## Is Nitrogen inert enough?

## Not when group 2 metals are concerned

For Mg — See: Chunmiao, Y.; Lifu, Y.; Chang, L.; Gang, L.; Shengjun, Z., Thermal Analysis of Magnesium Reactions with Nitrogen/Oxygen Gas Mixtures. *J. Hazard. Mater.* **2013**, *260*, 707-714.

ReactionI : 
$$Mg(s) + 1/2O_2(g) \rightarrow MgO(s) - 592.8 \text{ kJ}$$
 (1)

ReactionII: 
$$3Mg(s) + N_2(g) \rightarrow Mg_3N_2(s) - 462.8 \text{ kJ}$$
 (2)

$$Mg(1) + 1/2O_2(g) \rightarrow MgO(s) - 608.4 \, kJ$$
 (5)

$$3Mg(1) + N_2(g) \rightarrow Mg_3N_2(s) - 479.6 kJ$$
 (6)

http://www.chemguide.co.uk/inorganic/group2/reacto2.html:

#### The reactions with air

The reactions of the Group 2 metals with air rather than oxygen is complicated by the fact that they all react with nitrogen to produce nitrides. In each case, you will get a mixture of the metal oxide and the metal nitride.

The general equation for the Group is:

$$3X_{(3)} + N_{2(g)}$$
  $\longrightarrow$   $X_3N_{2(3)}$ 

The familiar white ash you get when you burn magnesium ribbon in air is a mixture of magnesium oxide and magnesium nitride (despite what you might have been told when you were first learning Chemistry!).

http://chemistry.elmhurst.edu/vchembook/143Amgoxide.html:

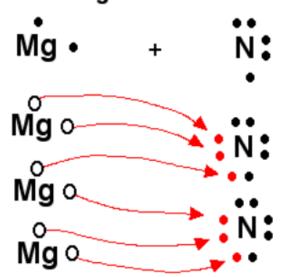
4 Be 12 Mg 20 Ca 38 Sr 56

Ba

Ra

88

# **Magnesium Oxide**






Magnesium loses 2 electrons, and Oxygen gains 2 electrons to have an Octet.

C. Ophardt, c. 2003

## **Magnesium Nitride**



Magnesium loses 2 electrons, and Nitrogen gains 3 electrons to have an Octet.

$$Mg_3^{+2} N_2^{-3} = Mg_3N_2$$