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Fig. 1. Rendering near-field speckle patterns. We propose an efficient and physically-accurate algorithm that can simulate speckle patterns produced by
coherent illumination sources located or focused very close to the material. One of the important properties of speckle is thememory effect: small translations of
the illuminator produce shifted, highly-correlated speckle patterns. In the figure, we used our algorithm to simulate light scattering in a medium with realistic
tissue parameters, at thicknesses of 50 µm, 250 µm, 500 µm, and a mean free path of 50 µm, equivalent to optical depths (OD) of 1, 5 and 10, respectively. In
each case the figure presents two speckle images obtained with a small shift of the input illumination, leading to correlated shifted speckle patterns (e.g.,
the shift is visible in the insets of the first two columns). As expected, when the thickness increases, more scattering is present, and thus the memory-effect
correlation becomes weaker (the correlation is less visible in the inset of the third column).

We introduce rendering algorithms for the simulation of speckle statistics

observed in scattering media under coherent near-field imaging conditions.

Our work is motivated by the recent proliferation of techniques that use

speckle correlations for tissue imaging applications: The ability to simulate

the image measurements used by these speckle imaging techniques in a

physically-accurate and computationally-efficient way can facilitate the

widespread adoption and improvement of these techniques. To this end,

we draw inspiration from recently-introduced Monte Carlo algorithms for

rendering speckle statistics under far-field conditions (collimated sensor

and illumination). We derive variants of these algorithms that are better

suited to the near-field conditions (focused sensor and illumination) required

by tissue imaging applications. Our approach is based on using Gaussian

apodization to approximate the sensor and illumination aperture, as well

as von Mises-Fisher functions to approximate the phase function of the

scattering material. We show that these approximations allow us to derive

closed-form expressions for the focusing operations involved in simulating

near-field speckle patterns. As we demonstrate in our experiments, these
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approximations accelerate speckle rendering simulations by a few orders of

magnitude compared to previous techniques, at the cost of negligible bias.

We validate the accuracy of our algorithms by reproducing ground truth

speckle statistics simulated using wave-optics solvers, and real-material

measurements available in the literature. Finally, we use our algorithms to

simulate biomedical imaging techniques for focusing through tissue.
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1 INTRODUCTION
A core challenge in medicine is the development of technologies

for imaging deep inside biological tissues at high spatial resolutions.

What makes this type of imaging possible is the fact that, when a

light source illuminates tissue, a significant amount of light enters,

travels inside, and re-emerges out of the tissue. What makes this

type of imaging difficult is the fact that, when inside the tissue, light

scatters multiple times. Thus, the fundamental challenge that needs

to be solved to enable imaging inside tissue is inverting the multiple

scattering process, in order to extract the information that light

carries about the tissue it interacted with.
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In recent years, several imaging techniques have emerged that

address this challenge by taking advantage of the fact that images

of tissue under coherent (e.g., laser) illumination contain significant

speckles: These are pseudo-random, high-frequency spatial varia-

tions in the intensity of the captured images. The statistical proper-

ties of these speckle patterns is a classical research areawithin optics,

having been the subject of several textbooks [Erf 1978; Goodman

2007; Jacquot and Fournier 2000; Kaufmann 2011]. This research

has revealed that, despite its random appearance, a speckle has

strong statistical properties that provide rich information about the

underlying scattering material (e.g., tissue). Perhaps best known

among them is thememory effect (ME) property, illustrated in Fig. 1,

which describes how speckle fields remain correlated under small

changes in imaging conditions. The memory effect is at the core of

speckle-based techniques for tissue imaging applications such as

fluorescence imaging and adaptive optics focusing inside tissue.

Unfortunately, most previous studies of speckle statistical proper-

ties and of the memory effect, have been performed under imaging

conditions that are not suitable for tissue imaging. Typically, most

studies assume that both the light sources and the sensors are out-

side and at a large distance from the scattering volume, a set of

conditions referred to as far-field imaging. By contrast, tissue imag-

ing applications require both sources and sensors to be focused

very close to the tissue (e.g., confocal microscopy), or even located

inside it (e.g., fluorescent particles), a set of conditions known as

near-field imaging. Far-field imaging simplifies analysis, simulation,

and experiments relating to speckles. However, inferences drawn

for the far-field case do not necessarily generalize to the near-field

one. Our goal is to develop physically-accurate and efficient render-

ing algorithms that can help improve our understanding of speckle

statistical properties under near-field conditions.

For this, we draw inspiration from Bar et al. [2019], who intro-

duced a Monte Carlo framework for simulating speckle correlations

in a way that combines physical accuracy and computational ef-

ficiency. Unfortunately, despite offering orders-of-magnitude ac-

celeration compared to previous physically-accurate simulation

techniques (e.g., wave equation solvers), the algorithms of Bar et

al. [2019] are primarily intended for simulating far-field speckle sta-

tistics, and remain impractical for the near-field case. For example,

as we show in our experiments, using their framework to simulate

current techniques for focusing inside scattering [Judkewitz et al.

2014] can take several days on a large cluster. These performance

characteristics significantly constrain the scope of investigations

that can be performed using these algorithms (e.g., evaluation of

effectiveness of existing techniques under different imaging param-

eters or for tissue samples of different optical parameters).

With these considerations in mind, we develop a computationally-

efficient algorithm for simulating near-field (focused) speckle sta-

tistics inside scattering media. To this end, we extend the Monte

Carlo rendering algorithm of Bar et al. [2019] in several ways that

make it better-suited for near-field simulations. Our innovations

are three-fold: First, we derive a path-integral expression for near-

field speckle statistics. Second, we approximate optical apertures

and material phase functions using von Mises-Fisher functions, to

obtain analytical expressions for connecting paths traced inside

a volume to near-field sources and sensors. Third, we develop an

importance sampling scheme for starting the volume path trac-

ing process that takes into account the focused beams inside the

medium. In our experiments, we validate the physical accuracy of

our algorithms by showing that they can reproduce speckle corre-

lation statistics simulated using wave-equation solvers, as well as

speckle correlation measurements of real materials that are publicly

available in the literature [Osnabrugge et al. 2017]. Our algorithms

match this synthetic and measured groundtruth more accurately

than existing simulation techniques (e.g., multi-slice layer based

algorithms [Schott et al. 2015]) and analytical models (e.g., tilt-shift

memory effect [Osnabrugge et al. 2017]) from optics. Additionally,

we show that our algorithms allow us to simulate focusing-inside-

tissue applications, which require near-field conditions. For the

small volumes we simulate, our algorithm is already 3000× faster

than an adaptation of the far-field algorithm [Bar et al. 2019]; and

this performance difference will only increase for real-sized volumes.

We believe that the ability to simulate near-field speckle statistics

outside the lab will accelerate ongoing research on speckle-based

techniques for tissue imaging applications. To fortify this effort, we

have made our implementation publicly available [Bar et al. 2020].

1.1 Why render near-field speckle statistics?
Speckle statistics have strong potential for applications in the con-

text of tissue imaging, where scattering by cells and other variations

of the local index of refraction in the tissue drastically degrade

image contrast. For example, several papers have suggested using

speckle correlations to detect incoherent fluorescence sources inside

the tissue. As Katz et al. [2014] have observed, due to the memory

effect, the auto-correlation of random speckle images, together with

a phase retrieval algorithm, can help remove the effect of scattering

and reveal the location of the sources under the skin. Unfortunately,

this idea has been successfully demonstrated mostly in the far-

field setting, with the sources located at a large distance outside

the scattering medium, rather than inside it. The only successful

demonstration of this idea in the near-field we are aware of is by

Chang et al. [2018], whose experiments were able to recover fluo-

resent particles spanning a small spatial range of 10 µm. We argue

that this state of affairs is due to the limited exploration of near-field

speckle statistics, an issue we hope our paper will help address.

Another important application of speckle techniques in tissue

imaging is the use of adaptive optics [Mertz et al. 2015] to focus

light at points deep inside tissue. Achieving this type of focusing

requires using a coherent wavefront of a shape specific to the tissue

sample being imaged. Determining the exact wavefront is challeng-

ing, and typically involves using external information or a guiding

star [Horstmeyer et al. 2015]. Once this wavefront is found, the

memory effect can be used to scan an area inside tissue, e.g., by

shifting and tilting the wavefront to focus at neighboring points [Os-

nabrugge et al. 2017]. In our experiments, we simulate this approach,

and show preliminary investigations on the effectiveness of using

the tilt-shift memory effect. By enabling researchers to perform such

investigations in simulation, without the need for lab experiments,

we hope that our paper can help expand the scanning range and

operational capabilities of techniques for focusing inside tissue.

Furthermore, the ability to efficiently render speckle patterns

can facilitate the widespread adoption of data-driven approaches in
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tissue imaging. The use of such approaches is in part motivated

by analogous successes in the far-field case, where it has been

demonstrated that machine learning algorithms can improve the

performance of memory-effect-based imaging around the corner

and through scattering [Li et al. 2018; Metzler et al. 2020, 2018].

The successful deployment of machine learning algorithms requires

large, physically-accurate datasets. Previously, the lack of physically-

accurate simulation tools meant that datasets had to be collected

using lab measurements, an approach that is not scalable. We hope

that our rendering tools can help reduce the data collection over-

head, making machine learning approaches tractable.

Last but not least, accurate speckle rendering algorithms can

be useful for inverse rendering problems involving speckle mea-

surements. In particular, prior work has shown that differentiable

rendering techniques can be used to recover accurate scattering pa-

rameters of real-world materials from incoherent intensity measure-

ments [Gkioulekas et al. 2013]. We expect that our algorithms can be

combined with modern differentiable rendering techniques [Nimier-

David et al. 2020; Zhang et al. 2020, 2019]. In turn, this has the

potential to enable recovering accurate high-resolution models of

important material classes, such as biological tissue, from measure-

ments of speckle fields and speckle correlations.

1.2 Limitations
Our algorithms are subject to a few limitations that suggest im-

portant directions for future research. First, they assume that the

simulated scattering medium is homogeneous, meaning that its

optical scattering parameters are the same at all spatial locations

inside the volume. Our algorithms additionally assume that the

medium is exponential, meaning that it comprises uncorrelated scat-

terers [Bitterli et al. 2018; d’Eon 2018; Jarabo et al. 2018]; and scatters

light isotropically, meaning that its phase function is rotationally-

invariant [Jakob et al. 2010]. These assumptions are commonly used

in biomedical imaging research and applications to approximate

how biological tissues scatter light at optical and infrared wave-

lengths. Therefore, our algorithms can be used to simulate imaging

applications involving such materials.

Second, our algorithms are primarily geared towards transmission
mode imaging configurations, where illumination and sensing hap-

pen at opposite sides of a scattering volume. This is a consequence

of our use of von Mises-Fisher functions to approximate the imaging

aperture and material phase function. When using these approxi-

mations to simulate reflection mode imaging configurations, where

illumination and sensing are on the same side of a scattering volume,

accuracy will depend on the exact material parameters. In particu-

lar, when simulating materials with phase functions that have very

little back-scattering, accuracy suffers because of numerical issues.

We provide a detailed analysis in App. A.4. In practical terms, this

means that our algorithms can be used to simulate tissue imaging

applications such as fluorescence imaging and focusing through

tissue, both of which correspond to transmissive configurations;

but should be used with caution for applications such as confocal

microscopy, which corresponds to a reflective configuration.

Third, our algorithms become inefficient for very optically-deep

(e.g., more than 10 times the mean free path) volumes, where light

is expected to perform a large number of scattering events. This

limitation is due to the fact that our algorithms use volume path trac-

ing to sample light paths, and is thus shared with standard Monte

Carlo volume rendering algorithms for simulating incoherent inten-

sity [Novak et al. 2018]. As in the intensity case, techniques based

on the diffusion approximation [Jensen et al. 2001] would be better-

suited for simulating speckle statistics at volumes of larger optical

depths. However, we note that near-field speckle correlations decay

as a function of optical depth much faster than intensity does; and

are essentially non-existent for volumes of optical depths signif-

icantly larger than what we simulate. Consequently, biomedical

imaging techniques based on speckle correlations are typically only

applicable for optical depths below the diffusive regime, coincid-

ing with the range of optical depths we emphasize in our experi-

ments. Considering that neither single-scattering [Narasimhan et al.

2006] nor diffusion approximations [Feng et al. 1988] are effective

in this range, our algorithms provide a suitable simulation tool for

researchers investigating these biomedical imaging techniques.

2 RELATED WORK
Speckle in computational imaging. Speckle statistics have found

wide applicability in computational imaging. Example applications

include motion tracking [Jacquot and Rastogi 1979; Jakobsen et al.

2012; Smith et al. 2017], looking around the corner [Batarseh et al.

2018; Freund 1990; Katz et al. 2012], and seeing through [Abooka-

sis and Rosen 2004; Bertolotti et al. 2012; Katz et al. 2014; Rosen

and Abookasis 2003; Takasaki and Fleischer 2014] or focusing

through [Choi et al. 2011; Edrei and Scarcelli 2016; Katz et al. 2010,

2012; Lai et al. 2015; Mosk et al. 2012; Nixon et al. 2013; Rueckel et al.

2006; van Putten et al. 2011; Vellekoop and Aegerter 2010; Vellekoop

et al. 2012, 2010; Vellekoop and Mosk 2007; Yaqoob et al. 2008] tissue

and other scattering layers. Most of these imaging techniques rely

on the memory effect of speckles, and therefore are based on spatial
correlations between speckle images. Alternatively, imaging tech-

niques such as diffusing wave spectroscopy [Pine et al. 1988], laser

speckle contrast imaging [Boas and Yodh 1997], and dynamic light

scattering [Goldburg 1999] use temporal speckle correlations [Berne
and Pecora 2000; Dougherty et al. 1994] to estimate flow (e.g., blood

flow [Durduran et al. 2010]) and liquid composition parameters.

