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Abstract

When we take a picture through transparent glass the image weobtain is often a linear superposition

of two images: the image of the scene beyond the glass plus theimage of the scene reflected by the

glass. Decomposing the single input image into two images isa massively ill-posed problem: in the

absence of additional knowledge about the scene being viewed there are an infinite number of valid

decompositions. In this paper we focus on an easier problem:user assisted separation in which the user

interactively labels a small number of gradients as belonging to one of the layers.

Even given labels on part of the gradients, the problem is still ill-posed and additional prior knowledge

is needed. Following recent results on the statistics of natural images we use a sparsity prior over derivative

filters. This sparsity prior is optimized using the terativereweighted least squares (IRLS) approach.

Our results show that using a prior derived from the statistics of natural images gives a far superior

performance compared to a Gaussian prior and it enables goodseparations from a modest number of

labeled gradients.

I. INTRODUCTION

Figure 1(a) shows the room in which Leonardo’s Mona Lisa is displayed at the Louvre. In order to

protect the painting, the museum displays it behind a transparent glass. While this enables viewing of the

painting, it poses a problem for the many tourists who want tophotograph the painting (see figure 1(b)).

Figure 1(c) shows a typical picture taken by a tourist1 : the wall across from the painting is reflected by

the glass and the picture captures this reflection superimposed on the Mona-Lisa image.

1All three images are taken fromwww.studiolo.org/Mona/MONA09.htm
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(a) (b) (c) (d)

Fig. 1. (a),(b) The scene near the Mona Lisa in the Louvre. Thepainting is housed behind glass to protect it from the many
tourists. (c) A photograph taken by a tourist at the Louvre. The photograph captures the painting as well as the reflectionof the
wall across the room. (d) The user assisted reflection problem. We assume the user has manually marked gradients as belonging
to the painting layer or the reflection layer and wish to recover the two layers.

A similar problem occurs in various similar settings: photographing window dressings, jewels and

archaeological items protected by glass. Professional photographers attempt to solve this problem by

using a polarizing lens. By rotating the polarizing lens appropriately, one can reduce (but not eliminate)

the reflection. As suggested in [2], [15] the separation can be improved by capturing two images with

two different rotations of the polarizing lens and taking anoptimal linear combination of the two images.

Raskar et al [1] use a similar approach to handle reflections given a flash and no-flash image pair. An

alternative solution is to usemultiple input images [18], [4], [13], [14] in which the reflection andthe

non-reflected images have different motions. By analyzing the movie sequence, the two layers can be

recovered. In [20], a similar approach is applied to stereo pairs.

While the approaches based on polarizing lenses or stereo images may be useful for professional pho-

tographers, they seem less appealing for a consumer-level application. Viewing the image in figure 1(c),

it seems that the information for the separation is present in a single image. Can we use computer vision

to separate the reflections from a single image ?

Mathematically, the problem is massively ill-posed. The input imageI(x, y) is a linear combination

of two unknown images the image behind the glass,I1, and the image reflected by the glass,I2. These

two images sum linearly [2], [15] as:

I(x, y) = I1(x, y) + I2(x, y) (1)

Obviously, there are an infinite number of solutions to equation 1: the number of unknowns is twice the

number of equations. Additional assumptions are needed. Onthe related problem of separating shading

and reflectance, impressive results have been obtained using a single image [19], [3]. These approaches

DRAFT



3

make use of the fact that edges due to shading and edges due to reflectance have different statistics (e.g.

shading edges tend to be monochromatic). Unfortunately, inthe case of reflections, the two layers have

the same statistics, so the approaches used for shading and reflectance are not directly applicable. In [6],

a method was presented that used a prior on images to separatereflections with no user intervention.

While impressive results were shown on simple images, the technique used a complicated optimization

that often failed to converge on complex images.

In this paper, we present a technique that works on arbitrarily complex images but we simplify the

problem by allowing user assistance. We allow the user tomanuallymark certain edges (or areas) in the

image as belonging to one of the two layers. Figure 1(d) showsthe Mona Lisa image with manually

marked gradients: blue gradients are marked as belonging tothe Mona Lisa layer and yellow are marked

as belonging to the reflection layer. The user can either label individual gradients or draw a polygon to

indicate that all gradients inside the polygon belong to oneof the layers. This kind of user assistance

seems quite natural in the application we are considering: imagine a Photoshop plugin that a tourist can

use to post-process the images taken with reflections. As long as the user needs only to mark a small

number of edges, this seems a small price to pay.

