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Spatially dispersive transport: A mesoscopic phenomenon in disordered organic semiconductors
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We present time-of-flight-type calculations of the transport master equation applied to thin film disordered
materials. We show that the energetic disorder in conjunction with a thin film results in electronic inhomoge-
neity. This inhomogeneity manifests itself as dispersive transport which can be described as a linear sum of
close to normal-transport paths. Namely, in thin films of disordered materials the transport parameters do not
converge to the infinite sample parameters but present a dispersive mesoscopic phenomenon. By defining a
spatial distribution function of the charge velocity (mobility) we are able to examine the effect of the degree of
disorder and film thickness on the electronic inhomogeneity. We postulate that in a given sample the spatial
distribution characteristic of holes and the one characteristic of electrons are most likely nonidentical. Hence,
in organic thin-film light-emitting diodes the energetic disorder is a limiting factor concerning charge recom-

bination and efficiency.
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INTRODUCTION

The issue of charge transport in disordered organic semi-
conductors has been studied for a few decades'® by now.
The evolution of organic light-emitting diodes (OLEDs) and
organic field-effect transitors (FETs) has triggered attempts
to provide a single physical picture’~!% through the use of
implicit models. In a recent paper by Preezant and Tessler!3
it was argued that many of the implicit models fail to de-
scribe well current organic LEDs since they do not account
for the electric-field-induced carrier-heating phenomenon. It
was also mentioned'? that in the infinite sample limit, regard-
less of the model used, the interpretation of the simulated
(calculated) charge transport in terms of a mobility value is
ill defined for a high degree of disorder (o> 5kT) where the
transport becomes spatially inhomogeneous. We have re-
cently suggested that thin-film devices exhibit a new type of
mesoscopic physical phenomenon®!# that was not captured
by the previously existing models simply because these mod-
els a priori assumed an infinite sample. In this paper we use
time-resolved master equation transport calculations to pro-
vide better rigor to the mobility spatial distribution function
concept.®!#

In previous papers we showed that for films that are very
thin (~ 100 nm) in the direction of propagation but infinite in
the other two dimensions one can describe the transport as
being composed of many parallel mobility or current paths
which are randomly distributed and give rise to the mobility
spatial distribution function®'* (MDF) or more generally to a
velocity distribution function (VDF). At first glance this may
look like going back to the earlier days where there were
many arguments'> whether one should describe the transport
in disordered materials as made of parallel paths, serial
paths, or something in between.!®!” Those works were
largely concerned with providing a global picture for trans-
port in amorphous materials as presented by an infinitely
large sample. Here, however, we are concerned with a me-
soscopic phenomenon where the transport parameters have
not yet statistically converged towards the infinite sample
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parameters. The choice of a parallel picture here is dictated
solely by the asymmetry in the sample dimensions.

Before proceeding we need first to discuss the notion of a
mobility value being meaningless or ill defined. To do that
we need to establish what the mobility value is supposed to
mean or what use do we want to make of it. In basic
textbooks'®1? it is shown that the mobility arises when one
tries to reduce the transport phenomenon to a description that
can be carried out by two parameters: mobility and diffusion.
The motivation for this simplification is often presented as
the need to describe (simulate) semiconductor devices:
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Equation (1) is the continuity equation where J, is the
hole current, p is the hole density, ¢ is the elementary charge,
E is the electric field, D, is the hole diffusion constant, and
My, is the hole mobility value. This equation is typically
coupled to the Poisson equation (2) to provide an adequate
description of the device performance:
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Namely, for a mobility value to be meaningful one needs
to be able to use it in equations of the form of Eq. (1) above
and obtain a true description of the device under study. In
modern devices where the resolution and dimensions are
ever shrinking one expects from the set of equations (1) and
(2) to reproduce the charge density, current, and the spatial
distribution of both. Now we can relate to the suggestion that
at high degree of disorder the mobility is meaningless or ill
defined. In the paper by Yu ef al.’ it is shown (Fig. 5 in Ref.
5) that for a disorder parameter (o) slightly above 100 meV
current patterns (filaments) evolve. It is obvious that Egs. (1)
and (2) cannot reproduce such patterns and hence, in the
current context, the mobility extracted for such materials is
meaningless. In a seminal paper by Scher and Montroll? they
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used different arguments to show that in highly disordered
systems the mobility is an ill-defined concept.

