforward, and could be solved using global moment
matching and time-warping (e.g., dynamic programming).

Unfortunately, while instantaneous ego-motion esti-
mates of rotation and direction of motion can be quite ac-
curate, accumulated errors eventually lead to large-scale
global distortions in the estimated path [9, 16] (Figure 4c).
This requires us to develop a technique that can exploit
more local structure in the visual ego-motion and hand-
drawn map data.

Tours through real-world environments often cross back
over themselves in several places [15, 16, 20]. This addi-
tional information can be used both to improve the qual-
ity of the ego-motion estimates, and to further constrain
the possible matches between the visual odometry and map
data. We therefore develop an efficient technique to au-
tomatically detect when the path crosses back onto itself
based on the visual data alone and later use this to augment
the map correlation stage.

1.1 Previous work

In the field of mobile robotics, the problem of navigating
a novel environment while building up a representation of
both its structure and the observer’s motion is often called
simultaneous localization and mapping (SLAM) [3, 16]. In
most of these applications, the robot builds a map of the
environment as it moves around, although in some appli-
cations, the map is given beforehand. Localization refers
to the process of finding out where you are once you have
built an annotated map, perhaps using recognizable land-
marks. The correspondence problem is determining when
you have seen the same object (landmark) and/or come back
to the same location.

Some of these systems use omnidirectional sensors from
which panoramic images can be constructed [14, 15]. Such
sensors are particularly good for exploring and visualiz-
ing environments, because not only do they capture a rich
set of images that can be used for image-based rendering

1

(a) (b) (c)

(d) (e) (f)

Figure 1. Spherical images from indoor house sequence. Frames (a) and (b) are correctly rejected using color his-
tograms, while frames (b) and (c), while at different orientations, are correctly matched. Frames (d) and (e) on the
other hand, are incorrectly matched (false positive) using color histograms. Frame (f) shows the results of aligning
frame (c) to frame (b) using moment matching (flagged as a successful match). See the electronic version of this paper
for larger images.

[15], they also provide the highest-possible accuracy in ego-
motion estimation for a fixed number of pixels [10].

Taylor [15] reconstructs a sparse 3D model of the envi-
ronment and robot locations from omnidirectional imagery,
which can then be used for image-based rendering. Strelow
and Singh [14] combine omnidirectional images with iner-
tial sensors. (See also [9] for the use of inertial sensors with
more conventional stereo.)

Some researchers have also used panoramic images di-
rectly for localization, e.g., using color histograms to rec-
ognize when a previously seen location is re-visited [2, 19].
Other researchers have looked at feature-based [12] and
texture-based [17] methods to perform localization (some-
times called “place and object recognition”). In our work,
we use a novel combination of these techniques, together
with a novel moment-based matching scheme, to solve
the localization problem with high computational efficiency
and accuracy.

Overall, our approach to ego-motion estimation differs
from previous work since we assume a rough hand-drawn
map of the camera’s trajectory, rather than having an accu-
rate map from which features can be abstracted and matched
against visual data [11, 16]. To our knowledge, this problem
has not been previously explored.

1.2 Overview
Before describing the detailed components of our sys-

tem, we first outline its overall structure. The inputs to
our system are a stream of omnidirectional images to-
gether with a hand-drawn map of the path traversed, which
is assumed to be topologically correct (i.e., the paths
and branches are traversed in the same order as drawn).
Our video comes from a Point Grey LadybugTM camera
(//www.ptgrey.com/products/ladybug/), which produces six
streams of 1024× 768 video at 15 fps.

Our first task is to detect which frames of video were
taken from the same (or nearby) locations. We first con-
vert the six individual frames of video into a single flattened
spherical image (Figure 1). We then use the efficient hierar-
chical matching techniques described in Section 2 to detect
nearby frames.

Next, we track features from frame to frame, and chain
pairwise matches together to form longer tracks. We also
match frames that are identified as overlaps (nearby frames)
in the first stage. We then use an essential matrix technique
to extract inter-camera rotations between all nearby frames.

