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Figure 1: Acquiring scattering parameters. Left: Samples of two materials (milk, blue curacao) in glass cells used for acquisition. Middle:
Samples illuminated by a trichromatic laser beam. The observed scattering pattern is used as input for our optimization. Right: Rendering
of materials in natural illumination using our acquired material parameter values.

Abstract
Translucent materials are ubiquitous, and simulating their appear-
ance requires accurate physical parameters. However, physically-
accurate parameters for scattering materials are difficult to acquire.
We introduce an optimization framework for measuring bulk scat-
tering properties of homogeneous materials (phase function, scat-
tering coefficient, and absorption coefficient) that is more accurate,
and more applicable to a broad range of materials. The optimization
combines stochastic gradient descent with Monte Carlo rendering
and a material dictionary to invert the radiative transfer equation. It
offers several advantages: (1) it does not require isolating single-
scattering events; (2) it allows measuring solids and liquids that are
hard to dilute; (3) it returns parameters in physically-meaningful
units; and (4) it does not restrict the shape of the phase function
using Henyey-Greenstein or any other low-parameter model. We
evaluate our approach by creating an acquisition setup that col-
lects images of a material slab under narrow-beam RGB illumina-
tion. We validate results by measuring prescribed nano-dispersions
and showing that recovered parameters match those predicted by
Lorenz-Mie theory. We also provide a table of RGB scattering pa-
rameters for some common liquids and solids, which are validated
by simulating color images in novel geometric configurations that
match the corresponding photographs with less than 5% error.
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1 Introduction

Scattering plays a critical role in the appearance of most materials.
Much effort has been devoted to modeling and simulating its visual
effects, giving us precise and efficient scattering simulation algo-
rithms. However, these algorithms produce images that are only as
accurate as the material parameters given as input. This creates a
need for acquisition systems that can faithfully measure the scatter-
ing parameters of real-world materials.

Collecting accurate and repeatable measurements of scattering is
a significant challenge. For homogeneous materials—which is the
primary topic of this paper—scattering at any particular wavelength
is described by two scalar values and one angular function. The
scattering coefficient σs and absorption coefficient σa represent the
fractions of light that are scattered and absorbed, and the phase
function p(θ) describes the angular distribution of scattering. Mea-
surement is difficult because a sensor almost always observes the
combined effects of many scattering and absorption events, and
these three factors cannot be easily separated. Indeed, for deeply-
scattering geometries, similarity theory [Wyman et al. 1989] proves
that one can analytically derive distinct parameter-sets that nonethe-
less produce indistinguishable images.

Most existing acquisition systems address the measurement chal-
lenge using a combination of two strategies (e.g., [Hawkins et al.
2005; Narasimhan et al. 2006; Mukaigawa et al. 2010]). First, they
manipulate lighting and/or materials to isolate single-scattering ef-
fects; and second, they “regularize” the recovered scattering param-
eters by relying on a low-parameter phase function model, such as
the Henyey-Greenstein (HG) model. These approaches can provide
accurate results, but both of the employed strategies have severe
limitations. The single-parameter HG model limits applicability to
materials that it represents well; and this excludes some common
natural materials [Gkioulekas et al. 2013]. Meanwhile, isolating
single scattering relies on either: (a) diluting the sample [Hawkins
et al. 2005; Narasimhan et al. 2006], which cannot be easily ap-
plied to solids or to liquids that have unknown dispersing media;
or, (b) using structured lighting patterns [Mukaigawa et al. 2010],
which provide only approximate isolation [Holroyd and Lawrence
2011; Gupta et al. 2011] and therefore induce errors in measured
scattering parameters that are difficult to characterize.
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We introduce an optimization framework that allows measuring ho-
mogeneous scattering parameters without these limitations. Our
optimization undoes the effects of low-order scattering by inverting
the radiative transfer equation (i.e., by inverting a random walk) us-
ing a combination of Monte Carlo rendering and stochastic gradient
descent. We evaluate our optimization framework by creating a vol-
umetric scanner that uses a camera and narrow-beam RGB sources
to collect a handful of images of a material sample that resides in a
box-shaped transparent glass cell (Figure 1, left). Once calibrated,
this scanner provides images of low-order scattering in which the
geometry is precisely known. Using these images we optimize a
dictionary-based set of scattering parameters so that they produce
re-rendered images that match the acquired ones.

We validate our results in two ways: one, we measure prescribed
dispersions of nano-scale particles whose scattering parameters can
be computed using Lorenz-Mie theory and show that our recovered
parameters are in close agreement; two, we re-render color images
of these materials in novel lighting configurations and show that
they numerically match, within 5%, the new captured images.

The benefits of our approach are:

(1) We can accurately measure scattering for a broader set of liq-
uids and solids since there is no need for precisely-isolated single-
scattering effects. The thickness of the glass cell can be selected
appropriately for each material; but it does not need to be chosen
with excessive care since our optimization succeeds for a relatively
broad range of thicknesses (anywhere between 0.1 to 10 times the
mean free path of the material being measured).

(2) We can support general phase function measurement, and are
not restricted to HG or other low parameter models, because our op-
timization incorporates a large material dictionary that allows phase
functions to be any convex combination of hundreds of dictionary
elements. These general phase functions are particularly visually
important for accurate visual appearance of objects with thin fea-
tures.

Our contributions include:

• An optimization framework to invert volumetric scattering us-
ing MC rendering and stochastic gradient descent.

• An acquisition setup to acquire homogeneous material scat-
tering properties with physically accurate parameters.

• A table of RGB scattering parameters for a variety of common
materials, both liquid and solid, as well as a publicly-available
collection of tabulated phase functions.

The availability of physically-accurate scattering parameters with
general phase functions can improve simulations of translucent ma-
terial appearance to better match that in the real world.

2 Related Work

Inverse radiative transport is studied in graphics, as well as in geo-
physical, biomedical, and chemistry domains; Bal [2009] provides
a comprehensive review. Problems can be grouped into three cate-
gories, according to the ratio of the material’s mean free path—the
average distance a photon travels before it is scattered—to the size
of the scattering volume. We discuss these three categories in turn,
and then we discuss phase function models and surface-based ap-
pearance models.

Deep scattering and approximation by diffusion. Inverse prob-
lems in this category consider media that are optically-thick, so that
photons scatter many times before being measured. Radiative trans-
port is then modeled using the diffusion approximation, where the
angular variation of the internal radiance is limited and the radiative

transport equation reduces to a partial differential equation [Ishi-
maru 1978]. The advantage of this approach is that it simplifies the
inference problem, allowing efficient acquisition and rendering sys-
tems [Jensen et al. 2001; Donner and Jensen 2005] and, as demon-
strated by Wang et al. [2008], the estimation of spatially-varying
structure within a medium. In physics, the diffusion approxima-
tion is employed by diffusing-wave spectroscopy [Pine et al. 1990],
which is used for applications such as particle sizing or the mea-
surement of molecular weight. The diffusion approximation applies
when high-order scattering is dominant, causing the phase function
to be confounded with other scattering parameters [Wyman et al.
1989] and therefore reasonable to ignore. It is not appropriate for
our application, where we seek material-specific phase functions
that can accurately predict appearance for shapes that have arbitrary
thin and thick parts.

