69th Kürschák Competition 1969

------
1.  Show that if 2 + 2 √(28 n2 + 1) is an integer, then it is a square (for n an integer).
2.  A triangle has side lengths a, b, c and angles A, B, C as usual (with b opposite B etc). Show that if a(1 - 2 cos A) + b(1 - 2 cos B) + c(1 - 2 cos C) = 0, then the triangle is equilateral.
3.  We are given 64 cubes, each with five white faces and one black face. One cube is placed on each square of a chessboard, with its edges parallel to the sides of the board. We are allowed to rotate a complete row of cubes about the axis of symmetry running through the cubes or to rotate a complete column of cubes about the axis of symmetry running through the cubes. Show that by a sequence of such rotations we can always arrange that each cube has its black face uppermost.

The original problems are in Hungarian. Many thanks to Péter Dombi for the translation.

Kürschák home
 
(C) John Scholes
jscholes@kalva.demon.co.uk
19 Apr 2003
Last corrected/updated 19 Apr 2003