|
|
1. A, B, C are infinite arithmetic progressions of integers. {1, 2, 3, 4, 5, 6, 7, 8} is a subset of their union. Show that 1980 also belongs to their union.
|
|
2. 1 = a1 < a2 < a3 < ... is an infinite sequence of integers such that an < 2n-1. Show that every positive integer is the difference of two members of the sequence.
|
|
3. P is an interior point of a tetrahedron. Show that the sum of the six angles subtended by the sides at P is greater than 540o.
|
|
4. If S is a non-empty set of positive integers, let p(S) be the reciprocal of the product of the members of S. Show that ∑ p(S) = n, where there sum is taken over all non-empty subsets of {1, 2, ... , n}.
|
|
5. ABC is a triangle. A' is any point on the segment BC other than B and C. PA is the perpendicular bisector of AA'. The lines PB and PC are defined similarly. Show that no point can lie on all of PA, PB and PC.
|
|
6. The real numbers x1, x2, x3, ... satisfy |xm+n - xm - xn| ≤ 1 for all m, n. Show that |xm/m - xn/n| < 1/m + 1/n for all m, n.
|
|
7. Find the largest n for which we can find n-1 distinct positive integers ai such that ai = bi + 1980/bi for some integer bi, where b1b2 ... bn-1 divides 1980.
|
|
8. Given 1980 points in the plane, no two a distance < 1 apart, show that we can find a subset of 220 points, no two a distance < √3 apart.
|
|
9. C is an arbitrary point on the tangent to the circle K at A. D1, D2, E1, E2 are any points on the circle such that C, D1, E1 are collinear in that order, and C, D2, E2 are collinear in that order. AB is a diameter of the circle and the tangent at B meets the lines AD1, AD2, AE1, AE2 at M1, M2, N1, N2 respectively. Show that M1M2 = N1N2.
|
|