17th IMO 1975

------
A1.  Let x1 ≥ x2 ≥ ... ≥ xn, and y1 ≥ y2 ≥ ... ≥ yn be real numbers. Prove that if zi is any permutation of the yi, then:

      ∑1≤i≤n (xi - yi)2 ≤ ∑1≤i≤n (xi - zi)2.

A2.  Let a1 < a2 < a3 < ... be positive integers. Prove that for every i ≥ 1, there are infinitely many an that can be written in the form an = rai + saj, with r, s positive integers and j > i.
A3.  Given any triangle ABC, construct external triangles ABR, BCP, CAQ on the sides, so that ∠PBC = 45o, ∠PCB = 30o, ∠QAC = 45o, ∠QCA = 30o, ∠RAB = 15o, ∠RBA = 15o. Prove that ∠QRP = 90o and QR = RP.
B1.  Let A be the sum of the decimal digits of 44444444, and B be the sum of the decimal digits of A. Find the sum of the decimal digits of B.
B2.  Find 1975 points on the circumference of a unit circle such that the distance between each pair is rational, or prove it impossible.
B3.  Find all polynomials P(x, y) in two variables such that:

(1)  P(tx, ty) = tnP(x, y) for some positive integer n and all real t, x, y;

(2)  for all real x, y, z: P(y + z, x) + P(z + x, y) + P(x + y, z) = 0;

(3)  P(1, 0) = 1.

 
 
IMO home
 
John Scholes
jscholes@kalva.demon.co.uk
8 Oct 1998