Analytical models for speckle statistics. Quantifying differences in

speckle characteristics between the near-field and far-field cases can

be done using analytical tools that approximate speckle statistics

with closed-form mathematical expressions. Most available such

tools are for the far-field case [Akkermans and Montambaux 2007;

Baydoun et al. 2016; Berkovits and Feng 1994; Dougherty et al. 1994;

Feng et al. 1988; Freund and Eliyahu 1992; Fried 1982], though re-

cently tools have been introduced for the near-field case [Judkewitz

et al. 2014; Osnabrugge et al. 2017]. For example, Osnabrugge et

al. [2017] derived a tilt-shift model for the memory effect, assuming

that the underlying scattering material is optically thin and very

forward-scattering. Deriving closed-form expressions requires re-

strictive assumptions (single scattering, diffusion, or Fokker-Planck

limits), which typically do not apply to the predominantly-turbid
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tissue scattering. Developing efficient and physically-accurate ren-

dering tools for near-field speckle statistics can help assess the accu-

racy of these approximations, and facilitate their broader adoption

in application regimes where they are accurate.

Rendering wave-optics effects. Monte Carlo rendering techniques

within computer graphics have typically focused on simulating inco-

herent light transport. More recently, there have been a few works

on simulating wave optics effects, such as diffraction and speckle

due to rough surface geometry [Bergmann et al. 2016; Cuypers et al.

2012; Sadeghi et al. 2012; Stam 1999; Sur et al. 2018; Werner et al.

2017; Yan et al. 2018; Yeh et al. 2013]. Variants of volumetric path

tracing for simulating speckle in scattering have appeared in op-

tics [Lu et al. 2004; Mout et al. 2016; Pan et al. 1995; Sawicki et al.

2008; Schmitt and Knüttel 1997; Xu 2004], though these typically can-

not estimate second-order statistics (e.g., the memory effect). Bar et

al. [2019] addressed this shortcoming by introducing a Monte Carlo

algorithm that uses simultaneous path connections to multiple light

sources and sensors, to correctlymodel speckle correlations between

them. Unfortunately, their algorithm is primarily tailored to far-field

imaging and becomes inefficient for the near-field case, as discussed

in Sec. 3. The difference between the two cases is reminiscent of

the challenges in rendering depth-of-field effects in incoherent light

transport, where special rendering algorithms are required due to

the need to sample many rays on the aperture plane [Barsky and

Kosloff 2008; Kolb et al. 1995; Soler et al. 2009].

3 BACKGROUND ON SPECKLE STATISTICS
We begin by providing background on speckle statistics and on their

Monte Carlo modeling for the far-field case. We use this background

in Sec. 4 to contrast the far-field and near-field cases, which helps

highlight the challenges involved in rendering the latter case, and

positions our work relative to the prior art of Bar et al. [2019].

Notation and setting. We use bold letters for vectors (e.g., points

o, i, v), with a circumflex for unit vectors (e.g., directions ω̂, î, v̂).
We consider scattering volumes V ∈ R3 that satisfy the assump-

tions underlying classical radiative transfer for isotropic [Jakob et al.

2010] exponential media [Bitterli et al. 2018; d’Eon 2018; Jarabo et al.

2018]: Each volume comprises a set of scatterers, whose locations

in the volume are statistically independent. These scatterers are

assumed to be small enough relative to the wavelength of light

to be considered infinitesimal points. They are also assumed to

be spherically symmetric, and thus scatter incident light waves in

a rotationally-invariant way. We model speckle fields arising in

such volumes due to incident illumination that we assume to be

monochromatic, fully-coherent and unpolarized. These fields are a
function of the volumes’ bulk properties, which we describe next.

Bulk material properties. We use a statistical description of the

optical properties of scattering volumes. In particular, the scattering
and absorption coefficients σs and σa model, respectively, the portion

of energy that is scattered and absorbed upon interaction with a

scatterer. Their sum is the extinction coefficient σt ≡ σa + σs , and
its inverse is the mean free path, MFP = 1/σt , which is the average

distance in the volume light travels between two scattering events.

Given a volumeV , it is common to express its geometric dimensions

𝐨𝐨𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒

�𝒊𝒊𝟏𝟏
�𝒊𝒊𝟐𝟐

�𝒗𝒗𝟏𝟏�𝒗𝒗𝟐𝟐 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝒊𝒊𝟏𝟏𝒊𝒊𝟐𝟐
𝒗𝒗𝟐𝟐 𝒗𝒗𝟏𝟏

(a) Directional (b) Focused

�𝒊𝒊𝟏𝟏 �𝒊𝒊𝟐𝟐

�𝒗𝒗𝟏𝟏�𝒗𝒗𝟐𝟐 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝒊𝒊𝟏𝟏 𝒊𝒊𝟐𝟐

𝒗𝒗𝟐𝟐 𝒗𝒗𝟏𝟏
(c) Directional paths (d) Focused paths

Fig. 2. Transmissive imaging configurations. Previous work [Bar et al.
2019] simulated speckle statistics by directional sources and sensors, as in
(a). In contrast this work considers speckles by focused camera and sources,
as in (b). (c-d) demonstrate what is implied when evaluating such speckle
correlations using a Monte Carlo algorithm. In the directional formulation,
one draws 4 directional connections from each path toward the illumination
and viewing directions. In contrast, to simulate speckles through a focused
lens, one needs to trace all paths via the aperture.

relative to MFP . For example, a volume has optical depth OD = 2

if its thickness is equal to 2 · MFP , meaning that light travelling

through the volume undergoes on average two scattering events.

The scattering amplitude function s(cosθ ) describes how a field

interacts with a scatterer: if a scatterer is illuminated from direction

î, the complex scattered field u at direction v̂ is u îv̂ = s(î · v̂). The
phase function is defined as ρ(cosθ ) ≡ |s(cosθ )|2. It is commonly

characterized by an anisotropy parameter −1 ≤ д ≤ 1, equal to the

average cosθ : д = 0 corresponds to scattering equally in all direc-

tions, and д = 1 to fully forward scattering. Tissue is characterized

by very forward scattering (д > 0.9) [Cheong et al. 1990].

These parameters are a function of wavelength, and the scatterers’

shape, size, and refractive index. For spherical scatterers, they can

be computed using Mie theory [Bohren and Huffman 1983; Frisvad

et al. 2007]. The three coefficients also depend on the density ς , equal
to the expected number of scatterers in a unit volume. We assume

that scattering volumes are spatially homogeneous, meaning that

scatterers are uniformly distributed, or equivalently, that the bulk

parameters are the same everywhere inside a volume.

3.1 Modeling and rendering far-field speckle statistics
Transmissive far-field imaging. We focus on the geometry illus-

trated in Fig. 2(a): Scatterers are placed at a configuration of locations
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O = {o1, o2, . . .} inside the volume V , each sampled independently
from the others, using the volume density ς . This configuration is

imaged using light sources and sensors that are on opposite sides

of the volume, a setting we refer to as transmission mode imaging.
Additionally, in this background section, we assume that the volume

is illuminated by a directional plane wave î, and imaged with a direc-
tional sensor v̂. We refer to these conditions together as the far-field
imaging conditions. If we know the exact scatterer locations, and

incoming and outgoing directions, we can solve the wave equation

to obtain the complex-valued scattered field u î,Ov̂ , arising from the

interaction of the incident illumination with the scattering volume.

Defining speckle statistics. For any volume with a given scatterer

configuration O , the scattered field typically contains large fluctu-

ations with a semi-random noise structure known as speckle (see,
e.g., Fig. 1). We can characterize speckle using the first and second-

order statistics of fields due to different volumes with the same bulk
material properties. In particular, we can define the speckle mean,

mî
v̂ ≡ EO

[
u î,Ov̂

]
, (1)

and the speckle covariance,

C î1, î2

v̂1,v̂2 ≡ EO

[
u î

1,O
v̂1 · u î

2,O
v̂2

∗]
−mî1

v̂1 ·m
î2
v̂2

∗
, (2)

where (·)∗ is complex conjugation.u î
1,O
v̂1 ,u

î2,O
v̂2 are two speckle fields

generated by the same scatterer configuration O , when illuminated

by twomonochromatic, mutually-coherent incident waves from î1, î2,
and measured at two sensors v̂1, v̂2. The expectation EO is taken

with respect to all scatterer configurations O sampled from the

same density ς . As we detail in App. A.1, the speckle meanmî
v̂ can

be computed using a closed-form expression and is typically zero.

Therefore, we focus on modeling the speckle covariance C î1, î2

v̂1,v̂2 .

The definition of Eq. (2) suggests a straightforward approach for

computing this covariance: randomly sample many scatterer con-

figurations O from the material bulk parameters, solve the wave

equation numerically to compute u î
1,O
v̂1 ,u

î2,O
v̂2 , and use averaging to

approximate the expectation in Eq. (2). Unfortunately, while exact

wave-equation solvers exist [Thierry et al. 2015; Treeby and Cox.

2010; Yee 1966], their computational complexity is prohibitive, typi-

cally making them intractable for volumes of width larger than a few

dozen wavelengths. This computational cost is further exacerbated

by the need to use the solvers multiple times for averaging.

For an alternative, note first that, when î1 = î2 = î, v̂1 = v̂2 = v̂
andmî

v̂ = 0, C î, î
v̂,v̂ reduces to the intensity I îv̂. This intensity is typ-

ically modeled in computer graphics using the radiative transfer

equation, or its integral form, the volume rendering equation. The

latter gives rise to Monte Carlo volume rendering algorithms, which

compute intensity using as input only the volume’s bulk mate-

rial properties [Novak et al. 2018]. Bar et al. [2019] derived analo-

gous Monte Carlo volume rendering algorithms for computing the

speckle covariance C î1, î2

v̂1,v̂2 for any directions î1, î2, v̂1, v̂2. Like their
intensity counterparts, these algorithms take as input bulk material

parameters, and not particle positions. Bar et al. [2019] showed that

their approach is physically accurate, orders-of-magnitude faster

than wave-equation solvers, and scalable to much larger volumes.

We proceed to review this Monte Carlo rendering approach.

Covariance rendering. Bar et al. [2019] derive their algorithm

from a path integral expression for speckle covariance, obtained by

considering the correlation of fields that travel along all possible

pairs of paths from î1 to v̂1, and from î2 to v̂2. They showed that

this expression can be simplified to use only pairs of paths that

coincide everywhere, except for their connections to î1, v̂1, î2, v̂2.
We review this simplified formulation. Consider the space P of sub-
paths ®xs = o1 → · · · → oB , B ≥ 1, where each vertex ob ∈ V;

we denote by ω̂b ≡ �ob , ob+1 the direction of the b-th edge of the

sub-path. These vertices correspond to the shared part of two full

paths ®x1 = î1→o1→ . . .→oB→v̂1, ®x2 = î2→o1→ . . .→oB→v̂2,
formed by connecting the sub-path to î1, v̂1 and î2, v̂2. Then, the
speckle covariance of Eq. (2) can be expressed as:

C î1, î2

v̂1,v̂2 =

∫
P
c î

1, î2

v̂1,v̂2 (®x
s ) d®xs , (3)

where the far-field path contribution function c î
1, î2

v̂1,v̂2 equals the cor-

relation of the fields that travel along ®x1, ®x2. For B ≥ 2, this equals:

c î
1, î2

v̂1,v̂2 (®x
s ) = f (®xs ) · υ(î1→o1)s(î1 · ω̂1)

· υ(oB→v̂1)s(ω̂B−1 · v̂1)

· υ(î2→o1)∗s(î2 · ω̂1)
∗

· υ(oB→v̂2)∗s(ω̂B−1 · v̂2)∗, (4)

and for B = 1:

c î
1, î2

v̂1,v̂2 (®x
s ) = σs · υ(î1→o1)υ(o1→v̂1)s(î1 · v̂1)

· υ(î2→o1)∗υ(o1→v̂2)∗s(î2 · v̂2)∗. (5)

In the above, f (®xs ) is the standard radiometric throughput of ®xs ,
augmented by scattering coefficients at the first and last vertex,

f (®xs ) = (σs )
B
B−1∏
b=1

e−σt ∥ob+1−ob ∥

∥ob+1 − ob ∥2
ρ(ω̂b−1 · ω̂b ). (6)

Finally, υ(·) is the complex volumetric throughput, defined as:

υ(ω̂→o) = e−
1

2
σtd (ω̂→o)eik (ω̂ ·o), (7)

υ(o→ω̂) = e−
1

2
σtd (o→ω̂)e−ik (ω̂ ·o), (8)

where k ≡ 2π/λ is the wavenumber and λ the wavelength of the

illumination; and d(ω̂ → o),d(o→ ω̂) denote the distance a ray

entering or leaving, respectively, o at direction ω̂, travels inside the

scattering volume V . Fig. 2(c) visualizes these terms.

The covariance rendering algorithm of Bar et al. [2019] uses

a Monte Carlo path sampling approach to evaluate the speckle

covariance integral of Eq. (3). This algorithm takes advantage of

the presence of the radiometric throughput term in Eq. (4), and

samples sub-paths ®xs using standard volumetric path tracing. Then,

for each sampled sub-path, the endpoints o1, oB are connected to

the far-field illuminations î1, î2 and sensors v̂1, v̂2, to compute the

complex volumetric throughput terms in Eqs. (4) and (5).
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We note that when î1 = î2 = î, v̂1 = v̂2 = v̂, the above algorithm
becomes equivalent to the standard volumetric path tracing algo-

rithm used in computer graphics to render intensity I îv̂ [Novak et al.

2018]. A key observation by Bar et al. [2019] is that, in the case of

covariance C î1, î2

v̂1,v̂2 , each sampled sub-path ®xs needs to contribute to

two pairs of input-output directions (blue and green connections

in Fig. 2(c)). Using the same sub-paths for both (î1, v̂1), (î2, v̂2) pairs
is necessary to account for the correlation of fields from different

illuminator-viewpoint combinations, and this correlation cannot be

modeled using paths sampled independently for each pair.

Before concluding this section, we mention that Bar et al. [2019]

present a variant of the above-described algorithm that simulates

scattered fields u î
1

v̂1 , u
î2
v̂2 in a way that accurately reproduces their

correlations. In the rest of the paper, we show how to adapt both of

these rendering algorithms to the near-field case. We present most

of our theory in Secs. 4-6 in the context of covariance rendering,

then adapt it in Sec. 7 for field rendering.

