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A APPENDIX

A.1 Illumination and viewing angles
We provide a justification for Eq. (11), stating that field correlation is

a function of only the angle between the illumination and viewing

points, rather than their actual distance.

We start by more precisely defining ME field correlation. For

illumination and viewing displacements∆i ,∆v wewant to measure

correlation as

Cf (∆i ,∆v )=
∑
ix ,y

∑
vx ,y

Cf

(
uix ,y−

∆i
2

(
vx ,y−

∆v

2

)
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2
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2

))
.

(27)

However as we deal with complex numbers, even if the correla-

tion |Cf

(
uix ,y−

1/2∆i
(
vx ,y − 1/2∆v

)
uix ,y+

1/2∆i
(
vx ,y + 1/2∆v

) )
| is

large, it can be a complex number and the phase of these correla-

tions can vary for different pairs. Thus we should sum correlations

subject to proper phase correction:

Cf (∆i ,∆v ) =∑
ix ,y

∑
vx ,y

eikϕ(ix ,y ,vx ,y )Cf
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2
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(28)

The ideal phase correction is the conjugate of the correlation phase

ϕ(ix ,y , vx ,y )=−∠Cf
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(29)

leading to

Cf (∆i ,∆v )=
∑
ix ,y

∑
vx ,y

����Cf
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(30)

In practice, we follow Osnabrugge et al. [2017] and restrict the

discussion to sinusoidal phase correction terms. This restriction

is convenient, first because it simplifies the analysis, allowing for

analytic results; and second, because it is easy to implement in exper-

imental setups, being equivalent to a tilt of an incoming or outgoing

beam. This leads to the definition of the tilt-shift correlation:

Cf (∆i ,∆v ,θ ) =∑
ix ,y

∑
vx ,y

eik (θ ·(vx ,y−ix ,y ))Cf

(
uix ,y−

∆i
2

(
vx ,y −

∆v

2

)
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2

(
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2

))
.

(31)

Note that θ and the displacement vx ,y − ix ,y are 2D vectors, and

the phase in Eq. (31) is their inner product.

To emphasize that Eq. (31) depends on the distance of the illumina-

tion and viewing planes we sometimes denote Cf (∆i ,∆v ,θ |zi , zv )

Tilt-shift correlation conversions. We show that we can easily con-

vert tilt-shift correlation at one plane to a tilt-shift correlation at a

different plane, through a change in the shift.

Claim 3.

Cf (∆i ,∆v ,θ |z
1

i , z
1

v ) = Cf (∆i+(z
1

i −z
2

i )θ ,∆v−(z
1

v−z
2

v )θ ,θ |z
2

i , z
2

v ).

(32)

Proof. We prove the case of changing viewing planes z1

v , z
2

v , the

case of changing illumination planes is similar.

We denote by u∆,θ ,zv a field focused at zv after some tilt and

shift:

u∆,θ ,zv (τ ) = uzv (τ − ∆)eik (θ ·(τ−∆)). (33)

We consider the correlation Cf (∆i ,∆v ,θ ) and define the compo-

nent of it involving a fixed illumination point i

Cf (∆i ,∆v ,θ |i, zv ) = E

[∑
τ

u
ix ,y−

∆i
2

−1/2∆v ,−1/2θ ,zv
(τ ) · u

ix ,y+
∆i
2

1/2∆v ,1/2θ ,zv
(τ )

∗
]
.

(34)

Clearly Cf (∆i ,∆v ,θ |zv ) as defined in Eq. (31) is

Cf (∆i ,∆v ,θ |zv ) =
∑
i
Cf (∆i ,∆v ,θ |i, zv ), (35)

thus if we prove the relation outlined in the claim for each i, it will
also hold for the full correlation.

We note that Cf (∆i ,∆v ,θ |i, zv ) in Eq. (34) is the expected inner

product of two fields shifted and tilted at the opposite directions.

We seek a relation between the inner product of the fields at planes

z1

v , z
2

v . For that we recall, from Parseval’s theorem, that the inner

products in the prime and Fourier domains are equivalent:∑
τ

u1

−1/2∆v ,−1/2θ ,z1

v
(τ ) · u2

1/2∆v ,1/2θ ,z1

v
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= (36)∑

ω

F

(
u1

−1/2∆v ,−1/2θ ,z1

v
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v

)
(ω)∗, (37)

where we use u1,u2
as shorthand for uix ,y−

1/2∆i ,uix ,y+
1/2∆i

, and F

denotes the Fourier transform.

We show below that the transformation between fields at plane

z1

v to fields at plane z2

v is equivalent to multiplying the Fourier

transform with a filter that has varying phase but fixed amplitude.

