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Abstract—An efficient scheme for the multiple-access multiple-
input multiple-output (MIMO) channel is proposed, which oper-
ates well also in the single user regime, as well as in a direct-se-
quence spread-spectrum (DS-CDMA) setting. The design features
scalability and is of limited complexity. The system employs opti-
mized low-density parity-check (LDPC) codes and an efficient it-
erative (belief propagation—BP) detection which combines linear
minimum mean-square error (LMMSE) detection and iterative in-
terference cancellation (IC). This combination is found to be nec-
essary for efficient operation in high system loads a > 1. An
asymptotic density evolution (DE) is used to optimize the degree
polynomials of the underlining LDPC code, and thresholds as close
as 0.77 dB to the channel capacity are evident for a system load
of 2. Replacing the LMMSE with the complex individually op-
timal multiuser detector (I0-MUD) further improves the perfor-
mance up to 0.14 dB from the capacity. Comparing the thresholds
of a good single-user LDPC code to the multiuser optimized LDPC
code, both over the above multiuser channel, reveals a surprising
8-dB difference, emphasizing thus the necessity of optimizing the
code. The asymptotic analysis of the proposed scheme is verified by
simulations of finite systems, which reveal meaningful differences
between the performances of MIMO systems with single and mul-
tiple users and demonstrate performance similar to previously re-
ported techniques, but with higher system loads, and significantly
lower receiver complexity.

Index Terms—Code-division multiple access (CDMA), iterative
decoding, low-density parity-check (LDPC) code, multiple-input
multiple-output (MIMO) channel, multiuser.

1. INTRODUCTION

ANY schemes have been designed to approach the

overwhelming multiple-input multiple-output (MIMO)
channel capacity [1], in particular, the case of channel state
information (CSI) known at the receiver but not at the transmitter
is often studied. A detailed description of the popular MIMO
settings and their solved or unsolved capacity limits is given in
[2]. The multiple-access MIMO capacity is given in [1], where
it is shown that since the single-user capacity is achieved with
transmissions that are uncoordinated between the antennas,
which corresponds to a multiple-access channel (MAC), the
sum rate multiple-access capacity over an ergodic channel is
equal to the single-user capacity. Code-division multiple access
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(CDMA) is closely related to MIMO as a single mathematical
model models both, with the MIMO propagation coefficients
corresponding to the symbols of the CDMA spreading sequences
[3]. This supports the use of the well-studied CDMA-based
multiple-access techniques in MIMO channels (with either
single or multiple access). Although [1] relates to ergodic
MIMO channels, which are not block fading, if one assumes
an asymptotically large system, then each block considered
is an ergodic and stationary realization of the same process.
Thus, the equality of the multiuser and single-user capacities
is true only as long as an asymptotic number of antennas
is considered, while for a finite number of antennas, similar
conclusions require further study of the outage capacity, which
is beyond the scope of this paper.

The asymptotic capacity of the CDMA channel is explicitly
calculated in [4] for unconstrained signaling, where the number
of users and chips is taken to infinity, while their ratio remains
fixed. The Replica method is used by Tanaka in [5] to extend
this result to a binary phase-shift keying (BPSK) signaling and
to a quadrature phase-shift keying (QPSK) signaling in [6].
Since the asymptotic analysis assumes randomly generated
spreading sequences and since it relies on an eigenvalue
distribution, which is robust to the statistics, the analysis
remains valid for the MIMO channel (that is, a flat-fading
MIMO channel with independent fading coefficients). Many
proposed communication schemes are based on the diversity
achievable through the MIMO channel. A good overview of
such systems is given in [7].

We distinguish between systems which achieve good spectral
efficiency [8]-[10] and which maximize the diversity: [11]-[13].
Iterative receivers, in which a detector and decoder exchange
extrinsic information, are known to perform well in a variety
of communication systems and specifically in multiple-access
systems such as CDMA [14], [15]. The asymptotic information-
theoretic loss due to separated decoding and detection is given
in [16] and strongly justifies the use of iterative schemes.
A CDMA multiuser detection technique used over MIMO
channels is presented in [9] for lower channel loads. An
asymptotic analysis of the linear minimum mean-square error
(LMMSE) multiuser detector (MUD) is given in [17]-[19].
Boutros and Caire ([14]) include this analysis in a density
evolution (DE) analysis of an iterative receiver for a trellis-coded
CDMA. This DE analysis is also used in [20] for analyzing
regular low-density parity-check (LDPC) codes over a CDMA
channel. The use of an LDPC decoder with an LMMSE
multiuser detector enables the elegant DE analysis of the
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receiver in the asymptotic realm. DE was originally described
by [21] for the analysis of belief propagation (BP) decoders for
LDPC codes. These rediscovered codes are known to perform
well and many researchers report excellent performance such
as a code with a gap to capacity of 0.06 dB for an additive
white Gaussian noise (AWGN) channel [22]. Such codes have
been included in designs for fading channels [23] and finite
MIMO channels [24].

In this paper, we use asymptotic techniques to construct
a multiuser MIMO communication system employing LDPC
codes and an LMMSE detector. The asymptotic approach
enables us to employ exact analytical expressions for the MUD
and the LDPC codes which could not be done for finite systems
in [20], [25], [24]. We show that the cycle-free assumption
holds so that the DE analysis is exact in the asymptotic realm
and we also demonstrate its validity for rather large but still
finite systems. Using the analysis we optimize the degree
distribution pair (DDP) [21] of the underlying LDPC code
which is iteratively decoded and detected with the LMMSE
detector. Asymptotic techniques [26], [14] are also used for
the capacity evaluation so that the quality of the scheme
is verified. The LDPC codes are optimized to iterate with
LMMSE detectors or alternatively with individually optimal
multiuser detectors (IO-MUD). Comparing the thresholds of
the resulting schemes to the capacity for high channel load,
reveals excellent performance, with a gap to the capacity
of 0.77 dB for the practical LMMSE and 0.14 dB for the
I0-MUD, the complexity of which is prohibitive. The LDPC
codes are optimized with a global search algorithm (differential
evolution) to maximize the spectral efficiency. Simulations
of finite systems verify the asymptotic expectations of both
CDMA and MIMO for 100 antennas/chips, for single- and
multiple-user systems with block lengths of 1.5 x 10° and
104, respectively. Simulation results of the design exemplify
the robustness to the number of users.

This paper further demonstrates via examples and an extrinsic
information transfer (EXIT) analysis the importance of code
optimization foramultiuser setting where equal-rate equal-power
users are enforced. This point is particularly important since
in the existing literature there is a sort of dichotomy. On the
one hand, results such as [27] and [28] consider the case
where near-capacity performance is achieved by successive
decoding enabled by allocating different powers to equal-rate
users, or by allocating different rates to equal power users.
In this case, it is clear that very powerful single-user codes
perform well, and that the iterative multiuser decoding scheme
serves just as a countermeasure for cleaning up the signal
from residual errors. On the other hand, results such as
those obtained in [29] for the two-user channel show that by
properly designing the user codes, any point on the whole
dominant face of the capacity region can be approached
without the aid of time sharing. This indicates that by a
proper multiuser code design, the iterative BP decoder can
indeed approach the performance of a full joint multiuser
decoder.

This paper confirms this fact in the large-system limit and
MIMO MAC. It shows that codes which are suboptimal in
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the single-user case are able to achieve performance very
close to the theoretical limit even though no shaping of the
received powers and/or of the transmitted rates in order to
induce implicit successive interference stripping is enforced.

In addition to the advantage of the reduced complexity of
the transmitters in the multiuser scheme, the use of a single
code is crucial when multiplexing a single long code between
the transmitting antennas of a single user working over a finite
MIMO channel. The proposed scheme also employs parallel
scheduling, which is more practical in systems facing delay
constraints.

In the following, we denote vectors by bold-face letters and
the elements of the vectors as light-face letters with the proper
subscript.

