|
|
A1. Label the vertices of a regular n-gon from 1 to n > 3. Draw all the diagonals. Show that if n is odd then we can label each side and diagonal with a number from 1 to n different from the labels of its endpoints so that at each vertex the sides and diagonals all have different labels.
|
|
A2. Two circles C and C' have centers O and O' and meet at M and N. The common tangent closer to M touches C at A and C' at B. The line through B perpendicular to AM meets the line OO' at D. BO'B' is a diameter of C'. Show that M, D and B' are collinear.
|
|
A3. Find all solutions to (m + 1)a = mb + 1 in integers greater than 1.
|
|
B1. Some terms are deleted from an infinite arithmetic progression 1, x, y, ... of real numbers to leave an infinite geometric progression 1, a, b, ... . Find all possible values of a.
|
|
B2. Given a pile of 2000 stones, two players take turns in taking stones from the pile. Each player must remove 1, 2, 3, 4, or 5 stones from the pile at each turn, but may not take the same number as his opponent took on his last move. The player who takes the last stone wins. Does the first or second player have a winning strategy?
|
|
B3. A convex hexagon is called a unit if it has four diagonals of length 1, whose endpoints include all the vertices of the hexagon. Show that there is a unit of area k for any 0 < k ≤ 1. What is the largest possible area for a unit?
|
|