Thus, such a filter does not change the inner product, allowing us to

derive a direct relation between inner products at different planes.

To transform a field at plane z1

v to a field at plane z2

v , we need

to convolve u∆,θ ,z1

v
with a kernel we denote by P(z1

v − z2

v ). The

Fourier transform of the defocus blur is simply a quadratic phase,

F (P(z1

v − z2

v )) = eik
z1

v −z2

v
2

|ω |2 . (38)

As this kernel has a uniform amplitude and only varies in phase, it

cancels out in the inner product defined above. However, to exactly

exactly the transformation between the two planes, we need to look

more carefully at the coordinate change introduced by the tilt and

shift.

We want to express u∆,θ ,z1

v
∗ P(z1

v − z2

v ) as the field at plane z2

v ,

with some tilt and shift. We will show that

u∆,θ ,z1

v
∗ P(z1

v , z
2

v ) = u∆−θ (z1

v−z2

v ),θ ,z2

v
· eikc , (39)

with c = (z1

v−z
2

v )/2 ·θ2
. Namely, when refocusing at a different plane,

the same tilt θ is maintained, but the shift changes according to the

tilt direction to ∆ − θ (z1

v − z2

v ).

For that, let us denote the Fourier transform of the field byUz1

v
=

F (uz1

v
). We recall that a shift in prime space becomes a tilt in Fourier

space, and conversely a tilt in prime space becomes a shift in Fourier
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space. Thus the Fourier transform of the tilted-shifted field u∆,θ ,zv
is related toUzv as

F (u∆,θ ,zv ) = Uzv (ω − θ )eik (∆ ·(ω−θ )). (40)

As mentioned in Eq. (38), the Fourier transform of the defocus blur

is simply a quadratic phase. A short calculation shows that

F (u∆,θ ,z1

v
∗ P(z1

v − z2

v )) = (41)

Uz1

v
(ω − θ )eik (∆ ·(ω−θ )) · eik
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2
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v
2

θ 2

,

(43)

where we get from Eq. (42) to Eq. (43) by rearranging the quadratic

terms in the exponent. We note that Eq. (43) is essentially the Fourier

transform of a field uz2

v ,∆−(z1

v−z2

v )θ ,θ
· eikc , focused at z2

v , with the

same tilt θ , but with a different shift ∆ − (z1

v − z2

v )θ .
Having derived a simple expression for the refocused field, we

can return to the correlation. As stated in Eqs. (36) and (37), the

correlation is just the expected inner product between the fields

from different illuminators. Using Parseval’s theorem, the inner

products in the prime and Fourier domains are equivalent:∑
τ

u1
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v
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Using Eq. (42), in the Fourier domain the only effect of changing

the focus is a multiplication with a quadratic phase eik (z1

v −z2

v )/2 |ω |2
,

which is not changing the inner product, thus∑
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As a result we can express:
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Optimal tilt. We have seen that tilt-shift correlation can be easily

converted between different illumination and viewing planes. The

next question is what values of tilt and shift maximize correlation.

For that we argue that these optimal values are obtained when

θopt(∆i ) =
∆i

zi
=

∆v

zv
, (48)

that is, when the tilt angle θ equals the angle formed between

the target, and illumination and viewing points at displacements

∆i ,∆v , as illustrated in Fig. 21(a). This also implies that the optimal

view-plane displacement is

∆
opt

v (∆i ) =
zv
zi

∆i . (49)

This is harder to justify with an exact analytic argument as above,

but we can validate it using the simulator of Bar et al. [2019; 2020],

as evaluated in Fig. 21.

Alternatively, rather than rely on a numerical simulator, we can

derive an approximate closed-form expression for the single scatter-
ing component of the correlation [Bar et al. 2021], including only

photon paths of length one, that is, paths that scatter at a single

particle. The contribution from such paths can be computed in

closed-form and can help understand the shape of the correlation.

For this derivation, we assume zi = zv , that is, that the camera is

focused at the illuminator plane. In this case, we can show that corre-

lation happens only for ∆i = ∆v = ∆. In particular, Bar et al. [2021]

express the correlation as a function of the z plane on which the

scattering event happens, deriving the following analytical result.

