9th Eötvös Competition 1902

------
1.  Let p(x) = ax2 + bx + c be a quadratic with real coefficients. Show that we can find reals d, e, f so that p(x) = d/2 x(x - 1) + ex + f, and that p(n) is always integral for integral n iff d, e, f are integers.
2.  P is a variable point outside the fixed sphere S with center O. Show that the surface area of the sphere center P radius PO which lies inside S is independent of P.
3.  The triangle ABC has area k and angle A = θ, and is such that BC is as small as possible. Find AB and AC.

 

The original problems are in Hungarian. They are available on the KöMaL archive on the web. They are also available in English (with solutions in): (Translated by Elvira Rapaport) József Kürschák, G Hajós, G Neukomm & J Surányi, Hungarian Problem Book 1, 1894-1905, MAA 1963. Out of print, but available in some university libraries.

Eötvös home
 
John Scholes
jscholes@kalva.demon.co.uk
20 Oct 1999