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1. INTRODUCTION

Integral equations encountered in electromagnetic scatt~ring
problems have been recently solved using wavelet expansions
[1-5]. When wavelets are used as basis and testing functions,
the resulting impedance matrix is localized, compared, for
instance, to that obtained eased on a pulse expansion. This
localization enables the applIcation of a thresholding proce-
dure whereby each elemen, -,f the matrix whose ab~-;olute
value falls below a certain thre~nold level is se:t to zero The
resultant matrix is sparse, and hence the matrix equation can
be solved in much less time, This thresholding "f the
impedance matrix mightintrodl':e errors in the solution, but
studies have shown that the ;Ilt,miJ",-; of nonzero matrix ele-
ments can be subst3ntially rl~dul.:ed with very little loss in

accuracy.
In this article we also con;o;der the incorporation of

wavelets intJ method-of-moments solutions for scattering
problems. However, instead of thresholding the impedance
matrix in the manner described above, it is compressed to a
reduced-size form. We refer to this new technique as the
impedance matrix compression (IMC) technique. In the IMC
technique, advantage is taken not only of the fact that the
representation of the operator by a suitably selected wavelet
basis is sparse, but also of the fact that the representation of
both the known excitation and the yet-to-be-determined
quantity by this basis is often sparse. The underlying idea is
thus that only a f~w terms of the wavelet expansion will
actually suffice to adequately approximate the unknown
quantity. These dominant terms are determined based on the
wavelet decomposition of the known excitation vector. Thus,
rather than attempting to derive all the coefficients in the
series expansion, we merely (jetermine the dominant on~s by
solving a matrix equation that is substantially reduced i~ size.
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2. FORMULATION

Without loss of generality, let us consider the scalar prc.blem
of computing the current Jz on the perimeter of a pe~fectly
conducting z-directed cylinder excited by a TMz wavr:. The
geometry of a sample prob!em of this kind is described in
Figure 1. Applying the EFIE formulation for this sca'tt'riflg
problem, we have [6, pp. 149-:151]
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This integral equation is next r~duced to a matrix :':orm by
the method of moments. Firs.. the unknown currej:t, !z is
expanded in a series of wavelet ~~:;:s functions, {U'i}r- I' as
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lz = .[ .4iW; {2)

where the {AJi~ 1 are constant coefficients to be determined.
Then, a Galerkin's method is applied and the matrix equation
for the problem is readily obtained. We have

Z]A=B, (3)
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each are expressed in a series of wavelet basis functions, this
method is quite useful.
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Figure 1 Scattering problem geometry for the first example

where [:2:] is the impedance matrix, A is the vector of
unknown current coefficients, and B is the excitation vector.

3. REDUCING THE SIZE OF THE IMPEDANCE MATRIX

Once the matrix equation for the problem is obtained, we
proceed toward reducing its size, while minimizing the loss in
accuracy, using the following matrix compression procedure.
Suppose that only a small number of the wavelet functions in
the series expansion (2) is required to accurately represent
lz, and that we know how to single these few wavelet func-
tions out. In other word, assume that there exists a subset
{W;(kJr-l' M being much smaller than N, which can repre-
sent lz to an acceptable accuracy. Then we have

4. NUMERICAL EXAMPLES

To show the advantages of the new approach, we first con-
sider the problem of scattering by a perfectly conducting
cylinder of triangular cross section. The incident wave is a
TMz (transverse magnetic) plane wave, and the configura-
tion, with related parameters, is shown in Figure 1. The
quantity we wish to determine is the current induced on the
cylinder surface. The perimeter of the triangle is divided into
64 pulses. The wavelet basis functions used are the Haar
basis functions. The longest basis functions are composed of
26 = 64 pulses. Thus, the basis function of minimum spatial

variation constitutes a constant current along the perimeter .
A larger number (128) of testing points is specified on the

perimeter.
The three cases, namely, applying a thresholding opera-

tion on the original impedance matrix obtained by using
pulses as basis functions, applying a similar thresholding
operation but on the localized matrix obtained by using
wavelet basis functions, and compressing the localized matrix
obtained by using wavelet basis functions, are compared with
each other in Figure 2. This figure shows a plot of the
boundary condition error as a function of the compression
level. The boundary condition error is defined as the average
square error on the scatterer surface normalized to the
average square incident field on the scatterer surface. The
compression level conveys a measure of the reduction in the
number of impedance matrix elements. Naturally, it has to be
defined in a slightly different manner for each of the two
approaches. In the conventional thresholding approach, the
compression is equivalent to the achieved sparseness level
defined as the ratio between the number of zero elements in
the resultant matrix and the total number of matrix elements.
In the approach proposed here it is defined as the ratio

!4

I; = L A'i(k)U'i(k)' (4)
k

~Ebc(%)

where the primes affixed to J; and Ai(k) indicate that these
quantities, although closc~ are not necessarily identical to
theirunprimed counterparts. To determine the coefficients
{Ai(k)Jk~ I' we construct a new matrix [.2"] comprising only
the columns {i(k)}~ 1 of [.2']. The matrix [.2"] is substantially
smaller in size compared to [.2'"], and hence the computation
of the coefficients {Ai(k) is re.',,(ively faster.

