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Fig. 1. Near-field imaging through scattering. A latent object, comprising mutually-incoherent light sources, is seen through a scattering sample (e.g.,
fluorescent particles inside tissue). The image measured by the camera is degraded due to scattering. Previous approaches suggest that due to speckle
statistics, the latent image can be recovered from the auto-correlation of the speckle image. Despite the potential of this idea, many previous experimental
demonstrations considered sources a few centimeters behind the scattering layer rather than inside it, as would be desired in a real biological application. Here
we attempt to bring the algorithm from the far into the near field regime, taking advantage of a special characteristic of near field speckles: their local support.
In the right part, both the classic full-frame auto-correlation and our approach can successfully recover the latent object when it is composed only of a small
number of illuminating points (lower right). However, our approach can also recover a significantly denser object, while the classic algorithm fails (top right).

Recent advances in computational imaging have significantly expanded

our ability to image through scattering layers such as biological tissues, by

exploiting the auto-correlation properties of captured speckle intensity pat-

terns. However, most experimental demonstrations of this capability focus

on the far-field imaging setting, where obscured light sources are very far

from the scattering layer. By contrast, medical imaging applications such as

fluorescent imaging operate in the near-field imaging setting, where sources

are inside the scattering layer. We provide a theoretical and experimental

study of the similarities and differences between the two settings, highlight-

ing the increased challenges posed by the near-field setting. We then draw

insights from this analysis to develop a new algorithm for imaging through

scattering that is tailored to the near-field setting, by taking advantage of
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unique properties of speckle patterns formed under this setting, such as

their local support. We present a theoretical analysis of the advantages of

our algorithm, and perform real experiments in both far-field and near-field

configurations, showing an order-of magnitude expansion in both the range

and the density of the obscured patterns that can be recovered.
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1 INTRODUCTION
Developing techniques for imaging through scattering layers, and

in particular through layers of biological tissue, is a core challenge

of modern imaging. The fundamental difficulty in achieving this

objective is the fact that, when an incident wave propagates through

such a layer, it interacts with its microstructure multiple times. For

example, incident light arising from a single coherent source will,

after such a scattering process, result in images showing strong

speckle patterns, spread over multiple pixels.
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Despite their noise-like appearance, these speckle images have

strong statistical properties relating to both the incident wave and

the scattering material that produced them. One such property,

which is the focus of this paper, is thememory effect (ME): this refers

to the fact that speckle patterns are correlated and approximately

shift-invariant with respect to small tilts in the illumination or

viewing angles [Akkermans and Montambaux 2007; Baydoun et al.

2016; Berkovits and Feng 1994; Dougherty et al. 1994; Feng et al.

1988; Freund and Eliyahu 1992; Fried 1982; Osnabrugge et al. 2017].

This property underlies many recent techniques for producing clean

images through scattering media [Bertolotti et al. 2012; Edrei and

Scarcelli 2016a,b; Hofer et al. 2018; Katz et al. 2014; Takasaki and

Fleischer 2014; Wang et al. 2020; Wu et al. 2020, 2017]. In particular,

Katz et al. [2014] have demonstrated that it is possible to recover a

clean, scattering-free image of a sparse set of mutually-incoherent

latent illuminators, observed through a thick scattering layer. Their

algorithm works by simply computing the auto-correlation of the

observed speckle image, and performing phase retrieval [Fienup

1982]. This remarkable imaging capability has strong potential for

applications in medical imaging, e.g., for imaging fluorescent cells

beneath tissue, and for performing non-invasive blood flow analysis.

Unfortunately, realizing this potential in practice remains difficult.

One reason for this lies in the fundamental limitations restricting

the applicability of memory effect algorithms: For instance, it is well-

documented that the strength of the memory effect decays fast as

the displacement between the latent illuminators increases [Schott

et al. 2015; Wang et al. 2019]; and we show that it is also nega-

tively affected as the density of the latent illuminators increases.

Another reason is that nearly all previous demonstrations of imag-

ing through scattering with the memory effect use illuminators and

sensors that are in the far field of the scattering layer, i.e., placed at

a large distance from it. (A notable exception is the work of Chang

and Wetzstein [2018], which we discuss in detail later in the paper.)

This setting is reasonable for applications such as non-line-of-sight

imaging [Batarseh et al. 2018; Boger-Lombard and Katz 2019; Fre-

und 1990; Katz et al. 2012; Metzler et al. 2020; Smith et al. 2018;

Viswanath et al. 2018]. However, it is unrealistic for tissue imaging

applications, which typically require near-field imaging conditions.

For example, in fluorescent imaging, the fluorescing particles are

inside the scattering layer, rather than at a distance from it. Conse-

quently, the current experimental protocol used in research papers

for evaluating theory and algorithms about the memory effect is in-

compatible with how these theory and algorithms would be applied

in medical imaging practice.

Our goal in this work is to draw attention to this incompatibility,

show that its implications are significant, and propose ways to align

research and practice. To this end, we begin with a detailed study

of the memory effect in the near-field and far-field settings, and

highlight the differences between the two settings. In particular, we

introduce a new theorem that allows us to draw direct analogies be-

tween the two settings, and use physically-accurate simulations [Bar

et al. 2019, 2020] to both validate and generalize conclusions drawn

from this theorem. The findings of our study suggest that, in the

near-field setting, memory effect techniques are only practical for

scattering layers of modest optical depth, namely scattering layers

whose thickness is only a few mean free paths. In such layers, mid-

order scattering is dominant, meaning that light undergoes through

a small number of scattering events. In tissue, this mid-order scat-

tering regime corresponds to layers that are still well-beyond the

maximum penetration depth of standard microscopes. Therefore,

memory-effect techniques operating in this regime can be of great

practical importance for medical imaging.

Based on this observation, we proceed to investigate how to

improve imaging-through-scattering techniques in the mid-order

scattering regime. Specifically, we document a property character-

istic of speckle patterns arising due to mid-order scattering: The

speckle pattern formed on a sensor due to a single latent illuminator

is typically much smaller than the sensor. This local support property
has not been studied in the past and, as we show, is key for enhanc-

ing the performance of imaging-through-scattering techniques in

both the far-field and near-field settings.

In particular, we first derive an analytical expression for the signal-

to-noise ratio that can be achieved when recovering scattering-free

images using the memory effect. Our analysis suggests that there

exists an optimal matched filter, corresponding to the local spatial

support of speckle patterns, that maximizes this ratio. We then use

this theoretical result to motivate and develop a new algorithm

for using the memory effect to image through scattering, taking

advantage of the local support property. Inspired by ptychogra-

phy techniques [Rodenburg et al. 2007], our algorithm optimizes

for the auto-correlation of overlapping local windows, instead of

the full-frame auto-correlation of the entire sensor as in previous

algorithms. Our algorithm can be used to improve imaging-through-

scattering performance in both the near-field and far-field settings,

so long as they operate in the mid-order scattering regime. We

demonstrate this improved performance through experiments we

perform using both near-field and far-field imaging prototypes. Our

experiments show that, compared with previous auto-correlation

approaches [Chang and Wetzstein 2018; Katz et al. 2014], our algo-

rithm results in an order-of-magnitude expansion of both the range

and density of independent illuminators that can be recovered.

Implications and future outlook. Together our theory, simulations,

and experiments shed light on a fundamental limit on the perfor-

mance of memory effect algorithms for imaging through scattering:

namely, their ability to recover a clean image of obscured incoherent

illuminators deteriorates as the density of the illuminators increases.

This is due to the fact that speckle contrast decays quickly when

summing speckle patterns frommultiple illuminators, as shown, e.g.,

when comparing the sparse and dense input images in Fig. 1. The

density of illuminators is a fundamental limit that has not previously

received much attention in the literature, and is distinct from the

better-studied fundamental limit imposed by the memory effect’s

finite range. That is, recovering a clean image can be unsuccessful

in the presence of a large number of independent illuminators, even

if all of them are within the memory effect’s range.

Our paper additionally comprehensively catalogues similarities

and differences between the far-field and near-field variants of

the imaging-through-scattering problem. In particular, our paper

demonstrates that the near-field variant of the problem is harder in
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two ways. First, ME correlation applies to much shorter displace-

ments. Second, as we analyze in this paper, due to restrictions on

illuminators density, the latent patterns that can be recovered in the

near-field setting are sparser and a lot more constrained in terms

of their spatial layout than in the far-field setting. Despite these

difficulties, our experimental results demonstrate that our algorithm

can reconstruct latent near-field patterns of considerable size and

density, both an order-of-magnitude larger than what was possi-

ble using previous algorithms. These latent patterns already have

potential for applications in medical imaging, e.g., sparse blinking

fluorescent sources used for STORM localization [Betzig et al. 2006],

or sparse cell nuclei observed through microscopes. At the same

time, the challenges and limitations analyzed in our paper point

towards the development of fully-robust near-field memory effect

algorithms as an important future research direction.

2 RELATED WORK
Imaging with speckle correlations. Several imaging techniques

leverage spatial speckle correlations, often termed thememory effect.
Example applications include motion tracking [Jacquot and Rastogi

1979; Jakobsen et al. 2012; Jo et al. 2015; Smith et al. 2017], looking

around the corner [Batarseh et al. 2018; Freund 1990; Katz et al. 2012;

Metzler et al. 2020; Smith et al. 2018], super-resolution [Chaigne

et al. 2017, 2016; Dertinger et al. 2009; Judkewitz et al. 2013], and

seeing through [Bertolotti et al. 2012; Boniface et al. 2020; Katz et al.

2014] or focusing through [Horstmeyer et al. 2015; Mosk et al. 2013;

Nixon et al. 2013; Osnabrugge et al. 2017; Papadopoulos et al. 2016;

Vellekoop and Aegerter 2010] tissue and other scattering layers.