II. SYSTEM DESCRIPTION

In this paper, we deal with the multiple-access communication
channel where each user transmits an independent information
via a single antenna over an independent Rayleigh-fading
channel to a receiver equipped with M antennas. We as-
sume full synchronization, perfect power control scheme with
a single class of K users. A generalization of this work
to several classes and/or received powers follows the same
lines. The channel load « is defined by % in parallel to an
equivalent direct-sequence CDMA (DS-CDMA) setting [14].
The receiver, in the proposed scheme, has full knowledge
about the CSI, while the transmitters have no CSI available.
The MIMO channel coefficients {hyj ,}&_; remain constant
along an entire transmitted block and are then randomly and
independently chosen again for the next transmitted block,
so we drop the block index 7 in the following. The sta-
tistics of this model describes the quasi-static block-fading
MIMO channel, while the proposed analysis applies also to
the case of a fast fading channel. The model also covers a
multiple-access MIMO system with K, < K users, where
each transmitter can use a number of % antennas, not nec-
essarily a single one. We can also consider the case of a
single-user MIMO system, as a special case of the general
setting above, where there is one user K,, =1 using all % =K
transmitting antennas. Thanks to the similar asymptotic statis-
tics of MIMO and random CDMA which are both characterized
with elements drawn independently and identically distributed
(i.i.d.) with vanishing odd-order and finite fourth-order mo-
ments [5], [18], the designed scheme is good also for random
CDMA.

For example, in multiuser DS-CDMA systems: M is the
processing gain, and {hy }2_, are the K signatures sequences.

A. The Transmitters and the Channel

The channel (1) is defined along the lines of [14]. The re-
ceived vector g, of length M, at symbol time ¢, consists of a
linear superposition of the K transmitted symbols {zj +}X_,
multiplied by the vectors of channel coefficients {hs}X | by
scalar random phases {e/%:}K__ and by the received ampli-
tude /7. The reception suffers from an additive Gaussian
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complex noise v; ~ N¢(0,1)!

K
Yt = \/%theﬁk'tﬂfk,t‘iﬂlt (D
k=1

In MIMO systems hy, ~ N¢(0,I). We use QPSK signals so

+ }

{ V2 T2

To render the multiple-access interference independent of the
transmitted codewords, e/%+* is randomly, independently, and
uniformly generated from { j:\}_ + \}_} [14]. Thus, the perfor-
mance seen by a user is independent of the symbols transmitted
by the other users and thus the analysis can be limited to the
case where all users transmit the all-zero codeword without re-
ducing its generality. The receiver has full knowledge of the re-
ceived powers A e the channel coefficients hy, and the random
phases /%, Notice that we normalized the received power
with M so that each transmitting antenna is received with a
total received power of ﬁ—o = 7, regardless of the number of re-
ceiving antennas, where F is the total received energy from one
transmitted symbol and N, /2 is the double-sided power spec-
tral density. All the users encode their information bits {u, } F_,
(ur, € {0, 13VAD) to {wi 1S (wi € {0, 1}, v = (1))
with the same LDPC code of length N and then apply an in-
dependent random bit interleaving ({m, }X_;) when the inter-
leaved bits are denoted by wg r,(n) = Vk,n. The interleaved
vectors {wy, x, (n) }kK;]inzl are then modulated into QPSK sym-
bols

1 .
Tt = E(l — 2w 2e-1 4+ J(1 = 2wp 2¢)). (@)

We use an LDPC block code with length N and rate R and there-
fore each transmitted block consists of ¢ = 1,..., % QPSK
symbols and

Eb - ES 1 Yy
NO - NO 10%2(4)R 2R

The MIMO transmitter is depicted in Fig. 1.

B. The Receiver

The signal (y;) is received by a MUD which produces soft
information in the form of log-likelihood ratios (LLR)

n=0
LLR;,, = log Pr(v’“ | y)

- 3
(o = 1] 90) ©)

about the individually coded bits of the K users (Pr or P stands
for probability and log is the natural logarithm). These are
passed on to the K (or K,) LDPC decoders, which apply a
decoding algorithm that produces extrinsic soft outputs. The
soft outputs of the single-user decoders are fed back to the
MUD (extrinsic LLR in the case of an optimal detector and
extrinsic symbol estimation Z in the case of a linear detector),

IThe symbol ~ means “distributed as” and N'c (0, I) represents the vector
complex Gaussian density with zero mean and covariance matrix that equals the
identity matrix I.
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Fig. 1. A transmitter scheme, within a multiple-users system, when the
pseudorandom phase is denoted by 8, the LDPC code as C, the information as
u, and the modulated symbol as x. The rightmost arrow indicates the signal to
be transmitted.

Channel | Single User - SISO Decoder ——— = ¥ =p
Output Multiuser| L
—=Single User - SISO Decoder ————| 7 =}
Detector —
——Single User - SISO Decoder ‘i ~

u3.n

Fig. 2. An iterative receiver scheme. The MUD outputs are connected to the
soft inputs of three decoders and the soft output (single-in single-out (SISO)
decoders) of these decoders are fed back to the MUD (each arrow here represents
N connections). After enough iterations, the outputs are hard-limited and then
forwarded as the final decoded word {it; ., }5.Y . _;.

which can then improve its outputs along the iterations, see
Fig. 2. The MUD’s outputs remain extrinsic with respect to the
MUD’s inputs, as seen in the sequel.

1) The Multiuser Detector: Recall from (1) that the inputs
to the receiver are yg, {hi }5_;, {01+ 12 |, v, and the inputs to
the multiuser detector in the iterative scheme are

Y, {h’k}k 15 {Hk t}k 127 {LLRnk}k 1,n=1"

a) An individually optimal MUD: The nonlinear and
highly complex IO-MUD ([26] and [27]), which ignores
any code structure, can be used to calculate the LLR for
the nth bit of the kth user. Denote H = [hy,..., hg] and
O = diag(b1n,. . .,0k n), then the IO-MUD can be expressed

as
st =0 | 46, LLR .
LLRk,n — 1o og {’U)k k(n) — |yt [k, ]}
P{wk m(n) = =1 | Yt, LLR[k n]}
1 Zwteug exp(—=D(w;) + Pr . (w;)) @
= log 2T
i Yoweuy  XP(=D(we) + Prn(w:))
where

D(w; é Iyt \/ L HOz(w,)|?

Pk,n(wt) é 5 (1 — 2’!1)[k T (n)])LLR[k ,n.k(n)]7

and w;, = {wj 2¢—1, wjygt}f"zl is the vector of coded bits at
the inputs of the K modulators at symbol time ¢, so that w; €
{0,1}2K The vector z(w;) is the vector of the K symbols that
correspond to w; and is calculated according to (2). Uy ,,, Uy, ,,
are the two vector spaces over {0, 1}2% that are spanned by all
possible w; with the nth bit of the kth user wy, x, (n) = Vk,n set
to be 0 and 1, respectively.

Wik, (n)] € {0, 1}2K71 and LLRy 7, (n)) € R2E-1
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are the 2K — 1 interleaved bits and the corresponding LLR (the
overline indicates that these LLR correspond to the interleaved
bits) that result when excluding wy, ., () and LLR, -, (,) from
w,; and LLR,, respectively. We define the function

7
=1
2

such that s(k,n) represents the interleaving and partitioning of
N coded bits into % symbols, performed in every transmitter,
so that t = s(k,n).

b) An LMMSE: The optimal MUD can be approximated
by linear filters combined with interference cancellation (IC).
This approach, which ignores any constellations constraints, is
widely used and can be implemented with a polynomial com-
plexity in the number of users [14]. A known effective linear
multiuser detector is the LMMSE which minimizes the mean-
square error (MSE) ¢ at its output. In the iterative interference
cancellation scheme (LMMSE-IC) we define ¢;; to be the es-
timated power of the residue of the canceled j user in symbol
time ¢

4hm;4hme{q”.