We are now in a position to match the visual odometry
and map data using local orientation estimates (Section 3).
We simultaneously optimize the similarity in change in ori-
entation, the smoothness in the temporal correspondence
assignment, and the consistency at crossings and overlaps.
To solve this difficult non-local optimization problem, we
use loopy belief propagation since it efficiently exploits the
sparse graph structure of our constraints.

Once we have established a temporal correspondence be-
tween the ego-motion and map data, we can update the cam-
era positions returned by initial ego-motion estimates to bet-
ter reflect the corresponding map locations (Section 4). We
then run a bundle adjustment algorithm to estimate the final
camera positions.

We show experimental results on both an indoor and out-
door sequences, and close with a discussion of our results
and some ideas for future work.

2 Overlap and crossing detection
Given our input video, our first task is to detect which

(non-contiguous) video frames were taken from nearby lo-
cations. This information is later used to improve the qual-
ity of the visual odometry estimates (by matching frames

(45,137)

(45,286) (137,286)

(94,94)

(286,286)

(241,329)

(374,434)
(355,417)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(45,137)

(45,286) (137,286)

(94,94)

(286,286)

(241,329)

(374,434)
(355,417)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

(45,137)

(45,286) (137,286)

(94,94)

(286,286)

(241,329)

(374,434)
(355,417)

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

450

(a) (b) (c)

Figure 2. Distance maps for the house (upper level) sequence: (a) after matching color histograms; (b) further pruning
using moments; (c) final matches using epipolar constraints.

when the observer re-visits some previously seen location),
and also to improve the quality of the temporal alignment
(map correlation).

We begin by combining our six input images into a sin-
gle spherical image using a previously computed calibration
of the camera rig. A few examples from an indoor home se-
quence are shown in Figure 1. Our comparison technique
needs to be rotation invariant since the viewer can return to
a previously seen location facing a completely different di-
rection. One approach would be to use spherical harmonics
[8] or a simpler FFT-based technique to perform an align-
ment of each pair of images. The computational complexity
of such an approach is O(n2p log p) where n is the number
of images and p is the number of pixels. We could also ex-
tract characteristic features and match these to establish cor-
respondences [12]. Naı̈ve implementations are O(n2f2),
where f is the number of features per image, although tree-
based techniques can potentially reduce this to O(n log n)
[1].

In selecting our approach, we need to keep in mind that a
typical sequence in traversing an interesting interior or exte-
rior space may have tens of thousands of frames. To process
the sequence quickly, we try to reject a large number of ob-
viously bad matches by comparing global color histograms.
Next, we match global color moments to obtain a rough ro-
tation estimate, and finally, we match features to confirm the
correspondences. Each of these stages is described below in
more detail.

2.0.0.1 Matching histograms. We begin by computing
a color histogram for each image. Each histogram con-
tains 6 bins in each of the RGB channels, for a total of 216
bins. We build a cumulative histogram table in which the
(R,G,B) bin is the sum of all smaller bins:

c(R,G,B) =
∑

r≤R,g≤G,b≤B

h(r, g, b), (1)

where h(r, g, b) is the percent of image pixels in the (r, g, b)
bin. We use the distance between the cumulative color his-
tograms as a first similarity score [22]. Using a conserva-
tive matching threshold, we can prune away over 95% of
the bad matches, while retaining all of the good matches
(Figures 2–3(a)).

2.0.0.2 Matching moments. For each pair of frames
whose histograms distance is below a threshold, we com-
pute a 3D rotation by matching simple moments. This re-
lies on the first order moments of a spherical image being
invariant under 3D rotation, i.e.,

∫
S

f(I(Rû))ûdû = RT

∫
S

f(I(û))ûdû, (2)

where I(û) is the RGB value of the sphere in direction û,
and f(I(û)) is a simple function of the local color. In our
current implementation, the features we use are simple bi-
nary values, checking if the color falls within a certain his-
togram bin. Again, 6 bins in each channel are used for a
total of 216 features (spherical binary images). For each
frame in the sequence, we evaluate the 216 vectors

mki =

∫
S

fi(Ik(û))ûdû. (3)

For each pair (k, l) passing the threshold of stage 1, we
compute a 3D rotation between the moment representation
using the Procrustes algorithm [5]. We then keep those pairs
in which median error (computed using RANSAC) in the
moments after rotation is low (Figures 2–3(b)).

