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Abstract

When we take a picture through transparent glass the imagebteén is often a linear superposition
of two images: the image of the scene beyond the glass plusnage of the scene reflected by the
glass. Decomposing the single input image into two images massively ill-posed problem: in the
absence of additional knowledge about the scene being di¢lnere are an infinite humber of valid
decompositions. In this paper we focus on an easier prohleer: assisted separation in which the user
interactively labels a small number of gradients as belogpgd one of the layers.

Even given labels on part of the gradients, the problemlisisfposed and additional prior knowledge
is needed. Following recent results on the statistics afrahimages we use a sparsity prior over derivative
filters. This sparsity prior is optimized using the teratieweighted least squares (IRLS) approach.
Our results show that using a prior derived from the staBstf natural images gives a far superior
performance compared to a Gaussian prior and it enables ggparations from a modest number of

labeled gradients.

. INTRODUCTION

Figure 1(a) shows the room in which Leonardo’s Mona Lisa &pldiyed at the Louvre. In order to
protect the painting, the museum displays it behind a tramesy glass. While this enables viewing of the
painting, it poses a problem for the many tourists who warghotograph the painting (see figure 1(b)).
Figure 1(c) shows a typical picture taken by a todristhe wall across from the painting is reflected by

the glass and the picture captures this reflection supesatgpon the Mona-Lisa image.

1All three images are taken fromww.studiolo.org/Mona/MONAQ9.htm
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Fig. 1. (a),(b) The scene near the Mona Lisa in the Louvre. Jdiating is housed behind glass to protect it from the many
tourists. (c) A photograph taken by a tourist at the Louviiee Photograph captures the painting as well as the refleofitime
wall across the room. (d) The user assisted reflection pmobige assume the user has manually marked gradients as inglong
to the painting layer or the reflection layer and wish to recahe two layers.

A similar problem occurs in various similar settings: phgtphing window dressings, jewels and
archaeological items protected by glass. Professionaloghaphers attempt to solve this problem by
using a polarizing lens. By rotating the polarizing lens rappiately, one can reduce (but not eliminate)
the reflection. As suggested in [2], [15] the separation carnnfproved by capturing two images with
two different rotations of the polarizing lens and takingagtimal linear combination of the two images.
Raskar et al [1] use a similar approach to handle reflectidvenga flash and no-flash image pair. An
alternative solution is to usmultiple input images [18], [4], [13], [14] in which the reflection arlde
non-reflected images have different motions. By analyzimg rhovie sequence, the two layers can be
recovered. In [20], a similar approach is applied to steraiosp

While the approaches based on polarizing lenses or steragesnmay be useful for professional pho-
tographers, they seem less appealing for a consumer-Ippétation. Viewing the image in figure 1(c),
it seems that the information for the separation is preseatsingle image. Can we use computer vision
to separate the reflections from a single image ?

Mathematically, the problem is massively ill-posed. Thpunimagel(x,y) is a linear combination
of two unknown images the image behind the gldssand the image reflected by the glags, These

two images sum linearly [2], [15] as:

I(ﬂf,y) :Il(x,y)—l—fg(x,y) (1)

Obviously, there are an infinite number of solutions to eigumat: the number of unknowns is twice the
number of equations. Additional assumptions are neededh®melated problem of separating shading

and reflectance, impressive results have been obtained assingle image [19], [3]. These approaches
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make use of the fact that edges due to shading and edges defletdance have different statistics (e.g.
shading edges tend to be monochromatic). Unfortunatelthencase of reflections, the two layers have
the same statistics, so the approaches used for shadingf#extance are not directly applicable. In [6],
a method was presented that used a prior on images to sepeitatgions with no user intervention.
While impressive results were shown on simple images, tblenigue used a complicated optimization
that often failed to converge on complex images.