Other techniques use temporal correlations due to scatterer mo-

tion, e.g., in liquid dispersions [Berne and Pecora 2000; Dougherty

et al. 1994]. Temporal correlations provide information about liquid

flow (e.g., blood flow [Durduran et al. 2010]) and composition. Ex-

ample techniques include diffusing wave spectroscopy [Pine et al.

1988], laser speckle contrast imaging [Boas and Yodh 1997], and

dynamic light scattering [Goldburg 1999].

Imaging through scattering. Other techniques for imaging through

scattering with coherent illumination use adaptive optics to focus

at specific points inside the scattering sample [Boniface et al. 2019,

2020; Choi et al. 2011; Horstmeyer et al. 2015; Katz et al. 2010, 2012;

Lai et al. 2015; Rueckel et al. 2006; van Putten et al. 2011; Vellekoop

et al. 2012, 2010; Vellekoop and Mosk 2007; Yaqoob et al. 2008]. The

main challenge for these techniques is the non-invasive recovery

of the aberration correction pattern that the adaptive optics need

to apply to achieve focusing. The memory effect can help alleviate

this challenge, by allowing to adapt a previously-recovered pattern

to focus at different nearby points [Osnabrugge et al. 2017].

Other approaches for imaging through scattering use incoherent

illumination, and rely on incoherent intensity models for scatter-

ing [Durduran et al. 2010]. Many of these techniques take advantage

of additional information available in time-resolved measurements,

captured using so-called transient imaging systems [Satat et al. 2015,

2016, 2017; Xin et al. 2019]. Noteworthy within this category are dif-
fuse optical tomography techniques [Boas et al. 2001; Liu et al. 2020],

which use diffusion theory to achieve larger depth penetration, at

the cost of reduced resolution compared to coherent techniques.

Improving speckle correlation algorithms. Speckle auto-correlation
algorithms for imaging through scattering have recently received in-

creased attention, with several works focusing on improving depth

penetration, angular extent, and overall robustness. For example,

Wang et al. [2019] proposed to decompose the auto-correlation as a

superposition of multiple local auto-correlations, resulting in a three-

fold improvement in angular extent. Li et al. [2018a] extract spatially-

varying point spread functions from the speckle correlation, using

a sequence of illumination patterns. Other techniques [Chang and

Wetzstein 2018; Liao et al. 2019] improve robustness by adding spar-

sity priors on the latent image. Complementary to these techniques

are works [Guo et al. 2020; Li et al. 2018b] that use learning-based

approaches to allow recovering illuminator patterns wider than the

memory effect range. However, these come at the cost of reduced

generality—only patterns similar to those available in constrained

training datasets (e.g., handwritten digits) can be recovered.

Finally, related to our work are techniques that use ptychog-

raphy [Rodenburg et al. 2007] to increase the memory effect

range [Gardner et al. 2019; Li et al. 2019a,b; Zhou et al. 2020]. These

techniques take multiple images as input, each corresponding to

illuminating a different area on the scattering sample. By contrast,

our algorithm works using just a single image as input.

3 PROBLEM SETTING AND BACKGROUND
In this section, we formalize the imaging through scattering problem,

and clarify the distinction between near-field and far-field imaging

conditions. We additionaly provide background on speckle statistics,

the memory effect, and its use for imaging through scattering.

Imaging geometry. We consider the setup in Fig. 2(a). Without

loss of generality, we assume that the optical axis of the system is

aligned with the z axis. A scattering sample (e.g., tissue layer) of

thickness L is positioned between depth planes zmin = −L/2, and

zmax = L/2. We assume that the scattering sample has a width in

the x,y dimensions that is much larger than the depth L.
The sample is illuminated by multiple co-planar sources located

at depth zi . The light propagates through the scattering sample and

generates a speckle pattern, measured by a 2D sensor at depth zv .
This can be either a lensless sensor physically located at zv (Fig. 2(a)),

or an imaging system focused at zv (Fig. 2(b)). We denote by i, v the

3D position of illumination and viewing points, and by ix ,y , vx ,y
their x−y restriction to the z=zi and z=zv planes, respectively.

We restrict our discussion to the transmissive setting, where the
illuminators and the sensor (or imaging lens) are placed at opposite

sides of the scattering sample. Within this setting, selecting zi =
zmin corresponds to cases where the illuminators are immediately

at the back of the sample (e.g., isotropic fluorescent sources inside

the sample, or confocal illumination focused at that depth). We refer

to such cases as near-field configurations (Fig. 2(c)). By contrast,

selecting zi ≪ zmin corresponds to cases where the illuminators are

placed at a large distance from the sample, as is common in prior

experimental realizations of imaging through scattering using the

memory effect [Bertolotti et al. 2012; Edrei and Scarcelli 2016b; Hofer

et al. 2018; Katz et al. 2014; Li et al. 2018b]. We refer to such cases as

far-field configurations. At the extreme case, the illuminators can be

located at (negative) infinity, which corresponds to illuminating the
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Fig. 2. Notation for memory effect parameters. (a) A sample is illuminated by sources at distance zi behind it. Light propagates through the sample to
generate a speckle pattern on a sensor plane at depth zv . (b) The same scene is imaged using a lens focused at the illuminator plane so that zv = zi . (c) In
near-field configurations, the light is located inside (or at the back face of) the sample rather than far behind it. (d) A typical speckle image obtained on the
sensor, as the superposition of scattering from two sources. We mark the illumination and viewing points, and the displacements ∆i , ∆v , τ between them.

scene with directional plane waves.When not clear from context, we

denote these directional far-field sources and sensors using vectors

with a circumflex, î, v̂, corresponding to their (unit-norm) directions.

Speckle statistics. We denote by ui(v) the complex speckle field
generated when light from source i propagates through the scat-

tering sample and is observed at viewing point v. We denote by

I i(v) = |ui(v)|2 the corresponding measured intensity.

Consider a scattering sample illuminated by two mutually-

coherent sources at i1, i2, and measured at two sensor positions

v1, v2
. Then, we define the speckle covariance as:

Cf (u
i1(v1),ui

2

(v2))≡E
[
ui

1

(v1)ui
2

(v2)∗
]
−E

[
ui

1

(v1)

]
E
[
ui

2

(v2)∗
]
, (1)

where
∗
denotes complex conjugation, and expectation is taken

with respect to multiple realizations of randommedia with the same

statistical properties (e.g., multiple tissue layers of the same type

and thickness). Similarly, we can define the intensity covariance:1

CI (I
i1(v1), I i

2

(v2))≡E
[
I i

1

(v1)I i
2

(v2)

]
−E

[
I i

1

(v1)

]
E

[
I i

2

(v2)

]
. (2)

Using classical statistics, it is easy to show that for zero mean fields:

CI (I
i1 (v1), I i

2

(v2)) =

���Cf (u
i1 (v1),ui

2

(v2))

���2 . (3)

We can now use these quantities to formally describe thememory
effect (ME) property of speckle fields. We consider the speckle fields

ui
1

,ui
2

generated by two nearby illuminators i1, i2, displaced relative
to each other by a vector ∆i ≡ i2x ,y − i1x ,y . The ME refers to the fact

that ui
1

,ui
2

will be correlated shifted versions of each other. That is,

there exists a displacement vector ∆v in the view plane such that

ui
1

(v) ≈ ui
2

(v + ∆v ). (4)

In Sec. 4, we prove that for any given illuminator displacement ∆i ,

we can compute an optimal view-plane displacement ∆
opt

v (∆i ) that

maximizes the above correlation.

We show examples of the ME property in Fig. 5: speckle patterns

are similar when generated by nearby illuminators, but become

different as the illuminator displacement increases. This points to

the fact that the ME property holds only for small displacements

|∆i | between light sources, with the correlation decreasing as the

1
Intensity correlations are independent of the phase of the signal, and hence they do

not require the sources to be mutually coherent.

displacement increases. To quantify how the ME correlation decays

as a function of displacement, it is common to measure the sum of

speckle correlations at all sensor pixels. For applications considering

field correlations (e.g., adaptive optics for focusing through scatter-

ing [Horstmeyer et al. 2015; Judkewitz et al. 2014; Osnabrugge et al.

2017; Papadopoulos et al. 2016]), this corresponds to:

Cf (∆i ) =
∑
vx ,y

eik (θ
opt(∆i )·vx ,y )Cf

(
ui

1 (
vx ,y

)
,ui

2

(
vx ,y + ∆

opt

v (∆i )

))
.

(5)

where eikθ
opt(∆i )vx ,y

is a phase correction, which is required to

make Cf (∆i ) meaningful, since the correlation at individual pixels

are complex with possibly different phases. We derive the optimal

frequency θopt(∆i ) in App. A.1. For applications considering inten-

sity correlations, such as the imaging-through-scattering task we

study in this paper, the ME is instead quantified using:

CI (∆i ) =
∑
vx ,y

CI

(
I i

1 (
vx ,y

)
, I i

2

(
vx ,y + ∆

opt

v (∆i )

))
. (6)

In both Eqs. (5) and (6), the correlation is evaluated with the op-

timal view-plane displacement corresponding to the illuminator

displacement. We assume that, for a wide homogeneous sample,

this correlation depends only on the displacement ∆i , rather than

on the exact spatial positions i1x ,y , i2x ,y of the illumination sources.

We will call the ME range the maximum displacement ∆i for which

the correlation CI (∆i ) remains significant.

