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Abstract— The analysis of 2D scattering in the presence of a
dielectric half-space by integral-equation formulations involves
repeated evaluation of Sommerfeld integrals. Deformation of
the contour to the steepest-descent path results in a well-
behaved integrand, that can be readily integrated. A well-known
drawback of this method is that an analytical expression for
the path is available only for evaluation of the reflected fields,
but not for the evaluation of the transmitted fields. A simple
scheme for numerical determination of the steepest-descent path,
valid for both cases, is presented. The computational cost of the
numerical determination is comparable to that of evaluating the
analytical expression for the steepest-descent path for reflected
fields. When necessary, contributions from branch-cut integrals
and a second saddle point are taken into account. Certain ranges
of the input parameters, which result in integrands that vary
rapidly in the neighborhood of the saddle point, require special
treatment. Alternative paths and specialized Gaussian quadra-
ture rules for these cases are also proposed. An implementation
of the proposed Numerically Determined Steepest-Descent Path
(ND-SDP) method is freely available for download.

Index Terms— Sommerfeld Integrals, Green functions, Mo-
ment methods, Integral equations, Nonhomogeneous media.

singularities and possibly also minimizing phase variation
along the path. Some possible paths are given in [9]-[11].
Singularity Subtraction: Singular terms of the integrand
are subtracted and then added back after analytical inte-
gration. This step has been used together with contour
deformation [12], [13], or as an alternative to it [14].

e Numerical Integration: The value of the integral is esti-

mated from a finite number of samples of the integrand.
When this is done by a quadrature rule, the estimate is a
linear combination of the samples of the integrand. In a
more sophisticated scheme, the integrand (or some part
of it) is approximated by a superposition of complex
exponentials and this approximation is then integrated
analytically [15]. This so-called Discrete Complex Image
Method (DCIM), which has found widespread use [16],
[17], is closely related to the continuous complex image
method [18]. In a similar technique [19], the integrand
is approximated by a superposition of rational functions,
and the resulting approximation is then integrated analyt-
ically.