In this paper, we present a technique that works on arbjtradmplex images but we simplify the
problem by allowing user assistance. We allow the usenamuallymark certain edges (or areas) in the
image as belonging to one of the two layers. Figure 1(d) shim@sMona Lisa image with manually
marked gradients: blue gradients are marked as belongitiget®ona Lisa layer and yellow are marked
as belonging to the reflection layer. The user can eithei iablevidual gradients or draw a polygon to
indicate that all gradients inside the polygon belong to ohéhe layers. This kind of user assistance
seems quite natural in the application we are consideringgine a Photoshop plugin that a tourist can
use to post-process the images taken with reflections. Ag &nthe user needs only to mark a small
number of edges, this seems a small price to pay.

Even when the user marks a small number of edges, the problstilliill-posed. Consider an image
with a million pixels and assume the user marks a hundredsedtgch marked edge gives an additional
constraint for the problem in equation 1. However, with thaslditional equations, the total number of
equations is a only million and a hundred, far less than treerhillion unknowns. Unless the user marks
every single edge in the image, additional prior knowledgeeeded.

Following recent studies on the statistics of natural sse¢h@], [16], we use a prior on images that is
based on the sparsity of derivative filters. This sparsitgrpgs optimized using the iterative reweighted
least squares (IRLS) approach, which poses the problemeguaisce of standard least squares problems,
each least squares problem reweighted by the previousaigps. We show that by using a prior derived
from the statistics of natural scenes, one can obtain egedleparations using a relatively small number

of labeled gradients.

[I. STATISTICS OF NATURAL IMAGES

A remarkably robust property of natural images that hasivedemuch attention lately is the fact that
when derivative filters are applied to natural images, therfibutputs tend to be sparse [10], [16], [23].
Figure 2(a-d) illustrates this fact: the histogram of thetigal derivative filter is peaked at zero and fall

off much faster than a Gaussian. These distributions aenafélled “sparse” and there are a number of
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Fig. 2. (a),(c) input images. (b),(d) log-histogramdgfderivative. A robust property of natural images is that g histograms
of derivative filters lie below the straight line connectitite minimal and maximal values. We refer to such distrimgias
sparse (e) Log probabilities for distributions of the foem®” . The Gaussian distribution is not sparse (it is always alibge
straight line) and distributions for whictt < 1 are sparse. The Laplacian distribution is exactly at thelérobetween sparse
and non sparse distributions. (f) Matching a mixture modea ffilter output histogram. The mixture parameters werectede
to maximize the likelihood of the histogram. A mixture of llagians is sparse even though the individual componentaatre
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ways to formulate this property mathematically , (e.g. i of their tails or their kurtosis).

We will follow Mallat [8] and Simoncelli [17] in characterizg these distributions in terms of the shape
of their logarithm. As shown in figure 2(b,d), when we lookla¢ togarithm of the histogram the curve is
always below the straight line connecting the maximum amgimum values. This should be contrasted
with the Gaussian distribution (that is always above thaigiit line) or the Laplacian distribution (that
is simply a straight line in the log domain) (figure 2(e)). B] [t was shown that the fact that the log
distribution is always below the straight line, is cruciat bbtaining transparency decompositions from

a single image. Distributions that are above the straigig Will prefer to split an edge of unit contrast
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into two edges (one in each layer) with half the contrast,levtistributions below the line will prefer
decompositions in which the edge only appears in one of therdabut not in the other. We will refer
to distributions that have this property in the log domairbasg sparse.

Wainwright and Simoncelli [21] have suggested describing histograms of natural images with
an infinite Gaussian mixture model. By adding many Gaussiaash with a mean at zero but with
different variances one can obtain sparse distributiofmss €an also be achieved by mixing only two
distributions: a narrow distribution centered on zero arat@ad distribution centered on zero will give

a sparse distribution. Figure 2(f) shows a mixture of two laajan distributions:

™
T —fal/s

281 282

2

Pr(z) = e~lal/s )

Although the Laplacian distributions are not sparse basedwur definition, the mixture is. For the
experiments in this paper, the mixture parameters weradelirom real images. That is, the parameters
were selected to maximize the likelihood of the histograndefivative filters, as in Figure 2(f). The
learned values we found arg = 0.01, s9 = 0.05,7; = 0.4, ™ = 0.6.