& =Bl — &4 (5)

where E(z;; — &) = 02 and

; 1 LLR; 21— , LLR; o
Tjt = \/5 <tanh (%) +3 tanh < 2],21‘)).
(6)

We occasionally drop the time index ¢ to allow simpler notations
in the sequel. Since the cycle-free assumption holds for a finite
number of decoder iterations (see Theorem 1 in Section IIT) and
the users are uncoordinated and uncorrelated, we have

Vj#k

If we define ¥, =T+, 2k &h;h! (the covariance matrix
of the multiple-access interference (MAI) plus the noise) and

A vy NIZES
yk—”MZhle] xT;

ik

E(zr — &) (2 — &) = 0,

then the estimation of the symbol of the k-user from the
LMMSE-IC MUD minimizing &, is [30]

_ VRS (v - )
YREE, thy,

2k

)

The symbol estimation is converted to the LLRs of the coded
bits with a simple QPSK demapper x for the Gray mapping

(LLRk,w,jl (2t—1)7 LLRk,w;1(2t))
=x(e? 2y y) =

=2V2SNR(R{e/®** 2, }, 3{e% 2y, 1 })

where 71',:1 is the inverse interleaver mapping of the bits that cor-
respond to the symbol which is estimated by z; ; and SNR =
LhHS, thy is the signal-to-noise ratio (SNR) at the output

2E is the expectation operator.
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Fig.3. Areceiver scheme for QPSK transmissions of two users, each encoding
with a regular (2,4) LDPC code and using a random bit interleaver.

of the LMMSE [30]. These equations represent both the con-
ditional and unconditional LMMSE filters [14], [19]. The con-
ditional LMMSE filter minimizes the MSE E|zy, ; — 21 +|* with
the per symbol estimated powers of the interferers {; ; } JKzl itk
conditioned on {&;;}1, ;. namely

Lo =1— |25)°

On the other hand, the unconditional LMMSE assumes these es-
timated powers remain approximately constant along the trans-
mitted block and estimates them once for the entire block as

N
2 o . 9
5j,t:5j:1—ﬁ2|xj,t| :

Thus, the unconditional LMMSE requires the recalculation of
the filter for every user and every iteration, but not for every
symbol, which is done with the conditional LMMSE. The latter
thus suffers an increase of approximately N/2-fold in the MUD
complexity. It is seen in the following sections that in terms of
complexity—performance tradeoff, the conditional LMMSE of-
fers only a minor performance improvement over the uncondi-
tional LMMSE.

2) The Decoder: To decode the LDPC codes, the receiver
utilizes the well-known BP decoder [21]. Such decoders are
often described using a Tanner graph, which is composed of
variable nodes and check nodes and of interconnecting edges.
The variable nodes for the standard single-antenna single-user
channel are initialized by the channel outputs (which remain
constant along the iterations). The overall multiuser receiver
graph, however, is composed of three classes of nodes: the N x
K LDPC variable nodes and the N x (1 — R) x K check
nodes that represent the individual codes’ parity-check equa-
tions, and the % multiuser detector nodes that iteratively im-
prove the LLRs. This is illustrated in Fig. 3, where two users
with a regular (2,4) LDPC user code of length 8 and QPSK sig-
naling, are decoded and detected using four multiuser detector
nodes and two LDPC Tanner graphs.

3) Iterative Detection and Decoding: The overall receiver
steps through four phases in each iteration, as shown in Fig. 4. In
the figure, the user interleavers and the LDPC code interleavers
are denoted as 7, and 7., respectively; x represents the symbol
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Fig. 4. [Illustration of the four phases 1,2,3,4 in each receiver’s iteration. The
four phases are marked by (#).

to bit estimations conversion. The plus signs represent the check
nodes, when they are enclosed by squares, and variable nodes,
when they are enclosed by circles. On the first iteration the mul-
tiuser detector estimates K X % symbols without any a priori
information from the SISO decoders, which means that it acts as
detector in a separate detection-decoding scheme. During phase
1, all the likelihood ratios, calculated from these symbol estima-
tions are simultaneously forwarded to all the respective variable
nodes of all the users’ decoders. These variable nodes then send
messages to the check nodes, which reply back (phases 2 and 3).
The messages from variable to check and from check to variable
nodes are denoted as VC and CV, respectively. The replied CV
messages are added at each variable node, to provide the mul-
tiuser detector with independent estimations of the transmitted
symbols for the next iteration (phase 4). These CV messages
represent the decoder’s current extrinsic estimations of the cor-
responding bits.

The CV messages are stored during the first and fourth
phases, so the variable nodes can sum the extrinsic information
from both the MUD and the check nodes.

The message to the MUD (beginning of phase 3) and the mes-
sage from the MUD (end of first phase) remain independent,
since the MUD receives only a sum of extrinsic CV messages,
without the initial values of the corresponding variable nodes,
originally supplied by the MUD, and also due to the MUD con-
struction (7), (4).

The proposed receiver uses parallel scheduling, so that all the
users are simultaneously detected, decoded, and then subtracted
in every iteration. It is different from e.g., BLAST (Bell Labs
layered space—time) and [28] techniques which sequentially de-
tect, decode, and subtract user after user. In this paper, we search
for effective codes, so that the LDPC decoder would iteratively
improve the multiuser detector’s a priori inputs (Z) and reach a
low bit-error rate (BER).

A receiver with IO-MUD (see (4)) does not require the
symbol-to-bit y and the bit-to-symbol estimation conversions,
since the IO-MUD includes the constellation information and
outputs the corresponding LLRs.

III. ASYMPTOTIC ANALYSIS

We follow [14] and [26] and use an analysis of asymptotic
systems, where the code length, number of users, and number of
antennas is taken to infinity, while the channel load and number
of iterations remain fixed. Such analysis, which considers the
statistics of the channel, gives rise to a decoder graph with no
finite cycles for a trellis code, to concentration theorems, and
also to elegant analytical expressions [14] when using the linear
MUD. It is known from [26] that in such realm, the outputs
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of both the LMMSE and the I0-MUD converge to Gaussian
random variables. Thus, the multiuser efficiency 7 [4], defined
as the SNR at the output of the multiuser detector divided by
the SNR of a user with no interferers, is sufficient to describe
the density.

In order to verify the convergence of the MUD’s outputs, so
the convergence theorems of [14] hold, in a system that uses
LDPC code, first we have to ratify that the empirical distribu-
tion of the estimated interfering symbols z, calculated from the
SISO outputs, converges to some limiting distribution for a finite
number of iterations. Unlike trellis codes, for which [14] proved
the convergence of the SISO decoders’ estimations, the outputs
of LDPC BP decoder are time dependent, so one might suspect
that since N — oo, and then K — oo, a situation where the
SISO’s symbol estimation has no limiting density can happen.
To show that this is not the case and thus extend the proof of
[14] to LDPC codes, first we claim the following.

Theorem 1: The randomly built graph of the entire receiver
converges to a graph free of finite cycles as the block length
N — oo.

Proof: We can use the LDPC single-user decoder cycle-
free proof for finite number of iterations of [21] (notice that the
cycle free proof of [14] does not hold here verbatim).

Assume a finite K and a maximum variable connectivity of
Umax- Since each MUD is connected to 2K variable nodes, the
proof is completed by considering a respective random graph of
a single-user LDPC decoder (which is free of finite cycles ac-
cording to [21]) with a maximum variable degree of 2K vax
and a rate of 1 — % (c is the number of check nodes in each
block). Notice that we could not avoid the requirement of [14]
that first N — oo and only then K — oo which indicates of
systems with K < NN, which is the case in many communica-
tion systems. O

An asymptotic graph with no finite cycles is referred to, in
short, as a cycle-free graph hereafter, since we consider only a
finite number of iterations. Now, since the graph indeed con-
verges to a cycle-free graph, the following is straightforward.

Theorem 2: The empirical distribution of the estimated inter-
fering symbols F'(&) which is calculated from the time-depen-
dent SISO outputs v, converges to some limiting distribution for
finite number of iterations.

Proof: First, recall that a random LDPC graph with inde-
pendent uniform interleavers {m,}’_, (or equivalently, inde-
pendently generated K random LDPC codes) is used.

Now, for any time index ¢, all the connected decoders’ outputs
{LLRy,, : mi(n) = 2t or 2¢ — 1}5_, are generated according
to the same density, since we consider an asymptotic number
of users and the LDPC decoder has only a limited connectivity,
which is smaller than K.

