5th Iberoamerican 1990 problems

------
A1.  The function f is defined on the non-negative integers. f(2n - 1) = 0 for n = 0, 1, 2, ... . If m is not of the form 2n - 1, then f(m) = f(m+1) + 1. Show that f(n) + n = 2k - 1 for some k, and find f(21990).
A2.  I is the incenter of the triangle ABC and the incircle touches BC, CA, AB at D, E, F respectively. AD meets the incircle again at P. M is the midpoint of EF. Show that PMID is cyclic (or the points are collinear).
A3.  f(x) = (x + b)2 + c, where b and c are integers. If the prime p divides c, but p2 does not divide c, show that f(n) is not divisible by p2 for any integer n. If an odd prime q does not divide c, but divides f(n) for some n, show that for any r, we can find N such that qr divides f(N).
B1.  The circle C has diameter AB. The tangent at B is T. For each point M (not equal to A) on C there is a circle C' which touches T and touches C at M. Find the point at which C' touches T and find the locus of the center of C' as M varies. Show that there is a circle orthogonal to all the circles C'.
B2.  A and B are opposite corners of an n x n board, divided into n2 squares by lines parallel to the sides. In each square the diagonal parallel to AB is drawn, so that the board is divided into 2n2 small triangles. The board has (n + 1)2 nodes and large number of line segments, each of length 1 or √2. A piece moves from A to B along the line segments. It never moves along the same segment twice and its path includes exactly two sides of every small triangle on the board. For which n is this possible?
B3.  f(x) is a polynomial of degree 3 with rational coefficients. If its graph touches the x-axis, show that it has three rational roots.

To avoid possible copyright problems, I have changed the wording, but not the substance, of the problems.

Iberoamerican home
 
© John Scholes
jscholes@kalva.demon.co.uk
1 July 2002