Single scattering and direct methods. At the other extreme are
optically-thin situations, where photons scatter only once before be-
ing measured. Scattering parameters can often be measured directly
in these cases, using techniques like static or dynamic light scatter-
ing [Johnson and Gabriel 1994]. For graphics, Hullin et al. [2008]
use fluorescent dyes to make qualitative observations on the scat-
tering parameters of optically thin media exhibiting mostly single
scattering. Hawkins et al. [2005] use a laser to measure albedo and
a tabulated phase function of a sparse homogeneous aerosol. For
liquids, Narasimhan et al. [2006] successively dilute samples with
water until they are sparse enough to infer from single-scattering
an HG phase function. Single-scattering has also been exploited
to capture time-varying and spatially-varying wisps of smoke and
sparse mixing liquids [Hawkins et al. 2005; Fuchs et al. 2007; Gu
et al. 2008]. All of these techniques rely on manipulating materi-
als so that single-scattering dominates, and while dilution can be
used for aerosols and some liquids, it cannot be easily applied to
solids, or to liquids whose dispersing medium is unknown and sig-
nificantly different from water. This limitation motivates methods
for suppressing multiple scattering without dilution. Techniques
for particle sizing or molecular weight, for example, exploit cross-
correlation properties of multiple temporal measurements [Pusey
1999], but these are specific to those applications and do not eas-
ily extend to our problem. For graphics, Mukaigawa et al. [2010]
use high frequency lighting patterns to isolate single-scattering ef-
fects [Nayar et al. 2006], allowing direct access to the mean free
path and a good initialization for an indirect (multi-scattering) op-
timization over an HG phase function parameter. Such lighting-
based isolations of single scattering are potentially quite useful, but
as discussed in the context of 3D surface reconstruction [Holroyd
and Lawrence 2011; Gupta et al. 2011], they provide only approxi-
mate isolation, and there is currently no analysis of how this affects
the accuracy of inferred scattering parameters.

Low-order scattering and indirect methods. Our approach is
in this category, where the goal is use moderately-thick samples
to infer scattering parameters by iteratively refining them until
they predict measurements that are consistent with the acquired
ones (e.g., [Singer et al. 1990; Mukaigawa et al. 2010]). Most
of these approaches focus like we do on homogeneous materials,
since this is already very challenging. (A notable exception is An-
tyufeev [2000], who used regularized estimation to infer spatially-
varying phase functions.) A common strategy in biomedical and
physics domains is to simplify calculations by using planar slabs
and spatially-uniform lighting that reduces the relevant scene ge-
ometry from three dimensions to two (e.g., [Chen et al. 2006; Prahl
et al. 1993; McCormick and Sanchez 1981]). But this has the signif-
icant disadvantage of limiting access to angular scattering informa-
tion, thereby increasing reliance on restrictive low-parameter phase
function models. In contrast, our optimization applies to any geo-
metrical configuration with any incident light field, as long as both



are precisely calibrated. This allows using narrow-beam illumina-
tion, which improves access to angular scattering information and
allows considering a much richer space of phase function models.

Phase function models. Most existing approaches to inverse ra-
diative transfer use the single parameter Henyey-Greenstein [1941]
model or other low-parameter models [Reynolds and McCormick
1980], but these can only be accurate for materials they repre-
sent well. The shape of the phase function is important for ap-
pearance, especially for objects with thin parts, and as recently
shown by Gkioulekas et al. [2013], there are common materials
that are not well-represented by the HG model. We avoid the re-
strictions of low-parameter models through the use of a phase func-
tion dictionary with hundreds of elements. This is similar in spirit
to dictionary-based BRDF representations used to analyze and edit
opaque scenes without being restricted to any particular analytic
BRDF model (e.g., [Lawrence et al. 2006; Ben-Artzi et al. 2008]).

Surface reflectance fields and BSSRDF. There are a number of
acquisition systems devoted to recovering surface-based descrip-
tions of light transport through translucent objects [Debevec et al.
2000; Goesele et al. 2004; Tong et al. 2005; Peers et al. 2006; Don-
ner et al. 2008]. These provide mappings between the input and
output light fields on a specific object’s surface, and they do so
without explicitly estimating all of the internal scattering param-
eters. They have the advantage of being very general and providing
accurate appearance models for heterogeneous objects with com-
plex shapes. Our goal is very different. We seek scattering material
parameters that are independent of geometry, so that we can easily
edit these materials and accurately predict their appearance when
sculpted into any geometric shape.

3 Volume light transport

Scattering occurs as light propagates through a medium and inter-
acts with material structures. There are many volume events that
cause absorption or change of propagation direction. This process
has been modeled by the radiative transfer equation (RTE) [Chan-
drasekhar 1960; Ishimaru 1978; Mishchenko et al. 2006]:(

ωT∇
)
L (x,ω) = Q (x,ω)− σtL (x,ω)

+ σs

∫
S2
p (ω,ψ)L (x,ψ) dµ (ψ) , (1)

where x ∈ R3 is a point in the interior or boundary of the scat-
tering medium; ω,ψ ∈ S2 are points in the sphere of direc-
tions and µ is the usual spherical measure; Q (x,ω) accounts for
emission from light sources; and L (x,ω) is the resulting light
field radiance at every spatial location and orientation. The ma-
terial is characterized by the triplet of macroscopic bulk parameters
k = {σt, σs, p (θ)}. Specifically, the extinction coefficient σt con-
trols the spatial frequency of scattering events, and the scattering
coefficient σs ≤ σt the amount of light that is scattered. The differ-
ence σa = σt − σs ≥ 0 is known as the absorption coefficient and
is the amount of light that is absorbed. Finally, the phase function
p is a function on S2× S2 determining the amount of light that gets
scattered towards each direction ψ relative to the incident direction
ω. The phase function is often assumed to be invariant to rotations
of the incident direction and cylindrically symmetric; therefore, it is
a function of only θ = arccos (ω ·ψ) satisfying the normalization
constraint

2π

∫ π

θ=0

p (θ) sin (θ) dθ = 1. (2)

We also adopt this assumption in the remaining of the paper and
consider only phase functions of this type (we discuss some of the
technical details related to this assumption in the Supplementary

Appendix C). Complementary to the above quantities, the following
two parameters are also used for describing scattering behavior: the
mean free path, equal to d = 1/σt, and the albedo, equal to a =
σs/σt. In the following, we will use the parameter triplet k as an
interchangeable term for scattering material.

We consider homogeneous materials in which scattering parame-
ters do not depend on spatial location. Scattering parameters also
exhibit perceptually dominant spectral dependency [Fleming and
Bülthoff 2005; Frisvad et al. 2007] but for notational clarity we
omit wavelength dependency.

3.1 Operator-theoretic formulation

We present the operator-theoretic formulation of the RTE that we
will use to setup a tractable optimization procedure for volume ren-
dering inversion. The specific formulation we use is tailored to-
ward our optimization algorithm, but approximations of similar na-
ture have been considered for rendering applications [Rushmeier
and Torrance 1987; Bhate and Tokuta 1992]. In the following, we
consider only points x in the interior of the scattering medium; we
discuss boundary conditions and other details for this formulation
in the Supplementary Appendix A.