Formally, since the graph of the receiver is cycle free, the den-
sity of the decoders’ outputs averaged over the graph ensemble,
when N — oo is actually a mixture of the densities of some
function of the CV messages calculated by (8) below. This is
given the all-zero codeword is transmitted (no loss in generality
because of the pseudorandom phase). The asymptotic random
building of the LDPC decoder assures the convergence of the
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CV messages’ densities to the ensemble average, as shown by
the concentration theorem proven in [21]. Since the graph is
cycle free, they converge to i.i.d. random variables. This leads
to the probability law of the LLR

Pr(LLR;, < V)
VUmax dv )

=3 Pua -Pr(tanh (w) < V) (8)

dv=1
where P,, 4, is the probability that n is a variable node with de-
gree dv, VUmax is the maximum variable degree, and CV; (0 <
J < Umax) is the message from the check node which is con-
nected via the jth edge to the variable node. We recall that
Umax <K IV, so that in the asymptotic realm, the density of the
LLRs converges to some limiting density. Note that this conclu-
sion remains true only as long as vy, is finite, so we use LDPC
codes, with finite connectivity.

Since K — oo, the LMMSE receives an infinite number of
independent estimations

1 K 1 K
_ = _ = s 12
Fe(u) = 4 k_lst (u) = & §Pr(1 2| < w)
K N _
1 2 LLRL’,Z}‘.—1 2 LLRL»,Qt
_L Zpr( e e o u)
K Pt (1+6LLRk.2t—1)2 (1+eLLRA-.2t)2

)
where zj, are calculated by (6). Now if K >> wv.x then the
LLRs which are the feedback messages from the decoders man-
ifest the probability law of (8). Actually, we see that the infinite
number of users guarantees a single distribution at the MUD
input. ]

This distribution is affecting the MUD in a similar way as
a shaped power profile for the users (e.g., [27]), the difference
being that this distribution is induced with no need for multiple
classes.

The asymptotic analysis of key aspects of the system is pre-
sented in the following paragraphs.

A. An Analysis of the LDPC SISO Decoder

The limiting density of the asymptotic LDPC decoder’s
output p(v) (see (8)) can be determined by the density evolu-
tion procedure [21].

In order to get numerical results, we assume without any loss
of generality that the transmitted codeword is the all-zero code-
word (ensured by the pseudorandom phase f in (1)) and use the
technique that was suggested by [22] to calculate densities that
are defined over a quantized and finite space. This way, the cal-
culation of the densities of the CV and VC messages, along the
iterations, can be efficiently performed by a finite Fourier trans-
form (FFT) for the VC densities and by a lookup table for the
CV densities. The calculated densities are the limiting densities
of the messages for N — oco.

B. Optimal Multiuser Detector Analysis

An asymptotic analysis of the IO-MUD detector, and the per-
formance loss of using such detector in a separated scheme, is
nicely presented by Verdd and Guo in [26], where it is shown
that the asymptotic optimal MUD’s output is a Gaussian random
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variable (RV) with variance and mean that can be calculated
via the replica method. However, [26] refers to the case where
no a priori information is available to the detector, assumption
that is no longer true in iterative schemes. Tanaka, Caire, and
Miiller in [27], extend the above analysis to the case where the
I0-MUD detectors use a priori information. Their analysis is
used for the limiting density of the IO-MUD’s output (which
is Gaussian). From [27], the asymptotic achievable multiuser
efficiency 7 of an IO-MUD for real-valued system (such as
real-valued CDMA) is the solution of the following fixed point
equation:

1 — tanh(z /77y
l:1+mE_@[(1—552)/ anh(z /i1y + )
n .

z
1— 22 tanh2(z\/777 + 1) (10)

2

exp(—%)

V2r

The replica method, used to derive (10), is also used for
the capacities with BPSK [5] and QPSK [6] which are the
same analytical expression. So we assume that the result (10),
originally developed for the real case, extends to the complex
channel. This is expected since the H%*M complex channel
has an equivalent representation by a matrix of real Gaussian
coefficients H2K*2M the only difference being each coeffi-
cient appearing twice in the real matrix, the impact of which
should be relaxed for asymptotic matrices. Also, the asymptotic
equivalence of the real and complex channels is established for
the linear MMSE detector [14] and (11) in what follows.

LLR

Z = tanh (T) and Dz = dz.

C. Linear Multiuser Detector Analysis

For the LMMSE in IC schemes, we can use the results of
Boutros and Caire in [14] which include a closed-form expres-
sion for the descriptive statistics of filter’s output, as a functional
of the density of the estimated symbols. Although the results
of [14] were obtained for a multiple-access system, where the
users use trellis codes, it carries over to LDPC codes as well due
to Theorem 2 (unisotropy degree). These useful results rely on
the fact [17], [18] that when dealing with random matrices in
the asymptotic regime, the resulting SNR converges to a deter-
ministic limit. Considering Theorem 2, the conditions defined in
[17], [18] are fulfilled for both CDMA and MIMO systems and
the resulting asymptotic multiuser efficiency n of an LMMSE
filter converges (weakly) to a deterministic value as K — oco.
This value is the solution of the following fixed-point equation:

1
_ _ (11)

Lt o fy e dFe ()
where Fg (&) is defined by taking the limit K — oo of (9).
This asymptotic result stems from the asymptotic distribution of
the eigenvalues of the channel matrices (specifically, the eigen-
values of Zle hk7tth7t), which is robust to the specific distri-
bution of the matrix elements, and remains true for complex-
valued H.

Notice that in the asymptotic case, the only difference be-
tween the LMMSE-IC and the IO-MUD is in the resulting 7,
where for the LMMSE it is the solution of (11) and for the op-
timal detector it is the solution of (10).

Ui
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Fig. 5. The asymptotic multiuser efficiencies, for I0-MUD, LMMSE, and
SUMEF detectors, all for channel load of o« = 2 and various values of 7. No a
priori information is assumed.

For the conditional LMMSE F¢ () is directly calculated from
the output of the SISO decoder, that changes for every iteration,
every symbol and every user. For the unconditional LMMSE
Fe(&) = u(€ — £),» where ¢ is the block-wise average of the
residues since the unconditional filter remains constant for all
the symbols of the same user in the same iteration. Since the
integral over ¢ reduces to a simple expression, the fixed point of
(11) for the unconditional LMMSE is explicitly written in (12)

n= - 2, —.  (12)
14 (a— D€+ V4 + (14 (a — 1)9¢)?
It is noticed that the performance of the conditional LMMSE
will never be worse than the performance of the unconditional
LMMSE, because of the convexity of 1=z in (11).

In a similar manner, using results of [17] and [14], the SNR
at the output of a multiuser detector which uses a single-user
matched filter (SUMF) with an IC converges to

1

T et (13

Fig. 5 demonstrates the differences between these asymptotic
multiuser efficiencies as a function of the SNR +. It can be seen
that the LMMSE’s asymptotic multiuser efficiency is signifi-
cantly better than that of the SUMF and is only slightly degraded
compared to that of the [O-MUD.