Given the histograms over derivative filters, we follow [28]using it to define a distribution over
images by assuming that derivative filters are independeert space and orientation so that our prior
over images is given by:

Pr(I) ~ [[Pr(fir- 1) 3)

ik
where f - I denotes the inner product between a linear filfeand an imagel/, and f; ;, is the k'th
derivative filter centered on pixel The derivative filters set we use includes two orientatigrsizontal
and vertical) and two degrees (i.e. first derivative filtessveell as second derivative). Note that the
independence assumption used here is definitely wronge #rer more filter outputs then pixels, so they
certainly can not be independent. Nevertheless, we follmvipus research in adapting this simplifying
assumption.

We approximate the filters likelihood using the Laplaciarxtonie model (eq 2), thus

log Pr(fix - 1) = —p(fik - I)

2

™ —|x|/S1 —|T|/ 82
p(;c)zlog(2_1€ lzl/s1 4 e~ 1@l/52) (4)

51 282

Equation 3 gives the probability of a single layer. We foll§@] in defining the probability of a

decomposition/!, 2 as the product of the probabilities of each layer (i.e. assgrthe two layers are
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independent).

II. OPTIMIZATION

We are now ready to state the problem formally. We are giveimut imagel and two sets of image
locations Sy, So so that gradients in locatiofi; belong to layerl and gradients in locatio§, belong to
layer 2. We wish to find two layerd, I> such that:

1) the two layers sum to form the input imade= I; + I

2) the gradients of; at all locations inS; agree with the gradients of the input imafyand similarly

the gradients of; at all locations inS, agree with the gradients df.

Subject to these two constraints we wish to maximize the aisiity of the layersPr(I,1%) =
Pr(I') Pr(I?) given by equation 3. This is equivalent to minimizing

J(I,I2) =Y p(fir - In) + p(fik - Io) (5)
ik
subject to the two constraints given above: that I = I and that the two layers agree with the labeled
gradients.
This is a minimization with linear constraints. We can tunistinto an unconstrained minimization by

substituting inl, = I — I; so that we wish to find a single layét that minimizes:
Jo(I) = D p(fir-T) + p(fi - (I = I1)) (6)
ik

A DY plfin- T — fig- 1)

1€851,k

+A > plfix- 1)

1€852,k
where the last two terms enforce the agreement with theddbgladients.

We can rewrite the cosl, as:

Z pj (Aj—v — b)) (7)

wherewv is a vectorized version of the imade, the matrixA has rows that correspond to the derivative

filters and the vectob either has input image derivatives or zero.

A. lterative reweighted least squares optimization

In [5] we have optimized the cost of eq 7 using the expectatiaximization algorithm, where each

maximization step involved solving a linear programminglgem. Here, we take a simpler approach,
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which involves solving least square problems only. A simgoid useful approach for optimizing the costs
discussed in this paper is the iterative reweighted leasareg technique (see for example [9]). The

IRLS approach minimizes costs of the form
Y o (A —by) 8)
J

by posing the problem as a sequence of standard least squatdsems, each least squares problem
reweighted by the previous step solution. The minimizatbreach least squares problem is equivalent
to solving a sparse set of linear equations.
The IRLS algorithm proceeds as follows:
« Initialization: sety? =1
« repeat till convergence:
— Let A=Y, AT ¢'~'A; andb=3"; AT 4!"'b;. 2" is the solution forAz = b.

- Setuj = Aj_>.1‘t — bj and
1 dp(u;)

u; du

P (uy)

In this paper we are concerned with costs of the faifa;) = log(3"; g=¢~*!/*"). The reweighting

term for this cost reduces to
1 Zl 27%26—|uj|/51

max (|u;],€) > QN—;@*WJ‘VS:

Y(uj) =

wherel/|u;| was replaced with / max (|u;|, €) to avoid division by zero.

In our implementation, we used a fixed number16f IRLS iterations (rather than tasting for con-
vergence). When iterative reweighted least squares iSembph a convex cost such as the L1 cost, it
converges only to the global optimum. When it is applied ®gparse prior of eq 4 one cannot guarantee
that the global optimum will be achieved. All results in tlmaper use the initializatio; = 1 which
means the layers are initialized with the solution of the €&@an prior as in figure 6. We found that
other initialization procedures gave markedly worse tssidection IV-A.1 compares the IRLS approach

to the optimization of [5].