4 NEAR-FIELD SPECKLE STATISTICS
As mentioned in the introduction, many important applications

require imaging speckle fields using a sensor that is focused at some

point, rather than being at infinity; and using illumination that is

better modeled as a point than as a directional source. Both of these

points can be near or even inside the scattering volume. To distin-

guish them from the far-field case of the previous section, we refer

to these conditions together as the near-field imaging conditions.

Scattered fields formed under far-field and near-field conditions

often have very different characteristics, as we discuss in the rest

of the section. As in Sec. 3.1, we focus on transmission mode imag-

ing configurations, where illumination and sensing are on opposite

sides of the volume. The imaging configuration is shown in Fig. 2(b).

Modeling near-field speckle statistics. We use the notation u îv̂,u
i
v

to indicate scattered fields due to far-field and near-field imaging

conditions, respectively, with the circumflex distinguishing between

directional to point sources/sensors. If we know the scattered field

u îv̂ for all illumination and sensing directions î, v̂, we can compute

the scattered fielduiv by integrating over the sensor and illumination

apertures (Fig. 2(d)) [Goodman 1968; Mertz 2019]. Concretely:

uiv =

∫
î∈S2

∫
v̂∈S2
ai(î)av(v̂)u îv̂ dv̂ dî, (9)

where S2 is the unit sphere and, assuming an ideal lens,

av(v̂) ≡ m(v̂)eik (v̂·v), ai(î) ≡ m(î)e−ik
(
î·i

)
. (10)

The functions m(î) and m(v̂) denote illumination and viewing

aperture amplitudes. Typically, these are binary functions indicating

which directions pass through an aperture of a finite extent. We

indicate the width of these masks using the angle Θmax between

the optical axis and the propagating direction that most deviates

from this axis, and we refer to sinΘmax as the numerical aperture
(NA) (Fig. 3(a)). The term exp(ik(v̂ · v)) is the phase accumulated in

direction v̂ when focusing at the point v; and analogously for the

term exp(−ik(î · i)). Using paraxial optics approximations, it is also

possible to express the two integrals of Eq. (9) as a double Fourier

transform with respect to the variables î and v̂, and thus u îv̂ is often

referred to as the Fourier field [Goodman 1968; Mertz 2019].

The near-field speckle covariance C i1,i2

v1,v2 can be defined analo-

gously to the far-field covariance in Eq. (2). Combining this defini-

tion with Eq. (9), we can relate near-field and far-field covariances:

C i1,i2

v1,v2 =∫ ∫ ∫ ∫
av1 (v̂

1)ai1 (î
1)av2 (v̂

2)
∗
ai2 (î

2)
∗
C î1, î2

v̂1,v̂2dî
1
dî2dv̂1dv̂2. (11)

Why is rendering near-field covariance difficult? Eq. (11) provides a

conceptually simple way to compute near-field covariance statistics:

We sample, or discretize, the domains of v̂1, v̂2, î2, î1, estimate the

corresponding far-field covariance values as in Sec. 3.1, and form

their weighted average using the weights in Eq. (11).

In practice, this approach is computationally impractical, because

of the very large number of samples of the far-field covarianceC î1, î2

v̂1,v̂2
we need to compute. This number is determined by the widthW
of the volume V and the numerical aperture Θmax, and not by the

size of the sensor. As we show in App. A.2, Nyquist sampling rate

implies the number of samples per axis of integration should be:

N =
2W sin(Θmax)

λ
. (12)

For some representative numbers, we consider simulating a rel-

atively thin volume of thickness 400 µm. We assume that we im-

age a spatial area of size 100 µm × 100 µm using a numerical aper-

ture sin(Θmax) = 0.5 and illumination wavelength λ = 0.5 µm.

We need to simulate a volume that is at least as wide as the de-

focused beam, as light contributing to the scattered field can be

due to scattering anywhere inside the beam (see Fig. 3). For the

dimensions mentioned, the defocus blur has size 400 µm at the far

edge of the target, suggesting that we need to simulate a volume of

widthW = 100 µm+400 µm = 500 µm. Then Eq. (12) suggests using

N = 1000 samples on each coordinate axis of the four directions

we integrate in Eq. (11). Therefore, to simulate the near-field covari-

ance, we need (1000)8 samples, which is prohibitively large. We note

that real near-field scenes used in, e.g., Osnabrugge et al. [2017] are

bigger and would require an even more far-field samples.

Our discussion so far has been about covariance rendering, but

similar arguments apply for field rendering, where using Eq. (9)

would require N 4
samples, or (1000)4 for the above example. We dis-

cuss the field rendering case in detail in Sec. 7, but for demonstration,

we compare in Fig. 3 speckle images rendered by our proposed field

rendering algorithm and using Eq. (9). Due to memory constraints,

the far-field directions were sampled at 10% of the Nyquist sampling

rate; this aliased sampling results in clear replica artifacts in the cor-

responding images. Even under these aliased sampling conditions,

rendering using Eq. (9) was 100× slower than our algorithm, while

requiring 30GB GPU memory. These challenges cannot be allevi-

ated by using a large number of samples for single scattering and

fewer samples for multiple scattering, as is often done in intensity

rendering [Belcour et al. 2014]: even though intensity images from

multiple scattering have low spatial frequency, coherent multiple

scattering still creates high-frequency speckle patterns.

ACM Trans. Graph., Vol. 39, No. 6, Article 187. Publication date: December 2020.



Rendering Near-Field Speckle Statistics in Scattering Media • 187:7
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Fig. 3. Near-field challenges. Consider an imaging setup as in (a) where one wants to image a 100 µm × 100 µm area through a 400 µm thick tissue with a
0.5NA objective. The resulting imaging cone is 400 µm wide. As scattering can arise from anywhere inside the imaging cone, for realistic simulation the
medium should be at least as wide as the defocus cone, requiring us to simulate a slab of wider than 500 µm. Assuming e.g. λ = 0.5 µm, this results in
N = 1000 samples in each axis. (b) Two speckle images generated by two nearby illuminators, rendered using far-field covariances, sampled at 10% of the
Nyquist limit revealing aliasing. The simulation still runs 100× slower than our near-field approach, and occupies as much as 30GB GPU global memory. (c)
Aliasing-free speckle images by our suggested near field approach. Note the ME shift demonstrated in the insets.

Complex volumetric throuput : υ(î→o) = e−
1

2
σtd (ω̂→o)eik (ω̂ ·o),

Aperture function focused at î : ai(î)=m(î)e−ik
(
î·i

)
Aperture function × throughput : ãi(î, o1) = ai(î)υ(î→o)
Scattering amplitude function: s(ω̂1 · ω̂2)

Convolved aperture function: ϒ(ω̂, o1, i) =
∫
î∈S2 ãi(î, o1)s(î · ω̂)

(throughput up to first scatterer)
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(a) ãi(î, o1) (b) ϒ(ω̂1, o1, i)

ãi(ω̂ |o1) s ϒ(ω̂ |o1, i) = ãi(ω̂ |o1) ∗ s ãv(ω̂ |o1) ãv(ω̂ |o1) · ϒ(ω̂ |o1, i)

(c)

Fig. 4. Notation summary and visualization. (a) The aperture function ãi(î, o1) includes an apodization mask m(î), a complex wave focusing at i and a
conjugate wave focusing at o1, the first point on the sampled path (attenuation exp(−1/2σtd (ω̂ → o)) is not visualized). (b) The aperture function convolved
angulary with the scattering amplitude function leads to ϒ(ω̂1, o1, i), the throughput up to the first point and direction. That is, to compute the field
propagating from o1 at direction ω̂1 we integrate over all directions î in the aperture. For each direction we consider the value of the aperture function in this
direction, times the amount of energy scattered from î to ω̂1. (c) Visualizing the pipeline of the single-scattering covariance in Eq. (18). Illumination aperture ãi
is convolved with scattering function s to generate ϒ(ω̂ , o1, i), which is then multiplied with the viewing aperture ãv. For visualization the real component of
the involved spherical functions is projected onto the 2D ω̂x , ω̂y plane (north hemisphere only).

4.1 Near-field covariance path integral
To overcome the computational challenges of evaluating near-field

speckle covariance, we first derive for it a path-integral expression,

which will absorb the directional integrations of Eq. (11) into the

path contribution function. Then, in Sec. 5, we introduce an approx-

imation that allows us to compute this path contribution function

analytically. This completely removes the need for directional inte-

gration, drastically reducing computational complexity.

By combining Eq. (3) and Eq. (11), we can express the near-field

covariance as a path integral on the same space of sub-paths P:

C i1,i2

v1,v2 =

∫
P
c i

1,i2

v1,v2 (®x
s ) d®xs , (13)

where now the contribution of each sub-path is determined by the

near-field path contribution function c i
1,i2

v1,v2 . For B ≥ 2, this equals:

c i
1,i2

v1,v2 (®x
s ) = f (®xs ) · ϒ(ω̂1, o1, i1)ϒ(ω̂B−1, oB , v1)

· ϒ(ω̂1, o1, i2)
∗
ϒ(ω̂B−1, oB , v2)

∗
, (14)

where ϒ denotes integration over the aperture of terms in Eq. (4):

ϒ(ω̂1, o1, i) ≡

∫
î∈S2
ãi(î, o1)s(î · ω̂1) dî, (15)

ϒ(ω̂B−1, oB , v) ≡

∫
v̂∈S2
ãv(v̂, oB )s(ω̂B−1 · v̂) dv̂, (16)

and ã denotes weighed aperture functions a:

ãi(î, o1) ≡ ai(î)υ(i→o1), ãv(v̂, oB ) ≡ av(v̂)υ(oB→v̂). (17)
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Similarly, for B = 1, the contribution function equals:

c i
1,i2

v1,v2 (®x
s ) = σs (o1) ·

∫
v̂1∈S2

ãv1 (v̂
1, o1)ϒ(v̂1, o1, i1) dv̂1

·

(∫
v̂2∈S2

ãv2 (v̂
2, o1)ϒ(v̂2, o1, i2) dv̂2

)∗
. (18)

We use ãi(î|o1), ϒ(ω̂1 |o1, i) to denote versions of these functions

with respect to only their first argument, conditioned on fixed val-

ues for their other arguments. These are complex functions on the

unit sphere S2. In particular, ϒ(ω̂1 |o1, i) can be thought of as a convo-
lution of the aperture function ãi(î|o1)with the scattering amplitude

function s(î · ω̂). We summarize and visualize these terms in Fig. 4.

With Eqs. (14) and (18) at hand, conceptually we can compute

the near-field covariance C i1,i2

v1,v2 using a Monte Carlo rendering al-

gorithm exactly analogous to the one proposed by Bar et al. [2019]

for the far-field case: First, we sample sub-paths ®xs using standard

volumetric path tracing. Second, we compute the path contribution

function for each sampled path, and accumulate the results. We

note however that, unlike the far-field case, in the near-field case

the path contribution function cannot be computed analytically,

as it requires spherical integration for evaluating ϒ. Theoretically,
this could be done using a second-stage Monte Carlo integration

procedure, by importance sampling one or more directions in the

aperture plane. However, as we show experimentally in Sec. 8, be-

cause these integrals have complex integrands with highly-varying

phases, Monte Carlo estimates have very high variance. Considering

that this second-stage Monte Carlo integration procedure needs to

be performed separately for each sampled sub-path ®xs , it quickly
results in an overwhelming computational overhead, making this

overall rendering procedure intractable. In the next section, we side-

step this overhead by deriving closed-form approximations to these

integration and convolution operations, which can be computed

analytically without the need for Monte Carlo integration.

5 NEAR-FIELD USING VON MISES-FISHER FUNCTIONS
In this section, we present two main technical results. First, we show

how to use mixtures of von Mises-Fisher functions to approximate

the various spherical functions that appear in the near-field path con-

tribution function c i
1,i2

v1,v2 (®x
s ) of Eqs. (14) and (18). Second, we show

how this approximation allows us to derive closed-form expressions

for the convolution and other integral terms in c i
1,i2

v1,v2 (®x
s ). Overall,

this allows us to compute covariance contribution analytically for

each sampled sub-path ®xs , avoiding Monte Carlo integration.

VonMises-Fisher functions. We begin with background on complex
von Mises-Fisher functions, defined as [Mardia and Jupp 2000]:

h(ω̂) = η · e(µ ·ω̂), (19)

where ω̂ ∈ S2, and µ = µr + iµi is a complex three-dimensional

vector parameterizing the von Mises-Fisher function. We define:

γr = ∥µ
r
∥, γi = ∥µi ∥, γ = ∥µ∥ = γr − γi + 2i(µr · µi), (20)

µ̂ = µ/γ , µ̂
r
= µ

r
/γr, µ̂

i
= µ

i
/γi. (21)

The value |h(ω̂)| is maximizedwhen ω̂ = µ̂
r
. The scaleγr is inversely

proportional to the support of the function: Large γr values result

in a narrow function that is sharply peaked around µ
r
, whereas

γr = 0 results in a uniform function over the sphere. Von Mises-

Fisher functions have found use in various applications in computer

graphics [Han et al. 2007], though we emphasize that, compared to

this prior work, we use complex functions (γi , 0).

Von Mises-Fisher functions can be thought of as a generalization

of the Gaussian distribution to the unit sphere, with variance σ 2 =
1

γ [Mardia and Jupp 2000]. Intuitively, we can see that this is the

case by considering that, when we constrain ∥µ̂∥ = ∥ω̂∥ = 1,

e−
γ
2
∥ω̂−µ̂ ∥2 ∝ e−γ (µ̂ ·ω̂), (22)

where ∝ denotes equality up to a multiplicative scale.

5.1 Working with von Mises-Fisher functions
Fitting with vonMises-Fisher functions. We aim to approximate the

spherical functions that appear in the near-field path contribution

function c i
1,i2

v1,v2 (®x
s ) using von Mises-Fisher functions.