We begin by considering a finite difference approximation for the
directional derivative [LeVeque 2007](

ωT∇
)
L (x,ω) ≈ 1

h
(L (x+ hω,ω)− L (x,ω)) . (3)

Defining Li (x,ω) = hQ (x− hω,ω), after simple algebraic ma-
nipulation we obtain from Equation (1)

L (x,ω) = Li (x,ω) + (1− hσt)L (x− hω,ω) +

hσs

∫
S2
p
(
ωTψ

)
L (x− hω,ψ) dµ (ψ) .

(4)

We define the following linear operator in terms of the material
parameters k = {σt, σs, p (θ)}, that acts on functions on R3 × S2

Kk (L) (x,ω) , (1− hσt)L (x− hω,ω)

+ hσs

∫
S2
p
(
ωTψ

)
L (x− hω,ψ) dµ (ψ) . (5)

Intuitively, the action of Kk can be viewed as a single step in the
temporal propagation of a photon inside the medium. After travel-
ing a distance of length h, the photon will transit in one of the fol-
lowing ways: 1) keep the same direction unaffected by the medium
(probability 1−hσt); 2) scatter towards a new direction determined
by the phase function p (probability hσs); 3) absorbed (probability
h (σt − σs)). Consecutive applications of Kk describe the time-
resolved random walk the photon performs as it travels through the
medium.

Using the Kk operator, we can rewrite the RTE (4) in the form

L = Li +KkL. (6)

Solving Equation (6) for L, we can express the light field L as the
result of a radiative transfer processRk on the input light field Li:

L = RkLi, (7)

with

Rk , (I − Kk)−1 =

∞∑
j=0

Kjk. (8)

The second equality in Equation (8) follows by applying the Neu-
mann series expansion, as it applies for the inverse of I − Kk.



(We discuss the invertibility of I − Kk in the Supplementary Ap-
pendix C.) It implies that the light field L resulting from the radia-
tive transfer process of Equation (3) can be expressed as the sum
of all orders of consecutive applications Kk to the input light field
Li. That is, L corresponds to the asymptotic density of photons,
when accounting for all of the intermediate positions of each pho-
ton after an arbitrary number of random walk steps. We refer toKk
as the single-step propagation operator and toRk as the rendering
operator for material k.

The validity of the above formulation for volume light transport
relies on the accuracy of the approximation in Equation (3). In
the limit that h goes to zero, the operator Rk and the light field
L of Equation (7) converge to the usual volume rendering opera-
tor [Jensen 2001] and the true light field inside the volume. In the
Supplementary Appendix A, we discuss in detail this relationship,
as well as analogies between operator Kk and Equation (8), and
their counterparts derived from the volume rendering equation. As
explained there, how small h needs to be depends on the extinction
coefficient σt of the medium: h � ε/σt. In our experiments, we
use ε = 0.01.

4 Inverting volume scattering

We are interested in using images of an unknown material, to re-
cover its scattering parameters k = {σt, σs, p (θ)}. Formally, we
consider a known 3D shape filled with the unknown material, illu-
minated by calibrated light sources Lmi , and imaged by calibrated
cameras to produce images Im. Using the volume scattering Equa-
tion (6), we can write

Im = SmL = Sm (I − Kk)−1 Lmi , (9)

where the sampling operator Sm describes the combination of light
field rays measured by the corresponding camera. The terms Lmi
and Sm fold in complete information about the 3D shape of the ma-
terial volume, the relative light source and camera positions, as well
as light interactions at the interface between the material volume
and its surroundings. Modeling these light interactions involves a
knowledge of the materials’ refraction indices, and an assumption
there is no further scattering between the material and the camera.

Given a set of illuminations {Lmi ,m = 1, . . . ,M} and their corre-
sponding measurements

{
Īm,m = 1, . . . ,M

}
, we cast the prob-

lem of inferring the material properties in an appearance matching
framework: find the material parameters k that best reproduce the
measurements in the least-squares sense

min
k

M∑
m=1

wm
(
Sm (I − Kk)−1 Lmi − Īm

)2
. (10)

where k is any permissible material parameter triplet
{σt, σs, p (θ)}. We weight the error for each radiance mea-
surement with wm = max

{
c, (Īm)α

}−1, c, α > 0, to prevent
the solution from overfitting only the brightest measurements. We
selected c = 0.01 and α = 3 using the experiments on synthetic
data described in Section 6.

In the rest of this section we derive an optimization algorithm for
the appearance matching problem. We express the material param-
eters as a convex linear combination of the material dictionary. We
then differentiate the appearance matching error with respect to the
mixing weights and derive an efficient optimization scheme based
on stochastic gradient descent and Monte-Carlo rendering. Despite
the highly non-linear problem, we show through simulations that
the error surface is smooth without local minima and allows accu-
rate reconstruction of material parameters.

4.1 Dictionary representation of materials

To better parameterize the search space in Equation (10), we use a
dictionary representation for the materials. Specifically, consider
a dictionary set of materials D = {kn, n = 1, . . . , N}, where
kn = {σt,n, σs,n, pn (θ)}, and their corresponding single-step
propagation operators {Kkn}. Then, for any weight vector π in
the N -dimensional simplex ∆N ,

π = [πn] ∈ RN , πn ≥ 0, n = 1, . . . , N,

N∑
n=1

πn = 1, (11)

we can represent a novel mixture material k (π) =
{σt,π, σs,π, pπ (θ)}, in terms of the dictionary atoms as:

σt,π ,
N∑
n=1

πnσt,n, σs,π ,
N∑
n=1

πnσs,n, (12)

pπ (θ) ,

∑N
n=1 πnσs,npn (θ)∑N

n=1 πnσs,n
. (13)

It is easy to see that if each pn(θ) satisfies the normalization condi-
tion of Equation (2), so does pπ (θ).

In the following, we denote by K (π) and R (π) the single-step
propagation (Equation (5)) and rendering (Equation (8)) operators,
respectively, for the material k (π). We denote the appearance
matching error of the mixing weights π as

E (π) =

M∑
m=1

wm
(
Sm (I − K (π))−1 Lmi − Īm

)2
. (14)

Then, we search for a convex combination of the material atoms
in the dictionary D which best reproduces the captured images, by
minimizing E (π) over π ∈ ∆N .

To justify our use of convex combinations π and the mixing Equa-
tions (12)-(13), we present the following lemma.
Lemma 1. For any vector π ∈ ∆N , the single-step propaga-
tion operator K(π) for the mixed material k (π) defined by Equa-
tions (12)-(13), is a convex combination of the single-step propaga-
tion operators of the individual atoms, with the exact same mixing
weights,

K (π) =

N∑
n=1

πnKkn . (15)

Proof. Denoting f = L (x− hω,ω), and using Equation (5),

N∑
n=1

πnKkn (L)
(5)
= (

N∑
n=1

πn︸ ︷︷ ︸
=1

−h (

N∑
n=1

πnσt,π)︸ ︷︷ ︸
,σt

)f

+ h

∫
S2

(
N∑
n=1

πnσs,npn
(
ωTψ

))
f (x,ψ) dµ (ψ) .