Even when the user marks a small number of edges, the problem is still ill-posed. Consider an image

with a million pixels and assume the user marks a hundred edges. Each marked edge gives an additional

constraint for the problem in equation 1. However, with these additional equations, the total number of

equations is a only million and a hundred, far less than the two million unknowns. Unless the user marks

every single edge in the image, additional prior knowledge is needed.

Following recent studies on the statistics of natural scenes [10], [16], we use a prior on images that is

based on the sparsity of derivative filters. This sparsity prior is optimized using the iterative reweighted

least squares (IRLS) approach, which poses the problem as a sequence of standard least squares problems,

each least squares problem reweighted by the previous step solution. We show that by using a prior derived

from the statistics of natural scenes, one can obtain excellent separations using a relatively small number

of labeled gradients.

II. STATISTICS OF NATURAL IMAGES

A remarkably robust property of natural images that has received much attention lately is the fact that

when derivative filters are applied to natural images, the filter outputs tend to be sparse [10], [16], [23].

Figure 2(a-d) illustrates this fact: the histogram of the vertical derivative filter is peaked at zero and fall

off much faster than a Gaussian. These distributions are often called “sparse” and there are a number of
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Fig. 2. (a),(c) input images. (b),(d) log-histogram ofdy derivative. A robust property of natural images is that the log-histograms
of derivative filters lie below the straight line connectingthe minimal and maximal values. We refer to such distributions as
sparse (e) Log probabilities for distributions of the forme−xα

. The Gaussian distribution is not sparse (it is always abovethe
straight line) and distributions for whichα < 1 are sparse. The Laplacian distribution is exactly at the border between sparse
and non sparse distributions. (f) Matching a mixture model to a filter output histogram. The mixture parameters were selected
to maximize the likelihood of the histogram. A mixture of Laplacians is sparse even though the individual components arenot.

ways to formulate this property mathematically , (e.g. in terms of their tails or their kurtosis).

We will follow Mallat [8] and Simoncelli [17] in characterizing these distributions in terms of the shape

of their logarithm. As shown in figure 2(b,d), when we look at the logarithm of the histogram the curve is

always below the straight line connecting the maximum and minimum values. This should be contrasted

with the Gaussian distribution (that is always above the straight line) or the Laplacian distribution (that

is simply a straight line in the log domain) (figure 2(e)). In [6] it was shown that the fact that the log

distribution is always below the straight line, is crucial for obtaining transparency decompositions from

a single image. Distributions that are above the straight line will prefer to split an edge of unit contrast
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into two edges (one in each layer) with half the contrast, while distributions below the line will prefer

decompositions in which the edge only appears in one of the layers but not in the other. We will refer

to distributions that have this property in the log domain asbeing sparse.

Wainwright and Simoncelli [21] have suggested describing the histograms of natural images with

an infinite Gaussian mixture model. By adding many Gaussians, each with a mean at zero but with

different variances one can obtain sparse distributions. This can also be achieved by mixing only two

distributions: a narrow distribution centered on zero and abroad distribution centered on zero will give

a sparse distribution. Figure 2(f) shows a mixture of two Laplacian distributions:

Pr(x) =
π1

2s1
e−|x|/s1 +

π2

2s2
e−|x|/s2 (2)

Although the Laplacian distributions are not sparse based on our definition, the mixture is. For the

experiments in this paper, the mixture parameters were learned from real images. That is, the parameters

were selected to maximize the likelihood of the histogram ofderivative filters, as in Figure 2(f). The

learned values we found ares1 = 0.01, s2 = 0.05, π1 = 0.4, π2 = 0.6.