We first consider the aperture function ãi(î), defined in Eqs. (10)

and (17). We reproduce the definition here for convenience:

ãi(î)=m(î)e−ik(î·i)υ(i→o1)=m(î)e−ik(î·i)−
1

2
σtd(ω̂→o)+ik(ω̂ ·o). (23)

We want to express ãi(î) as a von Mises-Fisher function. To achieve

this, we first choose to approximate the aperture maskm(·) as a real
von Mises-Fisher function. Denoting the optical axis of the system

by µ̂a (usually this is the z-axis µ̂a = ẑ = [0, 0, 1]), we have,

m(ω̂) ≈ e−γaeγa (µ̂a ·ω̂). (24)

This approximation is a form of apodization: a binary aperture,

which completely blocks or transmits fields propagating in different

directions, is replaced by a non-binary mask, which attenuates the

amplitude of transmitted fields by an increasing amount at larger

propagation angles. Such non-binary apertures are typical of sys-

tems that use short-focal-length lenses with strong aberrations. On

the illumination side, these non-binary apertures are also represen-

tative of the Gaussian profiles of laser beams. As we show in Sec. 8,

even when the underlying aperture is binary, using the apodiza-

tion of Eq. (24) produces accurate speckle statistics for transmissive

imaging configurations. We note that the mean width of the non-

binary aperture equals σa = 1/
√
γa , and should be set to match the

width of the true binary aperture. Additionally, we can use γa = 0

to model isotropic point sources (e.g., fluorescent particles).

The phase terms in Eq. (23) already form a complex von Mises-

Fisher function. Thus, to complete our treatment of ãi(î), we need to
add the attenuation term, for which we assume that the attenuation

is approximately constant over the aperture:

e−0.5σtd (ω̂→o) ≈ e−0.5σtd (µ̂a→o). (25)

Putting things together, we approximate the aperture function as:

ãi(ω̂, o) ≈ η · eµ ·ω̂ , (26)

with

η = e−γa−
1

2
σtd (µ̂a→o1), µ = γa µ̂a + ik(o1 − i). (27)

We approximate the viewing aperture function similarly.

We now turn our attention to the scattering amplitude function s
in Eqs. (14) and (18).We use the expectation-maximization algorithm
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Fig. 5. Phase function fitting. Visualizing the von Mises-Fisher mixture fit of some Henyey Greenstein phase functions as well as real world phase functions
measured by [Gkioulekas et al. 2013]. A small number of mixture components provides a good fit even when the phase function includes a back lobe (e.g. liquid
clay). The top row shows a full [−π , π ] range, and the lower row zooms around the central forward/backward lobe of the function for better visualization.

of Banerjee et al. [2005] to approximate s as a mixture of von Mises-

Fisher functions centered at î:

s(î, v̂) ≈
∑
m

πmeγs ,m (î·v̂). (28)

In Fig. 5, we show fits of this kind for Henyey-Greenstein phase func-

tions, as well as real-world phase functions measured by Gkioulekas

et al. [2013]; in all cases, the phase function is accurately approxi-

mated using a small number of mixture components.

Integration and convolution of von Mises-Fisher functions. The
approximations we derived facilitate computing the covariance in-

tegrals Eqs. (14) and (18). In particular, these evaluation can now

be done analytically, without the need for Monte Carlo integration,

using the properties of von Mises-Fisher functions.

We consider first the spherical integration in Eq. (18). By approx-

imating the integrand as a von Mises-Fisher function, as described

above, we can compute this integral analytically using:∫
ω̂ ∈S2

ηeµ ·ω̂ = η · 4π
sinh(

√
µ)

√
µ

= η · 2π
e
√
µ − e−

√
µ

√
µ

. (29)

In this equation,

√
µ equals:

√
µ ≡

√
µ2x + µ

2

y + µ
2

z . (30)

where each term in the summation involves complex square power

rather than squared amplitude, and thus

√
µ is a complex number.

We now consider the spherical convolution in Eq. (14). We use

the same approach as for integration, and replace the two functions

that are being convolved with their approximation in terms of von

Mises-Fisher functions we derived above. The resulting convolution

of two von Mises-Fisher functions is also available through a simple

analytical form. We note that, even though the exact convolution

result is not itself a von Mises-Fisher function, it can be accurately

approximated as one, as is necessary to facilitate subsequent com-

putation steps in our rendering algorithm. In particular, in App. A.3,

we show that the convolution can be approximated as:∫
ψ̂ ∈S2

e(µ ·ψ̂) · eγs (ω̂ ·ψ̂) ≈
2π

βo
e
γs
βo

(µ ·ω̂)+co , (31)

where

βo =
√
µ + γsω̂o, co = βo −

γs
βo

(µ · ω̂o ). (32)

We discuss the selection of ω̂o in App. A.3, but the simplest strategy

is to select it as the direction at the center of the viewing aperture.

We compare approximated and exact convolutions in App. A.4. Note

that, since the scattering amplitude function is approximated by

a mixture of von Mises-Fisher functions, we need to compute the

convolution with each mixture element separately.

5.2 Visualizing convolution
The function ϒ(ω̂, o1, i), defined in Eq. (15) as the convolution of the

aperture function with the scattering function, equals the through-

put of a path up until the first scattering event. This function encodes

the contribution of a path starting at node o1 and emerging from it

at direction ω̂. This function is a fundamental building block of the

near-field correlation, and as such we study and visualize its struc-

ture. In the next section, we use this to devise importance sampling

schemes for accelerating our Monte Carlo rendering algorithms.

Spatial structure. The aperture function ãi(î; o1) is complex, and

its phase depends on the distance between the focus point i and
location o1 of the first scatterer in the path (Fig. 4(a)). When the

phase variation is rapid, blurring this complex function will reduce

themagnitude to zero.Wewant to understand for which o1 positions
the throughput contribution ϒ(ω̂, o1, i) is not zero. This will be
valuable for defining an importance sampling strategy that avoids

sampling o1 in areas receiving no energy. To this end we define

e(o|i) ≡
∫
ω̂ ∈S2

|ϒ(ω̂, o, i)| . (33)

Fig. 6 visualizes the shape of e(o|i) for an x − z volume slice. This

is similar to the optics concept of a Gaussian beam [Yariv 1997],

focused at i. Considering that our illumination is a beam focused at

i, it is expected that scattering points o1 that are not located in the

area of the illumination beam will not receive light. However, while

the shape of a focused beam depends only on the aperture width

γa , e(o|i) also depends on the width of the scattering function γs . In
particular, assuming for ease of notation that the aperture axis is
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Fig. 6. Visualizing spatial and angular throughput components. Left: e(o |i), the energy of path starting points, as an x − z slice through the volume.
This resembles the shape of a Gaussian beam, which is narrow at the focus plane and wide at out-of-focus depths. The panels visualize two scattering functions
defined by γs = 2 (wide) and γs = 100 (narrow), showing that the beam waist is wider for narrow forward-scattering phase functions. Right: the angular part of
the throughput, ϒ(ω̂ |o, i) = ã ∗ s as a function of direction ω̂ , for a subset of o positions marked with corresponding colors on the Gaussian beams. These are
functions on the 3D sphere, and we show the north (forward) and south (backward) hemispheres projected on the ω̂x − ω̂y plane. The directions with high
throughput shift for points o at the periphery of the beam (e.g., orange and pink points). We display only the real part of these complex spherical functions.

aligned with the north pole µ̂a = ẑ, we show in App. A.5 that:

e(o|i) = G(oxy |oz , i) = β(z)e
−∥oxy−ix ,y ∥2

2w (z)2 , (34)

with

w(z;γs ,γa ) =

√
γa + γs

k2
+
z2

γa
, (35)

β(z) = e−
1

2
σtd (ẑ→oz )π

k2γ 2a (γs + γa )

2w(z;γs ,γa )2
eγa+γs . (36)

and z ≡ oz − iz . For every z plane, e(o|i) is a planar Gaussian with

standard deviation equal tow(oz − iz ). The Gaussian is narrowest

when oz − iz = 0, that is, when o1 is at the same depth as i. The
beam expands at depths away from the focus depth.

Angular structure. Fig. 6 also provides a visualization of the an-

gular part of the throughput, namely the variation of ϒ(ω̂ |o, i) as
a function of ω̂, in a few positions of the first point o. For that, we
display the aperture function ãi(î|o) as a spherical function (i.e., a

function of direction), before and after convolution with s . We com-

pare the exact convolution against the approximation based on von

Mises-Fisher functions, showing good agreement. The directions

with highest power after convolution can shift, and may not be

located at the center of the sphere (e.g., the orange and pink points

in lower panel). This happens at the periphery of the beam. Below

we use the directional density ϒ(ω̂ |i, o) for importance sampling.

6 IMPORTANCE SAMPLING
In Sec. 4.1 the covariance is expressed as an integral over path space,

where each path contributes a term c(®xs ). For convenience we repeat
here the definition for paths of length B ≥ 2:

c(®xs ) = f (®xs ) · ϒ(ω̂1, o1, i1)ϒ(ω̂B−1, oB , v1)

· ϒ(ω̂1, o1, i2)
∗
ϒ(ω̂B−1, oB , v2)

∗
. (37)

We use Monte Carlo approximation of this integral, by sampling N
sub-paths ®xs ,n from a distribution p(®xs ,n ) and computing

C =
1

N

∑
n

c(®xs ,n )
p(®xs ,n )

. (38)

The quality of this estimator depends on the sampling distribution

p, and estimation variance reduces when p closely approximates c .

ACM Trans. Graph., Vol. 39, No. 6, Article 187. Publication date: December 2020.



Rendering Near-Field Speckle Statistics in Scattering Media • 187:11

ALGORITHM 1: Monte Carlo rendering of covariance C i1 ,i2
v1 ,v2 .

◃Initialize covariance estimate.
Set C = 0.

for iteration = 1 : N do
◃Sample a subpath:

◃Sample first vertex from the sum of Gaussian beams.
Sample beam index j ∈ {1, 2}

Sample point o1 ∼ e(o1 |ij ) .
◃Update covariance with single scattering path.

Update C += 1

p(o1)

∫
v̂1∈S2 ãv1 (v̂

1, o1)ϒ(v̂1, o1, i1)

·

(∫
v̂2∈S2 ãv2 (v̂

2, o1)ϒ(v̂2, o1, i2)
)∗

.

◃Sample first direction from the angular throughput.
Sample direction ω̂1 ∼ |ϒ(ω̂1

|o1, ij ) |2.
◃Continue tracing the subpath:

◃Sample second vertex of subpath.
Sample distance d ∼ σt e−σtd .
Set point o2 = o1 + d · ω̂1.

Set b = 2.

while ob inside medium do
◃Update covariance with next-event estimation.

Update C += 1

p(o1)p(ω̂1 |o1)
ϒ(ω̂1, o1, i1)ϒ(ω̂b−1, ob , v1)

ϒ(ω̂1, o1, i2)
∗
ϒ(ω̂b−1, ob , v2)

∗

◃Sample next vertex of subpath:
◃Sample direction from phase function.

Sample direction ω̂b ∼ |s(ω̂b−1 · ω̂b ) |
2
.

◃Sample free path.
Sample distance d ∼ σt e−σtd .

◃Create next vertex of subpath.
Set point ob+1 = ob + d · ω̂b .

◃Account for absorption.
Sample scalar a ∼ Unif[0, 1].

if a > σs /σt then
◃Terminate subpath at absorption event.

break

end
Set b = b + 1.

end
end

◃Produce final covariance estimate.
Update C = 1

N C .

return C .

Bar et al. [2019] sample sub-paths from a distribution p(®xs ) ∝ f (®xs ),
where the first node o1 and direction ω̂1 are sampled uniformly.

This uniform sampling strategy can be problematic, because the

term c (Eq. (37)) includes the throughput ϒ of the start and end

segments. In particular, as discussed in Sec. 5.2, the spatial part

of ϒ has a shape similar to a Gaussian beam (Fig. 6). As the beam

assigns zero weight to most points in space, uniform sampling of the

starting node o1 will produce many paths with zero contribution.

When the phase function is narrow, a similar argument holds for

the first direction ω̂1. We address this issue by deriving importance

sampling strategies for the start node and direction.

To this end, we sample the path from a distribution

p(o1→ . . .→oB ) = p(o2→ . . .→oB |ω̂1, o1)p(ω̂1 |o1)p(o1). (39)

The first scattering point is sampled from

p(o1) ∝
1

2

(
|e(o1 |i1)|2 + |e(o1 |i2)|2

)
. (40)

We implement this sampling by first uniformly sampling one of

he two beams in the summand, and then sampling o1 from the

Gaussian beam G(oxy |oz , ij ) of Eq. (34), where j ∈ 1, 2 denotes the

index of the sampled beam. The first direction is sampled from

p(ω̂1 |o1) ∝ |ϒ(ω̂1 |o1, ij )|2. (41)

The rest of the path is sampled from

p(o2 →, . . . ,→ oB |o1, ω̂1) ∝ f (o1 →, . . . ,→ oB ), (42)

as in standard volumetric path tracing. The sampling scheme is

summarized in Alg. 1, and we provides details in App. A.6. We note

that we choose to importance sample the first segment of the path

rather than the last one because, for most imaging configurations in

this paper, we had a small number of illuminators and a large number

of camera pixels. We can importance sample the last segment when

iluminators are more than camera pixels, or importance sample both

the first and last segment in bidirectional algorithms.

7 FIELD RENDERING
So far we focused on evaluating speckle covariance. A complemen-

tary question is how to directly render speckle images. Suppose, for

example, that we want to generate Ni images from Ni different illu-
mination points, where each image includes Nv sensor points. This

requires sampling Ni,v = Ni · Nv complex numbers. One approach

for this is to evaluate the corresponding covariance matrix of size

Ni,v × Ni,v, and then use it to sample values. However, for large

Ni,v, the covariance matrix can be impractically large. Instead, we

seek an algorithm with complexity O(Ni,v) rather than O(N
2

i,v).