It is worth mentioning again that the resulting coefficients
{Ai(,)~ 1 may differ from theirunprimed counterparts. This
is due to the fact that although the wavelet basis functions
are' orthogonal, the field functions these source functions
produce are not. Another point worthy of consideration is the
possibility of proportionally reducing the number of equa-
tions as well. Choosing the equations that can be omitted
without having a dramatic effect on the value of the coeffi-
Cient should generally be done with caution, because one
must. also ensure that the boundary conditions are still satis-
fied.In the matrices considered here, the number of rows is
taken to be twice the number of columns.

So far we have assumed th~t we know which are the
dominant terms in the wavelet expansion for the unknown
current. But one can justifiably argue that in general it is
difficult to determine which of the terms will be more domi-
nant. This is where the underlying physics of the problem
emerge. As we know from physical optics, the value of the
excitation on the surface can be indicative as to the current.
Therefore, the idea is to represent the excitation vector by
the wavelet basis functions, determine the indices of the
dominant coefficients of this decomposition, and choose the
subset of wavelet functions accordingly, Of course, this
method is only approximate; moreover, it does not take into
account the shadow regions of the body. However, as will be
shown in the next section, owing to the apparent correlation
between the current and the excitation vectors when they

0 20 40 60 80 100

Compression (% )

Figure 2 Boundary condition error versus impedance matrix cdm-
pression level. Cases shown are for thresholding the original
impedance matrix as is (dash-dotted line); thresholding the localized
matrix, obtained by using Haar wavelet basis functions (dashed line);
and compressing the localized matrix by choosing dominant terms

(solid line)
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between the number of elements omitted the impedance
matrix is cast into the compressed form, and the number of
elements in the original matrix. If one examines Figure 2, it
can be noted that, when no compression of the matrix is
taking place, neither thresholding nor reduction of size, the
three cases produce exactly the same result. However, when
compression is applied, the difference in performance is
evident, and it is clearly seen that the new method is prefer-
able.

The solution obtained for the current on the scatterer
without compression of the impedance matrix, is shown in
Figure 3. Additional insight into the new method is given in
Figure 4, where the sums of the first few dominant contribu-
tors in the series expansion of the current lz are shown for

th~ case in which the basis functions are wavelets. In these
figures one can literally see how the fine details of t~e signal
are gradually added as more elements in the partial sum are
considered. The objective here is merely to exhibit the evolu-
tion of the result for the current distribution as more terms
are added. Of course, if we keep adding terms, settling for
lower compression levels, the result will approach that de-
picted in Figure 3. Further understanding can be gained by
examining the result for the current shown in Figure 5. This
result has been obtained' upon applying conventior!al thresh-
olding, which yielded sparsification of exactly the same com-
pression level as that of the case of Figure 4(d). Acompari-
son between Figures 5 and 4(d) gives another clear evidence
of the superiority of the proposed approach. :

The correlation between the representations of the cur-
rent and the excitation is examined -for pulse and wavelet
expansions in .Figure 6. FigL!"e 6(a) shows that there is very
little corrclatioQ between the cQefficients of the current and
the excitation when they are expanded in a series of pulse
functions. On the other hand, from Figure 6(b) one can see
that there is a close resemblance between these coefficients
when the expansion is in a series of wavelet functions.
One more word is in order about the way the information

IJzi

IJzi
1=0 1=1 1=2 1=3

Figure 3 Surface current magnitude (normalized to incident mag-
netic field) versus the perimetric length variable 1

Figure 5 Magnitude of J z along the triangular perimeter obtainec
upon sparsifying the wavelet-based impedance matrix to a compre~
sion level of 81% by a thre"holding operation
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Figure 4 Magnitude of lz along the triangular perimeter obtained

by taking partial sums from the 64-term series expansion. Cases
considered are for (a) 7 dominant terms (compression level of 98.7%),
(b) 13 dominant terms (compression level of 95%), (c) 19 dominant
terms (compression level of 90%), and (d) 24 dominant terms (com-
pression level of 81 %)

Figure 6 Magnitude of coefficients in the series expansions of tht
current (solid line) and of the excitation (dashed line) versus seria
index i. Cases considered are for (a) standard expansion i1,1 a series o
pulse basis functions and (b) expansion in a series of Haar wavele
basis functions
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Figure 7 Scattering problem geometry for the second example
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is displayed in the figure. The elements in Figure 6(b)
are ordered in accordance with the conventional wavelet-
coefficient scheme; namely, the first 32 coefficients are the
coefficients of the shortest wavelets, those of length 21 = 2.