2.0.0.3 Matching features. For the final stage, we ex-
tract Harris corners [6] and then estimate the epipolar geom-
etry (Essential matrix) between the remaining candidate im-
ages using a robust RANSAC technique [7]. Pairs without
enough consistently matching features are then discarded.

The feature matching stage is also used to produce highly
accurate inter-frame rotation estimates, which are used in

(1,100)

(19,157)
(43,178)

(211,267)

(430,479)
(299,552)
(313,564)

(611,670)
(637,693)

(719,794)
(740,813)

(282,879)

(239,239)

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

(1,100)

(19,157)
(43,178)

(211,267)

(430,479)
(299,552)
(313,564)

(611,670)
(637,693)

(719,794)
(740,813)

(282,879)

(239,239)

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

(1,100)

(19,157)
(43,178)

(211,267)

(430,479)
(299,552)
(313,564)

(611,670)
(637,693)

(719,794)
(740,813)

(282,879)

(239,239)

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

(a) (b) (c)

Figure 3. Distance maps for the botanical garden sequence: (a) after matching color histograms; (b) further pruning
using moments; (c) final matches using epipolar constraints.

the next phase of our map correlation algorithm to perform
temporal alignment of the video and map sequences.

2.0.0.4 Matching results. The resulting cascaded prun-
ing scheme is extremely fast. Processing the set of all pairs
using the first two stages in a 1000 frame sequence takes just
a few minutes using our unoptimized Matlab implementa-
tion.

Figure 1 shows some matching results for the first two
stages, as described in the figure caption. Figures 2–3 show
the distance maps computed using this process, with match-
ing pairs marked with numerals. For the house, the matches
after the first two stages are already good enough. For
the botanical garden sequence, there are still frames taken
at different geometric location with similar statistics. To
eliminate such pairs, we require the final feature matching
stage. Figures 2–3(c) show the final matches, which we can
think of a binary matrix M(i, j). Note that in interpreting
these distance maps, clusters (segments) of matching points
parallel to the main diagonal indicate a path that was re-
traversed in the same direction, while segments perpendic-
ular to the diagonal indicate a reverse traversal (e.g., when
exiting a “dead-end”).

Figure 4 shows the matches plotted on both the hand-
drawn map (using a hand-labeled correspondence between
video frames and map positions for the purposes of visual-
ization) and a rough ego-motion reconstructed path (whose
construction is described below). Again, we can see that the
overlaps and crossings are all correctly identified.

2.0.0.5 Orientation estimation. Once we have estab-
lished feature correspondences between spatially adjacent
video frames, we estimate pairwise inter-frame rotations
and translation directions using the Essential matrix tech-
nique [7]. These could be used to initialize a global bundle
adjustment [18] on all of the structure and motion param-
eters, but this would result in a huge system that would
converge slowly and would still be susceptible to low-

frequency errors [9, 13]. Alternatively, we could keep only
the inter-pair rotation estimates, and use these to optimize
for the global orientation of each camera. This is a simple
non-linear least-squares problem in the rotation estimates,
which could be optimized using Levenberg-Marquardt.

Instead, we have found that the global orientation es-
timation stage can be bypassed entirely, and that simple
(but globally inaccurate) estimates of orientation based on
chaining together rotation estimates between successive
frames are adequate for the map correlation phase. A sim-
ilar chaining of displacement estimates assuming uniform
observer velocity (which is clearly wrong when turning
around at the end of a corridor or path) is used to estimate
the initial ego-motion (location) estimates shown in Figure
4(b).

3 Map correlation
At this point, we are ready to match up the visual data

(from which we have extracted local estimates of orienta-
tion and global estimates of path overlaps and crossings)
with the hand-drawn map. This might at first glance seem
to be a simple case of time warping, which could be solved
using dynamic programming. However, as we will shortly
see, this would not allow us to exploit all of the constraints
available for solving this problem.

3.1 Problem formulation

As we mentioned before, while the vision-based ego-
motion (visual odometry) estimates capture the local struc-
ture of the path, global errors tend to accumulate over time.
Therefore a global matching of map-based observer orien-
tations and visual odometry orientation estimates will not
work. Instead, we need to match the frames and map points
based on the local orientation differences. In our work, we
only use rotations around the vertical axis, since these are
the only ones that can be measured from the map.