For this, we follow Bar et al. [2019], who note that the covariance

matrix as given by Eq. (3), (14) and (18) is essentially an infinite

summation of rank-1 matrices, decomposed over the path space

C ik ,im

vk ,vm
=

∫
P
f (®xs )b(ik , vk )b(im, vm )

∗
d®xs , (43)

for all (k,m) pairs k,m ∈ {1, . . . ,Ni,v}, with

b(ik , vk ) =

{ ∫
v̂∈S2 ãvk (v̂, o1)ϒ(v̂, o1, i

k ), B = 1,

ϒ(ω̂1, o1, ik )ϒ(ω̂B , oB , vk ), B ≥ 2.
(44)

Despite the fact that this rank-one decomposition is over-

complete, we can use it to sample from the covariance matrix. We

sample sub-paths ®xs ∼ p(®xs ), using the same importance function

as in Sec. 6. The field is updated using b(ik , vk ), resulting in

u(ik , vk ) =
1

√
N

∑
n

b(ik , vk |®xs ,n )

√
f (®xs ,n )
p(®xs ,n )

e2π iζn , (45)

where ζn ∈ [0, 1] is a random phase ensuring

E[b(ik , vk |®xs ,n )e2π iζn ] = 0. (46)

As different paths are sampled independently, and given the zero-

mean property, contributions from different sub-paths are uncorre-

lated. Namely, for n1 , n2:

E
[
b(ik , vk |®xs ,n1 )e2π iζn1 · b(im, vm |®xs ,n2 )

∗e−2π iζn2
]
= 0, (47)
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Fig. 7. Comparisons with far field rendering. (a) Imaging setup. We use illumination and viewing pairs defined by ∆ = i2x ,y − i1x ,y = v2x ,y − v1x ,y and
τ = v1x ,y − i1x ,y = v2x ,y − i2x ,y . (This setup is also used in Fig. 8-11.) (b-d) We compare covariances rendered using our near-field (N.F.) algorithm against those
obtained by rendering far-field (F.F.) correlations and applying focusing. We also compare with covariances rendered with a binary aperture of equivalent
width to our apodized aperture. As binary apertures cannot be well-approximated using von Mises-Fisher functions, we only render them using the far-field
algorithm. The volume has size 50λ × 50λ × 20λ. We evaluate two aperture widths in (b,c) and two phase functions in (c,d). Each square visualizes correlation
as a function of τ , and different rows correspond to different x -axis illuminator shifts ∆ = i2x − i1x . We see close agreement in all cases.

for all (k,m) pairs. Therefore, we see that E
[
u(ik , vk ) · u(im, vm )∗

]
equals the desired covariance of Eq. (43).

Fig. 1 shows speckle images rendered with this algorithm. We

note that in Eq. (45), the same set of paths is used to update all
illuminators and sensors. As a result, the speckle images due to

different illuminators in Fig. 1 are correlated, shifted versions of each

other, corresponding to the memory effect property. Rendering each

of these images independently, using a standardMonte Carlo volume

rendering approach, would fail to reproduce these correlations.

8 EVALUATION
We now evaluate the efficiency and accuracy of our proposed ren-

dering algorithms. We compare our algorithms against three alterna-

tives: First, we compare with an approach that uses the Monte Carlo

rendering algorithm of Bar et al. [2019] to produce far-field esti-

mates, and then converts them to near-field estimates using Eqs. (2)

and (9). We also consider a few variants of this approach that benefit

from various acceleration techniques. Second, we compare with

groundtruth estimates produced by a wave-equation solver. Third,

we compare with estimates produced using a layered propagation

approach popular in the optics literature. Additionally, we show

experiments evaluating performance improvements due to the im-

portance sampling scheme of Sec. 6. In Sec. 9, we show experiments

relating to the tilt-shift memory effect [Osnabrugge et al. 2017], in-

cluding experiments validating our algorithms against groundtruth

measurements of real materials.

Experimental configurations. Our experiments focus on illumina-

tion and imaging configurations that are known from literature to

produce strongly-correlated fields. We describe these configurations

using Fig. 7(a) as reference: As we focus on transmission mode imag-

ing, the focused illumination is placed at the back of the sample, and

the focused sensor is placed at the front. We refer to App. A.4 for

an evaluation of our technique under reflective imaging conditions.

We consider the case where the illumination focus points i1, i2 and

sensing focus points v1, v2 are all located at the same depth plane,

at the back plane of the volume. This configuration corresponds, for

example, to the fluorescent imaging setting, where a fluorescent par-

ticle is deep inside a medium such as tissue, and a camera attempts

to observe it by focusing through the scattering at the illuminator’s

plane.

We denote by i1x ,y , i2x ,y , v1x ,y , v2x ,y the x − y coordinates of the

corresponding 3D points on the focus plane. We denote by ∆ ≡

i2x ,y − i1x ,y the 2D displacement between the illumination direc-

tions, and by τ ≡ v1x ,y − i1x ,y the 2D displacement between the

illumination and viewing directions (Fig. 7(a)). Classical memory

effect theory [Feng et al. 1988] states that strong correlations ex-

ist between fields for illumination and viewing pairs satisfying

i2x ,y − i1x ,y = v2x ,y − v1x ,y = ∆, for small ∆ values. With this in

mind, in our experiments, we evaluate and visualize correlations of

the form:

C(∆,τ ) = C
i1x ,y ,i1x ,y+∆
i1x ,y+τ ,i1x ,y+τ+∆

, (48)

for different displacements ∆ and τ . For sufficiently wide volumes,

C(∆,τ ) is approximately invariant to i1.

Comparison with far-field approach. We compare first with the

simulation approach based on the far-field rendering algorithms of

Bar et al. [2019]. To reduce the computational burden, we compare

with an approach based on a combination of Eqs. (2) and (9), rather

than Eq. (11): We first discretize the illumination and viewing aper-

tures into a set of directions î and v̂. For each set of (î, v̂) values,
we use the implementation provided by Bar et al. [2019] to sample

far-field scattered waves u îv̂, which we subsequently convert to the

near-field scattered waves using Eq. (9). By running the field ren-

dering algorithm of Bar et al. [2019] multiple times, we end up with

multiple samples of near-field scattered waves, corresponding to

different scatterer configurations. Finally, we use these near-field

scattered waves to approximate the covariance as in Eq. (2). We
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Fig. 8. Acceleration of far-field rendering. (a) N.F (1× runtime). (b) F.F.
with dense discretization of aperture integral (400× runtime). (c) F.F. with
sparser discretization of aperture integral (100× runtime) (d, e) F.F. with
Monte Carlo sampling of aperture integral (1× and 10× runtime).

Table 1. Runtimes of different algorithms for achieving RMSE < 0.01.

10λ × 10λ × 4λ 25λ × 25λ × 10λ 50λ × 50λ × 20λ
N.F. 0.46 s 2.12 s 6 s

F.F. Tab. 31 s 221 s 2.4 × 10
3
s

F.F. M.C. 199 s 1.47 × 10
3
s 2.04 × 10

4
s

note that, in Sec. 4, we presented the formal approach for estimat-

ing near-field covariance using far-field rendering, based on the

far-field covariance Eq. (11) rather than fields. In these experiments,

we opt for the field-based approach, because the number of far-field

samples it requires scales more favorably with the widthW of the

simulated volume (W 4
scaling for the field-based approach, W 8

scaling for the covariance-based approach).

In our experiments, to keep the number of far-field samples man-

ageable, we simulate a relatively small volume of size 50λ×50λ×20λ
with mean free pathMFP = 10λ, leading to an optical depth OD = 2.

We consider two choices of aperture width, σa = 0.6 and σa = 0.25,

and both wide and narrow forward-scattering Henyey-Greenstein

phase functions (low and high д values, respectively). When using

the far-field approach, we simulate both von Mises-Fisher-apodized

and binary aperture masksm(·) of the same width, to quantify the ef-

fect of our apodization approximation on accuracy (binary apertures

can only be evaluated at the far-field, at increased computational

complexity, as the von Mises-Fisher approximation does not ap-

ply). We show the results in Fig. 7. We observe that, in all cases,

our near-field rendering algorithm produces very similar results to

the far-field approaches. We also note that the far-field approach

produces very close results when using apodization and binary

masks, indicating that our apodization approximation does not in-

troduce significant bias. At the same time, our near-field approach

is orders-of-magnitude faster, as we quantify in detail below.

In Fig. 8, we additionally compare against two accelerated variants

of the far-field approach. We reuse the configuration of Fig. 7(d), this

time with a wider τ grid. First, we render far-field covariance only

for a (fixed) regular subset of directions. As the number of samples is

significantly lower than that required by the Nyquist sampling rate

in Eq. (12), aliased replicas appear. Second, we use a Monte Carlo

strategy that randomly samples the directions at which far-field

Table 2. Equal-time comparisons of different algorithms.

10λ × 10λ × 4λ 25λ × 25λ × 10λ 50λ × 50λ × 20λ
1 s 60 s 5 s 500 s 15 s 6000 s

N.F. 0.0089 0.0076 0.0096 0.0093 0.0135 0.0110

N.F. biased ref. 0.0053 0.0021 0.0050 0.0018 0.0080 0.0045

F.F. Tab. 0.0396 0.0078 0.0672 0.0056 0.0915 0.0051

F.F. M.C. 0.1140 0.0198 0.2024 0.0207 0.3317 0.0632

covariance is computed when evaluating the integral of Eq. (11).

The number of random samples is selected to achieve the lowest

possible error for equal runtime. As the integrand is complex, using

Monte Carlo approximation results in very high variance. At the

cost of increased runtime, Fig. 8(e) demonstrates a better estimate.

Runtime and bias evaluation. We compare the runtime of our

near-field approach against two versions of the far-field approach: a

tabulated version, computing all far field directions before applying

near field transformation, as in Fig. 8(b); and a Monte Carlo version,

randomly sampling directions, as in Fig. 8(d-e). Table 1 shows the

runtime each approach requires to converge to a root-mean-square-

error (RMSE) relative to a reference rendering below 0.01. In all

cases, our near-field approach has the best performance, and the

performance improvement increases as thewidthW of the simulated

volume increases. For the volume size we use for the results in Fig. 7,

our near-field approach is 400× faster than the tabulated far-field

approach, and 3000× faster than the Monte Carlo approach. The

performance advantage will become even larger for volumes with

sizes corresponding to realistic lab experiments. All algorithms were

implemented and run on a V100 NVIDIA GPU.

Table 2 reports RMSE from equal-time comparisons of the three

approaches using volumes of different sizes. Error was measured

against a reference rendering produced by running the far-field

approach till convergence. For each volume size, we report RMSE

for both a small and a long rendering time. The latter allows us to

quantify the bias of the near-field approach. While any such bias is

too small to be noticeable in the visual comparisons of Fig. 7, the nu-

merical difference between the near-field and far-field covariances

does not fully converge to zero. We anticipate that most of the bias

is due to the assumption that volumetric attenuation is constant

for all directions through the aperture (see Eq. (25)). In the second

row of Table 2 we compare our near-field approach against a refer-

ence evaluated using the far-field approach but with an equivalent

constant directional attenuation, showing smaller error.

The benefit of importance sampling. To evaluate the effect of the

importance sampling scheme we introduced in Sec. 6, we compare

in Fig. 9 covariance estimates produced by our Monte Carlo al-

gorithm, using three different sampling strategies: first, uniform

sampling of both the first path vertex and direction; second, impor-

tance sampling of the first vertex and uniform sampling of the first

direction; and third, importance sampling of both the first vertex

and direction. We observe first that, when run till convergence (e.g.,

in the top panel where the sample is small and the phase function

has significant side-scattering), all three combinations converge

to the same result. This confirms that importance sampling does

not introduce any addiional bias. We additionally observe that the

estimate using importance sampling of both the first vertex and
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Fig. 9. The benefit of importance sampling. The figure compares uni-
form sampling vs. importance sampling (I.S.) of the first scatterer on the
path o1, vs. importance sampling of both the first scatterer and the first
direction o1, ω̂1. Top panel: a small target whose size is only 20λ×20λ×20λ.
For such small targets uniform sampling converges as well, although re-
quiring a larger number of path samples (compare results with 10

3 samples
to 105 samples), demonstrating that our importance sampling strategy is
consistent. Middle panel: When expanding the size of the target volume,
convergence of uniform sampling is very slow. As the phase function is
rather wide, importance sampling of the first direction does not improve
much. Lower panel: If we also use a very forward scattering phase function,
convergence is much accelerated by importance sampling the first direction.

direction results in reduced noise in all cases. The improvement

becomes more pronounced as the width of the volume increases

(second panel in Fig. 9); this is because, as the size of the Gaussian

beam relative to the volume decreases, uniform vertex sampling

will result in more paths starting in points of the volume that do

not receive any light. Finally, the improvement achieved by using

importance sampling increases even further as the phase function

becomes more forward-scattering (third panel in Fig. 9); in this case,

it is necessary to importance sample the first direction as well, oth-

erwise the majority of path-starting directions will have near-zero

contribution. Fig. 10 additionaly shows convergence plots for the

first and third volumes in Fig. 9.
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Fig. 10. Convergence plots. log(RMSE) of different sampling strategies as
a function of sample number, for the first and third volumes in Fig. 9.

Comparison with a wave-equation solver. Bar et al. [2019] demon-

strated the accuracy of their far-field covariance rendering algo-

rithm by comparing against numerical wave-equation solvers. For

additional validation, we also compare directly with the µ-diff
solver [Thierry et al. 2015] they use. The solver takes as input a

configuration of scatterer locations, and uses numerical techniques

to solve the wave equation and output an estimate of the complex

scattered field. To compute covariance, we run the solver for multi-

ple scatterer instantiations sampled from the same distribution, then

use the results to estimate the speckle covariance of Eq. (2). We note

that this simulator only works in 2D; thus, for these comparisons
only, we restrict our Monte Carlo rendering algorithm to 2D as well.

The left part of Fig. 11 shows correlations valuesC(∆,τ ) (Eq. (48)),
as a function of τ for a few ∆ and д values, simulated using µ-diff
and our technique. Note that, as these simulations are in 2D, τ is

a scalar, and thus C(∆,τ ) is a 1D curve. We observe that the plots

computed with our technique closely match those produced by the

wave-equation solver, demonstrating the accuracy of our technique.

At the same time, for this small example our technique is three

orders of magnitude faster, and can scale to much larger volumes.