(16)

For the expression of Equation (16) to be an operator of the form of
Equation (5), we express the integral as:(

N∑
n=1

πnσs,n

)
︸ ︷︷ ︸

,σs,π

∫
S2

(∑N
n=1 πnσs,npn

(
ωTψ

)∑N
n=1 πnσs,n

)
︸ ︷︷ ︸

,pπ(θ)

f (x,ψ) dµ (ψ) .

(17)
From Equations (16) and (17), we get exactly the single-step prop-
agation operator of the material k(π) in Equation (15).
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Figure 2: Gradient computation (Equation (19)) for the dictionary-based appearance matching optimization problem (Equation (14)). For
each pair of lighting and viewing directions, the gradient with respect to the weight of the n-th dictionary material requires computing
a cascade of three rendering operations: a full volume rendering using the mixture material; then a single-step propagation using the
corresponding atom material; then another full volume rendering using the mixture material. The resulting light fields are then sampled to
produce the images used algebraically in Equation (19).

Lemma 1 shows that a convex combination of materials kn can be
directly identified with a convex combination of single-step prop-
agation operators Kkn . As a result, the objective function of the
optimization problem of Equation (14) has a much simpler func-
tional dependence on the parameters π we optimize over, allowing
us to derive a tractable optimization strategy as discussed in the fol-
lowing subsection. This property is the key motivator for our use of
the finite-difference approximation in the operator-theoretic formu-
lation of Section 3.1. As shown in the Supplementary Appendix A
deriving an analogous result from a volume rendering formulation,
in contrast, requires that the extinction coefficient be known before-
hand and fixed for all the atoms in dictionary D.

4.2 Optimization Algorithm

To minimize the appearance matching error of Equation (14), we
differentiate it with respect to the mixing weights π using the fol-
lowing lemma:
Lemma 2. For the operator K (π) defined in Equation (15), the
following differentiation rule holds

∂

∂πn
(I − K (π))−1 = (I − K (π))Kkn (I − K (π)) . (18)

This is a well-known result in the case of finite-dimensional matri-
ces. In the Supplementary Appendix C, we provide a precise state-
ment and proof of the lemma for the case of infinite-dimensional
linear operators.

Using Equations (15) and (18), we can write the gradient of E (π)
with respect to each coordinate of the mixture weight vector π as

∂E

∂πn
(π) =

M∑
m=1

2wm
(
Sm (I − K (π))−1 Lmi︸ ︷︷ ︸

,Lm
1

−Īm
)

· Sm
(

(I − K (π))−1

,Lm
2︷ ︸︸ ︷

Kkn (I − K (π))−1 Lmi︸ ︷︷ ︸
,Lm

1︸ ︷︷ ︸
,Lm

3

)
.

(19)

Equation (19) is crucial for our optimization. It shows that the gra-
dient computation simplifies to rendering and sampling operations:

1. Render a light field Lm1 starting from input radiance Lmi , and
using the rendering operatorR (π).

2. Apply the single-step propagation operator Kkn , correspond-
ing to the n-th material kn in the dictionary D, on Lm1 , pro-
ducing a light field Lm2 .

3. Render a light field Lm3 , by applying the full rendering opera-
torR (π) on Lm2 .

4. Apply the sampling operator Sm onLm1 andLm3 , and evaluate
their product (Equation (19)).

These gradient evaluation steps are summarized in Algorithm 1, and
visualized in Figure 2.

Rendering. The fact that the appearance error gradient can be ex-
pressed as a sequence of rendering steps has an important practical
implication: it allows us to evaluate it efficiently using Monte-Carlo
rendering techniques [Dutré et al. 2006]. For the first stage, in our
implementation we use the traditional volume rendering operator
(described in the Supplementary Appendix A), as for small enough
h it produces equivalent results to the rendering operator R (π) of
our finite-difference formulation. We estimate separately the direct
illumination term (which depends only on the assumed known ra-
diance sources in the scene and is easy to compute) and the indirect
component. For the latter, we use a Monte-Carlo particle tracing
process to estimate I1, while simultaneously caching all interme-
diate particle positions in a set C1 to form an approximation of
L1. This process is described in Algorithm 3. Then the application
of Kk on L1 is stochastically approximated as described in Algo-
rithm 4: particles are uniformly sampled fromC1, propagated by h,
and then either scattered or absorbed. The results are cached in a set
C2 as an approximation of L2. Finally, samples from C2 are used
as sources for another full particle tracing process that directly esti-
mates I3, without further caching. This is performed similar to Al-
gorithm 3, but with the initialization of x and ω in Step 2 replaced
by an initialization from a particle drawn uniformly from C2 and
with the caching Step 10 omitted. We discuss further details about
the algorithm we use to render ∂E

∂πn
, including handling of Fresnel

reflection and refraction, in the Supplementary Appendix B.

Stochastic gradient descent. The availability of stochastic esti-
mates of the gradient makes stochastic gradient descent (SGD) al-
gorithms attractive for minimizing Equation (14). Similar to stan-
dard gradient descent, SGD algorithms perform iterations of steps



Algorithm 1 ComputeGradient.

Input: π ∈ ∆N .
1: for n = 1 to N do
2: gn ← 0.
3: for m = 1 to M do
4: Render Lm1 ←R (π)Lmi .
5: Apply single-step propagation Lm2 ← KknLm1 .
6: Render Lm3 ←R (π)Lm1 .
7: Sample Im1 ← SmLm1 .
8: Sample Im3 ← SmLm3 .
9: gn ← gn + 2wm

(
Im1 − Īm

)
Im3 .

10: end for
11: end for
12: return g.

proportional to the negative of the stochastic estimates of the gradi-
ent. These algorithms only require that the estimates be unbiased;
even if they are otherwise noisy, there exist convergence guarantees
analogous to those of standard gradient descent, with the noise vari-
ance only affecting convergence speed. This behavior has an impor-
tant practical implication: we can reduce the number of particles in
Monte-Carlo evaluations of the gradient, and speed computation at
the cost of introducing noise to the gradient estimate. As long as
the rendering algorithm is unbiased such noisy gradient estimates
are valid inputs to SGD. The noise due to the reduced number of
particles somewhat increases the number of iterations. However, it
is still possible to reduce the number of particles quite drastically,
and achieve a significant speedup in terms of overall computation
time [Bottou and Bousquet 2008].

As the vector π is constrained to lie on the simplex, we use pro-
jected stochastic gradient descent (PSGD). We denote by g ∈ RN
consecutive noisy estimates of the gradient of E (π) obtained
through Monte-Carlo rendering such that

E [gn] =
∂E (π)

∂πn
. (20)

We use them to iterate

π(t+1) = P∆N

(
π(t) − η(t)g(t)

)
, (21)

where P∆N denotes the Euclidean projection operator to the sim-
plex ∆N [Duchi et al. 2008]. The step size is often chosen equal
to η(t) = c√

t
. Though the speed of convergence depends on the

proportionality constant c, in practice SGD is known to be robust to
this selection. To cancel noise in individual steps, SGD returns as
its final output the average of all T iterations, πopt = 1

T

∑T
t=0 π

(t).
This procedure is summarized in Algorithm 2.