To find a matching between map points i ∈ {1, . . . ,m}

329
241

211

164

1

4513794
286

355
417374

434

100 200 300 400 500 600 700

100

200

300

400

500

600

700
0 100 200 300 400 500 600 700

−700

−600

−500

−400

−300

−200

−100

0

329 241 211

164

1

45 13794
286

355417
374

434

−100 −80 −60 −40 −20 0 20 40 60 80
0

50

100

150

200

250

329
241

211

164

1

45

137

94
286

355
417

374434

100

157
178

267

479
552

564

670
693

794
813

879

1
19 43

211

430
299

313
611

637

719
740

282

239

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

50 100 150 200 250 300 350 400 450 500
−500

−450

−400

−350

−300

−250

−200

−150

−100

100

157
178

267

479552

564

670

693

794

813

879

1

19
43

211

430299

313

611
637

719

740

282

239

−40 −20 0 20 40 60 80 100
−20

0

20

40

60

80

100

120

140

160

180

100

157
178

267

479

552

564

670693
794

813

879

1

19
43

211
430299

313

611

637
719

740

282
239

(a) (b) (c)

Figure 4. Matches overlaid on a map: the first line presents a house sequence and the second a Botanical garden (out-
door) sequence. (a) original hand-drawn map; (b) matching pairs plotted as green lines on the map; (c) matching pairs
plotted on the initial ego-motion reconstruction. The frame numbers were selected by hand and the correspondences
were manually established to gauge the quality of the overlap results. Figure 6 shows the automatically computed
correspondences. (See the electronic version of this paper for larger figures.)

(a) (b) (c)

Figure 5. Graphical model: (a) edges in group E1; (b) edges in group E2; (c) edges in group E3.

and video frames k ∈ {1, . . . , n}, we define a matching
function f : 1, ...,m → 1, ..., n, where m is the number of
map points (after some discretization) and n is the number
of frames in the sequence.

Let α(i, j) be the change in orientation between map
point i and map point j. (We can estimate the local orien-
tation by smoothing the hand-drawn map slightly and com-
puting tangent directions.) Similarly, let α̂(fi, fj) be the
change in orientation from frame fi to frame fj , as com-
puted from the visual odometry.

A good match should satisfy the following three criteria:

1. The matching function f should be monotonic and
smooth.

2. Orientation differences |α(i, i + w) − α(fi, fi+w)|
would be small, where w is the temporal window size,
which should be high enough to overcome local noise,
but low enough to avoid global drift. In our current
experiments, we use a value of w = 6.

3. Whenever the map indicates close proximity between
two points (i, j), the visual data should indicate that
frames (fi, fj) were taken from nearby locations.

3.2 The graphical model

How do we encode these constraints into an optimiza-
tion framework and find the desired correspondence? The
answer is to associate the map with an undirected graphical

model. The nodes in the model are the sampled map points.
Each node in the graph i is assigned a value fi ∈ {1, . . . , n}
representing the matching frame in the video sequence.

To express the above three criteria, the graph is built out
of three edges types:

1. To encode monotonicity and smoothness, nodes i and
i+ 1 are connected by an edge in E1.

2. To encode orientation consistency, nodes i and i + w

are connected by an edge in E2.

3. To encode overlaps (proximity), each pair of points
(i, j) within a close geometric location on the map is
connected by an edge in E3.

The three edges types for the botanical garden sequence are
shown in Figure 5.