Using ME to image through scattering. We now briefly review the

method of Katz et al. [2014] for imaging through scattering using the

ME. We will be using this method as our baseline throughout the pa-

per. Consider a speckle image I generated when a scattering sample

is illuminated simultaneously by K mutually-incoherent sources ik
on one side, and imaged by a camera on the other side. The camera

measures the incoherent summation of speckle intensities,

I (v) =
∑K
k=1

I i
k
(v), (7)

where I i
k
(v) denotes the intensity image from the k-th source.

2

We denote by S ≡ I (0,0)(vx ,y ) the speckle image generated by a

2
As the sources are incoherent, the camera measures

∑K
k=1

I i
k
(v) rather than���∑K

k=1
u ik (v)

���2 .
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= ∗

I O S

Fig. 3. Image formation model within the memory effect [Katz et al.
2014]. S is the speckle pattern from a single illuminator,O is a binary image
of illuminator locations, and I is the image measured by the camera.

source ix ,y = (0, 0). If all K sources are within the ME range, then

all I i
k
(v) images are shifted versions of S . Denoting by O a binary

latent image corresponding to the locations of all K sources (i.e., the

image the camera would capture in the absence of the scattering

sample), we can write I = O ⋆ S , where ⋆ denotes correlation, as

visualized in Fig. 3. We note that, if we replace I and S by

Ī ≡ I − µ(I ), S̄ ≡ S − µ(S), (8)

µ(I ), µ(S) being signal means, the same correlation relation holds.

The image Ī typically exhibits noise-like speckle, making it diffi-

cult to discern O . We can, however, consider its auto-correlation,

Ī ⋆ Ī = (O ⋆ S̄)⋆ (O ⋆ S̄) = (O ⋆O)⋆ (S̄ ⋆ S̄). (9)

As the intensity values in S̄ are approximately zero-mean inde-

pendent noise, its auto-correlation is approximately an impulse,

S̄ ⋆ S̄ ≈ δ . Thus, the auto-correlation of Ī is approximately equal to

the auto-correlation of O ,

Ī ⋆ Ī ≈ O ⋆O . (10)

Therefore, we can recover O from Ī ⋆ Ī using phase retrieval algo-
rithms, e.g., the classical algorithm by Fienup [1982] or more robust

strategies [Guo et al. 2020; Li et al. 2018b]. We refer to this procedure

as the full-frame auto-correlation algorithm in the rest of the paper.

A serious shortcoming of the full-frame auto-correlation algo-

rithm is that the range of illuminators it can recover is small, as the

maximal displacement between the illuminators |ik1
− ik2

| needs to

be within the ME range, which is typically very small. Additionally,

our paper highlights another shortcoming that has received less

attention in the literature, namely, that recovery is only possible

when the number of illuminators K contributing to Eq. (7) is suf-

ficiently small. Our goal in this paper is to quantify and compare

these constraints in the far-field and near-field settings; as well as

to propose a new algorithm for imaging through scattering that can

significantly relax these constraints.

4 COMPARING NEAR-FIELD AND FAR-FIELD SETTINGS
We start by exploring some properties of speckle statistics, with

a focus towards understanding the relationship between speckle

statistics in the near-field and far-field settings. In particular, we

explore the effect of the parameters zi and zv , shown in Fig. 2, on

speckle correlations. The depth zi of the illuminators relative to

the scattering sample controls whether we are in the near-field and

far-field settings, and thus investigating how speckle correlations

vary as a function of this parameter can help us understand the

differences between the two settings. The depth zv of the viewing

plane corresponds to experimental choices such as deciding whether

to measure speckle using a bare sensor on the front face of the sam-

ple, versus using a lens to focus the sensor at a different plane. We

will use the observations we make in this section to develop better

imaging-through-scattering algorithms in subsequent sections.

4.1 Analytic field correlation relationship
In this section, we focus on correlation of complex fields (Eq. (5)); we

will discuss the correlation of intensity images later. We derive a new

technical result that allows converting between field correlations in

the near-field and far-field settings.

Claim 1. Let Cf

(
∆i |z

j
i , z

j
v

)
denote the field correlation in Eq. (5),

with illuminators and sensors placed at planes z ji , z
j
v , respectively.

Then, correlations measured at different illuminator placements can
be related through a displacement scaling as:

Cf

(
∆i |z

1

i , z
1

v

)
= Cf

(
z1

i

z2

i
∆i |z

2

i , z
2

v

)
, (11)

where in both cases correlation is evaluated at the optimal view-plane
displacement given by

∆
opt
v (∆i ) =

zv
zi

∆i or equivalently
∆
opt
v (∆i )

zv
=

∆i

zi
. (12)

We provide the proof in App. A.1 relying on ideas in [Bar et al.

2021]. We will be using

∆̂i ≡
∆i

zi
, ∆̂v ≡

∆v

zv
, (13)

to denote normalized displacements. For small angles, the normal-

ized displacement ∆̂i is equal to a first-order approximation to the

angle two illuminators displaced by ∆i at depth zi form with their

midpoint on the plane z = 0 in the middle of the sample; and simi-

larly for ∆̂v . We visualize these angles in Fig. 4(a). Thus, we refer

to ∆̂i , ∆̂v as the angular displacements.
Claim 1 has three important implications: First, it states that field

correlation is a function of only the angular displacement between

the illuminators, and not their actual distance. Second, it states that

field correlation is invariant to the viewing plane zv , as long as the

view-plane displacement is scaled as in Eq. (12) to maintain a fixed

angle with the scattering sample. Third, it states that we can convert

field correlations between the far-field (large zi values) and near-

field (small zi values) settings. This may be useful for translating

knowledge about the far-field setting into the near-field setting.

Claim 1 applies to the correlations of complex fields. However,
imaging-through-scattering algorithms use correlations of speckle

intensities. Unfortunately, we have not found a similar closed-form

relationship for intensity correlations. However, the intuition that

such correlations dependmostly on angular displacements still holds.

In the following, we explore intensity correlations using numerical

simulations as well as real tissue measurements.

4.2 Simulation-based exploration
In this section, we use the physically-accurate speckle rendering al-

gorithms of Bar et al. [2019; 2020] to perform simulated experiments
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Fig. 4. Dependence of correlation on angular displacement. (a) Setup for simulation in (b-e), highlighting the angular displacement ∆̂i corresponding to
spatial displacements ∆i at different illumination planes. Plots (b-e) evaluate ME decay for 3 distances of the illumination source, and two focus settings.
(b) Field correlation, plotted as a function of absolute displacement ∆i . Far sources has much wider ME extant. (c) When plotted as a function of angular
displacement all configurations leads to the exact same decay, regardless of the actual distance of illumination and view planes. That is, field correlation is a
function of angular displacement ∆̂i rather than actual spatial displacements. (d) Intensity correlations as a function of spatial displacement are also much
wider for far sources. (e) Intensity correlations as a function of angular displacement are not fully invariant to source distance. (f-g) Varying the view plane zv
for a fixed illumination plane zi shows that the widest intensity correlation is obtained when the sensor focuses at the illuminator plane. (h) Setup for (i-j). (i)
Near field intensity correlation as a function of absolute displacement, evaluated for a few material thickness. As the optical depth grows, ME correlation
shrinks. For thick slices, the largest displacement at which correlation holds can be too small for any practical usage. (j) Same as (i) but for far sources. In this
case, correlation at non zero displacements can be found even for thicker materials.

with two objectives in mind: First, we want to validate the predic-

tions of Claim 1 for field correlations. Second, we want to explore

properties of intensity correlations. In our simulations, we use scat-

tering material parameters commonly-used in medical imaging to

model tissue [Igarashi et al. 2007]. In particular, we simulate a scatter-

ing sample with a Henyey-Greenstein phase function of anisotropy

parameterд = 0.99, andmean free pathMFP = 50µmat wavelength

λ = 0.5µm. Except where noted otherwise, we set sample thickness

to L = 200µm, resulting in an optical depth OD = 4. We consider

three illumination plane settings: (i) zi = zmin =−100µm, a near-

field configuration where illuminators are placed at the back face of

the sample; (ii) zi = −300µm, representing a small gap between the

illuminator plane and the sample; (iii) zi = −1 cm, which is large

enough to correspond to a far-field configuration. The second case

is representative of experimental near-field realizations where fluo-

rescent patterns are not really attached to the sample, but rather are

projected onto it using a, potentially misfocused, relay lens [Chang

and Wetzstein 2018]; or where fluorescent particles need to remain

separated from the sample by a thin cover glass. These situations

motivate our experiments to understand the effect of the resulting

gap on speckle correlations. For each zi setting, we consider two

viewing plane settings: (i) zv = zi , corresponding to a sensor that
is focused, through an imaging lens, at the illuminator plane; and

(ii) zv = −zi , corresponding to a sensor placed at some distance

from the front face of the sample. This case is representative of how

far-field ME is often measured in practice, by placing a bare sensor

far enough from the sample.

Dependence of correlation on angular displacement. In Fig. 4(b-

c) we simulate field correlation values Cf as a function of either

absolute displacement∆i , or angular displacement ∆̂i , for the six dif-

ferent configurations of illuminator and view planes zi , zv described

above. When parameterizing Cf by ∆i , increasing the distance be-

tween the sample and illuminator plane increases the ME range.

This is due to the fact that increasing this distance while keeping

∆i constant reduces the angular displacement of the sources. As

suggested by Claim 1, parameterizing Cf by ∆̂i makes all six con-

figurations identical, showing that field correlations are invariant

to the illuminator and view plane locations zi , zv .
In Fig. 4(d-e), we repeat the above experiments, but this time sim-

ulating intensity correlation values CI , which are the actual input

to the imaging-through-scattering algorithms we develop later. As
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in the field case, when we parameterize CI by absolute displace-

ment∆i , the correlation significantly increases as the distance of the

illuminator plane zi increases. ParameterizingCI as a function of an-

gular displacement ∆̂i brings the six different configurations closer

to each other suggesting that, similarly to field correlation, intensity

correlation also depends more strongly on angular displacement

∆̂i than on absolute displacement ∆i . However, in contrast to the

field correlation case, the six configurations are not equivalent, in-

dicating that intensity correlations are not completely independent

of absolute displacements. We explain this difference between field

and intensity correlations in App. A.1; recall in particular that from

Eqs. (5) and (6), CI (∆̂i ) is not the squared amplitude of Cf (∆̂i ).