The optimization problem we solve is highly non-linear and es-
sentially involves inversion of the photon random walk process.
Despite the non-linear formulation, our simulations in Section 6.2
show it allows an accurate reconstruction of material parameters.
While an exact proof of this property is a subject for further re-
search, all our simulations indicate that the error surface is very
smooth and does not suffer from local minima, explaining the good
convergence we are able to achieve.

4.3 Dictionary

The dictionary-based formulation of the appearance matching prob-
lem in Equation (14) can be used with any dictionary choice1. Our
own simple dictionary is described below. We start with the phase

1We use the term “dictionary” because the phase function sets we use can
be under- or over-complete and not strictly “bases” in the technical sense.

Algorithm 2 Solve appearance matching optimization problem.

1: Initialize π(0)
n ← 1/N .

2: while not converged do
3: g(t) ← ComputeGradient

(
π(t)

)
.

4: π(t+1) ← P∆N

(
π(t) − η(t)g(t)

)
.

5: end while
6: return πopt = 1

T

∑T
t=0 π

(t).

Algorithm 3 Adjoint particle tracing for computing L1 and I1.

1: Let x0 be the location where the laser hits ∂S.
2: x← x0, ω ← ωL, t← 1, C1 ← ∅.
3: while true do
4: t← t · a.
5: Sample s from pdf p (s) = σt exp (−σts).
6: x′ ← x+ s · ω.
7: if x′ /∈ S then
8: break
9: end if

10: Cache the particle location C1 ← C1 ∪ {(x,ω)}.
11: Let ψ1 be the direction connecting x′ and the camera.
12: Let y1 be the intersection of ray (x′,ψ1) and the image

sensor.
13: v1 ← t · p

(
ψT1 ω

)
· exp (−σt ‖x′ − y1‖) · P0 c/A,

where c is the total number of pixels on the sensor, A is the
sensor’s surface area, and P0 is the source power.

14: Add v1 to the corresponding pixel on the image sensor.
15: Sample a direction ψ2 according to the phase function p.
16: x← x′, ω ← ψ2.
17: end while

Algorithm 4 Importance sampling for computing L2.

1: C2 ← ∅
2: Uniformly sample a pair (x0,ω0) ∈ C1.
3: x← x0, ω ← ω0.
4: x← x+ hω.
5: Sample u uniformly in (0, 1).
6: if u < h (σt,k − σs,k) then
7: terminate
8: end if
9: if h (σt,k − σs,k) < u < hσt,k then

10: Sample a direction ψ according to the phase function pk.
11: ω ← ψ.
12: end if
13: Cache the particle location C2 ← C2 ∪ {(x,ω)}.

Figure 3: Phase functions in a tent dictionary with N = 10 atoms
(each atom is colored uniquely for better visualization). To be valid
probability distributions on the sphere, the atoms are normalized to
satisfy Equation 2, and thus have varying magnitudes. The atoms
centered at 0 ◦ and π ◦ are shown cropped.

function component of the materials and then address the extinction
and scattering components.

Phase functions. To allow the dictionary to be as general as pos-
sible, we aim to be able to express any phase function, that is,
any cylindrically symmetric probability distribution on the sphere.
Hence, we simply model the phase function as a piecewise linear



function of θ. Then, we can use a set of tent (triangular) func-
tions, spaced equally over angular domain θ ∈ [0, π], to approx-
imate it. Denoting the bins number by N and the bin spacing by
θs = π/ (N − 1), we use tent functions of width 2θs and centered
at points θn = (0, θs, 2θs, . . . , π). Each of the tent functions is
normalized to satisfy the constraint of Equation (2). In Figure 3,
we show the phase functions in a tent dictionary with N = 10. In
our experiments, we use N = 200, which corresponds to a dis-
cretization step of 0.9 ◦.

To avoid high frequency artifacts in the phase function solution we
include in Equation (14) a quadratic regularization on its derivatives∑
n(πn − πn+1)2.

Extinction and scattering coefficients. The definition of the
atoms’ extinction and scattering coefficients should ensure that the
dictionary can represent materials with a wide range of σt, σs
values. We select an upper bound σt,max on the desired extinc-
tion coefficients. Note that each scattering function of the form
{σt, σs, p(θ)} with 0 ≤ σt ≤ σt,max and 0 ≤ σs ≤ σt, lies on
the simplex spanned by {σt,max, σt,max, p (θ)}, the purely absorp-
tive atom {σt,max, 0,∅}, and an atom of the form {0, 0,∅} describ-
ing scattering-free propagation in vacuum. We use the symbol ∅ to
indicate that the last two atoms are independent of phase function
(the phase function is undefined for these two media).

Therefore, we create a scattering dictionary including 200 atoms
of the form {σt,max, σt,max, pn (θ)} with the pn(θ) defined above,
plus the two purely absorptive atoms {σt,max, 0,∅} and {0, 0,∅}.
In our experiments we set σt,max = 200 mm−1, based on the results
from Section 6.2.

Other parameterizations: Our specific choice of dictionary is
aimed to represent any general phase function shape. Depending
on the application, other dictionaries may be more appropriate,
and some examples include: zonal spherical harmonics for low-
frequency phase functions, phase functions derived from Mie the-
ory [Bohren and Huffman 1983; Frisvad et al. 2007] when measur-
ing dispersions, and compact dictionaries such as a set of a few
Henyey-Greenstein and von Mises-Fisher functions [Gkioulekas
et al. 2013] when a simple phase function model is sufficient. A
small adaptation can also allow differentiating directly with respect
to the single parameter of a Henyey-Greenstein function (the aver-
age cosine). Our optimization framework is quite attractive even
for retrieving such simpler phase functions, since it alleviates the
need for input measurements which isolate single scattering events.

5 Acquisition Setup Design

The optimization strategy described above is general enough to be
applied to captured data with any geometry, as long as we can cali-
brate the 3D shape of the material, the relative position of the cam-
era and light source, and the indices of refraction of the scattering
material and its surroundings. Below we describe the physical ac-
quisition setup we built, which is motivated by the simplicity of this
calibration process and by some considerations related to the sta-
bility of the optimization problem. Inspiration is also drawn from
analogous designs in [Jensen et al. 2001; Goesele et al. 2004; Wang
et al. 2008] and physics [Johnson and Gabriel 1994]. A schematic
and a photograph of our acquisition setup are shown in Figure 4.
Further implementation details are provided in the Supplementary
Appendix D.

