7th Iberoamerican 1992 problems

------
A1.  an is the last digit of 1 + 2 + ... + n. Find a1 + a2 + ... + a1992.
A2.  Let f(x) = a1/(x + a1) + a2/(x + a2) + ... + an/(x + an), where ai are unequal positive reals. Find the sum of the lengths of the intervals in which f(x) ≥ 1.
A3.  ABC is an equilateral triangle with side 2. Show that any point P on the incircle satisfies PA2 + PB2 + PC2 = 5. Show also that the triangle with side lengths PA, PB, PC has area (√3)/4.
B1.  Let an, bn be two sequences of integers such that: (1) a0 = 0, b0 = 8; (2) an+2 = 2 an+1 - an + 2, bn+2 = 2 bn+1 - bn, (3) an2 + bn2 is a square for n > 0. Find at least two possible values for (a1992, b1992).
B2.  Construct a cyclic trapezium ABCD with AB parallel to CD, perpendicular distance h between AB and CD, and AB + CD = m.
B3.  Given a triangle ABC, take A' on the ray BA (on the opposite side of A to B) so that AA' = BC, and take A" on the ray CA (on the opposite side of A to C) so that AA" = BC. Similarly take B', B" on the rays CB, AB respectively with BB' = BB" = CA, and C', C" on the rays AB, CB. Show that the area of the hexagon A"A'B"B'C"C' is at least 13 times the area of the triangle ABC.

To avoid possible copyright problems, I have changed the wording, but not the substance, of the problems.

Iberoamerican home
 
© John Scholes
jscholes@kalva.demon.co.uk
11 July 2002