Comparison with multi-slice layered propagation. We compare

additionally with the multi-slice beam propagation method [Schott

et al. 2015], which is a popular numerical approach in optics for

simulating wave propagation. This approach accounts for multiple-

scattering effects by approximating the simulated volume as a se-

quence of planar slices orthogonal to the optical axis; layers are

modeled as infinitesimally-thin 2D phase masks, separated by free

space. The phase mask of each layer is selected to scatter light with

an angular spread matching the phase function of the simulated

volume. This technique has high computational efficiency compared

to exact wave-equation solvers, but cannot model back-scattering,

and has worse accuracy for wide scattering angles.

The right part of Fig. 11 shows correlation estimates from this

technique, using the same experimental settings as in our com-

parisons with the wave-equation solver. We observe that, for very

forward-scattering phase functions, both our Monte Carlo algo-

rithm and the layered propagation technique closely match the

groundtruth produced by the solver. However, for phase functions

with significant side-scattering, the accuracy of the layered propaga-

tion technique is significantly worse than that of ours. Additionally,

our Monte Carlo algorithm is significantly faster than the layered
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Fig. 11. Wave optics alternatives.We compare covariances obtained with our approach, against those by a wave-equation solver, and a multi-slice simulator
from optics. Our simulator is physically accurate, producing results in close agreement with those of the solver, while being orders of magnitude faster.
The multi-slice approach is valid for a very forward-scattering phase function (д = 0.98) and small optical depth. For a wider phase function (д = 0.3), the
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Fig. 12. The tilt-shift memory effect. (a) Setup: two beams with spatial
displacement∆a and angular displacement θ enter the volume.We compute
the correlation between the speckle patterns measured at the b plane as a
function of both tilt and shift, assuming that the input displacement ∆a

is selected to maximize Eq. (50). The bottom images visualize the results.
(b,c) Analytic and measured correlation, reproduced from Osnabrugge et
al. [2017]. (d-e) Correlation computed by our algorithm for two different
phase functions with the same average cosine д = 0.98.

propagation technique, as the latter requires for each layer a high-

resolution discretization of the wave, resulting in large dense arrays

that need to be convolved to model propagation between layers.

9 THE TILT-SHIFT MEMORY EFFECT
In this section, we use our near-field rendering technique to study

the tilt-shift memory effect property introduced by Osnabrugge et

al. [2017]. We first briefly review this property, using Fig. 12(a) as a

reference: A scattering volume of thickness L is illuminated by two

input beams from its top surface, denoted in Fig. 12(a) as the a plane.

The scattered fieldsu1,u2 due to the two beams are imaged by a cam-

era focused at the lower plane of the volume, denoted in Fig. 12(a)

as the b plane. The two illumination beams have a displacement

relative to each other equal to i2 − i1 = ∆a . The key observation

of Osnabrugge et al. [2017] is that we can increase the correlation

of the speckle fields due to the two beams if we additionally tilt
the beams at angles −θ/2, θ/2 respectively. Intuitively, appropriately

selecting the tilting angle as a function of the displacement ∆a

helps increase the overlap between the defocused beams inside the

medium, and thus increases the correlation of the resulting speckle

fields.

This observation motivates evaluating how speckle field correla-

tion varies as a function of tilt angle and shift displacements at the

input and output planes. Concretely, we can write this as a function:

C(∆a ,∆b , θ ) ≡ E

[∑
τ

u1(τ − ∆b/2) · u2(τ + ∆b/2)
∗
eikτθ

]
, (49)

where the expectation is taken over all fields with the same material

parameters (e.g., fields generated by different scatterer instantiations

O sampled from the same density). Osnabrugge et al. [2017] derived

an analytic approximation for this function that takes the form:

C(∆a ,∆b , θ ) ≈ δ (∆b − ∆a − Lθ )e
− L3k2

2ℓtr

(
θ 2
12
+
(
θ
2
+

∆b
L

)
2

)
, (50)

where δ (·) is the Dirac delta function, and ℓtr is the transport mean
free path ℓtr ≡ MFP/(1 − д). Their derivation is based on three

simplifying assumptions: it uses a layered representation similar

to that of the multi-slice layered propagation technique in Sec. 8;

at each layer, it assumes forward-only propagation; and it uses a

differential equation to integrate over multiple scattering planes.

Additionally, Osnabrugge et al. [2017] show measurements of the

functionC(∆a ,∆b , θ ) for a tissue phantom of thickness L = 258 µm,

made of silica microspheres immersed in agarose gel. By combining

Mie theory [Frisvad et al. 2007] with the dispersion and sizing

properties of the materials used for fabrication, the authors estimate

for the phantom an anistropy parameterд = 0.98 andmean free path

MFP = 296 µm. In Fig. 12(b,c), we replicate from their paper (using

data provided by the authors) themeasured correlationC(∆a ,∆b , θ ),
as well as the analytical prediction using the model of Eq. (50). The

correlation is displayed as a function of (∆b , θ ) alone, with ∆a

selected according to the Dirac delta relationship in Eq. (50).

To evaluate the accuracy of our near-field covariance rendering

algorithm, we use it to estimate the function C(∆a ,∆b , θ ) for the
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same tissue phantom. We refer to App. A.7 for details on how to sim-

ulate this with our framework. We perform simulations using both

the exact Mie-theory phase function describing the phantom, as

well as a von Mises-Fisher phase function with the same д = 0.98 av-

erage cosine. Comparing with the measured data and the analytical

approximation in Fig. 12(b,c), we make the following observations:

Both our renderings and the analytical approximation produce a

correlation function with a dominant lobe that has the same orien-

tation as the one in the measured data. However, our simulations

match the dimensions of this lobe more closely than the analytical

model. Overall, our simulations reproduce the important qualitative

features of the measuremenets, confirming the accuracy of our algo-

rithms. Differences between our renderings and the measurements

are likely due to inaccurate modeling of the true material properties

of the phantom—as seen in Fig. 12(d-e), replacing the exact reported

phase function with an approximation results in a better match to

the measurements—and due to aberrations in the imaging optics.

We also note that Osnabrugge et al. [2017] measured correlation

with an interferometric setup, which typically produces very noisy

estimates of small signals such as weak speckle correlations.

9.1 Focusing through turbid media
Having shown that our rendering algorithms can accurately repro-

duce the tilt-shift memory effect, we now use them to analyze this

effect in the context of a specific biomedical imaging application: we

simulate focusing through turbid media with adaptive optics. This

involves using, e.g., a spatial light modulator to produce a coherent

wavefront whose shape is specific to the tissue sample being imaged.

Finding the exact shape of this wavefront is challenging and usually

requires having external information or a guiding star [Horstmeyer

et al. 2015]. Once we know the wavefront needed to focus at a spe-

cific point inside the volume, an important practical consideration

is whether we can use this information to refocus at other points in
a neighborhood around the original point [Judkewitz et al. 2014].

The memory effect property of scattered fields provides a way

to achieve this refocusing task. The way this works is that we first

use a guiding star to measure the scattered field that is created

due to emission from a single point ix ,y at the a plane (Fig. 12(a)).

Measuring this fieldu(vx ,y ) at all points vx ,y at theb plane provides
us with exactly the wavefront shape we need to focus at point ix ,y .
Then, the memory effect property suggests that a shifted wave

u(vx ,y + ∆), (51)

can be used to roughly focus at ix ,y + ∆. Osnabrugge et al. [2017]
improve upon this idea by recommending to refocus using a wave

that is both shifted and tilted; that is, a wave of the form

u(vx ,y + ∆)eikθ (∆)vx ,y , (52)

where θ (∆) is selected according to Eq. (50). For example, the

strength of the yellow spot at the fourth column of Fig. 13 is slightly

higher than at the second column. Using Eq. (50), Osnabrugge et

al. [2017] also predict the range of shifts for which this refocusing

is effective; that is, they estimate the scanning range for which

sufficient memory effect correlations exists.

We use our rendering algorithms to evaluate these refocusing

techniques, as shown in Fig. 13. The top part of the figure compares
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Fig. 13. Adaptive optics focusing. Illuminating a scattering slab with the
complex wave visualized at the first and third columns of the top row leads
to a sharp focused point at the other edge of the random media slab. Due
to the ME, a small shift of the same pattern can focus at a nearby point,
but focusing power degrades with displacement (note the weak power at
the third row). Applying both shift and tilt to the input pattern (rightmost
columns) leads to a stronger power at the same displacement (compare the
power for the non-zero displacements at rows 2 and 3). Lower panel: Using
our approach to evaluate the expected power one can achieve with the shit
only and shift+tilt approaches, as a function of displacement (that is, the
average power of the yellow dot at the three top rows). The scan range
predicted by our accurate simulator is wider than the analytical prediction.
Note that configurations (b) and (c) have the same transport mean free
path and should be equivalent according to the simplified analytic model
of Eq. (50), yet they are very different according to an accurateMC simulator.

refocusing simulations using only shifting (Eq. (51)) versus using

both shifting and tilting (Eq. (52)). We observe that using the tilted-

shifted wave improves refocusing, making the yellow focused spots

of the second column in Fig. 13 stronger than the fourth one, and

thus validating the observation of Osnabrugge et al. [2017]. We refer

to App. A.8 for more details regarding this simulation.

We can additionally use our rendering algorithms to more ac-

curately evaluate the scanning range over which this refocusing

technique remains effective. In the lower panel of Fig. 13 we plot

the expected power we can measure at focus points for different

displacements ∆, comparing the prediction by our model with the

analytical prediction of Osnabrugge et al. [2017]. We do simulations

for a material with a Henyey-Greenstein phase function of д = 0.98

and mean free path of MFP = 75 µm at wavelength λ = 0.5 µm.

We test two material thicknesses L = 75 µm and L = 225 µm, cor-

responding to optical depths of OD = 1 and OD = 3. We observe

that the Monte Carlo simulations predict that the effective scanning
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range is larger than the range predicted by the analytical model

of Eq. (50). We additionally observe that, even though the analyt-

ical model depends only on the transport mean free path ℓtr, our

simulations suggest that the scanning range varies significantly

for materials with the same transport mean free path, but different

phase function and actual mean free path (compare Fig. 13(b,c)).

These results demonstrate that our rendering algorithms can be

used to evaluate how the performance of existing imaging tech-

niques depend on exact material parameters, in ways that cannot

be predicted using existing analytical models.

10 CONCLUSION
We presented computationally-efficient algorithms for simulating

physically-accurate speckle fields and statistics under focused cam-

era and light sources. The key element of our algorithms is the use

of closed-form expression for transforming far-field correlations

to the near-field ones, for individual Monte Carlo paths. We also

derive efficient importance sampling strategies for path generation.

The closed-form expressions are made possible through the use

of von Mises-Fisher functions to approximate all spherical functions

appearing in the path integral expression of near-field speckle co-

variance. We make four such approximations: (i) We use apodization

in the aperture plane to convert the aperture mask into a spheri-

cal von Mises-Fisher function. (ii) We assume the exponential at-

tenuation is constant through all aperture directions. (iii) We ap-

proximate the phase function as a mixture of von Mises-Fisher

functions. (iv) We approximate the analytical convolution of von

Mises-Fisher functions, which is not in general a von Mises-Fisher

function, as such a function. We have shown through simulations

that: (i) Even though apodization cannot express an exactly binary

aperture, if one matches its variance to the desired NA, a similar

depth of field and similar speckle statistics are produced. (ii) The

assumption of constant directional attenuation introduces negligible

bias. (iii) Real-word and common parametric phase functions can

be well-approximated using a small number of von Mises-Fisher

functions. (iv) The convolution of von Mises-Fisher functions can

be closely approximated as a von Mises-Fisher function. For narrow

phase functions emitting little energy in the backward direction, nu-

merical problems arise in back directions. As a result, our approach

mostly applies for transmission mode imaging, and further research

is required for reflection mode imaging.

As an application of our algorithms, we evaluated different per-

formance metrics for memory-effect-based adaptive optics scan-

ning, and showed that in practice performance can be better than

what predicted by previous approximate analytical models. We hope

that our algorithms will open the door for better understanding of

speckle statistics under near-field imaging conditions, in turn al-

lowing researchers to push the boundary of what is possible using

speckle-based techniques in deep tissue imaging.
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A APPENDIX

A.1 The speckle mean
Most of this paper has focused on computing the speckle covariance.

To fully describe the statistics we also need the speckle mean. This

is simpler and can be derived in close-form without any MC process.

For the far field, [Bar et al. 2019] show the mean reduces to

mî
v̂ = A2sinc(A(îx − v̂x ))sinc(A(îy − v̂y ))e−

1

2
OD

(53)

where the incoming beam is assumed to have a square input area

of width A. Note that this mean is zero except when the viewing

direction is really close to the illumination direction, in which case

what we see is mostly ballistic light that did not scatter. The power

of this light decays exponentially with the optical depth of the slab.

For the near field assuming the illumination and viewing points

are focused at the same plane and have the same aperture width

defined by γa (see Eq. (24)), and denote by τ = vx ,y − ix ,y , then the

mean reduces to

mi
v =

π

γa
e
−
k2 |τ |2
4γa e−

1

2
OD

(54)

Here again the ballistic light is attenuated exponentially as a func-

tion of the optical depth. The beam has a Gaussian profile corre-

sponding to the intersection of a Gaussian beam focused at i and a

Gaussian beam focused at v.

A.2 Nyquist analysis of far field sampling rate
Here we derive the sampling rate required for the far-field covari-

ance, in order to allow for an aliasing-free evaluation of the near-

field one, leading to Eq. (12) from the main paper:

N =
2W sin(Θmax )

λ
, (55)

whereW is the width of the target area, and Θmax the maximal

angle accepted by the aperture of the imaging objective.