IV. RESULTS

A. Qualitative results

The implementation of the decomposition algorithm desatim this paper is available at the authors

webpage.
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Input Output layer 1 Output layer 2

Fig. 3. Decomposition Results

www.cs.huji.ac.il/” alevin/reflections.zip

We show qualitative results of our algorithm on five imagessoénes with reflections. While our
algorithm is based on the assumption of linear camera ragpdour of the images were downloaded
from the web and we had no control over the camera parameteifseocompression methods used.
Yet, the algorithm was applied on the images directly, withany gamma correction. (A standard 2.2
gamma correction did not have a significant effect on thelt)estor color images we ran the algorithm
separately on each of the R,G and B channels.

Figures 3,8 and 4 show the input images with labeled grasliearid our results. In Figure 4 we
compare the Laplacian prior and the sparse prior, versusitingber of labeled points. The Laplacian
prior gives good results although some ghosting effectsstidinbe seen (i.e. there are remainders of
layer 2 in the reconstructed laydr). These ghosting effects are fixed by the sparse prior. Gesdlts

can be obtained with a Laplacian prior when more labeledigndsi are provided. Figures 5, 6 compares
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Laplacian prior Laplacian prior

Sparse prior Sparse prior

Laplacian prior Laplacian prior

Sparse prior Sparse prior

Fig. 4. Comparing Laplacian prior with a sparse prior. Whdeva gradients are labeled (left) the sparse prior givesceatily
better results. When more gradients are labeled (right) Ltiplacian prior results are similar to the sparse prior.
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Input Laplacian prior Gaussian prior

Fig. 5. A very simple image with two labeled points. The Lada prior gives the correct decomposition for this imagelevh
the Gaussian prior prefers to split edges into two low cetteglges.

(@)

Fig. 6. Gaussian prior results using the labels in the secohgmn of fig4.

the Laplacian prior with a Gaussian prior (i.e. minimizifigv — b|| under theL, norm ) using both
simple and real images. The non sparse nature of the Gauwdistabution is highly noticeable, causing
the decomposition to split edges into two low contrast edgatber then putting the entire contrast in
one of the layers.

As mentioned above, our technique is based on the assunwyftitimear camera responses, and we
are not modelling correctly the non linear aspects of imagi#s limited dynamic range. This problem
can be observed in second example of figure 4. The imagessrfighire were separated automatically
in [18] using multiple images. An advantage of using mudtiphages is that they can deal better with
saturated regions (e.g. the cheekbone of the man in the iti@gds superimposed on the white shirt
of the woman) since the saturated region location variesgatbe sequence. However, working with a
single image, we cannot recover structure in saturateemsgi

In Fig 7 the technique was applied for removing shadingats. For this problem, the same algorithm
was applied in the log-domain (since the color observed im@ge can be modeled as the reflectance
times the light, the problem is log-linear in the log-domain

1) Comparison of Optimization method$Vhen iterative reweighted least squares is applied on a
convex cost such as the; cost, it converges only to the global optimum. When it is &gplo the

sparse prior of eq 4 one cannot guarantee that the globahoptiwill be achieved. However, we found
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Input image Labels Decomposition

Fig. 7. Removing shading artifacts

Input Linear programing IRLS

Fig. 8. Decomposition results with iterated linear prodragn[5] and with the iterative reweighted least squares @
described in this paper.

that in practice, for our problem the iterative reweightedst squares can find solutions whose quality

is visually similar to the those of [5]. For example, figure i@gents the results of the two algorithms on
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the Mona Lisa image. The results are visually similar. Sitheeformulation of the transparency problem
is invariant to additive constant, we constrained both tsmhg to have the same mean in each color
channel. However, the IRLS algorithm is significantly fasiéhe algorithm of [5] runs on th260 x 320
Mona Lisa image in about 2.5 hours on a 2.4GH CPU (using the QQiear programing solver which
is the fastest solver we have been able to find). On the othed,the IRLS algorithm process the
same image within only 12 minutes, when each of the leastrequablems is solved exactly using the
matlab’s “backslash” operator. Moreover, the subject afstesquares optimization has attracted much
more research than linear programing and is understood tmeitér. Thus, for the least square problem
there exists a variety of fast numerical solvers (e.g. muttisolvers [11]) which could replace the exact

matlab solver and farther speed the performances.

