|
|
A1. Let S be the set of points (x, y) in the plane such that |x| ≤ y ≤ |x| + 3, and y ≤ 4. Find the position of the centroid of S.
|
|
A2. Let Bn(x) = 1x + 2x + ... + nx and let f(n) = Bn(logn2) / (n log2n)2. Does f(2) + f(3) + f(4) + ... converge?
|
|
A3. Evaluate ∫0∞ (tan-1(πx) - tan-1x) / x dx.
|
|
A4. Given that the equations y' = -z3, z' = y3 with initial conditions y(0) = 1, z(0) = 0 have the unique solution y = f(x), z = g(x) for all real x, prove f(x) and g(x) are both periodic with the same period.
|
|
A5. a, b, c, d are positive integers satisfying a + c ≤ 1982 and a/b + c/d < 1. Prove that 1 - a/b - c/d > 1/19833.
|
|
A6. ai are real numbers and ∑1∞ ai = 1. Also |a1| > |a2| > |a3| > ... . f(i) is a bijection of the positive integers onto itself, and |f(i) - i | |ai| → 0 as i → ∞. Prove or disprove that ∑1∞ af(i) = 1.
|
|
B1. ABC is an arbitrary triangle, and M is the midpoint of BC. How many pieces are needed to dissect AMB into triangles which can be reassembled to give AMC?
|
|
B2. Let a(r) be the number of lattice points inside the circle center the origin, radius r. Let k = 1 + e-1 + e-4 + ... + exp(-n2) + ... . Express ∫U a(√(x2 + y2) ) exp( -(x2+y2) ) dx dy as a polynomial in k, where U represents the entire plane.
|
|
B3. Let pn be the probability that two numbers selected independently and randomly from {1, 2, 3, ... , n} have a sum which is a square. Find limn→∞ pn √n.
|
|
B4. A set S of k distinct integers ni is such that ∏ ni divides ∏ (ni + m) for all integers m. Must 1 or -1 belong to S? If all members of S are positive, is S necessarily just {1, 2, ... , k}?
|
|
B5. Given x > ee, define the sequence f(n) as follows: f(0) = e, f(n+1) = (ln x)/(ln f(n)). Prove that the sequence converges. Let the limit be g(x). Prove that g is continuous.
|
|
B6. Let A(a, b, c) be the area of a triangle with sides a, b, c. Let f(a, b, c) = √A(a, b, c). Prove that for any two triangles with sides a, b, c and a', b', c' we have f(a, b, c) + f(a',b',c') ≤ f(a + a', b + b', c + c'). When do we have equality?
|
|