Geometry. We cast the material we are interested in measuring
into glass cells of variable thickness w. This allows us to create
box-shaped material samples whose exact shape is known with very
high accuracy. Furthermore, using micron-accurate smooth glass
surfaces means that transition and refraction at the various material
interfaces (material and glass, glass and air) can be easily simulated

rotation stages

frontlighting

hyperspectral
camera

sample
container

θb

θf
θo

w

projective top view

backlighting

Figure 4: Setup for scattering parameter acquisition. A sample
cell is illuminated by collimated beams and imaged by a camera.
Rotation stages to achieve arbitrary combinations of lighting and
viewing directions. Top: schematic; bottom: implementation.

using Fresnel refraction and reflection laws. In our experiments, we
use cells of widths w = 1, 2.5, 5, and 10 mm.

Imaging and lighting. We use an approximately orthographic
camera with a high magnification macro lens (4.3 ◦ subtended angle
and 1 : 3 reproduction ratio) to sample the light field produced by
the material volume. We use narrow (1 mm diameter) collimated
beams to illuminate the sample. We use a configuration that allows
illuminating either the sample surface imaged by the camera (front-
lighting), or its opposite (backlighting). Through a combination of
two motorized rotation stages, we can achieve different combina-
tions of front and back lighting directions θf , θb and viewing di-
rections θo. In our experiments, we use all possible combinations
of θf , θb, θo ∈ {5 ◦, 15 ◦, 25 ◦}, resulting in a set of 18 measure-
ments per sample, 3 viewing directions times 3 frontlighting plus 3
backlighting directions.

The above combination of sample shape, camera, and illumina-
tion lends itself to accurate calibration. In the Supplementary
Appendix C we justify the use of collimated beams mathemati-
cally. Similar to the BRDF arguments of Ramamoorthi and Han-
rahan [2001], we argue that to maximize angular information the
configuration should have broadband angular frequency content,
and hence be as close as possible to a delta function. The use of
both frontlighting and backlighting is motivated by the understand-
ing that a backlighting beam produces measurements dominated by
high-order scattering; such measurements are intuitively useful for
determining the optical thickness of the material. Conversely, front-
lighting results in measurements where low-order scattering is sig-
nificant, and therefore is informative for the recovery of the material
phase function.

Multi-chromatic measurements. Scattering parameters vary as
functions of wavelength, and this spectral dependency can cre-
ate perceptually important effects in appearance [Fleming and
Bülthoff 2005; Frisvad et al. 2007]. To capture spectral varia-
tions we use monochromatic laser light at three RGB wavelengths,



488, 533, 635 nm, and solve the optimization problem of Equa-
tion (14) independently for each wavelength.

Index of refraction. To calibrate for the unknown material’s in-
dex of refraction, we use a set of additional measurements with
backlighting such that θ0 = θb (corresponding to direct observa-
tion of the source in the absence of a medium). By measuring the
shift in the location of the point-spread-function peak caused by re-
fraction in these images, we can easily solve for the material index
of refraction at each of the three wavelengths we use. We discuss
this process in more detail in the Supplementary Appendix D. We
have found our measurement procedure to be adequately accurate
for our purposes, but if necessary more accurate measurements of
the material index of refraction can be obtained using a refractome-
ter. Additionally, in experiments on synthetic data, we found that
small perturbations of the index of refraction (±0.1) did not affect
recovered scattering parameters considerably.

6 Experiments

We now demonstrate and validate our approach for acquiring scat-
tering parameters. We begin with evaluations on synthetic data
aimed at understanding the characteristics of our optimization prob-
lem. We then show results on two sets of measured materials. The
first is a “validation set” of carefully-constructed nano-dispersions
whose scattering parameters can be computed using Lorenz-Mie
theory; this set provide a means for quantitative validation. The
second set consists of everyday materials that are evaluated by their
ability to produce accurate rendered images for novel geometries.

6.1 Capture and computation time

We first provide some quantitative information for the acquisition
and inversion stages of our measurement pipeline. At the acquisi-
tion stage, as described in Section 5, for a single material we take
measurements at three wavelengths and a set of 18 different scene
configurations, for a total of 54 measurements. Each of these mea-
surements is a high-dynamic range (HDR) image, composited from
low-dynamic range images captured at 19 different exposures. In
addition, for every material we measure, we capture a set of low-
dynamic range calibration images. This process results in a total
capture time of approximately 75 minutes per material. We provide
more details about the calibration and high-dynamic range imaging
procedures in the Supplementary Appendix D.

At the inversion stage, we solve the optimization problem of Sec-
tion 4 on Amazon EC2 clusters of 100 nodes, with 32 computa-
tional cores and at least 20 GB of memory per node (required for
the caching of intermediate light fields, as described in Section 4.2).
We use the nodes to distribute the outer loop of Algorithm 1, that
is, the gradient computation for each dictionary atom (for a dictio-
nary of N = 200 atoms, each node is responsible for two atoms).
The results are accumulated at a single master node, which then
performs the gradient step of Algorithm 2, and the process is re-
peated for the number of iterations required until convergence is
achieved. We found that processing one set of measurements re-
quires approximately 200 iterations of the SGD algorithm. Overall,
fitting one wavelength for a single material requires three to six
hours, depending on the density of the material. We use our own
C/C++ implementation, which we have optimized through experi-
ments on synthetic data. However, computation could be reduced
by further fine-tuning the various parameters involved, such as dic-
tionary, camera spatial resolution, number of iterations, number of
samples per rendering, and so on.

6.2 Experiments with Synthetic Data

The optimization problem of Section 4 involves the inversion of a
random walk process that includes multiple scattering events and is
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Figure 5: The error surface for 2D optimization problems. We con-
sider a dictionary of three phase functions whose mixing weights lie
on the simplex. The simplex is parameterized by its first two coor-
dinates. Columns show results for three reference σt, and the rows
show two different points as the correct reference in this space.

highly non-linear. Despite this, we almost always see in our exper-
iments convergence to a solution that explains the measured data
very well. This suggests that the error surface is fairly smooth.
To provide more insight, we conduct a series of simulation experi-
ments in which input image-sets are generated using small, artificial
three-element dictionaries. Since the three mixing weights are con-
strained to a simplex, the set of phase functions spanned by three
elements is a 2D space, allowing the entire cost surface to be visual-
ized. For these experiments, we parameterize the 2D phase function
space by the weights on the first two atoms (π1, π2), and in each ex-
periment we choose a “ground truth” phase function (π∗1 , π

∗
2) and

compute for each (π1, π2) the L2-difference between input images
rendered with that phase function {Im(π1, π2)}m=1...M and those
rendered with the true one {Im(π∗1 , π

∗
2)}m=1...M .

Results from six representative experiments are shown in Figure 5.
Each row shows three separate experiments in which the true phase
function is the same while the optical density σt differs. We find
that the error surface has a clear minimum at the true value in all of
these 2D experiments, and while an exact proof remains a subject
for future research, the cost function appears to be very smooth and
without spurious local minima, at least for these 2D problems.