As we review in Sec. 3.1, a path ending at the scatterer in position

oB adds to the covariance a throughput of the form

f (®xs )υ(î1→o1)υ(oB→v̂1)υ(î2→o1)υ(oB→v̂2) (56)

Let’s fix î1, î2, v̂2, and consider only the terms depending on the

viewing direction v̂1. Assuming amplitude variations of υ(oB→v̂1)
are slower compared to phase variations, a path ending at oB adds

to the covariance a phase:

c(v̂1) ∝ eik (v̂
1 ·oB ). (57)

For viewing directions within a small angle from the ẑ axis, v̂ ≈

[vx , vy , 1]. Thus c(v̂xy ) is essentially a sinusoid,

c(v̂1xy ) ∝ eikoz · eik (v̂
1

xy ·oxy ), (58)

where v̂1xy , oxy denote the x − y coordinates of the corresponding

vectors. Given the target width |oxy | < 0.5W , and thus the max-

imal frequency is bounded by 1/λ |oxy | < W/(2λ). Using Nyquist’s

theorem, the maximal frequency defines the minimal resolution at

which the far-field covariance should be sampled:

∆F F ≤
λ

W
(59)

The samples should cover the angular range of the objective, which

is 2Θmax . As a result the number of samples equals the ratio of the

range by ∆F F , leading to Eq. (55).

A.3 Approximated Convolution
To convolve two von Mises-Fisher functions we want to compute

an integral of the form

h(ω̂) =

∫
ψ̂ ∈S2

e(µ ·ψ̂) · eγs (ω̂ ·ψ̂)
(60)

Using Eq. (29), this results in

h(ω̂) = 4π
sinh(

√
µ + γsω̂)√

µ + γsω̂
(61)

= 2π
ef (ω̂) + e−f (ω̂)

f (ω̂)
(62)

with

f (ω̂) =

√
µ + γsω̂. (63)

The convolution of von Mises-Fisher functions is not a von Mises-

Fisher function. To facilitate subsequent processing by our algo-

rithm, we approximate it as a von Mises-Fisher by taking a Taylor

expansion of the exponent around a direction of interest ω̂o . We

discuss the selection of ω̂o below.

To fit the convolution output as a von Mises-Fisher function, we

seek to approximate f (ω̂) as

f (ω̂) ≈ ˜f (ω̂), with ˜f (ω̂) ≡ µ̃ · ω̂ (64)

For ease of notation the following derivation uses ω̂o = [0, 0, 1].

However, the formula we arrive at is rotation invariant. We start by

expanding f as

f (ω̂) =

√√√
3∑
j=1

µ2j + 2γs

3∑
j=1

µ jω̂ j + γ
2

s

3∑
j=1

ω̂2

j (65)

=

√√√
3∑
j=1

µ2j + 2γs

3∑
j=1

µ jω̂ j + γ
2

s (66)

where j sums over the 3 coordinates of the vector. For ω̂ ≈ ω̂o we

can express

ω̂3 ≈ 1 −
ω̂2

1
+ ω̂2

2

2

(67)

Substituting Eq. (67) in Eq. (66) we get

f (ω̂) =

√√√
3∑
j=1

µ2j + 2γs

2∑
j=1

µ jω̂ j + 2γsµ3

(
1 −

ω̂2

1
+ ω̂2

2

2

)
+ γ 2s

(68)

Let us denote

βo =

√√√
2∑
j=1

µ2j + (µ3 + γs )
2 =

√
µ + γsω̂o (69)
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With this notation we can express f as

f (ω̂) =

√√√√
β2o

©«1 + 2γs

β2o

©«
2∑
j=1

µ jω̂ j − µ
3

∑
2

j=1 ω̂
2

j

2

ª®¬ª®¬ (70)

= ±βo

√√√√
1 +

2γs

β2o

©«
2∑
j=1

µ jω̂ j − µ
3

∑
2

j=1 ω̂
2

j

2

ª®¬ (71)

Where in Eq. (71) we took βo out of the root of Eq. (70), while noting
that the root can have multiple signs.

Assuming that the righter terms of the square root in Eq. (71) are

sufficiently smaller than 1, we use the Taylor approximation and

express f (ω̂) ≈ ˜f (ω̂), with

˜f (ω̂) = ±
©«βo + γs

βo

©«
2∑
j=1

µ jω̂ j − µ
3

∑
2

j=1 ω̂
2

j

2

ª®¬ª®¬ (72)

We now substitute Eq. (67) back in Eq. (72) to get

˜f (ω̂) = ±
©«βo + γs

βo

©«
3∑
j=1

µ jω̂ j − µ
3

ª®¬ª®¬ (73)

= ±

(
βo +

γs
βo

(µ · (ω̂ − ω̂o ))

)
(74)

With the approximation of Eq. (74) we return to Eq. (62) and

express the convolution as

2π
e
˜f (ω̂) + e−

˜f (ω̂)

f (ω̂o )
= 2π

e
˜f (ω̂) + e−

˜f (ω̂)

βo
(75)

Assume w.l.o.g. that Re(βo ) > 0 (otherwise we use the other root),

then |e
˜f (ω̂) | ≫ |e−

˜f (ω̂) | and we neglect one of the terms in the

summation, to approximate the convolution as

2π

βo
e
˜f (ω̂). (76)

The approximated convolution is not exact over the full sphere,

but mostly around the direction ω̂o . Thus it is important to select

it properly. The first strategy is to use ω̂o as the direction at the

center of the viewing aperture, since these directions are more

influential on the final covariance (to compute the single scattering

path contribution, convolution output is integrated over the viewing

aperture). A slightly better strategy is to select the direction where

the magnitude of the convolution output is highest- this can shift a

bit from the center of the aperture depending on the location of the

first scattering point (see e.g. Fig. 6). For that we select ω̂o as a unit

norm vector in the direction

Re

(
γs
βo

µ

)
(77)

where βo is defined using the direction at the center of the aperture.

Below we compare the approximated and exact convolutions,

showing good agreement. There are some misfits at areas at the

tail of the convolution, receiving very little energy. This leads to

problems when simulating back-scattering, as discussed below.

𝒊𝟐𝒊𝟏𝒗𝟏 𝒗𝟐

illumination objective

viewing objective



𝒊𝟐𝒊𝟏𝒗𝟏 𝒗𝟐

illumination & viewing objective



(a) Transmissive (b) Reflective

Fig. 14. Setup for correlation measurements, illustrating transmissive and
reflective geometries. We evaluate correlations for illumination and viewing
pairs defined by ∆ = i2x ,y − i1x ,y = v2x ,y − v1x ,y and τ = v1x ,y − i1x ,y =
v2x ,y − i2x ,y .

A.4 Backscattering simulations
Most analysis of the main paper considered transmission imaging

geometry. In this section we attempt to understand the challenges

involved in the simulation of back-scattering (reflective geometry)

speckles using our approach.

Defining reflective geometry. To understand the two geometries

consider Fig. 14. In the transmission mode, the illuminating beams

arise at the back of the sample and the viewing sensor is located at

the front side. The viewing lens is set such that in an aberration-free

environment it would focus at the illuminators plane, as in Fig. 14(a).

This configuration simulates fluorescent sources located deep inside

tissue layers and a camera viewing them through the random media.

In the reflection mode, one illuminates and views from the same

side of the medium. Again we demonstrate below the case where

both the illumination beam and the viewing beam are focused at

the same plane, sufficiently deep inside the target, as in Fig. 14(b).

To evaluate forward (transmissive) configurations, the illumina-

tion and viewing aperture masks of Eq. (24) are both at the north

hemisphere m(ω̂) = exp(γa (ẑ · ω̂)) (with ẑ = [0, 0, 1]). To evaluate

back-scattering (reflective) configurations, the illumination aper-

ture is at the north hemisphere and viewing aperture is taken at the

opposite, south hemisphere m(ω̂) = exp(γa (−ẑ · ω̂)).

Visualizing convolutions in reflective vs. transmissive geometry.
In Fig. 15 we start by testing the validity of the von Mises-Fisher

approximation to the convolution. The first columns show the ampli-

tude function ãi(î|o1), the scattering amplitude function s , an exact

evaluation of the convolution ϒ(ω̂ |i, o1), and the von Mises-Fisher

fit. We have selected the illumination aperture to emit light in the

north part of the hemisphere, i.e. the optical axis of the illumination

is µ̂a = ẑ = [0, 0, 1]. As most energy of ãi(î|o1) is in the north part,

most of the energy of the convolution output ϒ(ω̂ |i, o1) is in the

north part as well. However, the exact spread depends on the width

of the scattering amplitude function. When s is wide and scatters

light in most directions, the convolution output spreads light also

toward the back side of the hemisphere. If s is narrow and forward

scattering, the convolution output is diminishing in the back part of

the hemisphere. Recall that the reason we need a von Mises-Fisher

approximation to the convolution, is that to compute the single

scattering component Eq. (18). For this we need to evaluate the inte-

gral of the convolution output multiplied with the viewing aperture
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Fig. 15. Analyzing convolution: We consider forward vs. backward scattering, and wide vs. narrow phase functions. (a) The illumination aperture function
ãi, (b) scattering function s , (c) exact convolution ãi ∗ s , (d) von Mises-Fisher approximation to convolution, (e) viewing aperture function ãv, (f) product of the
viewing aperture by the exact convolution ãv · (ãi ∗ s), (g) product of the viewing aperture by the approximated convolution, (h) truncated von Mises-Fisher
aperture to the desired half of the hemisphere, (i) product of the truncated viewing aperture by the exact convolution, and (j) product of the truncated viewing
aperture by the approximated convolution. For backward scattering and a narrow phase function, these reveal some convolution approximation errors at the
back of the hemisphere, as well as non-physical double forward-backward lobes resulting from the fact that a von Mises-Fisher aperture allows some light
leakage at the reversed hemisphere.
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Fig. 16. Analyzing back-scattering simulation problems. We analyze the sensitivity of the back-scattering simulation to the width of the phase function.
All simulations considered a von Mises-Fisher aperture of width σa = 0.25 leading to γa = 16. The top two rows simulate the single scattering component of
the correlation, and the lower two rows illustrate the full one, including multiple scattering paths. In the first row, we considered von Mises-Fisher scattering
functions of four different widths. As the width of the scattering function is lower than the aperture width γs ≥ 16, various numerical problems arise. On the
other hand the second row visualizes four Henyey-Greenstein phase functions of a corresponding average cosine. The Henyey-Greenstein phase function
emits a bit more light in backward directions relaxing the numerical problems associated with the von Mises-Fisher ones. Lower two rows: sampling multiple
scattering paths is harder, since with narrow forward-scattering phase functions, most paths have a very low probability to return into the camera. In all cases
we compared correlations provided by our near-field approach with those provided by the slower far-field approach. We simulated far-field covariances using
a full von Mises-Fisher aperture, and using a von Mises-Fisher aperture cropped only to the proper physical hemisphere.
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function ãv(i|o1). To this end, Fig. 15(f,g) visualizes the product of

the viewing aperture by the exact and approximated convolutions,

which can better reveal approximation errors. We distinguish be-

tween two cases: (i) transmission mode, viewing the scene through

the forward (north) part of the hemisphere; and (ii) reflection mode,

viewing the scene through the back (south) part of the hemisphere.

When the viewing aperture is located in the north part of the hemi-

sphere the exact and approximated convolutions are equivalent.

However, when the viewing aperture is located at the back part of

the hemisphere where the convolution output is weak, it essentially

magnifies the tail of the convolution, and the difference between the

exact and approximated convolutions is more dominant. In practice,

when the scattering is wide angle and sufficient energy is present in

the back part of ϒ(ω̂ |i, o1), multiplying by a back viewing aperture

is accurate even under the von Mises-Fisher approximation, but for

narrow forward scattering the approximation does not hold.

Another approximation made by our model is considering a von

Mises-Fisher apodization on the aperture. This apodization collects

most energy from one side of the hemisphere but it has some weak

non-zero gathering also in the reverted part of the hemisphere. A

physical aperture (with or without apodization) gathers zero energy

from the back hemisphere. In Fig. 15(i,j) we test the influence of the

weak back lobe of the vonMises-Fisher aperture. As before, for trans-

mission mode when both viewing aperture and convolution output

are located at the same part of the hemisphere, the approximation

error is negligible. For reflectance mode the viewing aperture has a

weak back lobe at the side of the hemisphere where the convolution

output is strongest, thus the back lobe may not be so negligible.

As in the previous case, we see that the von Mises-Fisher aperture

and the binary aperture lead to similar result for wide scattering

function and very different results for narrow scattering function.

Comparing phase functions in back-scattering mode. To better

understand the effect of the width of the phase function on back-

scattering evaluation, Fig. 16 presents back-scattering simulations

with a few different phase function widths γs . We separate the cor-

relation into a single scattering component, namely the correlation

obtained with paths of length B = 1 and the full correlation, includ-

ing multiple scattering, as the problems for the single scattering

and multiple scattering paths are different. We note that the sin-

gle scattering component is wrong as γs approaches γa . We note,

however, that real world phase functions are not pure von Mises-

Fisher functions. For example, we selected Henyey Greenstein with

an anisotropy parameter (average cosine) matching the von Mises-

Fisher functions in the second row of Fig. 16. The Henyey Greenstein

are fitted with more than one von Mises-Fisher mixture component,

usually even the very forward scattering Henyey Greenstein phase

functions include an isotropic von Mises-Fisher mixture compo-

nent with γs = 0 (see Fig. 5). When simulating back-scattering the

mixture components with low γs values contributes most of the en-

ergy, and convolutions with these wider functions can be computed

accurately. As a result the single scattering correlation of Henyey

Greenstein phase functions is reasonable even with high д values

(see second row of Fig. 16).

When examining the full correlation, including multiple scatter-

ing, we spot another problem: the simulation is very noisy. This is

because most light paths emerging from a forward emission source

with a narrow phase function, have a very low probability to rotate

back and get into the camera. This is a general challenge even for

pure intensity simulation of back-scattering as fundamentally very

little energy is returning into a back camera.

One main motivation for this paper is tissue imaging. As tissue

is known to have narrow forward scattering profiles, our approach

will mostly be useful for transmission imaging. But in other speckle

imaging applications, such as looking around the corners, the re-

flective model can be useful, as wall paint is known to have wide

angle scattering.