Given the histograms over derivative filters, we follow [22]in using it to define a distribution over

images by assuming that derivative filters are independent over space and orientation so that our prior

over images is given by:

Pr(I) ≈
∏

i,k

Pr(fi,k · I) (3)

where f · I denotes the inner product between a linear filterf and an imageI, and fi,k is the k’th

derivative filter centered on pixeli. The derivative filters set we use includes two orientations(horizontal

and vertical) and two degrees (i.e. first derivative filters as well as second derivative). Note that the

independence assumption used here is definitely wrong- there are more filter outputs then pixels, so they

certainly can not be independent. Nevertheless, we follow previous research in adapting this simplifying

assumption.

We approximate the filters likelihood using the Laplacian mixture model (eq 2), thus

log Pr(fi,k · I) ≈ −ρ(fi,k · I)

ρ(x) = log(
π1

2s1
e−|x|/s1 +

π2

2s2
e−|x|/s2) (4)

Equation 3 gives the probability of a single layer. We follow[6] in defining the probability of a

decompositionI1, I2 as the product of the probabilities of each layer (i.e. assuming the two layers are
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independent).

III. O PTIMIZATION

We are now ready to state the problem formally. We are given aninput imageI and two sets of image

locationsS1, S2 so that gradients in locationS1 belong to layer1 and gradients in locationS2 belong to

layer 2. We wish to find two layersI1, I2 such that:

1) the two layers sum to form the input imageI = I1 + I2

2) the gradients ofI1 at all locations inS1 agree with the gradients of the input imageI and similarly

the gradients ofI2 at all locations inS2 agree with the gradients ofI.

Subject to these two constraints we wish to maximize the probability of the layersPr(I1, I2) =

Pr(I1) Pr(I2) given by equation 3. This is equivalent to minimizing

J(I1, I2) =
∑

i,k

ρ(fi,k · I1) + ρ(fi,k · I2) (5)

subject to the two constraints given above: thatI1 +I2 = I and that the two layers agree with the labeled

gradients.

This is a minimization with linear constraints. We can turn this into an unconstrained minimization by

substituting inI2 = I − I1 so that we wish to find a single layerI1 that minimizes:

J2(I1) =
∑

i,k

ρ(fi,k · I1) + ρ(fi,k · (I − I1)) (6)

+λ
∑

i∈S1,k

ρ(fi,k · I1 − fi,k · I)

+λ
∑

i∈S2,k

ρ(fi,k · I1)

where the last two terms enforce the agreement with the labeled gradients.

We can rewrite the costJ2 as:

J3(v) =
∑

j

ρj (Aj→v − bj) (7)

wherev is a vectorized version of the imageI1, the matrixA has rows that correspond to the derivative

filters and the vectorb either has input image derivatives or zero.

A. Iterative reweighted least squares optimization

In [5] we have optimized the cost of eq 7 using the expectation-maximization algorithm, where each

maximization step involved solving a linear programming problem. Here, we take a simpler approach,
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which involves solving least square problems only. A simpleand useful approach for optimizing the costs

discussed in this paper is the iterative reweighted least squares technique (see for example [9]). The

IRLS approach minimizes costs of the form

∑

j

ρ (Aj→x− bj) (8)

by posing the problem as a sequence of standard least squaresproblems, each least squares problem

reweighted by the previous step solution. The minimizationof each least squares problem is equivalent

to solving a sparse set of linear equations.

The IRLS algorithm proceeds as follows:

• Initialization: setψ0
j = 1

• repeat till convergence:

– Let Ā =
∑

j A
T
j→ψ

t−1

j Aj→ and b̄ =
∑

j A
T
j→ψ

t−1

j bj . xt is the solution forĀx = b̄.

– Setuj = Aj→x
t − bj and

ψt
j(uj) =

1

uj

dρ(uj)

du

In this paper we are concerned with costs of the formρ(uj) = log(
∑

l
πl

2sl
e−|uj |/sl). The reweighting

term for this cost reduces to

ψ(uj) =
1

max (|uj |, ǫ)

∑

l
πl

2s2

l

e−|uj |/sl

∑

l
πl

2sl
e−|uj |/sl

where1/|uj | was replaced with1/max (|uj |, ǫ) to avoid division by zero.