In the next experiment with synthetic data, we compare accuracy
on absorbing materials versus scattering materials, and on materi-
als with varying optical densities. We consider a large set of ar-
tificial materials that are combinations of: (i) σt values sampled
logarithmically in the interval

[
0.01, . . . , 200 mm−1

]
, for a total

of 21 values; (ii) σs values corresponding, for each σt, to 21 albedo
values, linearly sampled between a = 0 (purely absorptive) and
a = 1 (purely scattering); and (iii) a set of eight different phase
functions spanning a wide range of shapes. For each artificial
material we render synthetic images using geometry that matches
our setup (Section 5) with a sample width of w = 1 mm. Sensor
noise is an important consideration for this analysis, so we simulate
image noise using photon (Poisson) noise with the parameters re-
ported for two different commercial DSLR cameras [Hasinoff et al.
2010] (which is very large relative to the Monte Carlo rendering er-
ror). The noisy images are input to our optimization algorithm, and
we measure error between the recovered parameters and the true
ones. We use a tent dictionary with N = 200 atoms.

Figure 6 provides a summary of these experiments, by visualizing
separately the relative error between the estimated and true values
of (left to right): albedo a = σs/σt, extinction coefficient σt, and
phase function p(θ). Each point in these tables corresponds to the
percent error—averaged over the eight true phase function shapes—
for distinct values of true albedo (horizontal axis) and extinction co-
efficient (vertical axis). These tables reveal which types of materials
we can expect to measure accurately with our setup. Traveling from
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Figure 6: Accuracy in the recovery of material parameters. The plots show recovery errors for albedo, extinction coefficient, and mean error
for phase function, as a function of different values of albedo a = σs/σt and mean free path d = 1/σt.

left to right in these tables makes a gradual transition from purely
absorbing materials to purely scattering ones. Traveling from bot-
tom to top moves through materials of increasing optical density,
with the top being materials whose mean free path is two hundred
times smaller than the sample width d = 1/σt = w/200, and the
bottom being materials whose mean free path is one hundred times
larger than the sample width d = 1/σt = 100w.

The first observation—based on the large, low-error regions in the
center of the tables—is that estimation is accurate for a wide range
of optical densities. This is a useful fact because it means the width
of the glass cell need not be chosen with excessive care. We expect
very accurate results as long as the sample width is within an or-
der of magnitude of the material’s mean free path, and we expect
graceful degradation when the width extends beyond this in either
direction. For extremely optically-thin materials (lower rows in ta-
ble), scattering events become very rare, and images are dominated
by noise. For extremely optically-thick materials (top rows), the
diffusion approximation [Jensen et al. 2001] becomes applicable,
and recovering both the phase function and the scattering coeffi-
cient becomes ill-posed. In practice, we simply choose the width
for each material sample from a discrete set of available glass cells
(1, 2.5, 5, 10 mm) so that they look reasonably translucent under
natural light; see examples in Figure 7.

Errors induced by extreme optical thinness and thickness at the top
and bottom of these tables should be interpreted differently. If a
material is excessively thin at sample width w, it is relatively easy
to instead use a glass cell that is larger. This is less true for materials
that are excessively dense, however, since it is physically challeng-
ing to cast materials into glass cells that are too small (w < 1 mm).
Thus, in cases of extreme optical thickness, our setup will not pro-
vide material parameters that can accurately predict appearance on
arbitrary geometries, but only for novel geometries at least as wide
as the measured sample.

As expected, we also observe large errors in the estimated phase
function when materials are extremely absorptive (left column of
third table in Figure 6). These errors are somewhat of a computa-
tional artifact and have a limited impact on visual appearance. They
occur because the appearance of these materials is dominated by at-
tenuation due to absorption, so very little scattering is observed and
there is little discernible information about the shape of the phase
function. These errors do not impact our ability to predict material
appearance, however, because the phase function makes little dif-
ference. Indeed, for purely absorptive materials (left-most column)
there is no scattering at all, and the phase function can be defined
arbitrarily without having any effect on appearance.

mustard

whole milk

shampoo

hand cream

coffee

wine

robitussin

olive oil blue
curacao

liquid clayreduced
milk

milk
soap

mixed soap

Figure 7: Measured materials in glass cells of width w = 1, 10,
and 2.5 mm, from left to right. It is not necessary for all of the cell
to be filled, as long as there exists a homogeneous region of size
comparable to the beam diameter (e.g., hand cream).

6.3 Validation materials

It is common in graphics to evaluate measured scattering parame-
ters by demonstrating renderings of visually plausible results. This
is an important benchmark, but it does not directly assess the accu-
racy of the recovered physical parameters. Since our goal is to pro-
duce parameters that are faithful to the true mean free path lengths
and phase functions in an absolute sense, being able to directly val-
idate the scattering parameters is crucial.

To achieve comparison to “ground truth” parameters, we capture
liquid materials whose exact physical structure are known, similar
to materials that are used to calibrate instruments used in a variety
of domains for particle sizing or estimating molecular weight [John-
son and Gabriel 1994; Pine et al. 1990]. They are created by dis-
persing nano-scale spherical particles of known chemical composi-
tion into a homogeneous embedding medium of a different refrac-
tive index, using procedures that allow for very precise control of
particle concentration, particle size distribution, and homogeneity.
Given these parameters, Lorenz-Mie theory [Bohren and Huffman
1983; Frisvad et al. 2007] provides analytic expressions of the bulk
material scattering parameters {σt, σs, p (θ)} at any wavelength.

We measure nanodispersions of two types. First, we measure dis-
persions of polystyrene spheres in water that are almost monodis-
perse (single particle size) and are precise enough to be traceable
to NIST Standard Reference Materials. We measure three such dis-
persions2, each having a 1% (w/v) concentration of particles at a
different particle radius: 200, 500, or 800 nm. Second, we measure
a spherical polydispersion of aluminum oxide particles (Al2O3) in
water3, with an approximately known particle size distribution in

2Nanobead NIST Traceable Particle Size Standards, Polysciences, Inc.
3NanoArc Aluminum Oxide, Nanophase Technologies Corporation.



the range 20 − 300 nm and mean radius of 30 nm. We use glass
cells of width w = 1 mm for all of these measurements, and in-
stead of estimating the indices of refraction from image data, we
use those predicted by Lorenz-Mie theory.

The results of our measurements are shown in Table 1. In all cases,
the error in the recovered parameters is less than 5%. (Note that
these materials are purely scattering, so σt = σs.) The largest error
occurs for the aluminum oxide material, for which the particle size
distribution is known much less precisely. Figure 8-left compares
the green-channel phase functions recovered by our optimization
(purple curves) to the ground truth phase functions predicted by
Lorenz-Mie theory (dotted orange curves). We see that the matches
are extremely close. As a reference, we compare both to Henyey-
Greenstein phase functions; as the single parameter g of an HG
phase function is equal to its average cosine, we plot (green curves)
the HG phase function that have g values that are equal to the av-
erage cosine of the ground truth phase function. We note that their
shapes deviate significantly from the ground-truth. This deviation
is important for appearance, particularly for objects that have thin
geometry with low-order scattering, where the phase function plays
an important role visually. The middle columns demonstrate this by
showing captured and fit (pseudo-colored) images of the materials
under frontal laser illumination at a new angle (which was not used
in optimization). The rightmost column shows cross-sections of the
image intensities. The deviations of the HG fits from ground-truth
lead to discernible differences between the images.

