43rd Eötvös Competition 1939

------
1.  Show that (a + a')(c + c') ≥ (b + b')2 for all real numbers a, a', b, b', c, c' such that aa' > 0, ac ≥ b2, a'c' ≥ b'2.
2.  Find the highest power of 2 dividing 2n!
3.  ABC is acute-angled. A' is a point on the semicircle diameter BC (lying on the opposite side of BC to A). B' and C' are similar. Show how to construct such points so that AB' = AC', BC' = BA' and CA' = CB'.

 

The original problems are in Hungarian. They are available on the KöMaL archive on the web. They are also available in English (with solutions) in: Andy Liu, Hungarian Problem Book III, 1929-1943, MAA 2001. ISBN 0883856441.

Eötvös home
 
(C) John Scholes
jscholes@kalva.demon.co.uk
6 January 2003
Last corrected/updated 3 Nov 03