Dependence of intensity correlation on view plane. Fig. 4(g) demon-

strates that, unlike field correlations Cf , intensity correlations CI
are sensitive to the selection of the viewing plane zv . In particular,

we note that intensity correlation is maximized when the viewing

plane coincides with the illuminator plane, zv = zi . This is an im-

portant practical observation. Often, such experiments use a bare

sensor placed on the front face of the sample to measure speckle

correlations. Our results suggest that we can increase the measured

ME through a simple change in the imaging setup, namely, using a

lens positioned in such a way that if there were no scattering sample,

the sensor would image the illuminator plane zi . We refer to this

imaging configuration as the focused configuration. We validate this

observation below using real tissue measurements.

ME ranges in practical near-field and far-field configurations. As
ME range depends mostly on the angular displacement ∆̂i , the size

of the latent pattern one can handle using ME techniques increases

when this pattern is placed further away from the scattering sample.

This observation explains why imaging-through-scattering experi-

ments are easier to perform in the far-field than in the near-field.

In particular, even though the intensity correlation decay as a func-

tion of angular displacement is similar for near-field and far-field

configurations, in the near-field case, the corresponding maximal

absolute displacement ∆i can become smaller than the wavelength.

To demonstrate this, in Fig. 4(i), we simulate intensity correlation

values in a near-field configuration, for scattering samples of pro-

gressively larger depths, with all other sample parameters remaining

the same. This corresponds to increasing the optical depth of the

sample, and thus increasing the average number of light scattering

events; in turn, this results in a faster decay of intensity correlation

as a function of absolute displacement ∆i . The evaluation shows

indeed that, for thick samples, near-field ME vanishes for any realis-

tic displacement. By contrast, when repeating the same simulations

for a far-field configuration, as in Fig. 4(j), we observe that the ME

range remains non-negligible even for thick scattering samples. By

moving the illuminator plane further away from the sample, we can

scale the ME range to cover latent patterns of any size.

These simulations suggest that ME techniques in the near-field

setting are only applicable for scattering samples of modest thick-

ness, where mid-order scattering is dominant. Consequently, in the

next section, we focus on exploring properties of speckle patterns

formed under these conditions that can facilitate the development of

imaging-through-scattering algorithms. We note here that the exact

sample depth at which near-field ME is non-negligible will vary

for different types of scattering materials. In particular, there are

significant variations in the material parameters reported as repre-

sentative of tissue in the literature [Cheong et al. 1990; Igarashi et al.

2007; Tuchin 2000]. We used one set of such parameters for our sim-

ulations, but the exact correlation values will be different for other

tissue parameters. Therefore, our simulations, and in particular the

near-field correlation plots in Fig. 4(i), are not intended to precisely

predict a tissue depth at which near-field ME vanishes, but rather to

support our observation that near-field ME is only non-negligible

under modest thicknesses corresponding to mid-order scattering. In

practice, for chicken breast tissue we detect near-field correlations

for samples up to 200µm thick. Despite the modest thickness of the

samples, images captured through them still contain considerable

degradation that can benefit from speckle correlation techniques.

4.3 Qualitative validation using real measurements
Before concluding this section, we present results from real measure-

ments of chicken breast tissue. Data was captured using a near-field

experimental imaging setup, described in Sec. 8.1. These results lend

support to the observations presented earlier in this section.

Empirical correlation decay. In Fig. 5 we use near field speckle

images to demonstrate how intensity correlation CI decays as a

function of absolute displacement∆i . We compute CI (∆i ) by empir-

ically correlating the captured speckle images. We perform measure-

ments for different placements of the view and illuminator planes.

We first compare the intensity correlation plots CI (∆i ) measured

when the sensor is focused at the illuminator plane, versus when it

is focused at a different plane. The ME range is wider in the former

case, as predicted by our simulations. We then compare the intensity

correlations CI (∆i )measured for two placements of the illuminator

plane: one where it is exactly at the back plane of the sample, and

another where it is at a distance of 200µm from the back plane. In

both of these cases, the sensor is focused at the illuminator plane. In

agreement with our earlier observations, our measurements show

that placing the illuminators at a distance from the sample results

in an increased ME range, when measured as a function of absolute

displacement ∆i rather than angular displacement ∆̂i . That is, even

a small distance of 200µm, which can occur in experiments due to

misfocusing, can significantly impact the ME range.

Summary of important observations. To conclude this section,

we summarize three important observations we presented: (i) We

showed that, in near-field settings, the ME range is non-negligible

only for scattering samples of modest optical depth, with a thick-

ness of only a few mean free paths. Such layers are dominated by

mid-order scattering. (ii) We showed that it is important to use a

focused configuration where the view plane coincides with the illu-

minator plane, in order to maximize the ME ranges. (iii) We showed

that care needs to be taken when placing the illuminators behind

the scattering sample, as even a small gap between the two can

artificially increase the ME range, even if such a gap is unrealistic

for applications such as fluorescent imaging. In the rest of the paper,
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Fig. 5. Near-field ME.We present speckle images captured when placing
an illuminator at 3 nearby positions, speckle patterns are shifted versions of
each other, demonstrating the ME. The speckle spread is smallest when the
illumination source is located exactly at the back plane of the sample and
the objective distance is set to focuses on that plane. Focusing the objec-
tive on a closer plane (2nd row) results in wider speckles. Computing ME
correlation empirically from the captured speckles (lower part) we see that
ME correlation holds for larger displacements when the camera is properly
focused. We also test the option of moving the light source 200µm further
than the back layer while correctly focusing on the illumination plane. In
this configuration, higher correlation is measured at wider displacements.

we focus on experimental settings using samples of modest thick-

ness, properly focused sensor, and carefully placed illuminators, as

informed by the above three observations.

5 THE LOCAL SUPPORT PROPERTY
In this section, we document and characterize a property of speckle

patterns formed under conditions where mid-order scattering is

dominant. In particular, in Figs. 5 and 6, we show speckle patterns

measured through a tissue layer of modest thickness, using our

near-field and far-field imaging setups. We observe that the speckle

patterns have local support, much smaller than the full extent of

the sensor. Local supports are prevalent in biological tissue samples
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Fig. 6. Local support property. Images of far-field illumination scattering
through a chicken breast slice of thickness 250µm, for a focused and a bare
sensor. Imaging with a focused sensor reduces the speckle support. We show
speckle images for three different positions of the illumination source. The
insets demonstrate the ME, namely that the speckle patterns generated
by different illuminators are shifted versions of each other. Lower panel:
empirical speckle correlation CI (∆, τ ) (as defined in Eq. (17)) evaluated
from the focused data at the 2nd panel. The correlation is displayed as a
function of the 2D displacement vector τ , for 3 different choices of illumina-
tor displacements ∆̂0 = (0, 0)◦, ∆̂1 = (0.18, 0)◦, ∆̂2 = (1.6, 0)◦. Due to the
modest sample thickness, speckle spread is local, and so is the correlation.

of modest thickness, as the phase functions characterizing these

samples are strongly forward-scattering—their average cosine is

typically д > 0.95. Given such phase functions, light entering the

sample with direction î will, after undergoing a small number of

scattering events, spread primarily towards outgoing directions

v̂ ≈ î. As we will show in the next section, the local support property

of speckle patterns due to mid-order scattering is key for improving

imaging-through-scattering algorithms based on the ME. Given its

importance, we use this section to study this property in more detail.

Effect of focusing on speckle support. In Sec. 4, we showed that

using a lens to focus the sensor at the same plane as the illuminators

is important for increasing the ME range. Figs. 5 and 6 demonstrate

an additional advantage of using this focused configuration: In both

the far-field and near-field settings, focusing decreases the speckle

spread. Intuitively the wider spread of non-focused configurations

can be explained by the fact that the support of the scattered field

is convolved with a defocus blur kernel.

Far-field versus near-field speckle patterns. Speckle patterns

formed under far-field and near-field settings both exhibit the local
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support property. However, far-field patterns, such as those shown

in Fig. 6, include many more speckle features compared to near-

field ones, such as those shown in Fig. 5. We will see in subsequent

sections that this difference makes imaging through scattering in

the near-field setting more challenging than in the far-field setting.