Claim 4. We denote τ = v1 − i1 = v2 − i2, and let ϕ(z) =
arcsin( |τ |/(zi−z)) be the angle formed between i1, v1 and a scatter-
ing point at depth z. The single scattering covariance resulting from
scattering points at depth z is

Ci1,i2
f

(v1, v2)(z) = ρ (ϕ(z))σse
−σt Le

−ik
(
τ · ∆

zi −z

)
, (50)

where k = 2π/λ is the wavenumber, σt is the extinction coefficient
of the medium, and ρ(ϕ) its phase function. The total covariance
corresponding to an integration over all z positions is

Ci1,i2
f

(v1, v2) =
∫ zmax
z=zmin

Ci1,i2
f

(v1, v2)(z). (51)

From Eq. (50), we can deduce that, for the part of the correlation

resulting from scatterers on one z plane, the tilt angle θ is a linear

function of the displacement ∆, leading to a sinusoid of frequency

θ = ∆/(zi−z). This θ is actually the angle formed between two

illuminators located at depth zi and displaced by ∆, and a scattering
point at plane z of the sample. That is, the ideal tilt angle is just

the angle formed by the two illuminators and the target, as shown

in Fig. 21(a). The challenge is that, when the sample thickness is

not negligible, every z plane inside the sample corresponds to a

slightly different θ angle. The full correlation in Eq. (51) is the mean

of correlation values from different planes. Although the integral in

Eq. (51) cannot be computed in closed-form, we expect it will have

the phase of one of the mean angles in the volume. We can show

that the resulting phase is approximately:

θ ≈
∆

zi − z∗
, (52)

where z∗ is the depth of a plane in the middle of the volume z∗ =
0.5(zmin + zmax). In Fig. 2, we chose to place zmin = −L/2, zmax =

L/2, simplifying the formula to θ = ∆/zi .
Osnabrugge et al. [2017] also attempt to derive an analytic expres-

sion for the tilt shift correlation based on an approximate differential

equation. They arrive at a slightly different result, stating that the

optimal tilt depth is 2/3 of the way to the end, rather than exactly

the mean. Namely, they suggest that the tilt angle should be com-

puted according to the plane z∗ = (1/3)zmin + (2/3)zmax, rather
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than according to the plane z∗ = 0.5(zmin + zmax). The numerical

evaluation below suggests that the difference between the 1/2 and

the 2/3 rules is minor.

In Fig. 21, we numerically evaluate the effect of the tilt angle

using the Monte Carlo simulator of Bar et al. [2019; 2020], with-

out relying on the single scattering approximation. We test the

correlation produced by tilt angles of the form θ = ∆/(zi−z∗),

for different selections of the plane z∗. For both near-field and

far-field configurations, the largest correlation is obtained when

θ is selected at z∗ = 0.5(zmin + zmax). However, the selection

z∗ = (1/3)zmin + (2/3)zmax provides results of very similar quality.

Optimal ∆v at other planes. The above discussion shows that, for

zi = zv , the optimal angle should be selected asθ = ∆i/zi = ∆v/zv .
We are still left with the task of showing that this expression holds

for other view plane selections. From Claim 3, we know that if we

vary the view plane from zi to any other zv plane, the displacement

should be adjusted as

∆v = ∆i + θ (zv − zi ). (53)

If we replace θ = ∆i/zi and rearrange terms, we get

∆v =
zv
zi

∆i , (54)

as required.

General phase corrections. To conclude this discussion, we state
that the above derivation approximated the field covariance of

Eq. (30) using a sinusoidal phase. We used this restricted setting for

tractability, as it allowed us to obtain analytical results. In practice,

the optimal phase correction is just the phase of the covariance,

which is not exactly sinusoidal. If we use this optimal phase cor-

rection, the field correlation will be somewhat higher than that

produced using the sinusoidal phase (Figs. 4 and 21). In turn, the

invariance of ME to illumination depth only holds approximately.

The difference between field and intensity correlations. We note

that, though we have shown that the decay of field correlation is

invariant to the distance of the illuminator plane, this is not the case

for intensity correlation. To see this, we repeat for convenience the

definitions of the two types of correlations in Eqs. (5) and (6):

Cf (∆i ) =
∑
vx ,y

���Cf (u
i1 (vx ,y ),ui

2

(vx ,y + ∆v ))

��� , (55)

CI (∆i ) =
∑
vx ,y

CI (I
i1 (vx ,y ), I i

2

(vx ,y + ∆v )). (56)

For every sensor position in the summation, we have

CI (I
i1 (vx ,y ), I i

2

(vx ,y + ∆v )) =

���Cf (u
i1 (vx ,y ),ui

2

(vx ,y + ∆v ))

���2 ,
(57)

but CI (∆̂i ) is not the squared amplitude of Cf (∆̂i ). As a results,

results derived for Cf (∆̂i ) cannot be directly applied to CI (∆̂i ).