D. The Gaussian Approximation of the DE

Although the DE predicts the actual performance very well,
it also requires a considerable amount of computations, since
it uses quantization of real-valued continuous functions. A less
complex analysis, which assumes that messages are distributed
according to Gaussian densities and therefore iterates only a
single parameter, is the Gaussian approximation technique [31].
Since the outputs of the asymptotic LMMSE and the IO-MUD
are Gaussian ( [18] and [26]), the code optimization process can
utilize this approximation and benefit from its low complexity,

3u(x) is the indicator function, that equals 1 for # > 0 and 0 otherwise.
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leaving the DE for a more accurate evaluation of the optimiza-
tion products and for verifying the results. All the results pre-
sented in the tables and figures in this paper are calculated by
the DE to ensure accuracy. Although the Gaussian approxima-
tion is motivated by the central limit theorem for the variable
nodes and remains inaccurate for the check nodes, it is close
enough, in most cases, to the results of the DE. We modified the
technique of [31] for the multiple-access receiver, where the in-
trinsic LLRs originate from the MUD instead of from the mem-
oryless channel and therefore change along the iterations. Since
both CV and VC are assumed to be Gaussian, only the mean
values mcy and myc are used by the analysis. If mg)v is the
mean of the messages that are sent from the check nodes to the
variable nodes at the /th iteration then m(lﬂ) of the next itera-
tion is calculated by (14). The mean Value of the messages from
the variable nodes with degree i to the check node in the [th iter-
ation is m%,) . The asymptotic multiuser efficiency of the MUD
is represented by 77 = ¥nup in (14), where 1\up includes the
various possibilities (e.g., (8), (10), (12)) for calculating n given
the density of CV messages. {p; }72%°, {A; };5* are defined in
[21]

m{Pe = 2yhaup(mia,) + (i — m,

Cmax Umax

qub (1—[1—2,\¢mwr—1> (14)

and ¢(x) is defined as in [31] as

$w) = { 1=
17

E. Capacity

(l+1)

tanh(%)e— "
anh(g)e” 7=

du, ifz >0

ifx=0.

i Jr

The capacity for the single-user MIMO channel, when the
CSI is known at the receiver but unknown to the transmitter,
is achieved [1] when a coded information is sent with the same
power and the same code rate from all the transmitting antennas.
Thus, this single-user capacity is equal to the MAC’s sum rate
capacity and if we will find a good multiple-access scheme it can
be used for the single-user case as well (as long as we remain
in the asymptotic region). The asymptotic sum-rate capacity of
a multiuser system constrained to BPSK is calculated in [26].
It was originally derived by Tanaka in [5] assuming the replica
method was valid and [26] extended the results for the capacity
when using linear detectors (noniteratively). Assuming BPSK
symbols with averaged amplitude /7 and a channel transfer
matrix with i.i.d, zero mean, vanishing odd-order moments and
finite fourth-order moments entries (such as the MIMO and
CDMA settings), as M, K — oo, the resulting asymptotic mul-
tiuser efficiency 7 of an individual optimal detector is the solu-
tion of the following fixed-point equation:

1 oo
—:1—1—047[1—1/@/ tanh(nyz)
U 21 ) oo

. exp ( - M)dx} (15)
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Fig. 6. The Loss due to the use of QPSK instead of an optimal constellation
in a MIMO setting, and due to the use of an LMMSE in a stripping receiver, for
the asymptotic case with channel load of o = 2.

where the AWGN has variance of 1 and 0 mean as before. The
capacity is then calculated with

~1-1
eyt og(n)

2c
—\/g/_o;log (cosh(n'yx)) exp (—M)dx. (16)

If (15) has more than a single fixed-point solution, the correct
one is the one that results with the smallest capacity.

Note that this capacity is computed when the signaling is as-
sumed to be BPSK.

This capacity result and the optimal asymptotic MIMO ca-
pacity results obtained by Telatar in [1] are used to assess the
information-theoretic loss, at least for the asymptotic system,
when we constrain ourselves to QPSK signaling. It can be seen
that the asymptotic capacity of the complex QPSK system is
exactly twice the asymptotic capacity of the BPSK, real-valued
channel system [6]. Define the spectral efficiency as p = «aC.
The spectral efficiency of a multiuser system with a receiver
which serially LMMSE filter, decode, and then cancel each user
(stripping LMMSE receiver) is presented in [28] as an inte-
gral expression. We compared the spectral efficiencies of these
schemes in Fig. 6. This figure depicts the Gaussian optimal
MIMO, the QPSK, and the stripping LMMSE asymptotic spec-
tral efficiencies for load of a = 2 for various + values.

Viewing the figure in the lower SNR region, we conclude
that the asymptotic capacity using QPSK signaling is very close
to the optimal asymptotic capacity and that using a stripping
LMMSE receiver causes another small loss here. The inflicted
loss due to the use of stripping LMMSE with profiling signifi-
cantly increases for larger SNR, while the loss due to the QPSK
constellation restriction is relatively mild. These observations
indicate that the use of QPSK signalling is near optimal up to
~ = 9 dB while the LMMSE stripping is nearly optimal at con-
siderably lower y. However, this does not guarantees that our
approach outperforms the stripping decoder.

Verdu already showed that such QPSK signaling is second-
order optimal in [32], further substantiating our conclusion that
larger constellations do not provide a meaningful gain at the
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TABLE 1
DISTANCES TO CAPACITIES (IN DECIBELS) WITH THE OPTIMIZED CODES AND
AN UNCONDITIONAL LMMSE DETECTOR

| Bs/No [[1dB [ 2dB | 3dB | 4B |
a=02 [ 033 [ 031 [ 038 [ 040
a=05 || 044 | 044 | 055 | 0.63
a=1 [[ 066 | 069 | 08 1
a=15 [ 077 | 106 | 109 | 126
a=2 [ 077 | 116 | 135 | 1.69

lower SNR region. This is also consistent with the intuition pre-
sented in [33], where it is expected that as the SNR gets smaller
and the channel load « larger, the loss inflicted by the use of a
small constellation is reduced. Note that the number of antennas
at the receiver and the MUD’s complexity are reduced when the
channel load is high.

IV. CODE SEARCH AND RESULTS

In this section, we present the results of the search for good
LDPC DDPs [21]. The problem of finding good codes is a global
optimization problem that maximizes the rate of the code R
under the constraint of asymptotic error-free decoding for a
given v and .

A. Search Algorithm

The search for good codes is performed by a stochastic ge-
netic algorithm known as differential evolution. This algorithm
is used for optimizing LDPC codes also by [21] and [23]. Briefly
speaking, this algorithm starts off with an initialization stage
and then iteratively repeats two stages, until a convergence is
achieved [34]. In the initialization stage, an initial DDP’s pop-
ulation is randomly chosen according to the uniform distribu-
tion over the constrained space. The code rate is used as the
parameter to be optimized (unlike in [21], [23], and [25]) in-
stead of the threshold, so reducing the computational load. The
following stage consists of randomly altering each DDP in the
population by generating random perturbations from randomly
selected pairs or quadruplets of DDPs [34]. In the second stage,
the population undergos a natural selection process which leaves
either the DDPs or their altered versions, depending on their per-
formances. The main idea is that the population gets better and
more homogeneous as the iterations progress [34].

B. Search Results

Good pairs are found for five channel loads: a =
0.2,0.5,1,1.5 and @« = 2, each with four threshold con-
straints: v = Es/Ny = 1, 2, 3, and 4 dB. The DDPs were
obtained while further limiting the search space by constraining
the check and variable degrees in order to reduce computation
time.

Table I presents the results of the search process as the gap
between the achieved asymptotic thresholds and the asymptotic
QPSK capacities (as presented in Section III-E). The loss due
to the QPSK restriction can be appreciated by comparing this
capacity to the optimal MIMO capacity, as shown in Fig. 6, and
we notice a gap of only 0.05 dB for load a = 2 and v = 4 dB.
The scheme reaches up to 0.3 dB from the channel capacity for
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Fig. 7. The spectral efficiencies of the designed systems (markers) with the
corresponding QPSK capacity (solid and dotted lines) and QPSK with LMMSE
stripping receiver (dashed and dot-dashed lines) bounds. All are presented as a
function of the channel load, for E, /Ny = 1 and 4 dB.

a = 0.2 and gets as close as 0.77 dB from the QPSK capacity
for o = 2.

Fig. 7 presents the bounds on the spectral efficiencies derived
from the QPSK capacity (16) and the QPSK LMMSE stripping
receiver [28]. Those bounds are only about 0.1 dB apart for the
and o examined here. The spectral efficiencies of the designed
systems are presented as markers and exhibit near optimality
except when the channel load and SNR are high.