Extended parameterization of intensity correlation. For the rest

of this paper we restrict the discussion to focused configurations,

where zv = zi . In this case we get from Eq. (12) that the displacement

on the illuminator plane and the corresponding optimal displace-

ment on the view plane are equal. Thus, we simplify notation using

∆ ≡ ∆i = ∆
opt

v (∆i ) for both displacements, leading to:

i2x ,y − i1x ,y = v2

x ,y − v1

x ,y = ∆. (14)

We note that the definition of the intensity correlation CI (∆) in
Eq. (6) treats all pixels v1

x ,y equally, and does not consider the loca-

tion of the pixel v1

x ,y relative to the illuminator location i1x ,y . This
is due to the fact that most prior literature on the ME focuses on

settings where speckle patterns cover the entire sensor plane (e.g.,

cases where high-order scattering is dominant). Consequently, cor-

relation does not vary significantly at different locations v1

x ,y on the

sensor, and it is sufficient to analyze how correlation CI decays as

a function of the displacement ∆ alone. By contrast, in our setting,

the local support property implies that speckle patterns generated

by an illuminator at location i1x ,y are concentrated at pixels in loca-

tions v1

x ,y adjacent to i1x ,y . This suggests that correlation can vary

at different locations v1

x ,y on the sensor: for example, as we move

away from i1x ,y , less light is measured, and we expect correlation to

be reduced. To characterize this effect of the local support property,

we will modify the definition of the intensity correlation CI so that

it takes as input the displacement between the illuminator and the

pixel rather than only the displacement between the two sources.
3

To this end, we denote the 2D displacement between the illumi-

nator and pixel locations as:

τ ≡ v1

x ,y − i1x ,y . (15)

We visualize both τ and ∆ in Fig. 2(d). For illuminator and pixel

pairs satisfying Eq. (14), it follows that:

v1

x ,y − i1x ,y = v2

x ,y − i2x ,y = τ . (16)

Then, we define the intensity correlation for illumination and

pixel pairs satisfying both the illuminators displacement relation of

Eq. (14) and the illuminator-pixel displacement relation of Eq. (16):

CI (∆,τ ) ≡ CI

(
I i

1

x ,y (i1x ,y + τ ), I
i1x ,y+∆(i1x ,y + τ + ∆)

)
, (17)

where the intensity covariance CI (I
i1 (v1), I i

2

(v2)) was defined in

Eq. (2). We note that we can relate this definition to the definition

of intensity correlation as a function of ∆ alone in Eq. (6) through

the equation CI (∆) =
∑
τ CI (∆,τ ).

3
We note that Judkewitz et al. [2014] have observed that materials with forward-

scattering phase functions produce speckle patterns with local support, and also that

this results in these materials having a larger ME range. In particular, they showed that

the local support of the speckle patterns is related to a larger ME range, as Cf (∆) is
the Fourier transform of the angular speckle spread. However, their study still weighs

all sensor pixels equally when computing correlation values.

To demonstrate empirically the importance of parameterizing

the intensity correlation CI as a function of both ∆ and τ , we use
speckle images captured from chicken breast tissue samples with a

far-field experimental imaging setup described in Sec. 8.1 below. In

Fig. 6, we show the intensity correlationCI (∆,τ ) computed from the

image measurements. We can observe that CI varies significantly as

a function of both ∆ and τ , and in particular that it quickly decays as
the distance τ between the illuminator and pixel location increases.

A schematic of the displacments ∆,τ is visualized in Fig. 2(d). To

our knowledge, the local support property and its effect on intensity

correlations have not previously been used for imaging-through-

scattering applications. In the next section, we provide a theoretical

justification for using this property; then, in Sec. 7, we use it to

develop an improved algorithm for imaging through scattering.

6 SIGNAL-TO-NOISE RATIO ANALYSIS
Previous studies of the full-frame speckle auto-correlation algorithm

that we described in Sec. 3, for example by Wang et al. [2019], have

focused on how the limitedME range constrains the size of the latent

illuminator pattern that can be recovered. In this section, we study a

second constraint on the recoverable latent illuminator pattern that

has received little attention in the literature (see limited discussion

in the supplement of Katz et al. [2014]): the fact that reconstruction

is usually successful only when the number of different illuminators

K in Eq. (7) is sufficiently small. When a large number of incoherent

sources contribute to the measured intensity image, speckle contrast

decays and correlation becomes noisier. For example, this difference

in speckle contrast is noticeable when comparing the sparse and

dense inputs of Fig. 1. We show that, by taking advantage of the

local support property we described in the previous section, we can

significantly increase the signal-to-noise ratio (SNR) of the correla-

tion, and consequently, the density of illuminators we can recover.

We note that the reconstruction algorithm by Katz et al. [2014] has

two parts: first computing speckle correlation, and then performing

phase retrieval. The focus of our analysis is on the first part, the

SNR at which correlation can be computed. Even though we expect

that the performance of the phase retrieval part will also improve

as the noise characteristics of its input improve, a detailed analysis

of phase retrieval convergence is beyond the scope of this work.

We are given a speckle image I formed as in Eq. (7), and want

to examine whether illuminators i1, i2 contributed to its formation.

Denoting the illuminator displacement ∆ = i2x ,y − i1x ,y as in Eq. (14),

we can multiply the zero-mean speckle image Ī with its shifted copy,

then form a correlation estimate using weighted pixel averaging:

cemp(i1x ,y ,∆) =
∑
τ w(∆,τ )Ī (i1x ,y + τ )Ī (i1x ,y + τ + ∆). (18)

We expect cemp to have a large value when an illuminator pair

i1x ,y , i1x ,y + ∆ exists, and a value close to zero otherwise. When

computing full-frame auto-correlation, as in Eq. (10), the spatial

weightsw are uniform over the entire image I . However, if we know
that the speckle patterns have local support, we can consider setting

non-zero weightsw only in a window around i1x ,y , rather than in

the entire image. We state a new technical result showing this can

drastically improve SNR, and derive the optimal weighting strategy.
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To formulate this result, we denote by P the number of sensor

pixels and by F the number of speckle features in the image, where

a feature refers to a diffraction-limited speckle spot. We have F ≤ P ,
where a gap F < P happens for two possible reasons: first, depend-

ing on the aperture, a diffraction limitted feature can spread over

more than a single pixel; and second, even for single pixel features,

the combined speckles from all illuminators may not cover the

entire sensor. Additionally, we denote by K the number of illumina-

tors
4
. Using these notations, we define the density of independent

illuminators as

α ≡ K/F . (19)

Using the density definition we state the following claim:

Claim 2. The signal-to-noise ratio of the estimator of Eq. (18) is

SNR =
E
[
c emp(i1x ,y ,∆)

]
2

Var
[
c emp(i1x ,y ,∆)

] = |
∑
τ w (∆,τ )CI (∆,τ ) |

2

α 2 ·
∑
φ |w (∆,φ) |2 · |

∑
τ CI (0,τ ) |

2
, (20)

and is maximized by the matched filterw(∆,τ ) ≡ CI (∆,τ ), reaching

SNRmatched =
∑
τ |CI (∆,τ ) |

2

α 2 · |
∑
τ CI (0,τ ) |

2
. (21)

We provide the proof in App. A.2. Algorithmically, using the

matched filter requires averaging only within the local image win-

dow where we expect to have speckle from illuminator i1, and not

within the entire sensor as in the full-frame auto-correlation algo-

rithm. We provide algorithmic details in Sec. 7.

Implications. Claim 2 suggests that using the matched filter in-

stead of uniform summation over the image can significantly im-

prove SNR. To qualitatively characterize this improvement, we as-

sume for simplicity that the size of a speckle feature is one pixel, the

support of the speckle pattern due to one illuminator is N pixels,

and all sensor pixels receive light from at least one illuminator, so

that F = P . Suppose also that CI (∆,τ ) = 1 inside the support and 0

otherwise. From Claim 2, the matched and uniform filters achieve

SNRs of

SNR
matched

= 1/(α 2N ), SNR
uniform

= 1/(α 2P ). (22)

Therefore, using the matched filter versus full-frame averaging

improves SNR by N /P . When the sensor size is a few megapixels

and the speckle support of each illuminator is only 100 × 100 pixels,

this translates into an SNR improvement of two orders of magnitude.

We can also use Claim 2 to understand what illuminator density

α we can expect to reliably detect. Suppose that for good detection

we seek an SNR larger than a threshold R. As before, assume speckle

features are single-pixel wide and the full sensor is covered by

speckles. The matched and uniform filters lead to different upper

bounds on the recoverable density:

α
matched

<
1

√
NR
, α

uniform
<

1

√
PR
. (23)

Selecting, e.g.,R = 100 as a threshold for reliable detection, and given

P =F =10
6
, we find that a uniform filter can reliably detect only one

illuminator per 10
4
pixels. By contrast, if the speckle support from

one illuminator includes N =10
4
pixels (e.g., a 100 × 100 support),

4
In the supplement of Katz et al. [2014], density is defined as the area of high emission

in the target, divided by the area of a diffraction limited spot.
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Fig. 7. SNR gain. We visualize the correlation c emp(i1x ,y , ∆) over a 1D
line (highlighted on O ). As this line includes three different illuminators,
we expect to detect high correlations at three displacements. Correlations
resulting from the matched filter (red curves) are less noisy than correlations
from full-frame averaging (blue curves). We simulated observed images I
due to the same illuminator arrangement O and three different speckle
support sizes, visualized as insets at the top right corner of the corresponding
observed images. As predicted by our theory, SNR improves for medium
speckle support size, but decays for very small and very large support sizes.

then the matched filter can reliably detect one illuminator per 10
3

pixels; for N =10
2
, this becomes one illuminator per 10

2
pixels.

We note that the above limits on SNR as a function of illumina-

tor density hold even if all illuminators are within the ME range.

Therefore, the constrained density is a fundamental limitation of

the full-frame auto-correlation method for which there is limited

discussion in the literature.

Visualizing the SNR gain. In Fig. 7, we use a synthetic example

to visualize the SNR gain achieved using the matched filter. We

generate speckle images using the idealized formula I = S ⋆ O ,
so that all pixels are inside the ME range. We use three speckle

patterns S of different support, for the same latent image O . We

then compute cemp(i1x ,y ,∆) as in Eq. (18), for the i1x ,y point marked

in Fig. 7(a). For simplicity we vary ∆ only over one horizontal line

marked in the figure. As the line contains only three illuminators,

we ideally expect high correlation only for three translation values.

We observe that, in agreement with Claim 2, uniform averaging

produces significantly noisier correlations than the matched filter
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(compare the red and blue curves in Fig. 7). In Fig. 7(c), where we use

a medium support N , the matched filter produces sharp correlation

peaks at the correct displacements. In Fig. 7(d), we increase the

support N , and the matched-filter correlation becomes noisier; this

agrees with Eq. (22), which states that SNR
matched

decays as the

support N increases.