To find the optimal map correlation, we search for the
assignment {f1, ..., fm} that maximizes the probability

P (f) =
∏

(i,j)∈E1

Ψ1
i,j(f)

∏
(i,j)∈E2

Ψ2
i,j(f)

∏
(i,j)∈E3

Ψ3
i,j(f). (4)

For each of the three edges types, the pairwise potential
Ψp

i,j(f) is set to express the corresponding matching cri-
terion. The first potential is

Ψ1
i,i+1 = exp(−|fi − fi+1|

2)[fi ≤ fi+1], (5)

where the predicate [fi ≤ fi+1] constrains the match to be
monotonic, and maximizing exp(−||fi−fi+1||

2) is equiva-
lent to minimizing the squared difference between fi, fi+1,
which results in a smooth match. The second potential is

Ψ2
i,i+w = exp(−|α(i, i+ w)− α̂(fi, fi+w)|). (6)

Maximizing this term minimizes the local difference be-
tween the ego-motion (visual odometry) and map-based ori-
entation estimates. The last potential is

Ψ3
i,j =M(i, j), (7)

i.e., Ψ3
i,j equals 1 iff the frames (fi, fj) were identified as

being in nearby positions by the overlap detection stage.

3.3 Loopy belief propagation
Since the edges in groups E2 and E3 introduce loops in

the model, dynamic programming cannot be used to find
an optimal assignment. Instead, we use loopy belief prop-
agation [21] to estimate the MAP (maximum a posteriori)
assignment. This is similar in spirit to the work of Cough-
lan and Ferreira [4], who use loopy belief propagation to
recognize letters.

Applying the loopy belief propagation message passing
scheme requires some care, since the above graphical model
contains a large number of loops, and the belief propagation

process is not guaranteed to converge to the global optimum
(or to converge at all). To improve convergence, we use an
asynchronous message passing scheme and select the up-
dating order in the following way.

Notice that the edges in group E1 are a loop-free chain.
The edges in the second group are also a union of w plain
chains of the form j, j+w, j+2w, Recall that one itera-
tion of an asynchronous message passing on a chain (or any
tree structured graph) converges to the global optimum with
respect to the potentials on the edges of this chain alone.

We therefore propagate the messages in the following
order: (1) the chain in group E1; (2) the loops in group E3;
(3) the first chain of group E2; (4) the chain in group E1;
(5) the loops in groupE3; (6) the second chain of groupE2,
etc.

Note that if we could have sampled the map in such a
way that w = 1 were already a noise free window, the sec-
ond group would contain only one chain and could have
been merged with the first group. Message passing in this
case would be simple. However, we noticed that while sam-
pling the map too densely indeed converged easily, the so-
lution was not “nailed down” to the desired accuracy. The
above process aims to nail a few chains in the map simulta-
neously, which results in significantly more accurate match-
ing.

Figure 6(a-b) shows the final computed matches. For
comparison Figure 6(c) shows the matches obtained using
simple dynamic programming. For this comparison, the DP
matched absolute orientation angles (after a single global
shift) and included a smoothness term as well as a term to
encourage map crossings to match visual crossings. As can
be seen by inspecting the individual frame numbers, our
algorithm successfully established high-accuracy matches
between all of the video frames and the map data, while
dynamic time warping produces a less accurate registration
(particularly at bends in the path).

4 Pose update and re-estimation
Given the matching function (map correlation) between

the video frames and the map points, we now wish to correct
the global ego-motion using the map data. Note, however,
that while the map accurately encodes the global structure
of the world, it is often locally inaccurate, both because the
map was manually drawn by a user, and because the actual
tour the camera took in the world contains jumps and high
frequencies that the map is unable to encode. Such high
frequency motions can be accurately recovered using visual
odometry.

To compute a global correction to the pose estimates, we
divide the frames into a set of small segments. For each
of these segments, we solve for a Euclidean transformation
Aj minimizing the least squares distance between the cam-
era positions given by the ego-motion and the map. Limit-

0 100 200 300 400 500 600 700
700

600

500

400

300

200

100

0

9 7
6

5

1

2
43 8

10
1211

13

50 40 30 20 10 0 10 20 30 40
0

20

40

60

80

100

120

140

9
7

6

5

1

2
4

3
8

10

12
1113

100 80 60 40 20 0 20 40 60 80
0

50

100

150

200

250

9
7

6

5

1

23

4

8

10

121113

50 100 150 200 250 300 350 400 450 500
500

450

400

350

300

250

200

150

100

1

2
3

56

8
9

10
11

12
13

14

15

19

20 21
22

26

27

2829

30 31

32

33

3436

35
16

17 18

37

4
7

23
24

25

40 20 0 20 40 60 80 100
20

0

20

40

60

80

100

120

140

160

180

1

2
3

56

8

9

10

11
12

13
14

15

1920 21

22

26

27

28
29

32 31
30

33

34

35
36

16 17
18

37

4

7

23
24

25

40 20 0 20 40 60 80 100
20

0

20

40

60

80

100

120

140

160

180

1

2 3

56

8 9

10
11

12

14
13

15

20

23
1924

26

29

27

31
32

28

30
35

34

33
36

16
17

18

37

4
7

22 2125

(a) (b) (c)