If one strictly applies the above discussion, then even
whenever the mobility is charge density dependent it be-
comes an ill-defined concept. This is of course not practical
since by introducing a density dependence in the form of
u(p), Egs. (1) and (2) are again useful and do reproduce the
physical picture. This teaches us that practically whenever it
becomes possible to provide a functional form for the mobil-
ity it can be reinstated as a valid concept for certain, if not
many, physical circumstances. We consider that establishing
the MDF is a step towards making the mobility meaningful
in mesoscopic thin-film disordered materials.

NUMERICAL MODEL

To establish the concept of spatial distribution of the
transport parameters we recall that the transport of charge
carriers in amorphous organic semiconductors is modeled as
hopping transport between localized states assuming specific
energetic and spatial distribution functions. This physical
framework has been studied for many years using different
types of model formulations.'=*7-2 The Monte Carlo (MC)
approach, promoted by Bassler et al., established charge
hopping in a Gaussian density of states as the most com-
monly accepted framework and indeed this has also been
used in the master equation (ME) approach.’

The actual model used here is that of the ME approach,
and for our numerical simulations we utilize a linearized
form of the master equation that holds for low charge densi-
ties:

d
—fi(0) == 2 Wiifi0) + 2 Wyf (o). 3)
or =~ =
JFi JFi
And the hopping rate that we use is the so called Miller-
Abrahams rate:'®

exp[— (8j— 8,)/kT:| \v Sj > €,
1, otherwise,

(4)

where 1,=10'> Hz, y=10% cm™, and 7=300 K. In our simu-
lations, small-volume cubic lattices of sites are taken with a
distance of 1 nm between the sites. The energy levels of the
sites are then randomized according to a Gaussian density of
states (DOS) of a specified standard deviation (o):

N — 2
DOS(g) = ——= exp[— (8 ,_80) }
\2mor V20

Simulations were carried out for Gaussian DOS distribu-
tions with three different standard deviations: o=1kT,
o=2kT, and o=3kT, where k is the Boltzmann constant and
T was taken to be 300 K—i.e., room temperature. For each
energy distribution and for every layer thickness in our cho-
sen set (25, 50, and 75 nm), the site energy levels were ran-
domized and the master equation was solved to produce the
probability function for crossing the lattice. This procedure
of randomizing the energies and solving the master equation

W;; =y exp(- 7’|Rij|){
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FIG. 1. (Color online) Schematic description of a thin film de-
vice “broken” into many mobility pathways.

was repeated several hundreds of times for every layer thick-
ness and energy distribution. Each randomization step is
equivalent to producing a new environment through which
the carrier propagates.

The conventional use of creating many different lattices is
to arrive at a statistically valid average of the transit time.
Here, however, we are interested mainly in the standard de-
viation of transit times or to be exact in the mobility or
velocity distribution function. The motivation here derives
from the fact that in thin-film devices charge carriers that
cross the device sample a very limited volume>® the trans-
port properties of which may be highly different depending
on the position it is picked from in the sample plane.
Namely, when we produce many environments we are actu-
ally trying to reconstruct the properties of a film by dividing
it into many little rectangular pipes stretching across the
layer thickness in a manner very similar to the way the elec-
tronic current would sample the film (see Fig. 1). In the
following calculation results we wish to show the effect of
the sample length and electronic disorder on the spread of
transit times in the sample.

RESULTS

In order to set the scene for our master equation calcula-
tions we start with simulations of the standard semiconductor
equations [see Egs. (1) and (2)] that represent a classic
Gaussian transport with D/u=kT/q. One of the concerns
with the interpretation, in terms of a mobility value, of a
time-of-flight simulation (or measurement) carried out on
thin films is the role of diffusion and the finite time it takes
for the injected charges to take the expected steady state
shape of a Gaussian packet moving across the device. To this
end we plot in Fig. 2 the calculated current in response to a
S-function (pulse) excitation close to the contact, thus
mimicking ideal time-of-flight experiment. Due to the
different conventions used in the literature, Fig. 2(a) is
in linear scale and Fig. 2(b) is in log-log scale. The upper
(solid) curve was calculated for electric field of
2X10°V/ecm and the lower (dashed) curve for
5X10* V/em (using u=2X10"7 ¢cm?/V's). The sample
length was chosen to be 75 nm. For 2 X 10° V/cm we see a
classical curve with a plateau indicating a motion under con-
stant velocity (mobility) and a sharp drop indicating the ar-
rival of the charge packet at the other end. We note that the
curve for 5X 10* V/cm shows no plateau or a clear arrival
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FIG. 2. (Color online) Calculated current in response to a
o-function excitation close to the contact at t=0. The solid and
dashed lines were calculated using u=2x10"7 cm?/V's and for
electric fields of 2 X 10° V/cm and 5 X 10* V/cm, respectively. (a)
Linear scale. (b) Log-log scale.

point due to the diffusion-induced broadening under low
electric fields (and short samples).