C. The Necessity of Fine Tuning the Code

We compared the code that was designed for a channel load
of 2 and threshold value of v = 4 dB to an LDPC code that
was designed for an AWGN and denoted in the following as
AWGN-good code (we use the term AWGN to indicate a single-
user additive white Gaussian channel). We choose a code with
dv = 12 from [21, Table I]. The former code is check-regular
and has dv = 19 and a rate of R = 0.466, while the latter has
arate of R = 0.5, so they are quite close in that sense. The dif-
ferences between the thresholds of these codes and the channel
capacity are shown in Table II over both the multiple-access
MIMO channel and the single-user, single-antenna channel. No-
tice that although the AWGN-good code performs very well on
the AWGN, its performance on the MAC is poor (even when
considering the fact that it has slightly higher rate). In contrast,
the code that was designed for the MAC was not as bad on the
AWGN channel (a difference of 3.4 dB). This emphasizes the
importance of including the multiuser analysis in the search for
good codes and not using off-the-shelf AWGN-good codes.

It is of interest to examine whether the performance gap
between the AWGN-good and MAC-good codes is caused by
some basic characteristic inherent in the codes and independent
of the details of the MUD. To this end, we perform an EXIT
analysis at the interfaces between the MUD and the LDPC
decoders. To examine the characteristics of the LDPC decoder
we let it, for the purpose of this analysis only, perform an un-
limited number of iterations after each activation of the MUD.
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TABLE 1II
DISTANCES TO CAPACITY OF THE CODE DESIGNED FOR MULTIPLE-ACCESS
AND OF A CODE OPTIMIZED FOR THE AWGN OVER BOTH SCENARIOS

distance to capacity distance to capacity
on AWGN channel | on multi access channel
in [dB] a =2 in [dB]
MAC-good code
R=0.466 3.42 1.64
AWGN-good code
R=0.5 0.2 9

This modification of the scheduling would probably increase
the receiver complexity, however, it would not change the final
outcome.

This is since as long as an unlimited decoder activations are
allowed and the extrinsic information transfer functions are non-
decreasing

Iout(lin) < Iout(lin + 6) (17
the threshold of an iterative scheme is independent of the it-
erations scheduling (see, e.g., [35]). Iiy (or Ioy) denotes the
averaged mutual information between the LLR at the LDPC
decoder input (or output) and the transmitted coded bits. It is
known ([21]) that the output of an infinite LDPC BP decoder
is indeed nondecreasing, and (12) verifies this property also for
the multiuser detector. Thus, the threshold value will not change
by rescheduling the iterations.

This assures that rescheduling, such that the inner LDPC de-
coder is infinitely iterated and only then forwarded back to the
multiuser detector, does not alter the overall receiver threshold
value. The receiver in the modified scheduling does not need to
store information in the decoder while the multiuser detector
is working (so that the information transfer characteristic of
the code is independent from the outer iteration number). This
means that the latch in Fig. 4 can be removed for such sched-
uling. In that figure, this rescheduling means that inner phases
2-3 are repeated infinitely before continuing to outer iterations
1, 4. The extrinsic information characteristics is extracted from
the asymptotic analysis (Section III), where the DE of the LDPC
decoder is repeated until no further improvement is achieved.
Notice that this EXIT analysis is different from that in [24],
where the check and the variable nodes were regarded as sepa-
rate components, while here the analysis reveals the character-
istics of the iterative scheme when we consider the LDPC code
as a single code without any memory and the MUD as the other
component of the iterative scheme. The results are presented in
Fig. 8. The scheme with the AWGN-good code from [21] op-
erates with v = 12 dB (ﬁ; = 15 dB) and the same scheme,
only with the MUD-optimized code operates with v = 4 dB
(ﬁ—’; = 7.312 dB) so that both schemes work close to their cor-
responding thresholds. Notice that the curves start with I;,, that
corresponds to the first MUD detection.

Information-theoretic arguments presented in the Appendix
reveal that a good random AWGN code is characterized by a
low-valued EXIT curve, until a threshold value of [;;, (approx-
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Fig. 8. EXIT charts for system with load of & = 2, for both AWGN-good
code (solid line) and fine-tuned MAC code (dash-dot line). The AWGN-good
code is used with SNR of v = 12 dB (% = 15 dB) and the MAC-good code

with v = 4 dB (% = 7.312 dB). The actual information transfer trajectories
extracted from the DE are the steps-like lines. The EXIT characterization of the
MUD for v =4 dB and v = 12 are presented as the leftmost and the rightmost
dashed line, respectively.

imately the AWGN capacity) is encountered. Such code also
achieves an error-free decoding (It = 1) for I;;, which is
slightly larger than its threshold, resulting in a nearly vertical
EXIT curve near the threshold. This curve characterization ac-
tually prevents a good random AWGN code from performing
well in our setting, since the multiple-access detector does not
receive a sufficient feedback from the decoder until the inputs
to the decoder are close to the single-user AWGN capacity, and
then the decoders can finish decoding without further outer it-
erations with the MUD detector (a separated scheme).

Actually, even the slope of the simple repetition code better
fits the EXIT curve of the MUD than that of the AWGN-good
code.

Since we used a code which better fits the MUD, it produces
suitable lower error probabilities (higher I, ) for code rates that
exceed the AWGN capacity. This difference is well observed in
Fig. 8 for I;,, = 0.45, where the MAC-good code demonstrates
15ut(0.45) = 0.45 whereas the AWGN-good code achieves
only I,,:(0.5) = 0.05.

The EXIT curves of the MUD for v = 4 dB and v = 12 dB
are presented as the leftmost and the rightmost dashed line, re-
spectively. It is seen that as y increases, the line indeed becomes
steeper. Notice that the optimized code has an EXIT curve which
fits quite well to the EXIT curve of the MUD.

Observing the DDP [21] of both codes

Aawen () = 0.24422 4 0.25912% + 0.01052+
+0.0551z + 0.014627 + 0.0128z°
+ 0.40372"!
pawen(z) =0.254725 + 0.73442" + 0.01092°
Avac(z) =0.7202z + 0.2798z18
PMAC(x) =zt
we can calculate that the AWGN-good code has a connectivity

[36] of 7.7 per information bit whereas the MAC-good code has
a connectivity of 5.7 per information bit. This further indicates
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TABLE III
DISTANCE TO CAPACITY IN (DECIBELS), AS ACHIEVED WITH I0-MUD,
CONDITIONAL LMMSE, AND UNCONDITIONAL LMMSE, FOR o = 2 AND
THRESHOLD OF v = 1 dB

unconditional | conditional | IO-MUD
LMMSE LMMSE
[ distance [@B] | 077 | o067 | o014 |

that the AWGN-good code is indeed better for approaching the
AWGN capacity [36] and thus performs poorly in the joint iter-
ative scheme.

D. On the Degradation Due to the Use of a Linear MUD

The gaps to the channel capacity for high channel loads, as
appear in Table I, are mainly due to the limitations of the linear
MUD. To confirm this conclusion, we searched for good DDPs
for iterative schemes which include the conditional LMMSE-IC
and the IO-MUD. The distances between the thresholds of these
systems to the capacity, with channel load o = 2 are presented
in Table III. A small improvement of 0.1 dB for the condi-
tional LMMSE over the unconditional LMMSE is noticed com-
pared with the more significant 0.63-dB improvement with the
IO-MUD. This quantifies the limitations of the linear detectors,
especially for high channel loads.

V. SIMULATION RESULTS

The system was simulated to verify the analysis and to assess
the performance with finite number of users. All the simulations
were performed with a channel load of « = 2 except for systems
with K = 15 which were simulated with o = 1.875. All the
LDPC codes were constructed according to the DDP that was
found by the asymptotic analysis for a threshold of E, /Ny = 1
dB and for a channel load of « = 2. The resulting code rate is
R = 0.352.

A. Comparison of the Asymptotic Analysis to the Simulations
of Finite Systems

The BER predicted by the asymptotic analysis and simulation
results are drawn in Fig. 9 as a function of the iterations. These
simulations were done for a multiuser MIMO system with K =
200 users (o = 2) employing an LDPC code of length N = 10*
andy = E;/Nog = 1.45 dB (E, /Ny = 2.98 dB). It can be seen
that the DE predicted the performance of the system well, until
about the 20th iteration. The simulations will probably agree
with the DE prediction along more iterations if the codeword
length NV will be increased.