Figure 6. Loopy belief propagation matches: (a) input map. (b) ego-motion matches, using full loopy belief propaga-
tion. (c) ego-motion matches, using only dynamic time warping. The numbers show selected correspondences picked
by hand to illustrate the quality of the overall correspondences.

ing the transformation to a simple parametric form enables
global corrections of the ego-motion, but prevents the loss
of the high frequencies. Furthermore, the set of transfor-
mations should connect neighboring segments in a smooth
way. We therefore solve for the set of transformations {Aj}
simultaneously, requiring Aj and Aj+1 to operate on the
last few frames of the j segment and the first few frames of
the j + 1 segment in a similar way.

Figure 7 presents the results of the pose update step. No-
tice how the significant structures in the ego-motion are pre-
served. For example, in the right loop of the botanical gar-
den sequence, the map was drawn inaccurately as a circle,
while the camera carrier actually remembers walking in a
square-like path. This square structure was captured by the
visual ego-motion, and our transformation is robust enough
to bring the ego-motion close to the map while preserving
this square structure. Similarly, the S-shaped wiggle seen to
the left of that loop actually reflect the true structure of the
pathway, which makes a series of 90◦ turns while climbing
a set of steps.

Once we have performed the initial adjustment of the
rough ego-motion estimates, we can re-solve for the cam-
era positions using a full feature-based bundle adjustment,
using the map positions as weak priors on the camera po-
sitions [18]. The results of doing this are shown in Fig-
ure 7(c–d). As you can see, the final bundle adjustment
does not change the results significantly. We need to per-

form further tests to determine whether this is because the
global registration was indeed close enough, or whether the
bundle adjustment problem is suffering from poor condi-
tioning.

5 Experiments
We have tested our algorithms on three different data

sets. The first was an outdoor botanical garden sequence,
while the other two were the upper and lower floors of a
house (not shown, due to space limitations), which were
processed separately because of the need to draw separate
maps. The original botanical garden data consists of 10,000
frames, which we subsampled to every 10th frame before
processing. Similarly, each section of the house contained
about 5000 original frames, which we subsampled down to
500.

The results of our experiments are shown in Figures 1–
7. In general, the algorithms performed well. The novel
multi-stage localization algorithm quickly rejected unlikely
matches and selected final matches that found all major
overlaps without any false positives. The loopy belief prop-
agation map correlation phase performed much better than
a simple dynamic program and correctly matched up all of
the major turn points and segments.

The one thing that we are currently missing is ground
truth data for the actual motion. This could be obtained
either using a robot with carefully calibrated odometry, or

50 100 150 200 250 300 350 400 450 500
−500

−450

−400

−350

−300

−250

−200

−150

−100

0 100 200 300 400 500 600 700
−700

−600

−500

−400

−300

−200

−100

0

50 100 150 200 250 300 350 400 450
−500

−450

−400

−350

−300

−250

−200

−150

−100

0 100 200 300 400 500 600 700
−700

−600

−500

−400

−300

−200

−100

0

(a) (b) (c) (d)

Figure 7. Initial local transformation of ego-motion estimation to map (a–b), and final results after bundle adjustment
(c–d). The original paths (before updates) are shown in blue, while the updated paths are shown in red.

using photogrammetric techniques, e.g., by surveying visi-
ble landmarks (ground control points) and identifying them
manually in the images.

6 Conclusions
In this paper, we have introduced and solved a novel vari-

ant on the visual odometry (camera localization) problem,
where the system is provided with a rough hand-drawn map
of the camera’s trajectory. Our approach relies on a fast
multi-stage correspondence algorithm to identify visually
similar panoramic views, followed by a graphical model for
finding the optimal temporal correspondence, which we op-
timize using loopy belief propagation.