B. Quantitative evaluation of likelihood models

In this section we investigate the selection of the filterd lgkelihood models used in our decomposition
cost function (equation 6).

To perform a quantitative evaluation of the different madete selected at rando280 pairs of40 x 40
patches from natural images. The superpositions of thoss parved us as test images, for which the
ground truth decompositions are known. For each patch ip#ire Canny edge detector was applied and
sets of 15 or 50 points over the edges were selected at randdmaaked gradients”. Figures 9,12,15
illustrates some of the test images. Given the marked gntdieve were trying to decompose each
test image using several likelihood models. We measuredcuhne of absolute differences between the
recovered layers and the ground truth layers. In figures3106lwe present bar charts. The bar chart for
each experiment are plotted in two groups, correspondiaghttimber of labeled gradients used in each
experiment (15 or 50).

We have performed 3 experiments, the first one was designesktdhe prior choice, and the other
two experiments test the filters choice.

We start by investigating the importance of the sparseilikeld model. We were usintf*&2"¢ order
derivative filters, and compared the sparse likelihood West fitted to the distribution of edges in natural
images with the simpler Laplacian distribution prior anduGsian priors. The bar charts of the 3 models
are plotted in figure 10. As can be seen, the highly non spaseeof the Gaussian prior result in a
very bad decomposition. The Laplacian prior behaves mutterien the Gaussian prior, but the actual
sparse prior that was fitted to the distribution of filters &alrimages outperforms the Laplacian prior.

Figure 9 presents visual results for one of the test imagegiditative comparison of the different priors
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Fig. 9. Visual comparison of prior models usitéf &2"™¢ order derivative filters.

Il Sparse prior
[JLaplacian prior
Il Gaussian prior

1 2

Fig. 10. Quantitative evaluation of different prior modeBars are plotted in two groups, representing the numbeatsfléd
gradients in each experiment (15 or 50).

was also presented in figures 4-6.

In addition to fitting the prior to the real distribution in taigal images, there is also a question which
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Fig. 11. Evaluated filters sets

Input Ground 15t&2md FOE Random  Random
truth derivatives 0-mean

Fig. 12. Visual comparison of different filters using a spapsior.

filters to use.

In our second comparison, we have experiment with severghefpopular sets of low level filters
using a sparse prior (the sparsity prior was obtained byditd mixture of Laplacians to thes&2"?
order derivatives histograms and the same prior was usedlifdiiters). In particular we chose to test
the filters sets listed below. The filters sets are also ptederisually in figure 11.

1) High frequency first order derivatives evaluated by thellLfilter, in the horizontal and vertical

directions, plus high frequency second order derivati®&sond order derivatives were evaluated
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Fig. 13. Quantitative evaluation of different filter setsarB are plotted in two groups, representing the number afldab
gradients in each experiment (15 or 50).

01 o0z o3 04 0s o1 0z o3 04 o5 0 o5 1
Fier response Fier response Fiter response Fier response.

1°&2™* order FOE DOOG Random 0-mean Random

Fig. 14. Log-histogram of filter sets responses in naturages. While classical filter sets follow a sparse distrdntithe

distribution of non-zero mean filters is almost uniform.

by convolving each pair of first order filters. The obtainedrfl are:

2) The set of3 x 3 filters learned by Roth and Black using the field of expertsEF@odel [12].

3) The set of difference of oriented Gaussians (DOOG) filtessd in [7]. We used 6 orientations, 2
phases and one scale. (Using filters in coarser scales samlfi increases complexity, since as
the filters have wider support, the matrix that we need torinigeless sparse).

4) A set of zero mean white noiskx 3 filters. Those were selected by randomizihngumbers from
a uniform distribution on the—1, 1] interval, and subtracting the mean.

5) A set of white noise3 x 3 filters without zero mean.