Conditions for back-scattering simulation. We present below one

analytic argument as to why von Mises-Fisher phase functions with

γs > γa challenge back-scattering simulations. We consider here

the effect of the von Mises-Fisher aperture apodization. We show

that for γs < γa the intensity lobe in the inverted hemisphere is not

larger than the desired lobe, but that this problem quickly pops out

as γs > γa .
Assuming for ease of notation that the optical axis is aligned with

the ẑ = [0, 0, 1] axis, our goal is to show that in a back-scattering

configuration where the illumination aperture is located in the

north hemisphere and the viewing one in the back hemisphere, the

(desired) single scattering contribution at the south pole direction is

larger than the undesired lobe at the north pole direction, namely

|ãv(−ẑ) · (ãi ∗ s)(−ẑ)| > |ãv(ẑ) · (ãi ∗ s)(ẑ)| (78)

As the illumination is centered around the ẑ = [0, 0, 1] axis, µ̂a =
ẑ. For simplicity we consider a first path node o1 on the optical axis,

so that o1− i is a point of the form [0, 0, ζ ]. Under these assumptions

we can reduce the illumination aperture function to

ãi(ω̂ |o1) = e(γa+ikζ )ω̂z
(79)

The viewing aperture has the reversed direction µ̂a = −ẑ. When

focusing at the same 3D point,

ãv(ω̂ |o1) = e(−γa−ikζ )ω̂z
(80)

We now want to express the illumination aperture after blurring

with the scattering function. Using Eq. (62) we note that given the

above notation, f (ω̂) reduces to

f (ω̂) = γa + ikζ + γsω̂z (81)

In particular the convolution values in the north and south pole

directions are

(ãi ∗ s)(ẑ) ∝ eγa+ikζ +γs , (ãi ∗ s)(−ẑ) ∝ eγa+ikζ −γs (82)

If we now multiply this by the viewing aperture,

ãv(ẑ) · (ãi ∗ s)(ẑ) ∝ e(−γa−ikζ )·1eγa+ikζ +γs = eγs (83)

ãv(−ẑ) · (ãi ∗ s)(−ẑ) ∝ e(−γa−ikζ )·(−1)eγa+ikζ −γs = e2γa−γs+2ikζ

To get the absolute value of |ãv(ẑ) · (ãi ∗ s)(ẑ)|, |ãv(ẑ) · (ãi ∗ s)(−ẑ)|,
we keep only the real part of the exponent. Thus we get that

|ãv(ẑ) · (ãi ∗ s)(−ẑ)| > |ãv(ẑ) · (ãi ∗ s)(ẑ)| (84)

if

e2γa−γs > eγs , (85)
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namely

γa > γs . (86)

A.5 Gaussian Beam
Our goal here is to derive a closed-form expression for the through-

put energy at each possible path starting at point o, namely express

e(o|i) as a 2D Gaussian in oxy (conditioned on oz ) to prove Eq. (34).
We assume w.l.o.g. that the optical axis of the system is in the

direction ω̂o = [0, 0, 1]. We use the paraxial approximation as in

Eq. (67) and express the aperture convolved with the scattering

function as a quadratic function of the direction, parameterized in a

2D plane as a function of ω̂1, ω̂2 using Eq. (72):

ϒ(o, i, ω̂) ∝ e
βo+

2γs
βo

(∑
2

j=1 µ j ω̂ j−µ3

∑
2

j=1 ω̂
2

j
2

)
(87)

with µ
1
= ik(ox − ix ), µ2 = ik(oy − iy ) and µ

3
= µ̂a + ik(oz − iz ).

Assuming that we are interested in points o in the paraxial range

so that the first two coordinates of µ are smaller than the 3rd one,

we approximate the term 1/βo in Eq. (72) as 1/(µ
3
+γs ), thus

˜βo = γs + µ3 = γs + γa + ik(oz − iz ) (88)

With this approximation the term become quadratic in oxy and

matches the exponent of a Gaussian.

To compute e(o|i) we need to integrate the absolute value of the

throughput ϒ(ω̂, o, i) over all scattering directions ω̂. To get the

absolute value we need to extract the real parts of the exponent

terms in Eq. (87), multiplying the numerator and denominator by

βo
∗
and rearranging terms we arrive at

|ϒ(ω̂, o, i)| ∝ ea((ox−ix )
2+(oy−iy )2)+

∑
2

j=1 bj ω̂ j+c
∑

2

j=1 ω̂
2

j+d
(89)

with

a =
−k2(γs + γa )

| ˜βo |2
(90)

b1 =
−γsk

2(ox − ix )(oz − iz )

| ˜βo |2
(91)

b2 =
−γsk

2(oy − iy )(oz − iz )

| ˜βo |2
(92)

c =
−γs (k

2(oz − iz )2 + γa (γs + γa ))

2| ˜βo |2
(93)

d = γa + γs (94)

Integrating Eq. (89) over ω̂1, ω̂2 leaves us with a Gaussian in oxy ,
which is the desired Eq. (34).

A.6 Importance sampling of path starting point
Below we provide the exact implementation details for importance

sampling the first point and direction on a path o1, ω̂1, described in

Sec. 6.

Sampling the first scattering point. Using Eq. (34), |e(o|i1)|2 and
|e(o|i2)|2 are Gaussian beams. We start by sampling a beam index

i1 or i2 from a uniform distribution and then sample from the corre-

sponding Gaussian beam.

We decompose the distribution p(o) ∝ |e(o|i)|2 as

p(o) = p(oxy |oz )p(oz ). (95)

Using this decomposition, we sample oz from a distribution p(oz )
and sample oxy from the 2D Gaussian p(oxy |oz ). The z position is

sampled from

p(oz ) =
∬

oxy
p(oxy ; oz ) ∝ |β(z)|2 (96)

Sampling the first direction. We note that ϒ(ω̂ |o1, i) is the convo-
lution of the aperture functions ãi(î|o)with the scattering amplitude

function. Thus it can be expressed as a von Mises-Fisher mixture

ϒ(ω̂ |o, i) =
∑
m

πme(µm ·ω̂)
(97)

where µm describes the result of convolving each mixture compo-

nent of the scattering amplitude function with the aperture. Hence

we express the power as a mixture of |M |2 components

|ϒ(ω̂ |o, i)|2 =
∑

m1,m2

πm1
πm2

αm1,m2

αm1,m2
e(µm1

,m
2

·ω̂)
(98)

where µm1,m2

= µm1

+ µm2

∗
, and the scales αm1,m2

are set such

that ∫
ω̂ ∈S2

αm1,m2
e(µm1

,m
2

·ω̂)
= 1 (99)

As we want to sample according to the absolute value we effectively

sample from∑
m1,m2

πm1
πm2

|αm1,m2
|
|αm1,m2

|e(µr ,m1
,m

2

·ω̂)
≥

��ϒ(ω̂ |o, i1)
��2

(100)

where µr ,m1,m2

is the real component of µm1,m2

. To sample from

this we first select a mixture index from the discrete distribution:

π̃m1,m2
=

1

|αm
1
,m

2
|
πm1

πm2∑
m1

∑
m2

1

|αm
1
,m

2
|
πm1

πm2

(101)

and then sample from the von Mises-Fisher distribution given by

µr ,m1,m2

.

A.7 Change of focal plane
Themodel of [Osnabrugge et al. 2017]was derived assuming the field

is measured at the exit plane (b plane in Fig. 12(a)) of the scattering

medium, or by a camera focused there. While in principle our MC

framework can render this configuration, the importance sampling

is more efficient when the viewing lens is focused at the same plane

as the illumination source. To this end we prove below a simple

relation between speckle correlations at different focal planes, and

therefore we could simulate Fig. 12 using a camera focused at the a
plane.

For that let z1, z2 denote two focal depths of interest. Let uz,∆,θ
denote a field focused at plane z after some tilt and shift:

uz,∆,θ (x) = uz (x − ∆)eik (θ ·(x−∆)) (102)

Let us denote by P(z1, z2) the convolution kernel expressing a refo-

cusing of the complex field uz1,∆,θ at plane z2. We want to express

uz1,∆,θ ∗ P(z1 − z2) using a tilt and shift at the other plane.
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Claim 1.

uz1,∆,θ ∗ P(z1, z2) = uz2,∆−θ (z1−z2),θ · eikc (103)

Proof. Let us denote by F the Fourier transform and Uz1 =
F (uz1 ). The Fourier transform of the tilted shifted field uz1,∆,θ is

then related toUz1 as

F (uz1,∆,θ ) = Uz1 (ω − θ )eik (∆ ·(ω−θ ))
(104)

The Fourier transform of the defocus blur is simply a quadratic

phase

F (P(z1 − z2)) = eik
(z
1
−z

2
)/2ω2

(105)

A short calculation shows that

F (uz1,∆,θ ∗ P(z1 − z2)) = (106)

Uz1 (ω − θ )eik (∆ ·(ω−θ )) · eik
z
1
−z

2

2
ω2

= (107)

Uz1 (ω − θ )eik ((∆−(z1−z2))·(ω−θ )) · eik (
z
1
−z

2

2
(ω−θ )2e−ik

z
1
−z

2

2
θ 2

(108)

We note that Eq. (108) is essentially the Fourier transform of a

field focused at z2, just with a different shift, namely we got

uz2,∆−θ (z1−z2),θ · eikc .
Using the above claim we can now easily relate the tilt-shift

correlation at one plane to a tilt-shift correlation of a camera focused

at a different plane. All we need to do is to change the shift.

Claim 2.

C(z1,∆, θ ) = C(z2,∆ − (z1 − z2)θ , θ ) (109)

Proof. We recall that C(z1,∆, θ ) is defined in Eq. (49) as the

expected inner product of two fields shifted and tilted at the opposite

directions

C(z1,∆, θ ) = E

[∑
τ

u1z1,−1/2∆,−1/2θ (τ ) · u
2

z1,1/2∆,1/2θ
(τ )

∗

]
(110)

Due to Parseval’s theorem, the inner product in the primal and

Fourier domain are equivalent:∑
τ

u1z1,−1/2∆,−1/2θ (τ ) · u
2

z1,1/2∆,1/2θ
(τ )

∗
= (111)∑

ω
F

(
u1z1,−1/2∆,−1/2θ

)
(ω) · F

(
u2z1,1/2∆,1/2θ

)
(ω)∗ (112)

Using Eq. (106), in the Fourier domain the only effect of changing

the focus is a multiplication with a quadratic phase eik (z
1
−z

2
)/2ω2

,

which is not changing the inner product, thus∑
ω

F

(
u1

z1 ,−1/2∆,−1/2θ

)
(ω) · F

(
u2

z1 ,1/2∆,1/2θ

)
(ω)∗ = (113)∑

ω
F

(
u1

z1 ,−1/2∆,−1/2θ
∗ P (z1 − z2)

)
(ω) · F

(
u2

z1 ,1/2∆,1/2θ
∗ P (z1 − z2)

)
(ω)∗

(114)

As a result we can express:

E

[∑
τ

u1

z1 ,−1/2∆,−1/2θ
(τ ) · u2

z1 ,1/2∆,1/2θ
(τ )

∗

]
= (115)

E

[∑
τ

(
u1

z1 ,−1/2∆,−1/2θ
(τ ) ∗ P (z1 − z2)

)
·

(
u2

z1 ,1/2∆,1/2θ
(τ ) ∗ P (z1 − z2)

)∗]
=

(116)

E

[∑
τ

u1

z2 ,−1/2(∆−(z1−z2)θ )),−1/2θ
(τ ) · u2

z2 ,1/2(∆−(z1−z2)θ )),1/2θ
(τ )

∗

]
(117)

A.8 Simulating adaptive optics scanning range
Focusing through turbid media requires using adaptive optics to

emit a coherent wavefront whose shape is specific to the tissue

sample being imaged. Finding the exact shape of this wavefront is

challenging and usually relies on external information or a guiding

star [Horstmeyer et al. 2015]. Once such a wavefront is found an

important practical question is whether one can at least use it to

focus at some area around the point rather than only at this one

point [Judkewitz et al. 2014]. This is one of the more important

applications of the memory effect, stating that if a wave u(vx ,y )
focusing at point ix ,y was found, then a shifted wave

u(vx ,y + ∆) (118)

will roughly focus at ix ,y +∆, as illustrated at the top part of Fig. 13.
[Osnabrugge et al. 2017] have improved on this idea stating that

shifting and tilting the wave, namely considering a wave of the form

u(vx ,y + ∆)eikθ (∆)vx ,y , (119)

with θ (∆) selected according to the impulse relation in Eq. (50) will

focus even better. For example, the strength of the yellow spot at the

fourth column of Fig. 13 is slightly higher than in the second column.

Using a simple manipulation of Eq. (50) they can also predict the

range of shifts for which this focusing can be effective, namely the

scanning range at which sufficient memory effect correlations exist.

With our simulator we can better evaluate this scanning range.

Given a wave u(vx ,y ) leading to perfect focus at point ix ,y we

attempt to evaluate the expected energy one can expect to measure

at ix ,y +∆ using the shifted only field or the tilted-shifted one from

Eqs. (118) and (119).

To this end we render transmission matrices T vj
ij , which are basi-

cally fieldsuv
j

ij for a set of 80×80 viewpoints and 80×80 illumination

points. As described in Sec. 7, the rendering of each 80× 80× 80× 80

array shares the same set of paths for all illumination and viewpoint

combinations, to make sure that consistent fields are generated.

Given a transmission matrix, we find a complex field uo (v) such
that u(i) = T · uo (v) is an impulse at the central viewing pixel. For

displacements within the ME range, T · uo (v + ∆) should be an

impulse at displacement ∆. To test this, we denote

ushif t (v) = T · uo (v + ∆), ut il t−shif t (v) = T · uo (v + ∆)eikθ (∆)v

(120)
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and evaluate

fshif t (∆) = E
[
|ushif t (∆)|

2
]

(121)

ft il t−shif t (∆) = E
[
|ut il t−shif t (∆)|

2
]

(122)

where the expectation is taken over multiple T matrices sampled

from the same material parameters.

In Fig. 13 we plot the focused scan predicted by our model, namely

the value of Eq. (121), compared with the analytical prediction of

[Osnabrugge et al. 2017].
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