A.2 SNR Derivation
Proof of Claim 2. We define SNR as:

SNR =
E

[
cemp(i1x ,y ,∆)

]
2

Var

[
cemp(i1x ,y ,∆)

] . (58)

As CI (∆,τ ) = E
[
I (i1x ,y + τ )I (i1x ,y + τ + ∆)

]
(we have already sub-

tracted the mean of I in pre-processing), from the definition of cemp:

E
[
cemp(i1x ,y ,∆)

]
2

=

�����∑
τ

w(∆,τ )CI (∆,τ )

�����2 . (59)

As speckle patterns in different pixels are independent random

variables, we can compute the variance as:

Var

[
cemp(i1x ,y ,∆)

]
=

=
∑
τ

|w(∆,τ )|2Var
[
I (i1x ,y + τ )I (i

1

x ,y + τ + ∆)
]

(60)

=
∑
τ

|w(∆,τ )|2Var
[
I (i1x ,y + τ )

]
Var

[
I (i1x ,y + τ + ∆)

]
. (61)

We assume that, after adding contributions from all illuminators, the

speckle spread on the sensor and thus the variance are both roughly

uniform, i.e., Var

[
I (i1x ,y + τ )

]
is constant for all pixels. Then,

Var [I (v̂)]=
1

P

P∑
τ=1

Var

[ K∑
k=1

I î
k
(τ )

]
=

1

P

P∑
τ=1

K∑
k=1

Var

[
I î
k
(τ )

]
, (62)

where we used the fact that the intensity image is a sum of K
independent sources. Noting that the variance from a single source

is equivalent to the covariance at displacement ∆ = 0, we have∑
τ

Var

[
I î
k
(τ )

]
=

∑
τ

CI (0,τ ). (63)

Substituting Eq. (63) into Eq. (62) gives us

Var [I (v̂)] =
K

P

∑
τ

CI (0,τ ) = α
∑
τ

CI (0,τ ). (64)

Substituting Eq. (64) into Eq. (61) yields

Var

[
cemp(i1x ,y ,∆)

]
= α2

∑
φ

|w(∆,φ)|2

�����∑
τ

CI (0,τ )

�����2 . (65)

Combining Eqs. (59) and (65) provides the desired Eq. (20).

SNR =
|
∑
τ w (∆,τ )CI (∆,τ ) |

2

α 2 ·
∑
φ |w (∆,φ) |2 · |

∑
τ CI (0,τ ) |

2
. (66)

We now turn to determining the optimal weightsw(∆,τ ). This is
equivalent to maximizing

|
∑
τ w(∆,τ )CI (∆,τ )|

2∑
τ |w(∆,τ )|2

, (67)

or equivalently, maximizing

∑
τ w(∆,τ )CI (∆,τ ) under the con-

straint

∑
τ |w(∆,τ )|2 = 1. It is easy to see (e.g., using Lagrange

multipliers) that the maximum is achieved whenw(∆,τ ) ∝ CI (∆,τ ).
With this choice, Eq. (66) reduces to:

SNR
matched

=
∑
τ |CI (∆,τ ) |

2

α 2 · |
∑
τ CI (0,τ ) |

2
. (68)
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Fig. 21. Tilt-shift correlation. We evaluate the tilt-shift correlation Cf (∆i , ∆v , θ ) (Eq. (31)), where θ is taken to be the angle illuminators at displacement
∆i form with a point at depth z∗, as shown in (a). (b) shows a few selections of the plane z∗, and (c,d) show evaluattions of near-field and far-field correlations
for the corresponding θ values. In both near-field and far-field configurations, the viewing plane was set as zv = zi . The best result is obtained when θ is
selected using a z∗ plane in the middle of the volume.

A.3 Gradient evaluation
The derivative of the loss of Eq. (24) with respect to O is:

∂E

∂O
= 2

∑
j
w2τ
j ·

(
e ⋆ F(w∆

j · Ī )
)
+w∆

j ·

(
(w2τ

j · Ī )⋆ e
)
, (69)

where F denotes the flipping of the image around its center, · is

element-wise multiplication, and e is the error of the current guess,
e = Īwτ

j
⋆ Īw∆

j
−Ow̄2τ

j
⋆Ow∆

j
. The gradient can be computed in the

frequency domain as

2

∑
j
w2τ
j F −1

(
F (e)F (w∆

j · Ī )
)
+w∆

j F
−1

(
F (w2τ

j · Ī )F (e)∗
)
, (70)

where F , F −1
denote Fourier transform and its inverse, respectively.

A.4 Additional results
In Fig. 22, we show an example demonstrating that, as illuminator

density increases, eventually our local approach fails as well.