In future work, we would like to investigate the use of
additional information and constraints, such as vanishing
points, the fact that the camera is on average not tilted and
that floors are flat (indoors), and the use of absolute orien-
tation sensors [9].

We also plan to investigate recomputing the map corre-
lation in alternation with the final bundle adjustment to see
if our results could be improved. This will also entail the
development of more efficient algorithms for solving very
large structure from motion problems [13].

References
[1] J. S. Beis and D. G. Lowe. Shape indexing using approxi-

mate nearest-neighbour search in high-dimensional spaces.
In CVPR’97, pp. 1000–1006, 1997.

[2] P. Blaer and P. Allen. Topological mobile robot localization
using fast vision techniques. In ICRA’02, v. 1, pp. 1031–
1036, 2002.

[3] M. Bosse et al. An Atlas framework for scalable mapping.
In ICRA’03, v. 2, pp. 1899–1906, 2003.

[4] J. M. Coughlan and S. J. Ferreira. Finding deformable
shapes using loopy belief propagation. In ECCV 2002, v. III,
pp. 453–468, 2002.

[5] G. Golub and C. F. Van Loan. Matrix Computation, third
edition. The John Hopkins University Press, 1996.

[6] C. Harris and M.J. Stephens. A combined corner and edge
detector. In Alvey Vision Conference, pp. 147–152, 1988.

[7] R. I. Hartley and A. Zisserman. Multiple View Geometry.
Cambridge University Press, Cambridge, UK, Sept. 2000.

[8] A. Makadia and K. Daniilidis. Direct 3d-rotation estimation
from spherical images via a generalized shift theorem. In
CVPR’2003, v. II, pp. 217–224, 2003.

[9] C. F. Olson et al. Stereo ego-motion improvements for ro-
bust rover navigation. In ICRA’01, v. 2, pp. 1099–1104,
2001.

[10] R. Pless. Using many cameras as one. In CVPR’2003, v. II,
pp. 587–593, 2003.

[11] D. P. Robertson and R. Cipolla. Building architectural mod-
els from many views using map constraints. In ECCV 2002,
v. II, pp. 155–169, 2002.

[12] F. Schaffalitzky and A. Zisserman. Multi-view matching for
unordered image sets, or “How do I organize my holiday
snaps?”. In ECCV 2002, v. I, pp. 414–431, 2002.

[13] D. Steedly and I. Essa. Propagation of innovative informa-
tion in non-linear least-squares structure from motion. In
ICCV 2001, v. 2, pp. 223–229, 2001.

[14] D. Strelow and S. Singh. Optimal motion estimation from
visual and inertial measurements. In WACV 2002, pp. 314–
319, 2002.

[15] C. J. Taylor. Videoplus: a method for capturing the structure
and appearance of immersive environments. IEEE Trans.
Visual. Comp. Graphics, 8(2):171–182, April-June 2002.

[16] S. Thrun. Robotic mapping: A survey. In Exploring Arti-
ficial Intelligence in the New Millenium, pp 1–36. Morgan
Kaufmann, 2002.

[17] A. Torralba et al. Context-based vision system for place and
object recognition. In ICCV’03, pp. 273–280, 2002.

[18] B. Triggs et al. Bundle adjustment — a modern synthesis.
In Intl. Workshop Vision Algorithms, pp. 298–372, 1999.

[19] I. Ulrich and I. Nourbakhsh. Appearance-based place
recognition for topological localization. In ICRA’00, v. 2,
pp. 1023–1029, 2000.

[20] M. Uyttendaele et al. High-quality image-based interactive
exploration of real-world environments. IEEE Computer
Graphics and Applications, 24(3), May-June 2004.

[21] Y. Weiss and W. T. Freeman. Correctness of belief prop-
agation in gaussian graphical models of arbitrary topology.
Neural Computation, 13(10):2173–2200, 2001.

[22] M. Werman, S. Peleg, and A. Rosenfeld. A distance metric
for multidimensional histograms. Computer Vision, Graph-
ics and Image Processing, 32(3):328–336, 1985.