We now consider Fig. 7(b), where we use a small support N , and

some sensor pixels do not receive light. The correlation becomes

worse than that obtained with the medium support in Fig. 7(c). To

understand this, we note that when transitioning from the medium

support in Fig. 7(c) to the large support in Fig. 7(d), the illuminator

densityα as defined in Eq. (19) remains the same; as in both cases, the

entire sensor is covered by speckle features so the feature number

F remains the same. By contrast, in the case of small support in

Fig. 7(b), the density α is higher ; this is because the number of sensor

pixels covered by speckle, and thus the number of speckle features

F , are both reduced. Consequently, from Eq. (22), the SNR is also

reduced. This example is important for understanding the near-field

setting, where typically speckle support sizes are small and the

speckles from all illuminators do not cover the entire sensor.

7 OPTIMIZING USING LOCAL SUPPORT
The previous section provides theoretical justification for using

the matched filter, rather than uniform weights. In this section,

we develop a new algorithm for imaging through scattering that

explicitly takes into account the local support.

We begin by noting that, in many practical cases, we cannot

measure the exact correlation CI (∆,τ ), and thus cannot compute

the exact matched filter of Eq. (21). Instead, our algorithm will

approximate it using two binary thresholds Tτ ,T∆, assuming that

speckles from one illuminator are spread over pixels in a window of

size Tτ around it, and that ME correlation holds for displacements

|∆| < T∆. The thresholdsTτ ,T∆ are free parameters that we can fine-

tune to improve reconstruction quality. We show in App. A.5 that

performance is robust to their exact values. As we discuss below, our

algorithm offers improved performance compared to the baseline

full-frame auto-correlation algorithm in situations where Tτ < T∆,
namely when the support from one illuminator is lower than the

ME range. For thick scattering slices, where high-order scattering is

dominant, this relationship does not hold and our approach reduces

to the baseline full-frame auto-correlation algorithm of Eq. (10).

Our algorithm searches for a latent image O such that the auto-

correlation in its local windows will match the auto-correlation in

the local windows of the input image I . We define w∆
and wτ

to

be binary windows with support T∆,Tτ , respectively, and w̄2τ =

wτ ⋆wτ
—note that, from its definition, w̄2τ

is non-binary. Then,

we recover O by solving the optimization problem:

min

O

∑
j ∥Īwτ

j
⋆ Īw∆

j
−Ow̄2τ

j
⋆Ow∆

j
∥2, (24)

where Īwτ
j
, Īw∆

j
,Ow̄2τ

j
,Ow∆

j
denote windows of a given size cropped

from the input and latent images, centered around the j-th pixel.

Eq. (24) uses windows of three different sizes, and we use Fig. 8

to visualize their different roles: Eachwτ
j is a small window whose

support is equivalent to the expected support size of the speckle

pattern due to a single illuminator.w∆
j is a larger window around it,

I O

Iwτ ⋆ Iw∆ Owτ ⋆Ow∆ Ow̄2τ ⋆Ow∆

I O

Iwτ ⋆ Iw∆ Owτ ⋆Ow∆ Ow̄2τ ⋆Ow∆

Fig. 8. Local window selection for optimization.We consider local sub-
windows wτ (light green and cyan frames) whose support is equivalent
to the speckle support size. Each such window is correlated with a wider
windoww∆ (yellow and blue frames) around it, whose support is equivalent
to the ME range. As speckle inside window wτ can arise from a source
outside wτ , Owτ ⋆Ow∆ may not match Iwτ ⋆ Iw∆ . To overcome this, we
use an extended non-binary sub-window w̄2τ = wτ ⋆wτ for O , whose
support is indicated by dashed lines.

corresponding to the maximal displacementT∆ for which we expect

to find correlation, as dictated by the ME range. If the windows

wτ
j ,w

∆
j are centered around pixel ix ,y , then the ∆ entry of the

correlation Īwτ
j
⋆ Īw∆

j
is equal to cemp(ix ,y ,∆) from Eq. (18), where

the matched filter is approximated by the binary windowwτ
.

We note, additionally, that the window cropped fromO should be

wider than that from I . This is because speckle at a certain pixel can

arise from an illuminator within a window around it. For example, in

Fig. 8, no illuminator is located inside the cyan subwindow ofO , but

a part of the speckle pattern is contained within the corresponding

cyan subwindow of I . As a result Owτ
j
⋆Ow∆

j
is a zero image, even

though Īwτ
j
⋆ Īw∆

j
detects three impulses. It is easy to prove that

this can be addressed using the larger, non-binary window w̄2τ
in
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the latent image, indicated in Fig. 8 using dashed lines: in this case,

Ow̄2τ
j
⋆Ow∆

j
correctly detects the same three impulses as Īwτ

j
⋆ Īw∆

j
.

The motivation for the cost of Eq. (24) is that, even if two illumi-

nators in the latent pattern O are at a distance larger than the ME

range T∆, they can be recovered if there exists a sequence of illu-

minators between them, where each two consecutive illuminators

in the sequence are separated by a distance smaller than T∆. For

example, in Fig. 8, the illuminators outside the yellow and cyanw∆

windows are recovered thanks to the intermediate illuminators.

As pre-processing for our optimization procedure, we form an

approximation for the zero mean speckle signal defined in Eq. (8)

by subtracting the local mean of each window:

Ī ≈ I −G ∗ I , (25)

where G is a Gaussian blur filter. The optimization problem in

Eq. (24) is no longer a phase retrieval problem as in standard full-

frame auto-correlation algorithms. We minimize it using the ADAM

gradient-based optimizer [Kingma and Ba 2014]. Gradient evalu-

ation is described in App. A.3, and reduces to a sequence of con-

volution operations that can be performed efficiently, e.g., using

a GPU based fast Fourier transform. For initialization, we set the

latent image to random noise; we have observed empirically that the

optimization is fairly insensitive to initialization. Finally, we note

that even though we could place a windoww j around every pixel

of I , the empirical correlation is insensitive to small displacements

of the central pixel j. Therefore, in practice, we consider windows

only at strides Tτ /2, which helps reduce computational complexity.

To conclude this section, we note that the optimization prob-

lem of Eq. (24) is similar to ptychography algorithms [Rodenburg

et al. 2007]. However, we emphasize that previous ptychographic

approaches for extending the ME range recover the latent illumina-

tors from multiple image measurements, captured by illuminating

different areas on the scattering sample [Gardner et al. 2019; Li et al.

2019a,b; Shekel and Katz 2020; Zhou et al. 2020]. By contrast, our

algorithm recovers the latent illuminators from a single shot.

8 EXPERIMENTS
We begin by evaluating our algorithm in the far-field setting, demon-

strating that even in this setting it provides an order-of-magnitude

extension of both range and density of illuminators that can be

recovered, compared to the full-frame auto-correlation algorithm.

We then proceed to show experiments in near-field setting, demon-

strating again significant improvement over previous approaches.

We discuss the challenges of the near-field setting and show that

they are in agreement with our theoretical analysis.

8.1 Experimental setup
We built two hardware setups shown in Fig. 9, implementing near-

field and far-field imaging configurations.

For the near-field setup, we use a tube lens and an objective lens

to focus a point source (the output of a single mode fiber connected

to a 632 nm laser) into a point source at the back side of a scattering

sample. To image the sample we use a camera placed at the opposite

side of the sample, similarly equipped with a tube lens and an objec-

tive lens. As we discussed in Sec. 4, verifying that the point source
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Fig. 9. Hardware setup. Top row: schematic of far field setup, demonstrat-
ing two illumination configurations used in experimental setup. The first
translates a single point source (fibered laser). The second uses an LED
source with masked area of emission. Second row: schematic of near field
setup. Lower panels visualize our hardware lab setup.

is focused exactly on the back face of the sample is important for en-

suring that our experiments are representative of realistic scenarios

where illuminators are located inside the tissue rather than beyond

it. We confirmed that using a second, control camera. Additionally,

as discussed in Sec. 4, we use a focused configuration where the

camera is also focused at the same plane as the point source, at

the back face of the sample. We verified the camera focusing by

scanning its objective lens along the ẑ axis, capturing a focal stack,

and selecting the position where speckle support size is smallest

and ME range is largest. We used Nikon N20X-PF objectives with

NA = 0.5 and ×20 magnification, and Thorlabs TTL200 tube lenses.

For the far-field setup, instead of placing the source at a large

distance from the sample, we placed it at the Fourier plane of a

lens, creating fully directional illumination. This configuration is

equivalent to a point source infinitely far away from the sample,

and allows for better light efficiency. Likewise, we use a camera

on the opposite side of the sample, focused at infinity. This setup
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Fig. 10. Local versus global auto-correlation. The orientation of the auto-
correlation evaluated in three different local windows of the image matches
the orientation of the arc in the corresponding region of the latent image. By
contrast, the auto-correlation of the full frame is much nosier, and decays
for large displacements due to limited ME.

corresponds to a 4F system around the sample, which we implement

using two macro lenses (Nikon 105 mm f/2.8D).

For scattering samples, we use slices of chicken breast of thick-

nesses ranging between 100 − 400µm. We measure the thickness of

samples by placing them between two microscope slides of known

dimensions, and using a caliper to measure the total thickness.

In both the near-field and far-field setups, we translate the laser

point source at different locations behind the sample, capturing

different images I i
k
at each location. We then sum these intensity

images to form I =
∑
k I

ik
, simulating the input from multiple

mutually-incoherent sources. Having access to the individual I i
k

images is useful for analyzing various algorithmic trade-offs. We

also use a second, single-shot setup, consisting of a binary mask

illuminated by a wide-area, spatially-incoherent 625 nm LED.

