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A Numerical Methodology for Efficient Evaluation
of 2D Sommerfeld Integrals in the Dielectric
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Abstract— The analysis of 2D scattering in the presence of a
dielectric half-space by integral-equation formulations involves
repeated evaluation of Sommerfeld integrals. Deformation of
the contour to the steepest-descent path results in a well-
behaved integrand, that can be readily integrated. A well-known
drawback of this method is that an analytical expression for
the path is available only for evaluation of the reflected fields,
but not for the evaluation of the transmitted fields. A simple
scheme for numerical determination of the steepest-descent path,
valid for both cases, is presented. The computational cost of the
numerical determination is comparable to that of evaluating the
analytical expression for the steepest-descent path for reflected
fields. When necessary, contributions from branch-cut integrals
and a second saddle point are taken into account. Certain ranges
of the input parameters, which result in integrands that vary
rapidly in the neighborhood of the saddle point, require special
treatment. Alternative paths and specialized Gaussian quadra-
ture rules for these cases are also proposed. An implementation
of the proposed Numerically Determined Steepest-Descent Path
(ND-SDP) method is freely available for download.

Index Terms— Sommerfeld Integrals, Green functions, Mo-
ment methods, Integral equations, Nonhomogeneous media.

I. INTRODUCTION

The determination of the fields of an elementary source
radiating in plane-stratified media is a canonical problem in
electromagnetics. Even though some variants of this problem
have been the subject of research since the beginning of the
20th century [1], [2], they are still of interest today. Compre-
hensive references are [3]–[5], and reviews of computational
aspects can be found in [6]–[8]. Nowadays, interest is largely
motivated by integral-equation formulations for scattering and
propagation problems, as they entail repeated evaluation of
the fields of elementary sources that constitute the Green’s
function. The starting point for the evaluation of the various
Green’s functions is an integral representation of the fields (or
potentials), of the Sommerfeld Integral (SI) type. Although
the literature on SI evaluation is vast and the procedures are
varied, most methods include some or all of the following
steps:
• Contour Deformation: The integration contour is de-

formed from the real axis to a contour on the complex
plane. The purpose of this step is to obtain a more well-
behaved integrand by avoiding pole and branch-point
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singularities and possibly also minimizing phase variation
along the path. Some possible paths are given in [9]–[11].

• Singularity Subtraction: Singular terms of the integrand
are subtracted and then added back after analytical inte-
gration. This step has been used together with contour
deformation [12], [13], or as an alternative to it [14].

• Numerical Integration: The value of the integral is esti-
mated from a finite number of samples of the integrand.
When this is done by a quadrature rule, the estimate is a
linear combination of the samples of the integrand. In a
more sophisticated scheme, the integrand (or some part
of it) is approximated by a superposition of complex
exponentials and this approximation is then integrated
analytically [15]. This so-called Discrete Complex Image
Method (DCIM), which has found widespread use [16],
[17], is closely related to the continuous complex image
method [18]. In a similar technique [19], the integrand
is approximated by a superposition of rational functions,
and the resulting approximation is then integrated analyt-
ically.

Among the possible integration contours, the Steepest-Descent
Path (SDP) passing through a saddle point is considered, in
some respects, the optimal choice [20].

Another aspect of using the SDP is that if, in the process of
deforming the original path to the SDP, a branch point is inter-
cepted, a path surrounding the intercepted branch point must
be added. Although this entails some book-keeping, it also
highlights an appealing feature of the method, namely, that the
integral is obtained as a sum of distinct, physically meaningful,
contributions. From a computational point of view, as simple
quadrature is used, this method can potentially outperform the
popular DCIM which involves finding the complex images
by more computationally intensive methods such as Prony’s
method [12], or the Matrix Pencil Method [21]. Moreover,
evaluating the Green’s function along the SDP is essential for
the Fast Inhomogeneous Plane Wave Algorithm [22] which
can be used to solve electromagnetically large layered-media
problems in O(N log N) computational complexity.

When the observation point and the source point are in
the same medium, an analytical expression for the SDP is
available, and it has been used extensively [6], [23], [24]. In
contrast, when the source and observation points are not in
the same medium, an analytical expression for the SDP is not
available. One option, in this latter case, is to determine the
path numerically, but this was deemed too computationally
expensive, or otherwise impractical [23], [25].