In our implementation, we used a fixed number of10 IRLS iterations (rather than tasting for con-

vergence). When iterative reweighted least squares is applied on a convex cost such as the L1 cost, it

converges only to the global optimum. When it is applied to the sparse prior of eq 4 one cannot guarantee

that the global optimum will be achieved. All results in thispaper use the initializationψj = 1 which

means the layers are initialized with the solution of the Gaussian prior as in figure 6. We found that

other initialization procedures gave markedly worse results. Section IV-A.1 compares the IRLS approach

to the optimization of [5].

IV. RESULTS

A. Qualitative results

The implementation of the decomposition algorithm described in this paper is available at the authors

webpage.
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Input Output layer 1 Output layer 2

Fig. 3. Decomposition Results

www.cs.huji.ac.il/˜ alevin/reflections.zip

We show qualitative results of our algorithm on five images ofscenes with reflections. While our

algorithm is based on the assumption of linear camera response, four of the images were downloaded

from the web and we had no control over the camera parameters or the compression methods used.

Yet, the algorithm was applied on the images directly, without any gamma correction. (A standard 2.2

gamma correction did not have a significant effect on the result). For color images we ran the algorithm

separately on each of the R,G and B channels.

Figures 3,8 and 4 show the input images with labeled gradients, and our results. In Figure 4 we

compare the Laplacian prior and the sparse prior, versus thenumber of labeled points. The Laplacian

prior gives good results although some ghosting effects canstill be seen (i.e. there are remainders of

layer 2 in the reconstructed layer1). These ghosting effects are fixed by the sparse prior. Good results

can be obtained with a Laplacian prior when more labeled gradients are provided. Figures 5, 6 compares
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Laplacian prior Laplacian prior

Sparse prior Sparse prior

Laplacian prior Laplacian prior

Sparse prior Sparse prior

Fig. 4. Comparing Laplacian prior with a sparse prior. When afew gradients are labeled (left) the sparse prior gives noticeably
better results. When more gradients are labeled (right), the Laplacian prior results are similar to the sparse prior.
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Input Laplacian prior Gaussian prior

Fig. 5. A very simple image with two labeled points. The Laplacian prior gives the correct decomposition for this image while
the Gaussian prior prefers to split edges into two low contrast edges.

(a) (b)

Fig. 6. Gaussian prior results using the labels in the secondcolumn of fig4.

the Laplacian prior with a Gaussian prior (i.e. minimizing‖Av − b‖ under theL2 norm ) using both

simple and real images. The non sparse nature of the Gaussiandistribution is highly noticeable, causing

the decomposition to split edges into two low contrast edges, rather then putting the entire contrast in

one of the layers.

As mentioned above, our technique is based on the assumptionof linear camera responses, and we

are not modelling correctly the non linear aspects of imageswith limited dynamic range. This problem

can be observed in second example of figure 4. The images in this figure were separated automatically

in [18] using multiple images. An advantage of using multiple images is that they can deal better with

saturated regions (e.g. the cheekbone of the man in the imagethat is superimposed on the white shirt

of the woman) since the saturated region location varies along the sequence. However, working with a

single image, we cannot recover structure in saturated regions.

In Fig 7 the technique was applied for removing shading artifacts. For this problem, the same algorithm

was applied in the log-domain (since the color observed in animage can be modeled as the reflectance

times the light, the problem is log-linear in the log-domain).

1) Comparison of Optimization methods:When iterative reweighted least squares is applied on a

convex cost such as theL1 cost, it converges only to the global optimum. When it is applied to the

sparse prior of eq 4 one cannot guarantee that the global optimum will be achieved. However, we found
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Input image Labels Decomposition

Fig. 7. Removing shading artifacts

Input Linear programing IRLS

Fig. 8. Decomposition results with iterated linear programing [5] and with the iterative reweighted least squares approach
described in this paper.

that in practice, for our problem the iterative reweighted least squares can find solutions whose quality

is visually similar to the those of [5]. For example, figure 8 presents the results of the two algorithms on
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the Mona Lisa image. The results are visually similar. Sincethe formulation of the transparency problem

is invariant to additive constant, we constrained both solutions to have the same mean in each color

channel. However, the IRLS algorithm is significantly faster. The algorithm of [5] runs on the260× 320

Mona Lisa image in about 2.5 hours on a 2.4GH CPU (using the LOQO linear programing solver which

is the fastest solver we have been able to find). On the other hand, the IRLS algorithm process the

same image within only 12 minutes, when each of the least square problems is solved exactly using the

matlab’s “backslash” operator. Moreover, the subject of least squares optimization has attracted much

more research than linear programing and is understood muchbetter. Thus, for the least square problem

there exists a variety of fast numerical solvers (e.g. multigrid solvers [11]) which could replace the exact

matlab solver and farther speed the performances.