8.2 Far-field experiments
Local auto-correlation. In Fig. 10, we visualize the different

structure of local and global auto-correlations. Computing auto-

correlation at small subwindows of the speckle image reveals the

local orientation of the arc in the latent image. By contrast, when

computing the auto-correlation of the full frame, the correlation

is considerably noisier even for small displacements. Correlations

between far illuminators are even harder to detect due to the limited

ME range.

Range and density. As discussed in Sec. 6, a fundamental limi-

tation of imaging-through scattering algorithms is the density of

illuminators they can recover. To demonstrate this, in Fig. 11 we

compare recovery results for illuminator patterns of the same range

and layout, but at different densities. In each case, we display the

densest subset at which the full-frame and our local auto-correlation

algorithms successfully recovered the latent pattern, with our local

approach often handling order-of-magnitude larger densities. We

captured the data by imaging speckle patterns created by individ-

ual point sources placed at different locations, and summing the

speckle images in post processing, allowing us to form test images

at any density of interest. Details on the full-frame phase-retrieval

algorithm we used, as well as a comparison to the sparse approach

of [Chang and Wetzstein 2018] are provided in Sec. 8.4 below.

As we have access to the speckle images generated at each illumi-

nator location, we can compute the decay of ME across the frame.

Denoting by I i
1

, I i
2

the individual speckle images from illuminator

locations i1, i2, and setting ∆1,2 = i2x ,y − i1x ,y , we evaluate:

C(∆1,2) =

∑
xy Ī

i1 (x,y) · Ī i
2

((x,y) + ∆1,2)√∑
xy Ī

i1 (x,y)2
√∑

xy Ī
i2 (x,y)2

. (26)

We plot this correlation at the right of Fig. 12, as a function of |∆|. We

note that for the smile pattern, which was captured with a thin tissue

layer, the ME range covers the entire frame (empirical correlation

does not decrease below 0.8 even for the widest displacement). Even

under these favorable conditions for the full-frame auto-correlation

algorithm, our local algorithm recovers a denser set of illuminators.

In Fig. 12 and additionally in Fig. 24 of App. A.4, we demonstrate

the increased range that our algorithm provides. To achieve this, we

select a few local subwindows from the patterns in Fig. 11, and dis-

play the maximal window for which the full-frame auto-correlation

was successful—each pair of subwindows demonstrates a small win-

dow with reasonable reconstruction and a slightly bigger one where

reconstruction already failed. Overall, in Fig. 11 our local algorithm

successfully handles patterns that are an order of magnitude wider

than the maximal patterns recovered by the full-frame approach in

Fig. 12. There is no inherent limit preventing us from handling an

even larger range, except that in the specific experimental setup we

used, increasing the range would exceed the aperture width.

For the small images of Fig. 12, our algorithm is equivalent to

the full-frame auto-correlation algorithm, as the images are small

enough that they do not fit more than onewτ
window. While both

approaches fail on small images (Fig. 12), the local approach is

successful when applied to larger images, where the full-frame

algorithm still fails (Fig. 11). This is because, when considering

a larger image, our algorithm computes correlation with speckle

patterns at other parts of the frame, providing additional constraints.

Contrasting with classical setup. The patterns recovered in our

implementation are very different from the ones used in previous

full-frame auto-correlation implementations [Katz et al. 2014]. The

patterns in Fig. 11 included about 10
3
illuminators spread near-

uniformly across the area of a 2-megapixel sensor. By contrast,

Fig. 13 shows a typical input for previous full-frame implementa-

tions, where the target pattern is concentrated within a small area of
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Fig. 11. Comparison of our local and the full-frame auto-correlation algorithms. For each example, we show the densest arrangement of illuminators
for which the full-frame auto-correlation algorithm succeeded. In the top example, our algorithm successfully recovered ×32 more illuminators. Even in the
lower example where the ME extends over the entire frame (see correlation plots in Fig. 12), our local approach outperforms the full-frame one. The tissue
thickness of each example, from top to bottom, is 330µm, 340µm, and 200µm.
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Fig. 12. Full-frame auto-correlation algorithm applied to small crops of the patterns in Fig. 11. The yellow and cyan sub-windows demonstrate areas
where reconstruction roughly succeeds, and the magenta and green ones a slightly larger window where reconstruction fails. To the right, we plot correlation
as a function of displacement length |∆ |, as measured for the corresponding tissue slice. Tissue thickness from top to bottom, are 340µm, and 200µm.

(a) Ground Truth (b) Input Speckle Image

Fig. 13. Classical setup illustration. In the classical full-frame auto-
correlation setup, the latent image is usually significantly smaller than
the sensor width, and the number of speckle features it includes is about
×10

4 higher than the number of independent illuminators.

about 100×100 pixels. Yet, the speckle support is much larger, cover-

ing the entire sensor. To achieve this wide speckle spread, previous

implementations either imaged the sample with a lensless sensor

rather than a focused one, or used scattering layers that are thicker

or have wider phase functions. In synthetic simulations of such a

full-frame setup, the phase retrieval algorithm by Fienup [1982]

usually fails if more than 100 sources are included; the number of

sources can slightly increase with a better phase retrieval approach.

Finally, it is worth noting that, as illuminator density increases,

the local approach eventually fails as well. We include an example

of such a failure case in Fig. 22 of App. A.4.

LED illumination. In Fig. 14 and in App. A.4, we show reconstruc-

tions from the single-shot setup of Fig. 9, where the entire area of a

target mask is illuminated by spatially incoherent LED light. The

main challenge in this case arises from the fact that the illumina-

tion is no longer purely monochromatic: different wavelengths are

diffracted in slightly different angles, blurring speckle contrast. In

the mid-order scattering examples that we are considering, this is

mitigated by the fact that the speckle support size is limited, mean-

ing that speckle patterns are less affected by blur. To reduce this

effect, we placed a 10 nm band-pass filter at the LED output.

8.3 Near-field experiments
In Fig. 1 and Figs. 15 and 16, we show reconstruction results from

our near-field setup. The first set of examples (Figs. 1 and 15) come

from thinner tissue layers (L = 100 − 150µm), for which scattering

is modest and the latent pattern may be recognizable from the de-

graded input image. Our algorithm still improves the pattern quality

significantly, and reconstructs fine details obscured by the speckle.

On the other hand, even this modest degradation is challenging for

the full-frame approach, which fails unless applied on a significantly

sparser set of illuminators (last rows of Figs. 1 and 15).

For the second set of examples in Fig. 16, the sample thickness

is larger at L ≈ 200µm, and thus the degradation is stronger. This

reconstruction task is more challenging for two reasons: First, the

ME range is limited, as seen by the correlation curve at the right of

Fig. 16. Second, the illuminator density is large. Our local algorithm

outperforms the full-frame auto-correlation approach, but its recon-

struction is not free of artifacts either. In the lower rows, we zoom
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Ground Truth Input Full Frame Our Windowed

Fig. 14. Far-field reconstruction using a single shot acquisition setup.Our local correlation approach outperform the classical full-frame auto-correlation.
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Fig. 15. Near-field comparisons. We compare our local and the full-frame auto-correlation algorithms on thin tissue examples (L = 100 − 140µm). Despite
the seemingly small degradation, the full-frame approach fails unless provided an input composed of a considerably sparser set of illuminators. To the right
we plot correlation decay as measured using images of individual sources through the corresponding tissue slice.
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Fig. 16. More near-field comparisons.We now use a thicker tissue slice (L = 200µm). The lower rows zoom on two of the digits in the 2nd row demonstrating
reconstruction at a few different densities. Reconstruction degrades as density increases. The full-frame approach was successful at a considerably lower
density than our local approach.

on two of the digit patterns, showing reconstructions for different

illuminator densities. Our local approach performs worse as density

increases, but still outperforms the full-frame approach, which is

successful only at considerably smaller densities.

To demonstrate the difference between the far-field and near-field

settings, in Fig. 17 we compare reconstructions of a line pattern of

the exact same length, from far-field and near-field measurements.

We can see that the far-field speckles cover a much larger area of the

sensor than the near-field ones. These additional speckle-covered

pixels help improve the SNR of the far-field correlation estimates.

The explanation for this difference is the same as for the difference

between the small and medium supports in Fig. 7(b,c): the near-field

image in Fig. 17, due to the many pixels that do not receive light, has

a larger effective illuminator density than the far-field image. This

larger density results in worse correlation SNR, and thus reduced

reconstruction quality. As another way to see this, we show in Fig. 18

speckle patterns from a single point source captured under near-field

and far-field conditions, and the corresponding auto-correlation S̄⋆S̄ .
Both auto-correlations resemble an impulse, up to noise. However,

we observe that the near-field speckle image includes much fewer

speckle features than the far-field one. Consequently, there is more

noise in the near-field auto-correlation image than in the far-field

one. This increased noise results in the reduced quality of the near-

field reconstructions.

Previous near-field implementations. The only reported attempt to

apply speckle auto-correlation techniques in the near-field setting

that we are aware of is by Chang and Wetzstein [2018]. A direct

comparison between our results and theirs is not possible, as the two

sets of experiments use very different scattering samples. In particu-

lar, the speckle images captured by Chang and Wetzstein [2018] are

similar to the ones used by Katz et al. [2014], comprising a target pat-

tern concentrated with a small sensor area, producing non-localized

speckle patterns covering the entire sensor. The ME range reported

by Chang and Wetzstein [2018] was approximately equal to a 10µm

displacement. Accordingly, their experiments recovered illuminator

patterns of size 10µm × 10µm. By contrast, the size of the near-

field illuminator patterns we recovered scales up to 65µm × 65µm.