The bar charts resulting from the usage of the above filtexr @t presented in figure 13. Figure 12

visualizes the results for one of the test images. It seeaidhile best decomposition results were obtained

by the FOE filters of [12], and the set of second and first oraeivdtives performed almost the same.

Random zero-mean filters also provided relatively goodltestihe DOOG filters of [7] didn't perform

that well, despite the fact that there were designed to becpkarly sparse filters. It seems that the
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Fig. 15. Visual test of filters support

Il 1st&2nd order derivatives
[_1st order derivatives
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Fig. 16. Quantitative evaluation of the influence of the fikapport. Bars are plotted in two groups, representing theber
of labeled gradients in each experiment (15 or 50).

problem with those filters is that the filters support is to@eviand the filter response in each location

averages responses of different edges (in many casesrag@geresponses of edges from different layers).
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Also those filters may suffer most from the independencemaptan. The worst results were obtained
with non zero mean filters, suggesting that the sparse psi@nly suitable when the filter output is
sparse. To see this, we have evaluated the responses offdrerdifilter sets on real images. Figure 14
plots the log histogram of filter responses. While the firstitérfisets follow a sparse distribution, filters
with arbitrary mean don'’t tend to have sparse responses ages) and the evaluated histogram is almost
uniform.

In our third experiment, we test the influence of the filterpmart size, and the amount of high
order details it captures. In this experiment we have cosgpaesults of 3 filters groups: (1) Both first
and second order derivatives, (2) First order derivatieseg and (3) Second order derivatives alone.
Numerical results are presented in the bars of figure 16, anhresults at figure 15. It can be observed
that the results of using both first and second order devesitare better then each group alone. This is
because the width of the support of a filter performs an ingmrtask. First order derivatives alone are
not strong enough since they cannot capture wide edgesxBare, figure 17 presents a 1D profile of
an edge, and 2 possible decompositions of this edge. Firesimathle decomposition, which places the
entire edge in one layer. The second decomposition plaeesahsition between pixels 3&4 in one layer
and the second half of the transition (occurring betweerlpid&5) on the second layer. A cost which
penalize the first derivative alone cannot distinguish thée2ompositions, since it will pay for both
decompositiong(I> — I3) + p(I3 — I4). However if the second order derivative is calculated, #eoad
order derivative for the first decomposition fires only on denger, and in the second decomposition, it
fires on the two layers. Therefore, if the cost favor sparserse order derivatives, it will favor the first
decomposition, as desired. However, the fact that a widg@aups important, does not mean that the
high order details are neglectable, as demonstrated byatitegtfat using second order derivatives alone
provides bad results.

A second aspect that should be taken into consideration whleating the filters set is computational

complexity. The computation time reduces when the matrixf &quations 7 contains more zero entries.

V. DISCUSSION

Separating reflections from a single image is a massivelyodled problem. In this paper we have
focused on slightly easier problem in which the user markshallshumber of gradients as belonging to
one of the layers. This is still an ill-posed problem and weehased a prior derived from the statistics
of natural scenes: that derivative filters have sparseildisions. We showed how to efficiently find the

most probable decompositions under this prior by solvingtao$ linear systems. Our results show the
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Fig. 17. Decomposing 1D edge. (a) input edge. (b-c) possibmmpositions.

clear advantage of a technique that is based on natural statics rather than simply assuming a
Gaussian distribution.

We have performed a quantitative comparison of differdwilhood models and different filters sets. It
will be interesting to develop algorithms that will learretbptimal set of filters and the optimal likelihood
model from real images data. One approach for that is the pamgised approach that was explored
by [12]. The unsupervised approach tries to construct dfiked function that will model the distribution
of natural images. Then, assuming that the two layers arepenident, an optimal decomposition is a
decomposition that will maximize the sum of log-likelihaodf the 2 layers. A second approach is the
supervised approach. That will translate to finding a Ikkadid function that when combined with user
marks, will minimize the error of decomposed images.

In the current approach, the amount of user interactionireduo achieve good results is still quite
large. We hope that the usage of better statistical moddlsemable us to reduce the amount of user

efforts.
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