These experiments highlight the fact that simple, single-parameter
phase function models can be insufficient for modeling the appear-
ance of scattering materials, and it justifies our choice to fit higher-
dimensional phase function models.

6.4 Other materials

Next, we use our acquisition setup and optimization algorithm to
measure several common materials. They can be grouped roughly
into three categories:

• Highly scattering liquids of varying viscosities; including
mustard, shampoo, hand cream, liquid designer clay, and dif-
ferent types of milk.

• Highly absorbing liquids with limited scattering; including
coffee, robitussin, olive oil, blue curacao liquor, and red wine.

• Solids that can be molded into the glass cells; such as different
types of soap.

By “eyeballing” each sample under natural light, we choose glass
cell widths so that each sample looks reasonably translucent under
ambient lighting. The results we report were captured using width
w = 1 mm for materials in the first and third categories, except
for glycerine soap; and w = 10 mm for the second category and
glycerine soap. Photographs of samples in 1 mm, 2.5 mm, and
10 mm cells are shown in Figure 7. For each sample, we estimate
the index of refraction as described in Section 5, and these range
from values of 1.33 (for milk, reduced milk, milk soap, and the
water soluble liquids) to 1.47 (for olive oil and glycerine).

The measured parameters are shown in Table 2. We quantitatively
evaluate the quality of the recovered scattering parameters in two
ways. First, we report the fitting error, which is the average L2

image difference between input images and the corresponding im-
ages rendered with the recovered parameters, normalized by the
L2-norms of the input images. Second, we compute a measure of
generalization error by: i) using the recovered parameters to render
laser-illumination images with different sample widths and lighting
directions; and ii) comparing these simulated images to captured

photographs in these same novel configurations. For the novel con-
figurations, we use lighting angles θf , θb ∈ {10 ◦, 20 ◦, 30 ◦} and
glass cells with widths w ∈ {2.5, 5 mm}. The generalization er-
ror for each material is reported as the average relative L2 image
difference over the set of all novel configurations. As shown in the
right two columns of Table 2, fitting errors are less than 4% and
generalization errors below 5%.

Figure 9 shows the measured phase functions, each superimposed
with an HG phase functions whose g-value is equal to the aver-
age cosine of the phase function we measure. Some of these phase
functions are well approximated by the HG model but others, in-
cluding hand cream, liquid clay, and mixed soap, are not. This set
of tabulated phase functions is available at the project website.

As qualitative evaluation, Figure 1-right shows an image rendered
with our recovered material parameters under natural lighting.
From left to right, are milk soap and glycerine soap (top and bot-
tom, respectively), olive oil, blue curacao, and reduced milk. The
soap geometry corresponds to scanned molded cubes made of the
corresponding materials. We see that the recovered material param-
eters successfully reproduce the color variations that are critical to
the translucent appearance of these materials. This is most notable
in the glycerine soap, where blue wavelengths scatter first and cause
a reddish glow in the middle of the object, but it is also visible on
the left edge of the milk soap and the top-right corner of the milk. A
high-resotion version of Figure 1 and a visualization that highlights
the color variations are shown in the Supplementary Appendix E.
The scene file used for this figure is available at the project website.

7 Conclusions

We present an optimization framework for inverting the effect of
multiple-scattering to recover scattering properties of homogeneous
volumes from a handful of images. The approach does not require
precise isolation of single scattering, and this enables the measure-
ment of a broader set of materials, including both solids and liq-
uids. The optimization also incorporates a large material dictionary
and thereby avoids the restrictions of low-parameter phase function
models. Our analysis and experiments show that we can recover
accurate physical scattering parameters for a variety of materials.

Our current setup and optimization framework do not account for
polarization or fluorescence phenomena. Polarization can be im-
portant for the appearance of materials with strongly polarization-
dependent scattering properties or index of refraction (birefrin-
gence), such as crystalline materials. Experimentally, our opti-
mization has been unable to find scattering parameters that match
our setup’s images of microcrystalline wax, and this may be due
to some combination of our simulator’s ignorance of polarization
and our use of partially-polarized (laser plus fiber) light. Regard-
ing fluorescence, we have verified that it has negligible impact on
our measurements of the materials listed in Section 6. Our setup
can be easily modified to measure the strongly fluorescent behav-
ior of other materials, by including in addition to the hyperspectral
camera a mechanism to control wavelength at the source side.

While we proposed one possible scanning configuration, our op-
timization could be used to infer scattering parameters from im-
ages captured from a variety of scene geometries and incident light
fields. The only requirement is that both lighting and geometry
be precisely calibrated. Our setup combines the benefits of high-
frequency angular lighting (for stable optimization) and precise,
stable calibration (for repeatability), but it limits measurements to
three wavelengths and to solids that can be cast into glass cells of
thickness within an order of magnitude of the mean free path. In
principle, our optimization could be applied to images of more gen-
eral solid objects, but this would require enhancing our setup to also



dispersion
σs predicted σs measured σs error (%) phase function error (%)

R G B R G B R G B R G B
polystyrene, 200 nm 17.220 28.363 36.517 17.078 28.650 36.823 0.825 1.012 0.838 3.031 1.143 3.672
polystyrene, 500 nm 59.082 79.557 88.626 58.431 79.023 88.062 1.102 0.671 0.636 3.181 2.676 1.359
polystyrene, 800 nm 65.757 70.438 68.589 66.976 71.544 69.146 1.853 1.570 0.812 2.623 2.117 1.251
Al2O3, 30 nm 47.341 93.389 129.870 48.536 96.004 132.695 2.524 2.800 2.175 3.712 4.298 3.108

Table 1: Measurements of validation materials (controlled nano-dispersions). Values for σs are reported in
(
mm−1

)
. Phase function error

is given as L2 difference normalized by the L2-norm of the reference phase function. All four validation materials have negligible absorption,
resulting on both the predicted and measured values for σt to agree with those we report for σs to the third decimal.
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Figure 8: Measurements of validation materials (controlled nano-dispersions). Left: For each material, we show for the green wavelength
the theoretically predicted (dashed orange) and recovered (purple) phase functions, as well as the best Henyey-Greenstein (green) phase
function fit. The recovered phase functions are in close agreement with the correct ones and the purple and orange curves tightly overlap.
As another visualization, we show the images for a novel configuration: under frontal collimated laser illumination (θf = 25 ◦, θo = 0 ◦).
We compare our phase function and the best Henyey-Greenstein fit (images are color-mapped for better visualization). The rightmost column
shows a crossection through the captured and re-rendered images for this configuration.

recover the object shape and its surface microstructure (BSDF).

In addition, combinations of our optimization framework with more
sophisticated imaging configurations could improve the optimiza-
tion’s stability and convergence rate. In particular, it may be fruitful
to apply our optimization to images captured with high-frequency
illumination [Mukaigawa et al. 2010], basis illumination [Ghosh
et al. 2007], adaptive illumination [O’Toole and Kutulakos 2010],
or transient imaging [Wu et al. 2012]. It is also possible that op-
timization schemes like ours will allow exploiting such imaging
modalities to solve more challenging inverse problems, such as
measuring heterogeneous scattering media.
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green). See Table 2 for numerical values.
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