3rd Eötvös Competition 1896

------
1.  For a positive integer n, let p(n) be the number of prime factors of n. Show that ln n ≥ p(n) ln 2.
2.  Show that if (a, b) satisfies a2 - 3ab + 2b2 + a - b = a2 - 2ab + b2 - 5a + 7b = 0, then it also satisfies ab - 12a + 15b = 0.
3.  Given three points P, Q, R in the plane, find points A, B, C such that P is the foot of the perpendicular from A to BC, Q is the foot of the perpendicular from B to CA, and R is the foot of the perpendicular from C to AB. Find the lengths AB, BC, CA in terms of PQ, QR and RP.

 

The original problems are in Hungarian. They are available on the KöMaL archive on the web. They are also available in English (with solutions in): (Translated by Elvira Rapaport) József Kürschák, G Hajós, G Neukomm & J Surányi, Hungarian Problem Book 1, 1894-1905, MAA 1963. Out of print, but available in some university libraries.

Eötvös home
 
John Scholes
jscholes@kalva.demon.co.uk
20 Oct 1999
Last corrected/updated 6 Jan 03