It is commonly accepted that if the curve does not exhibit
a clear plateau, it is not straightforward to extract a mobility
value. This difficulty is associated with the fact that not all
the carriers are moving at the same velocity or that the ve-
locity of the charges exiting the device is time dependent.
Since the mobility is supposed to be the average velocity,
several methods have been suggested to extract it from such
curves. Using the method of finding the cross point of the
slopes?!?2 before and after charges have started to exit the
device we get 3X 1077 cm?/V s and 2.5 X 1077 cm?/V s for
the electric fields of 5X 10* V/cm and 2 X 10° V/cm, re-
spectively. In a recent publication®'* we have introduced a
method for extracting the distribution of the charge’s velocity
and dubbed it the MDF.? The method relies on differentiating
the current response:

2 2 >
dI(n) _dl() _ APqd (d_) , (5)

dr? dt e S\ v

In the low-excitation-density (linear) regime J is the re-
sponse to a pulse (S-function) excitation and 7 is the response
to excitation in the form of a step function. In Eq. (5), A, P,
and ¢ are constants, d is the sample length, V is the applied

voltage, ¢ is the time, dyj:%’ with v, being the velocity of a
carrier (pathway) transit time of ¢, E the electric field, and g
is the velocity distribution function.

Figure 3 describes the velocity distribution, presented in
mobility units, which is derived by applying Eq. (5) to the
data in Fig. 2. We note that the distribution is slightly asym-
metric where the tail to larger values denotes the faster car-
riers that are being “pushed” forward by the diffusion cur-
rent. Having found the VDF the representative mobility can
now be calculated by finding the average of the VDF divided
by the applied electric field:
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FIG. 3. (Color online) The velocity distribution function derived
by applying Eq. (5) to the simulation data presented in Fig. 2. The
dashed and solid lines are for electric fields of 5X10* and
2X 103 V/cm, respectively. (a) Linear x axis. (b) Log x axis.

Applying Eq. (6) to the VDFs shown in Fig. 3 we
find a mobility value of 2.3X107cm?/Vs and
22X 1077 ecm?/V's for the electric fields of 5X 10* V/cm
and 2 X 10° V/cm, respectively. Namely, this method of ex-
tracting the mobility from a transient curve is at least as good
as other methods previously suggested. In the following we
will use this method to define the mobility associated with a
given path or transient curve.

After establishing the method for analyzing transient
curves we move to examine transient curves produced by the
microscopic master equation based simulations. Typical re-
sults of the output of the simulation program are shown in
Fig. 4. The plot is for electric field of 5% 10* V/cm and
results for 0=3kT and d=75 nm are shown. In the calcula-
tions shown here we do not exceed the field of
1X10° V/cm since above this value the charge population
becomes hotter than the lattice'® and the transport becomes
nonlinear with the applied field (i.e., less intuitive). The size
of the box in the lateral dimension was taken to be
9 X 9 nm? and to avoid possible edge effects cyclic boundary
conditions were used. The choice of 9 nm may seem far too
small but for a normal organic LED operating under 2—5 V
above the flatband condition the spread of a charge packet
across 100 nm is ~10 nm (assuming Gaussian propagation
p(x,t)OCe(’“‘“E’)z/4Dh’). Since the simulations are done in the
low-charge-density limit, we ignore in this specific calcula-
tion (of 10 nm) the dependence of the Einstein relation on
charge density which may enhance this value twofold to
threefold.’