Below, we additionally compare with their robust phase-retrieval

algorithm, using measurements captured with our imaging setups.
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Fig. 17. Comparison of near-field and far-field settings for a line pat-
tern. Even though the ground truth pattern is similar, the near-field speckle
pattern has a much smaller support size. As more speckle pixels are provided,
the far-field correlation is less noisy, improving reconstruction quality.

Far-field Near-field

Fig. 18. Single-point-source auto-correlation. The auto-correlation of
speckle images due to a single source S̄ ⋆ S̄ resembles an impulse plus noise,
in both the near-field and far-field cases. However, in the near-field case,
this auto-correlation is noisier, as fewer speckle features are averaged. The
single-source speckle images S̄ are shown in the insets.

8.4 Comparison to alternative algorithms and limitations
In all of the previous figures, the reconstructions for the full-

frame approach are achieved using an ADAM optimization proce-

dure [Kingma and Ba 2014] with non-negativity constraints. This is

analogous to Wirtinger flow optimization for phase retrieval [Can-

des et al. 2014; Chakravarthula et al. 2019]. We found that this

approach works better than the classical optimization algorithm

by Fienup [1982]. We show comparisons between these two algo-

rithms in Fig. 19, using sparse and dense sets of illuminators for

both the far-field and near-field examples from Figs. 11 and 16. For

these examples the Fienup-based full-frame variant (Fig. 19(b)) did

not converge, whereas the ADAM-based full frame variant con-

verged on the sparse set and failed to converge on the dense one.

We additionally attempted to optimize the full-frame approach with

the ADMM-based phase retrieval algorithm of Chang and Wet-

zstein [2018], which uses an L1 regularization term. As shown in

Fig. 19(c), this performed better than the Fienup-based variant, but

provided results very similar to the ADAM-based variant for most

examples. We believe this is because the non-negativity constraints

we enforce during ADAM optimization already leads to sparse solu-

tions. We note in Fig. 19 that all variants of the full-frame approach

fail as we further increase the illuminator density. By contrast, our

local correlation approach is successful in the higher density case,

as shown in Figs. 11 and 16.

Given the local extent of theME, another option onemay consider

is cropping local windows from the full speckle image, running the

full-frame auto-correlation approach on each local window, and

then seaming the individual local solutions. However, as shown in

Fig. 19(e), the independent solutions are rarely consistent and the

seamed result has strong artifacts. We also note that the solution

of the full-frame approach in each local window is only defined up

to an arbitrary flip or shift. For the result in Fig. 19(e), we favored

this algorithm by flipping and shifting each window to best match

the groundtruth. Even under this simplification, this algorithm is

inferior to our approach that jointly optimizes all local windows.

Finally, in Fig. 19(f), we compare against the approach of Wang

et al. [2019] for extending the range of imaging-through-scattering

algorithms. Their model assumes the latent image O can be decom-

posed into two parts O1,O2 of a smaller extent, and the ME applies

in each window separately. Mathematically, they model the image

formation as I = O1 ⋆S1 +O2 ⋆S2, where S1 and S2 are the speckle

patterns from a single illuminator in each region, and which are

assumed to be decorrelated, S1 ⋆ S2 = 0. They then try to simul-

taneously solve for two smaller support images O1,O2 satisfying

O1 ⋆O1 + O2 ⋆O2 = I ⋆ I . As seen in Fig. 19, this approach was

successful on the far-field sparse examples, but failed on the denser

and near-field examples. The reason for this is that, in our examples,

the correlation decays gradually, and thus the assumption by Wang

et al. [2019] that speckle patterns at different parts of the image are

completely decorrelated does not hold. Additionally, the range of

the latent illuminators is much larger than twice the ME range.

Runtime. Compared to the full-frame auto-correlation approach,

one disadvantage of our algorithm is increased computational cost.

In particular, our unoptimized Matlab implementation, when run-

ning on an NVIDIA Quadro RTX 8000 GPU, requires a few hours to

converge for each of the results in this section. Gradient evaluations

make up the bulk of this runtime. Gradient evaluations are essen-

tially a sequence of convolution operations, which we implement

using Matlab’s GPU-based fast Fourier transform function. These

gradient evaluations can potentially be accelerated using more so-

phisticated GPU-based convolution libraries. We also note that our

optimization procedure only needs to be run once, as its results are

insensitive to initialization. By contrast, iterative phase retrieval

algorithms such as the algorithm by Fienup [1982] typically require

multiple runs with different initializations.

9 DISCUSSION
We provided a comprehensive study of algorithms using the speckle

ME to image through scattering. Using theory, simulations, and

real experiments, we investigated the inherent limits of these ap-

proaches. In particular, we explored whether these approaches can
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Fig. 19. Comparison with alternative reconstruction algorithms. Considering far and near field examples visualized in Figs. 11 and 16, we evaluate a few
alternative strategies. (b-d) show different full-frame phase retrieval approaches. Classical Fienup optimization [Fienup 1982] is rather noise sensitive. [Chang
and Wetzstein 2018] proposed a better algorithm introducing a sparse prior and ADMM optimization. In this work we used gradient decent update with
ADAM step selection size, with similar results. These algorithms can solve the full frame phase retrieval on a sparse subset of the sources, but fail on a denser
one. In contrast, our local cost led to much better results as presented in Figs. 11 and 16. (e) Solving the standard phase retrieval problem on independent local
windows and seaming the results in post processing leads to noticeable artifact. (f) Seeing beyond the ME range [Wang et al. 2019] by decomposing the
speckle auto-correlation into two independent parts is sometimes successful on the sparse data, yet fails on the dense one.

be applied to practical biomedical imaging scenarios, where illumi-

nation sources are located inside, rather than far behind, a scattering

sample such as a tissue layer.

We reported the following important findings of our study: First,

we showed that the ME is affected by the angular difference be-

tween illumination sources and not by their actual displacement.

Second, we showed that the correlation of speckle intensities can

be improved through simple design choices in the imaging setup;

in particular, we found that the ME range is maximized when us-

ing a lens focused at the illuminator plane. Third, we showed that

it is important to closely replicate near-field imaging conditions,

by ensuring that illuminators are accurately placed exactly behind

the scattering sample, as doing otherwise can artificially increase

the ME range. Fourth, we found that, in the near-field setting, the

angular displacement for which significant correlations exist can

correspond to actual displacements smaller than the illumination

wavelength. As a consequence, ME approaches are only applicable

to the near-field setting when considering scattering samples of

modest thickness, where mid-order scattering is dominant. This

thickness range still corresponds to penetration depths consider-

ably beyond those achievable by a standard microscope. Therefore,

analyzing and developing new ME approaches for imaging through

scattering in this range can benefit biomedical imaging applications.

Our study additionally highlighted an important property of

speckle intensity patterns formed due to samples where mid-order

scattering is dominant, when imaged with a focused lens. These

patterns have a small support size, typically much smaller than

the sensor size. We showed theoretically and experimentally that

using this local support to create a matched filter when comput-

ing speckle correlations can boost the SNR of latent illuminator

detection by orders of magnitude. We additionally developed an

algorithm that takes advantage of this property, by operating as

a local version of classical full-frame auto-correlation techniques.

Through experiments on real measurements captured using both
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Fig. 20. Reconstructing fluorescent beads. We demonstrate single-shot
near-field imaging of fluorescent beads attached at the back of a 100µm

chicken breast slice, and the reconstruction produced by the full-frame and
our local auto-correlation approach. Speckle contrast is low due to the weak
emission of fluorescent beads (see a close-up on imaging noise in the inset),
and due to the fact that the emission is not fully monochromatic.

far-field and near-field imaging configurations, we showed that our

algorithm provides an order-of-magnitude improvement in terms

of both the range and the density of recoverable illuminators.

Furthermore, our study shed light on two fundamental challenges

associated with the near-field case. The first challenge is the fact that

the ME holds for very small displacements. The second challenge

relates to the fact that, even after exploiting the local support, only

sparse latent patterns are recoverable. These challenges still leave

ample room for applications in medical imaging settings where

sparse targets are considered, for example STORM imaging of blink-

ing fluorescent molecules, sparse nuclei, or other cell components.

Additional challenges can arise due to reduced speckle contrast

and signal-to-noise ratio in measurements captured under real near-

field fluorescent imaging conditions. To highlight these challenges,

in Fig. 20 we show captured speckled patterns generated by a sparse

set of fluorescent beads placed at the back of a tissue sample, as

well as the reconstructions produced by the full-frame and our local

auto-correlation techniques. Details on the experimental setup are

provided in App. A.6. The quality of the input speckle images is

severely affected by two factors. First, as in Fig. 14, the light emitted

by the fluorescent beads is spectrally broadband, reducing speckle

contrast. Second, the fluorescent emission is very weak, leading to

noisy images. Despite these challenges, we observe that our local

auto-correlation algorithm significantly improves reconstruction

quality compared to the full-frame baseline. Therefore, our results

showcase both the strong potential of local auto-correlation tech-

niques compared to full-frame variants, and the need for further

research towards ME techniques that are fully-robust to real experi-

mental conditions in applications such as fluorescence microscopy.

Last but not least, by drawing attention to the local support char-

acteristics of near-field speckle images, our results open the door

for future research on using different image processing approaches

for imaging through scattering, such as local deconvolution [Wu

et al. 2020] and sharpening operations. A particularly promising

direction is adapting the large array of mature blind deconvolution

techniques to the imaging-through-scattering setting, by developing

appropriate prior models for the scatter-free images and (spatially-

varying) speckle blur kernels. Our study on the statistics of speckle

patterns, and their dependence on the scattering layer geometry

and material properties, can help inform the development of such

priors.
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