B. Finite LMMSE

Separated simulations of a finite LMMSE filter, de-
signed for either a CDMA with QPSK spreading sequences
(hy ~ %{il + j1M) or for a MIMO (hy ~ N¢(0,1))
channel can assess the difference between the asymptotic and
the average MSE at the output of a finite filter. It also indicates
how many users such system should include to approach its
asymptotic performance. These simulations test the transmis-
sion of an uncoded symbols through MIMO or nonfading
CDMA channels. The receiver uses an LMMSE filter where
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Fig. 10. Differences, in decibels, of the MSE at the output of finitt LMMSE
filters (averaged over enough blocks) to the MSE of an asymptotic LMMSE
filter, as calculated by (12). The differences are plotted for E, /N, = 1.2 dB
and o = 2, with both non fading CDMA (h,, ~ % {£1+£ j}M, dashed line)
and MIMO (h, ~ N¢(0,I), solid line) systems as a function of the number
of users K.

both the power of the users and the channel transfer coefficients
are known. In the following, we compare the average MSE of the
LMMSE output to the asymptotic MSE as calculated by (12) for
different K and channel statistics. Notice that according to [18],
the asymptotic behavior of these two channels is identical but
the convergence rates depend on higher order statistics. Fig. 10
plots these differences in decibels, for systems with channel load
a = 2 and v = 1.2 dB as a function of K. It is noticed that
the difference to the asymptotic MSE is about 0.35 dB, for the
MIMO system with as few as ten users (five receive antennas)
and 0.2 dB for the nonfading CDMA system with ten users and
five chips. This difference further decreases with the number of
antennas. As expected, the MSE for both MIMO and nonfading
CDMA finite filters converges to the asymptotic MSE with dif-
ferent rates, although these rates are quite close. These results
demonstrate the effect of the finiteness of the filter on the per-
formance, excluding any effect of feedback from the decoders.

C. MIMO Versus Nonfading CDMA Systems

Fig. 11 shows the performance of a multiuser MIMO system
versus a nonfading CDMA system for both K = 15 (squares)
and (circles) K = 200 users. It presents the averaged BER from
simulations of these systems, for various Ej /Ny, for channel
loads « = 2 (K = 200) and « = 1.875 (K = 15) and for the
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Fig. 11. Simulation results of a multiuser MIMO (), ~ MN¢(0,1), solid
lines) versus a nonfading CDMA (h;, ~ %{:{:1 + j}™, dash-dot lines)
systems where both systems use the same code with block length N = 10%.
The comparison is done for X' = 15 (squares) and 200 (circles) users, with

channel loads & = 1.875 and o = 2, respectively. The results are presented
as a function of E; /Ny after sufficient number of iterations at the receiver. The
theoretical threshold is presented, for comparison as a dashed line.

same code with length N = 10%. In these simulations, the re-
ceiver iterated the decoding-detection cycle until no further im-
provements were noticed, so that the graph represents the perfor-
mance after enough receiver iterations. We can see that in both
MIMO and CDMA systems, the more dimensions we operate
over (diversity), the better the BER performance we get. So a
system with only K = 15 users is worse than that of K = 200
users, in the lower BER region (£ /Ng > 2.12 dB). We note that
reducing the number of users in the very low SNR region helps
to improve the BER performance. Notice, also, that while the
nonfading CDMA system performs quite well, even with only
K = 15 users, the performance of the MIMO system with the
same number of users and the same channel load is severely de-
graded. When increasing the dimensionality to K = 200 users,
the MIMO and the nonfading CDMA performances are close,
especially in the waterfall region. The difference between them
is in the higher SNR region, where the nonfading CDMA system
performs better. The fading effect, as was seen in Section V-B, is
evident for the iterative receiver in Fig. 11, when comparing the
multiuser nonfading CDMA system curve to the MIMO curve,
both with K = 15 and K = 200. The very poor performance
of the multiuser MIMO system with K = 15 is attributed to
the outage probability of the MIMO channel and with K = 200
users, the spacial diversity overcomes the fading effect. Since
we deal with independent codes on a block-fading channel, a se-
verely faded block can impair the user’s code ability to correct
any errors and therefore also denies any possibility for reducing
the MAI of other users with possibly better channels. This situa-
tion is more rare in the CDMA system, since no fading is consid-
ered and the channel is impaired only through the correlations
between the spreading sequences.

D. Single-User Versus Multiple-User MIMO Block Fading

The simulations of multiple-access MIMO systems ap-
proached the prediction of the asymptotic analysis with
K = 200 users (although sufficient performance was achieved
with only K = 50 users). That means using M = 100 antennas
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Fig. 12. Simulation results of a multiuser scheme with a block length of N =
10* (squares) versus a single-user MIMO system with a block length of N =
15 x 10* (circles). Both codes have the same rate 2 = 0.352 and the schemes
were simulated with ' = 200 (solid lines) and /' = 15 (dashed lines) users
with channel loads @ = 2 and o = 1.875, respectively. The BER presented
was measured after a sufficient number of iterations, as a function of E;, /Ny.
DE threshold is also presented as a dashed line for comparison.

in the receiver. Significantly less users, such as K = 15 (with a
lower channel load o = 1.875) results in a severe degradation
of the performance. A single-user MIMO system, however,
can utilize a single long LDPC code along with a multiplexer
to transmit from all the antennas. The corresponding receiver
uses a single decoder which will benefit from a much more
diverse channel (factor of K') than the ones the multiple-access
decoders faced. Thus, now the event of a deep fade in a few
of the propagation coefficients can be mitigated by the LDPC
code directly and not by the interactions with the MUD as in
the multiple-access case. This effect can be seen in Fig. 12,
where we simulated a single-user (circles) and a multiple-user
(squares) MIMO systems with code lengths of N = 15 x 10*
and N = 10%, respectively, and with K = 15 (dashed lines)
and K = 200 (solid lines) transmitting antennas. We used the
same codes (of length N = 15 x 10%) for the single-user MIMO
system with both K = 15 and K = 200 due to the complexity
of constructing a code of length N = 2 x 10° and we believe
that these results suffice to demonstrate the difference between
the single-user MIMO and the multiple-user MIMO systems
in a finite setting. It is clear that the single-user systems out-
perform the respective multiuser systems in most scenarios. A
single-user MIMO system with K = 200 reaches BER of 10~
within 0.2 dB from the predicted DE threshold, and within 1
dB from the channel capacity. It is comparable to the excellent
performance reported in [9] for a system which includes a
sphere decoder, except that our proposed system operates at
higher channel load and requires a reduced complexity receiver.

We believe that the 0.1-dB difference in the waterfall region
for K = 200 in favor of the multiple-access system is related to
the fact that N = 10% in the MAC system and N = 15 x 10*
in the single-user system. Such difference in the block lengths
suggests that the single-user code is slightly better in terms of
the threshold value (which is indeed seen in Fig. 12). How-
ever, looking at an EXIT analysis as in Section IV-C, we know
that since the MUD curve is identical for both single- and mul-
tiple-access schemes and since the code of the multiple-access
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Fig. 13. Simulation results of a MIMO receiver with channel coefficients
estimation errors with a variance of €, (I = 100 users, channel load is o = 2,
and v = 2 dB) is drawn as a solid line. The used code is the same code used in
the previous section with length N = 10%. Simulation of a system with perfect
CSI, but with a modified signal power v «— 1 +1A, is drawn by a dashed line,
for comparison.

scheme is slightly worse, the weeker LDPC code would give
better performance for SNR which is smaller than the threshold.
Notice that this also accounts for the slower descent of the mul-
tiple-access system when f,—’; > 2.2 dB, which cannot be con-
sidered an error floor.

It is evident that in our setting more users are required to
achieve the asymptotic multiple-access MIMO performance
than the number of antennas required to approach the ergodic
single-user MIMO asymptotic performance [1]. This is a direct
consequence of our block-fading model which prevents coding
over differently faded symbols, thus causing erroneous blocks
for a small number of users (so they are noise limited). In fact,
the multiple-access outage capacity is strictly lower than the
single-user outage capacity for a finite block length over a
block-fading channel. This effect is avoided if the considered
model is a fast-fading model (but still the CSI is assumed to
be known to the receiver) and not a quasi-static block-fading
model.