The next 16 coefficients, numbered 33-48, correspond to
wavelets of length 22 = 4, and so on. This configuration

allows us to identify different regions of the scatterer with the
associated coefficients. Thus, for example, the shadow region,
which ranges between 1 = 1 and 1 = 2, is clearly identified.

It is important to stress again that regions that are in the
shadow of the scatterer are not reflected in the excitation
vector. This is because the excitation vector is related to the
incident field calculated with the scatterer absent, and hence
the interception due to the scatterer is not manifested in the
excitation vector. In the discussed example, the excitation
vector is simply constant over the shadow region, which
implies that all the wavelet functions, which are not constant
in this region, will have zero coefficients in the excitation
vector series expansion.

'
Ti1e second example deals witfi a different geometry and a

different excitation. The analysis is now applied to the prob-
lem of scattering by a perfectly conducting cylinder of square
cross section. The excitation is due to two adjacent current

(b)

Figure 10 Magnitude of coefficients in the series expansions of the
current (solid line) and of the excitation (dashed line) versus serial
index i. Cases considered are for (a) expansion in a series of pulse
basis functions and (b) expansion in a series of Haar wavelet basis
functions

filaments of equal magnitude and opposite polarity. The
configuration, with related parameters, is shown in Figure 7.
The quantity we wish to determine is the current on the
surface of the cylinder. For the numerical solution, the square
is also divided into 64 pulses, and a larger number (128) of
testing points is selected. The three distinct ways of com-
pressing the impedance-matrix are compared with each other
in Figure 8, in a manner similar to that discussed before.
Again, the differences in performance are clearly seen. Fig-
ure 9 shows the resultant current on the scatterer, when
no compression is performed. Figure 10 compares between
the pulse and wavelet representations of the current and the
excitation. The correlation is again much better for the
wavelet representation.

~Ebc(%)
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Compression (% ) 5. SUMMARY AND CONCLUSIONS

In this article we have described a new method for ~he
incorporation of the wavelet basis functions into existing
numerical solvers. The new method deals with a new way of
reducing the size of the impedance matrix. Thus, instead of
using a thresholding procedure, a selective reduction is per-
formed based on the physical understanding of the problem.

Figure 8 Boundary condition error versus impedance matrix com-
pression level. Cases shown are for thresholding the original
impedance matrix as is (dash-dotted line); thresholding the localized
matrix, obtained by using Haar wavelet basis functions (dashed line);
and compressing the localized matrix by choosing dominant terms
(solid line)
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1. Ill" "Ullipl """lUll pI U""UUI " wa~
olding procedure in two examples.

COntrIbUtiOn IS actually available ~to the authors' knowledge)
for the study of planar waveguide junctions involving ellipti-
cal waveguides. ,

In this work we develop a multimode equivalent network
representation for junctions involving elliptical, rectangular,
and circular waveguides based on the multimode admittance
coupling matrix [10]. Furthermore, we also develop an effi-
cient approach to obtain the modal spectrum in elliptical
waveguide regions, in order to avoid the direct use of the
Mathieu functions. Finally, several application examples are
discussed, showing very good agreement between measured
and simulated results.

II. MULTIMODE EQUIVALE~~r NETWORK REPRESENTATION
OF JUNCTIONS INVOLVING f;:l"LIPTICAL WAVEGUID~S

The problem investigated in this article is the junct~on be-
tween a larger arbitrary waveguide (Region 1) and a smaller
elliptical waveguide (Region 2), as shown in Figure 1. for the
sake of space, only circular, rectangular, and elliptical wave-
guides are discussed. The objective is to develop a multimode
equivalent network representation (of the type shown in
Figure 1) that can be used to study complex waveguide
devices composed of cascaded junctions. Following [10], we
first define two reference planes denoted as T and T', as
shown in Figure 1, and we then write directly the expressions
for the admittance coupling matrix elements, obtaining
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ABSTRACT

Elliptical waveguides and irises are important for application in wide-
band filters and advanced dual-mode filters. In this Letter we present a

general formulation for the multimode equivalent network representation

of planar waveguide junctions involving elliptical waveguides. The modes
of the elliptical waveguide are obtained by transforming the Helmholtz
equation in elliptical coordinates into an equivalent linear matrix eigen-
value equation so that the use of-Mathieufunctions is avoided- Finally,
numerical and experimental results for a number of junctions are pre-
sented, and good agreement is found. @ 1996 John Wiley & Sons, Inc.

I. INTRODUCTION

Elliptical waveguides have already been analyzed in the tech-
nical literature, and there are, in fact, several papers dis-
cussing the evaluation of their modes [1-6]. However, no

Figure 1 Dlscontinuity between an arbitrary cross section (Region
1) and elliptical (Region 2) waveguides analyzed in this work'together
with its multimode equivalent network representation
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