|
|
A1. Let A, B be two sets of N consecutive integers. If N = 2003, can we form N pairs (a, b) with a ∈ A, b ∈ B such that the sums of the pairs are N consecutive integers? What about N = 2004?
|
|
A2. C is a point on the semicircle with diameter AB. D is a point on the arc BC. M, P, N are the midpoints of AC, CD and BD. The circumcenters of ACP and BDP are O, O'. Show that MN and OO' are parallel.
|
|
A3. Pablo was trying to solve the following problem: find the sequence x0, x1, x2, ... , x2003 which satisfies x0 = 1, 0 ≤ xi ≤ 2 xi-1 for 1 ≤ i ≤ 2003 and which maximises S. Unfortunately he could not remember the expression for S, but he knew that it had the form S = ± x1 ± x2 ± ... ± x2002 + x2003. Show that he can still solve the problem.
|
|
B1. A ⊆ {1, 2, 3, ... , 49} does not contain six consecutive integers. Find the largest possible value of |A|. How many such subsets are there (of the maximum size)?
|
|
B2. ABCD is a square. P, Q are points on the sides BC, CD respectively, distinct from the endpoints such that BP = CQ. X, Y are points on AP, AQ respectively. Show that there is a triangle with side lengths BX, XY, YD.
|
|
B3. The sequences a0, a1, a2, ... and b0, b1, b2, ... are defined by a0 = 1, b0 = 4, an+1 = an2001 + bn, bn+1 = bn2001 + an. Show that no member of either sequence is divisible by 2003.
|
|