E. Effect of Coefficients Estimation Error

The preceding simulation results are obtained when the re-
ceiver has full knowledge of the channel coefficients. In real
communication systems, such perfect knowledge is rare and a
more realistic model should consider some imperfections in the
estimations of the coefficients. These imperfections can be mod-
eled by an independent white additive noise vector e, so that
(e, {h+/cer ik } 1<) is known to the receiver and used instead
of the exact value hg, where {egr}5_,, {he}2, ~ N(0,1),
€ is some constant, and where ¥ still follows (1). The simula-
tion results of this scenario are drawn in Fig. 13, for a MIMO
system with K = 100 users, « = 2, v = 2 dB, and the same
code used in the previous section with block length N = 10%.
Notice that this system is quite sensitive to these estimation er-
rors and less than —10 dB (¢ |ag< —10) is needed for sat-
isfactory performance. This result is understandable since the
MUDs are not designed for such estimation errors and by in-
cluding such imperfections in the asymptotic analysis one might
improve its resilience. Nevertheless, if the additive estimation
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error |/ 37 ex is modeled as an equivalent decrease in the signal
power y ﬁ, simulations with perfect coefficients’ knowl-
edge can be performed which would reflect the resilience of
designs made for lower thresholds against these imperfections
(The thresholds are expressed in terms of the power ). Results
of such simulations are also plotted in Fig. 13. It is clear that as
long as the estimation errors are low, the two models agree, but
higher estimation errors seem to cause a substantial difference
between them, due to the use of an unaware LMMSE in the re-
ceiver.

VI. CONCLUSION

In this paper, we described an efficient MIMO communica-
tion scheme for both single and multiple users employing LDPC
codes, LMMSE-based MUD, and a fully iterative receiver. An
asymptotic analysis, which is a variation of the one in [14], was
used. The LDPC code was optimized for this unique setting,
achieving, at a channel load of 2, a large improvement over good
LDPC codes optimized for the AWGN single-user channel, re-
vealing the necessity of the modified search. Further EXIT anal-
ysis explained the severe degradation due to the use of AWGN-
good codes. The necessity of optimizing the code is established,
provided that other methods of matching such as user classes
and/or power profiling are not used [28], [27]. The resulting
low-complexity scheme performs well for a large number of
users, and for channel load of o = 2, the asymptotic threshold
of the system is only 0.77 dB away from the corresponding
channel capacity (evaluated with the replica method). Capacity
computations showed the loss due to the QPSK restriction is
negligible for the examined conditions (channel load € [0, 2]
and SNR € [1,4] dB). The lower complexity unconditional
LMMSE scheme is compared to both conditional LMMSE and
IO-MUD schemes, for the assessment of the performance loss
of using a linear filter, computed only once per iteration. This
loss turns out to be less than 0.6 dB with respect to the very
complex IO-MUD and only 0.1 dB with respect to the condi-
tional LMMSE. The asymptotic analysis is verified by simula-
tions of finite systems which demonstrate the expected differ-
ences between single- and multiple-user systems and between
fading MIMO and nonfading CDMA. It is seen that the single-
user system does well enough with only 15 antennas whereas
the multiuser system requires considerably more. These dif-
ferences stem from the nonergodic nature of the block-fading
channel with a finite number of antennas and can be reduced
by using more than one transmitting antenna for each user, by
using several frequencies (in wide-band communications), or
by adopting faster fading model, so that each decoder experi-
ences several attenuations in a single block. Future work may
include a generalization of the model and the code optimiza-
tion to the cases where no synchronization can be assumed and
where several classes of users exist. Another interesting aspect is
when some feedback channel exists between the receiver and the
transmitter. This feedback can substantially improve the overall
achievable spectral efficiency of such system by some power
profiling technique. Broader complexity—performance tradeoffs
can be achieved by incorporating more than one kind of MUD.
Such scheme can include a sphere decoder and an LMMSE or
an SUMFE.
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APPENDIX
ON EXIT CHARTS OF RANDOM CODES

We desire to transmit information U. We do so in the stan-
dard way by producing a codeword z, a vector of N channel
symbols z, belonging to an asymptotically long random code X
of rate R. We transmit & over a memoryless channel producing
the vector y.

We are interested in a symbol z;, that is, a symbol at the jth
place in z. We define ;) as z with z; excluded and correspond-
ingly y(; as y with y; excluded. We define X’ as a code obtained
from X with the symbol z; excluded from each codeword. The
extrinsic information is then defined as Ijj; = I(z;; yp;7)- To
streamline the presentation we use binary ;.

When the code rate R is below the capacity C we have per-
fect decoding for asymptotically long random code, even if the
single symbol y; is removed (erased) before the decoding, thus
we have I[;; = 1.

When the code rate R is at or above capacity it is well known
[37] that

NHM > H(y) > NHM — Ne (18)

where H™ is the entropy of a single received symbol. Now

Iy = I(wj5y) = H(yy) — H(yyy [ 25). (19)

Following (18), for random codes H (yp;) = (N — 1)HM
because y[;] is the outcome of transmitting codewords selected
uniformly from the code X', which is of a rate similar to that of
X for large N. Also H(yj;; | z;) = (N — 1)H™ because now
Yy[j]» when z; is given, is the outcome of transmitting codewords
selected uniformly from a subcode of X', comprising approxi-
mately half the codewords. Thus, I ] is a difference between
very similar values. To upper-bound it, we shall construct a tree
of subcodes of X’ as follows: X’ is the root of the tree, that is, the
single code at level O of the tree. Level 1 of the tree comprises
X¢ and Xi which are subcodes of X’ associated with z; = 0
and z; = 1, correspondingly. Level j of the tree is generated
by randomly partitioning each code in the j — 1 level into two
codes with an equal number of codewords. The relation between
the partitioned code and the pair of the resulting subcodes is
denoted parent—child. Enough levels of the tree will be gener-
ated until the last j = K level contains codes of rate equal to
capacity. Clearly, all the codes on the tree are random codes.
Moving down one level in the tree adds one information bit to
the codes, thus slightly increasing their rate. If the rate of X’ is
(even slightly) above C, then K will be proportional to N — 1.

We shall define HX £ H(y) as the entropy of ¥ when X is
used. Each parent code X“ can be obtained from its child sub-
codes X" and X¢ by combining. By the convexity of entropy,
we have Hxa > 0.5(be + HX ), thus, the average of the en-
tropies H7 in each level is increased or unchanged when the
level in the tree is decreased. We shall denote this average en-
tropy in level j as H7. The sequence HX , ..., H', H® is mono-
tonically increasing. Using (18) we have

(N-1)HM — (N -1)e< HX¥ <H° < (N -1)HM,
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Thus, the differences between all adjacent terms in the last
sequence are nonnegative and their sum is upper-bounded by
(N - 1e.

Since the number of terms in the sequence of differences is pro-
portionalto N —1, theiraverageisbounded by Ae where A isthe fi-
nite constant of proportion determined by the coderate. Only 1/ F
part of the difference terms can be more than F' times the average,
thus, for most of codes and for most of code rates, the differences
are smaller than AeF', so as small as desired for large V.

The value of H (y(;1) — H(yy;) | =) in(19)is just the last term
in the aforementioned sequence of differences. Its statistical dis-
tribution is similar to the previous terms while the sequence of dif-
ferences tends tobe decreasing due to the convexity of entropy and
totheincreasing similarity of the codes occupying the lowerlevels
of the tree.

Sothe EXIT chartof most goodrandom codesis astep function,
0 atrates above capacity and 1 at rates below capacity, the 0 value
above capacity being a direct result of the 1 above the capacity.

It may be expected that the same conclusions will hold
for a wider class of capacity-achieving codes since all ca-
pacity-achieving codes must reflect a random-like behavior,
as shown, for example, in [38], and since (18) applies to all
capacity-achieving codes [37].
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