In Fig. 23 we show additional reconstructions from our single-

capture setup, where a mask target is simultaneously illuminated

by a spatially-incoherent LED source, as in Fig. 14.

In Fig. 24, we show a result that demonstrates the increased range

our algorithm provides. We select a few local subwindows from the

first pattern in Fig. 11, and display the maximal window for which

the full-frame auto-correlation was successful. Each subwindow

pair demonstrates a small window where reconstruction succeeds,

and a slightly bigger one where reconstruction fails.

A.5 Selecting local window parameters.
Our local algorithm has two hyperparameters, Tτ and T∆. For our
experiments, we set these parameters manually to maximize image

quality. Fig. 25 evaluates the sensitivity of our algorithm to their

exact values. Very large values of Tτ bring our algorithm closer

to the full-frame auto-correlation algorithm, and often result in

convergence failure. Increasing T∆ improves the results, so long

as some correlation remains (in the example of Fig. 25, correlation

between the far illuminators did not completely decay to 0). This is

because larger values of T∆ provide more constraints on the latent

image. By contrast, for very smallT∆ values, reconstruction becomes

poor because there are not enough constraints. We chose to use a

binary approximation to the matched filter, as the exact matched

filter is unavailable in a general experimental setting where material

parameters are unknown. However, in our implementation, as we

image scattering through individual positions of the laser source

behind the tissue, we can also compute the exact speckle covariance

empirically as in Fig. 6, giving us access to the exact matched filter.

In Fig. 25, we compare the results produced using the exact matched

filter (limited to a maximal displacement ofT∆ = 500 pixels) and the

binary approximation. We observe that they lead to similar results.

An additional consideration for parameter selection is that de-

creasing Tτ or increasing T∆ increases computational complexity.

It is important to emphasize that our algorithm provides improved

performance only under the conditions it was designed for: namely

when the speckle pattern due to one illuminator has local support.

As the support size increases, our algorithm becomes equivalent

to the full-frame autocorrelation approach. We have empirically

observed that our algorithm provides improved performance when

the speckle support size is smaller than the range of memory effect

correlation—that is, when the true values of Tτ ,T∆ satisfy Tτ < T∆.
In particular, as the true value ofTτ decreases or the true value ofT∆
increases, the robustness of our algorithm and the number of inde-

pendent sources it can reliably detect both improve. By contrast, if

the true value ofTτ is greater than that ofT∆, our algorithm becomes

equivalent to the full-frame auto-correlation, and reconstruction

will be limited by the range of the memory effect.

A.6 Fluorescent beads imaging
We provide details for the fluorescent bead imaging experiment in

Fig. 20. We place FluoSpheres beads of diameter 2 µm on a 170 µm

cover glass attached at the back of a 100 µm chicken breast tissue

slice. We use the setup of Fig. 26 to image the samples. The beads
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Fig. 22. Recoverable density. Reconstructions at two densities of a far-field pattern. As illuminator density increases, our local-cost fails as well.

Ground Truth Input Full Frame Our Windowed

Fig. 23. Far-field reconstructions using an LED source. Our local correlation approach outperforms the classical full-frame auto-correlation approach.

are excited by a wide-area 637 nm laser beam, and emit light at a

spectral range of about 20 − 30 nm centered at 680 nm. The emitted

light scatters through the tissue and we use a sensor to image it

from the other side of the sample. We use a dichroic filter and a

10 nm band-pass filter centered at 680 nm, to filter out the laser

illumination used for excitement, and to limit the bandwidth of the

fluorescent emission. The sensor captures the input image in Fig. 20.
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Fig. 24. Full-frame auto-correlation algorithm applied on small crops of the patterns in Fig. 11. The yellow and cyan sub-windows demonstrate
areas where reconstruction roughly succeeds, and the magenta and green ones show slightly larger areas where reconstruction fails. To the right, we plot
correlation as a function of displacement length |∆ |, as measured for the corresponding tissue slice.
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Fig. 25. Sensitivity to window parameters. We visualize results from our algorithm when varying the support of the binary matched filter, Tτ ,T∆ . We also
compare with an exact matched filter computed from empirical speckle correlations, utilizing a maximal displacement of T∆ = 500 pixels.
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Fig. 26. Schematic of near-field fluorescent setup. Fluorescent beads are excited by a laser and emit light in a higher spectral band. Part of the emitted
light passes though the scattering sample, a dichroic mirror, and a band-pass (BP) filter, and is imaged by the back sensor. Additionally, another part of the
emitted light is imaged by the control sensor, for the purposes of ground truth acquisition.
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