Figure 4(a) shows the current response to a S-function
excitation at x=0, and Fig. 4(b) shows the current response
for a step function excitation. The solid lines show the re-
sponse of two individual paths, and the dashed line shows an
average over a few hundreds of paths. Figures 4(c) and 4(d)
are added to allow better understanding of the charge carrier
dynamics behind the current response of the individual paths
[solid lines in Figs. 4(a) and 4(b)]. Figure 4(c) shows on a
log scale [to match the scale of Fig. 4(a)] the amount of
charges in the path, presented as a % of the charges injected
at r=0. We note that charges are starting to exit the path
through the opposite contact only at times longer than 107* s.
This tells us that the current decrease at shorter times is due
to fast charge relaxation towards local equilibrium at the vi-
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cinity of the contact where charges were “optically” injected
at t=0. The initial current decrease for the individual paths is
followed by roughly a constant value until the point in time
at which charges start reaching the other contact and exit the
path. The existence of a plateau is also a random variable
where in some of the paths it is pronounced and in some it is
nonexistent. Figure 4(d) shows on a linear scale [to match
the scale of Fig. 4(b)] the amount of charges in the path,
presented as a % of the charges in the path at =20 following
a step-function excitation (constant injection rate). Basically,
Figs. 4(b) and 4(d) do not add information to that in Figs.
4(a) and 4(c) since there is a simple integral relation between
the two. However, the linear scales used in Figs. 4(b) and
4(d) visually emphasize the last decade which takes up most
of the transport time. Finally, the dashed lines in Figs. 4(a)
and 4(b), which are representing the entire sample through a
sum of few hundreds of paths, show no indication whatso-
ever of a dominant mobility/velocity value. We can thus state
that the dispersive nature of the thin sample considered here
at least partly arises from spatial variations of the mobility
due to the finite volume sampled by a carrier traversing the
thin film.

Next, we are interested in constructing the mobility dis-
tribution function of the entire sample and to test for its
dependence on the disorder parameter and the film thickness.

Figure 5 shows the velocity distribution expressed as a
mobility distribution, using v=wE, of the two paths shown in
Fig. 4 as well as for the average over hundreds of paths
which represents the response of a macroscopic device. The
calculation uses Eq. (5) and is identical to that employed for
Fig. 3. Comparing Figs. 5(a) and 3(a) we find the VDF of the
two paths to be very similar to that resulting from classic

transport equations. Figure 5(b) shows that the two paths
have a somewhat similar distribution function, only shifted
with respect to each other. We also note that the device
equivalent distribution develops a tail towards low values
which is a result of the very slow paths existing in any dis-
ordered sample.

Once the velocity distribution function of each path (as in
Fig. 5) is known, one can deduce the mobility of each path
(defined as the average velocity) and thus produce the mo-
bility distribution function of the entire device. Figure 6
shows the mobility distribution function (solid line) and the
velocity distribution function (dashed line) of the simulated
device (0=3kT, E=5X10* V/cm, d=75 nm). Unlike the
VDF, the MDF excludes the effects due to charge diffusion

12 ‘ ‘ ‘ | 1-2
@) _panj (b)
2N 1 Pathi 7!
3 Path j
[
8 {08
9 H [J \‘
o 06 Path i . ; ! N
g Device T Eev!cel ! ! lo.
] Equivalent quivalent [ \
£ 04 H 1 | ; ! Lo
S ‘ ' ‘
5 . ) \
) / 1 pY Y o2
\\V\ I \\\
0 =S== L L =l
0 5x107 1x10® 108 107 -
Velocity / Field (cm?/Vs) Velocity / Field (cm?/Vs)

FIG. 5. (Color online) The velocity distribution function derived
by applying Eq. (5) to the simulation data presented in Fig. 4(a).
The velocity distribution function shown are for path i (diamond),
path j (square), and for the average of many paths (dashed lines).
(a) Linear scale. (b) Semilog x scale.
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FIG. 6. (Color online) The device equivalent velocity distribu-
tion function (dashed line) and the device mobility distribution
function (solid line and squares). The vertical line denotes the av-
erage of the velocity distribution function.

and hence it assumes a symmetric Gaussian-like shape.

After establishing the MDF and its relation to the velocity
distribution function we can now move to examine closely
the MDF and its dependence on material and device param-
eters. Since the MDF represents the electronic uniformity of
the sample, we are actually examining the uniformity of the
electronic properties across the device plane.

Figure 7 shows the calculated MDF for the same layer
thickness and applied electric field (E=5X10* V/cm, d
=75 nm) but for three different disorder parameters of the
Gaussian DOS (o=1kT, 2kT, 3kT). Figure 7(a) shows the
well-known effect of the mobility dependence on the disor-
der parameter o predicted for the infinite-sample case
(exp[=(ca/kT)?] with ¢~0.67).>* Figure 7(b) shows the
three MDFs where the x axis was normalized such that the
peak of the distribution will occur at u=1. This figure shows
that the width of the mobility distribution function, which is
a relatively macroscopic parameter, is directly related to the
energy disorder which is of a more microscopic nature.
Namely, in a thin-film device the electronic disorder leads to
electronic inhomogeneity across the device plane.