B. Quantitative evaluation of likelihood models

In this section we investigate the selection of the filters and likelihood models used in our decomposition

cost function (equation 6).

To perform a quantitative evaluation of the different models, we selected at random250 pairs of40×40

patches from natural images. The superpositions of those pairs served us as test images, for which the

ground truth decompositions are known. For each patch in thepair, Canny edge detector was applied and

sets of 15 or 50 points over the edges were selected at random as “marked gradients”. Figures 9,12,15

illustrates some of the test images. Given the marked gradients, we were trying to decompose each

test image using several likelihood models. We measured thesum of absolute differences between the

recovered layers and the ground truth layers. In figures 10,13,16 we present bar charts. The bar chart for

each experiment are plotted in two groups, corresponding the number of labeled gradients used in each

experiment (15 or 50).

We have performed 3 experiments, the first one was designed totest the prior choice, and the other

two experiments test the filters choice.

We start by investigating the importance of the sparse likelihood model. We were using1st&2nd order

derivative filters, and compared the sparse likelihood thatwas fitted to the distribution of edges in natural

images with the simpler Laplacian distribution prior and Gaussian priors. The bar charts of the 3 models

are plotted in figure 10. As can be seen, the highly non sparse nature of the Gaussian prior result in a

very bad decomposition. The Laplacian prior behaves much better then the Gaussian prior, but the actual

sparse prior that was fitted to the distribution of filters in real images outperforms the Laplacian prior.

Figure 9 presents visual results for one of the test images. Aqualitative comparison of the different priors
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Input Ground
truth

Sparse
prior

L1 prior L2 prior

Fig. 9. Visual comparison of prior models using1st
&2

nd order derivative filters.

1 2
0
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Sparse prior
Laplacian prior
Gaussian prior

Fig. 10. Quantitative evaluation of different prior models. Bars are plotted in two groups, representing the number of labeled
gradients in each experiment (15 or 50).

was also presented in figures 4-6.

In addition to fitting the prior to the real distribution in natural images, there is also a question which
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FOE DOOG Random 0-mean Random

Fig. 11. Evaluated filters sets

Input Ground
truth

1
st

&2
nd

derivatives
FOE DOOG Random

0-mean
Random

Fig. 12. Visual comparison of different filters using a sparse prior.

filters to use.

In our second comparison, we have experiment with several ofthe popular sets of low level filters

using a sparse prior (the sparsity prior was obtained by fitting a mixture of Laplacians to the1st&2nd

order derivatives histograms and the same prior was used forall filters). In particular we chose to test

the filters sets listed below. The filters sets are also presented visually in figure 11.

1) High frequency first order derivatives evaluated by the [1-1] filter, in the horizontal and vertical

directions, plus high frequency second order derivatives.Second order derivatives were evaluated
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Fig. 13. Quantitative evaluation of different filter sets. Bars are plotted in two groups, representing the number of labeled
gradients in each experiment (15 or 50).
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Fig. 14. Log-histogram of filter sets responses in natural images. While classical filter sets follow a sparse distribution, the
distribution of non-zero mean filters is almost uniform.

by convolving each pair of first order filters. The obtained filers are:

[
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2) The set of3 × 3 filters learned by Roth and Black using the field of experts (FOE) model [12].

3) The set of difference of oriented Gaussians (DOOG) filtersused in [7]. We used 6 orientations, 2

phases and one scale. (Using filters in coarser scales significantly increases complexity, since as

the filters have wider support, the matrix that we need to invert is less sparse).