Finally, we examine the effect of the sample thickness on
the sample’s electronic inhomogeneity. Figure 8 shows the

MDF calculated for three different film thickness:
d=25 um (diamonds), 50 um (squares), and 75 um
1.2 1.2
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FIG. 7. (Color online) (a) The mobility distribution function for
o=1kT (circles), 2kT (diamonds), 3kT (squares). (b) The mobility
distribution functions where the x-axis values where normalized
such that the peaks of the MDFs coincide. As before,
E=5X10* V/cm, d=75 nm, and T=300 K.
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FIG. 8. (Color online) The mobility distribution function for
o=3kT, E=5X10* V/cm, and d=25 um (diamonds), 50 um
(squares), and 75 um (circles).

(circles). As the film becomes thicker the volume sampled by
a carrier crossing the device increases. In the infinite limit
this volume would be large enough to reproduce the full
Gaussian DOS and the starting position across the film plane
would be irrelevant and the sample would be considered ho-
mogeneous. For the intermediate case (Fig. 8) we see the
trend towards a homogenous sample where the width of the
MDF is decreasing with increasing sample thickness. It also
shows that as the sample becomes thicker, the very fast paths
gradually disappear.

DISCUSSION

Using the linearized master equation we have constructed
a time-dependent simulation of the charge transport based on
the so-called Miller-Abraham’s hopping rate. By presenting
the results as current transients we mimicked the time-of-
flight experiment (Figs. 2 and 4). Our goal here was to ex-
amine whether disorder in the energy landscape may lead, in
thin films, to spatial in-plane inhomogeneity in the transport
properties. To this end we did not use the common approach
of finding the average value over many different simulated
volumes but rather displayed the distribution of values such
that the variance could be examined as well. The quantity
that the technologists among us would be interested in is the
current or how uniform it is across a thin-film device.

By dividing the thin films into many boxes having the size
of a typical volume a charge carrier would sample we were
able to show that the transient curves are very different be-
tween different locations across the film. In order to analyze
the current transients we translated them into a velocity dis-
tribution function following the formalism described in Ref.
8. Comparing the velocity distribution function derived from
a fully Gaussian transport model [Eq. (1) and Fig. 3] to that
of the device equivalent function (dashed line in Fig. 5) we
find them to be very different in shape. Namely, the device as
a whole cannot be represented using a single mobility and
diffusion constant value. Examining the local transport or the
velocity distribution function for a single path (solid lines
Fig. 5) we find that the results are very similar to the Gauss-
ian case but for a very slight enhancement of the high mo-
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bility side tail. This implies that, to a good approximation,
one can reproduce the curve of individual pathways using
mobility and diffusion in their classical sense.

In our analysis we defined the mobility as the average
velocity of the charge carriers crossing the film. This is
equivalent to requiring that the steady-state current would be
directly related to a single parameter u (I=uEn) or to requir-
ing that the mobility distribution function would represent
the current distribution function to be found in LED-type
devices. Namely, in the general case where the disorder may
be very high and/or the contributions of relaxation and dif-
fusion to the steady-state current are not negligibles then the
results presented as mobility distribution function should be
read as a current distribution function.

Using the above “definition” for the mobility we could
derive the mobility (current) distribution function and exam-
ine the role of the disorder parameter (o) and the film thick-
ness (d). The results presented in Fig. 8 show that the larger
the volume sampled by a charge carrier, the smaller is the
spatial inhomogeneity of the transport properties (the cur-
rent). Figure 7 shows that for a given volume sampled by the
charge carrier (i.e., fixed travel length of 75 nm) the inhomo-
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geneity is enhanced by the disorder and for o=3kT the full
width at half maximum (FWHM) of the distribution is 30%
of the mean value.

The results shown in Figs. 7 and 8 have several implica-
tions for the operation of thin-film devices such as OLEDs or
solar cells. First, the variation in current density between
different points across the device means that part of the mol-
ecules undergo oxidation and reduction significantly more
than others which makes them more susceptible to degrada-
tion (the fast paths are the weak points as far as stability is
concerned). Second, for a bipolar device, such as OLED, it is
very likely that the characteristic distribution functions of
electrons and holes currents are not identical, leading to in-
complete spatial overlap between the currents and to reduced
electroluminescence efficiency.?* Namely, electronic disorder
is a limiting factor in terms of device efficiency.
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