4) A set of zero mean white noise3× 3 filters. Those were selected by randomizing9 numbers from

a uniform distribution on the[−1, 1] interval, and subtracting the mean.

5) A set of white noise3 × 3 filters without zero mean.

The bar charts resulting from the usage of the above filter sets are presented in figure 13. Figure 12

visualizes the results for one of the test images. It seems that the best decomposition results were obtained

by the FOE filters of [12], and the set of second and first order derivatives performed almost the same.

Random zero-mean filters also provided relatively good results. The DOOG filters of [7] didn’t perform

that well, despite the fact that there were designed to be particularly sparse filters. It seems that the
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Fig. 15. Visual test of filters support
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Fig. 16. Quantitative evaluation of the influence of the filter support. Bars are plotted in two groups, representing the number
of labeled gradients in each experiment (15 or 50).

problem with those filters is that the filters support is too wide and the filter response in each location

averages responses of different edges (in many cases, it averages responses of edges from different layers).
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Also those filters may suffer most from the independence assumption. The worst results were obtained

with non zero mean filters, suggesting that the sparse prior is only suitable when the filter output is

sparse. To see this, we have evaluated the responses of the different filter sets on real images. Figure 14

plots the log histogram of filter responses. While the first 4 filter sets follow a sparse distribution, filters

with arbitrary mean don’t tend to have sparse responses on images, and the evaluated histogram is almost

uniform.

In our third experiment, we test the influence of the filters support size, and the amount of high

order details it captures. In this experiment we have compared results of 3 filters groups: (1) Both first

and second order derivatives, (2) First order derivatives alone, and (3) Second order derivatives alone.

Numerical results are presented in the bars of figure 16, and visual results at figure 15. It can be observed

that the results of using both first and second order derivatives are better then each group alone. This is

because the width of the support of a filter performs an important task. First order derivatives alone are

not strong enough since they cannot capture wide edges. For example, figure 17 presents a 1D profile of

an edge, and 2 possible decompositions of this edge. First a desirable decomposition, which places the

entire edge in one layer. The second decomposition places the transition between pixels 3&4 in one layer

and the second half of the transition (occurring between pixels 4&5) on the second layer. A cost which

penalize the first derivative alone cannot distinguish the 2decompositions, since it will pay for both

decompositionsρ(I2 − I3) + ρ(I3 − I4). However if the second order derivative is calculated, the second

order derivative for the first decomposition fires only on onelayer, and in the second decomposition, it

fires on the two layers. Therefore, if the cost favor sparse second order derivatives, it will favor the first

decomposition, as desired. However, the fact that a wide support is important, does not mean that the

high order details are neglectable, as demonstrated by the fact that using second order derivatives alone

provides bad results.

A second aspect that should be taken into consideration whenselecting the filters set is computational

complexity. The computation time reduces when the matrix A of equations 7 contains more zero entries.

V. D ISCUSSION

Separating reflections from a single image is a massively ill-posed problem. In this paper we have

focused on slightly easier problem in which the user marks a small number of gradients as belonging to

one of the layers. This is still an ill-posed problem and we have used a prior derived from the statistics

of natural scenes: that derivative filters have sparse distributions. We showed how to efficiently find the

most probable decompositions under this prior by solving a set of linear systems. Our results show the
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Fig. 17. Decomposing 1D edge. (a) input edge. (b-c) possibledecompositions.

clear advantage of a technique that is based on natural scenestatistics rather than simply assuming a

Gaussian distribution.

We have performed a quantitative comparison of different likelihood models and different filters sets. It

will be interesting to develop algorithms that will learn the optimal set of filters and the optimal likelihood

model from real images data. One approach for that is the unsupervised approach that was explored

by [12]. The unsupervised approach tries to construct a likelihood function that will model the distribution

of natural images. Then, assuming that the two layers are independent, an optimal decomposition is a

decomposition that will maximize the sum of log-likelihoods of the 2 layers. A second approach is the

supervised approach. That will translate to finding a likelihood function that when combined with user

marks, will minimize the error of decomposed images.

In the current approach, the amount of user interaction required to achieve good results is still quite

large. We hope that the usage of better statistical models will enable us to reduce the amount of user

efforts.
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