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Abstract
Imaging of objects under variable lighting directions is an
important and frequent practice in computer vision and
image-based rendering. We introduce an approach that sig-
nificantly improves the quality of such images. Traditional
methods for acquiring images under variable illumination
directions use only a single light source per acquired image.
In contrast, our approach is based on a multiplexing prin-
ciple, in which multiple light sources illuminate the object
simultaneously from different directions. Thus, the object
irradiance is much higher. The acquired images are then
computationally demultiplexed. The number of image ac-
quisitions is the same as in the single-source method. The
approach is useful for imaging dim object areas. We give
the optimal code by which the illumination should be mul-
tiplexed to obtain the highest quality output. For n images
corresponding to n light sources, the noise is reduced by√

n/2 relative to the signal. This noise reduction translates
to a faster acquisition time or an increase in density of illu-
mination direction samples. It also enables one to use light-
ing with high directional resolution using practical setups,
as we demonstrate in our experiments.

1 Introduction
Imaging objects under different source directions is im-
portant in computer vision and computer graphics [1, 2,
3, 5, 7, 8, 13, 14, 15, 18, 19, 20, 22, 24, 25, 26]. It is
used for various purposes: object recognition and identifi-
cation [2, 6, 8, 14, 21, 25, 26], image based rendering of
objects and textures [3, 4, 5, 13, 14, 19, 20, 22], and shape
recovery [10, 11, 12, 13].

In the above mentioned research directions and applica-
tions, images have been acquired under a single light source
at a time. Frequently, however, a single source does not il-
luminate all the object parts with sufficient intensity to pro-
duce images with a high signal-to-noise ratio (SNR). While
this problem may be overcome using long exposures, such
an approach significantly lengthens the acquisition time.

In contrast to using single sources, we show that illu-
minating objects by multiple sources has significant ben-
efits. Given a set of desired illumination directions, our
approach enables capturing the required information with
a much higher quality without adding to the acquisition

time. The approach reduces problems associated with dy-
namic range, e.g., due to shadows and specular highlights,
although the exposure settings are the same in all the ac-
quired images. We formalize these statements in a theory of
multiplexed illumination. We describe the optimal scheme
for multiplexing illumination sources from different direc-
tions during image acquisition, and the computational de-
multiplexing which follows the acquisition. We stress that
the result of the demultiplexing is not an approximation;all
the features that one obtains with a single source (shadows,
specularities, shading) are fully recovered.

Beside giving a theoretical analysis of the benefits of the
method, we also describe the limitations of the multiplexed
illumination approach. Finally, we present a novel design
for an easily programmable light source. A projector cre-
ates patterns on a white wall. The patterns reflecting off the
wall towards the object serve as light sources. This fast and
flexible lighting apparatus was used to demonstrate the mul-
tiplexing theory in our experiments.

We stress that this work is unrelated to structured light
methods. While structured light deals with spatial patterns
projected directly onto the object, we multiplex thedirection
from which the entire object is illuminated.

The proposed approach yields dramatically better results
than those of the single-source illumination method. Ifn im-
ages are taken for imaging the object undern light sources,
the method we devise improves the SNR by

√
n/2. It short-

ens the acquisition time by the same factor, relative to meth-
ods which enhance the SNR by long exposures. The results
of this paper have implications for a broad range of vision
and graphics algorithms

2 Standard Lighting Methods
Almost all current methods used for illumination research
and gathering databases of objects under variable lighting
directions are based essentially on single light sources. Such
a setup is schematically depicted in Fig. 1. Many imple-
mentations have been based on a fixed constellation of light
sources (strobes),1 operated one at a time [1, 5, 8, 14, 26].
Such setups suffer from a low efficiency of light power,
since almost all light sources (or illumination directions)

1Other systems use mechanical scanning of the lighting direction [3, 10,
13, 15, 18, 19]. Obviously, such scanning methods are very slow.
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Figure 1. An object is viewed under varying illumination
directions. When only a single light source used at a time, the
captured images may be dark and noisy.

are “off,” for any image acquisition. This inefficiency may
translate into long exposure times (making acquisition of
moving objects very difficult), very poor angular sampling
of illumination directions, or poor SNR. In the following list
we describe several cases in which these problems appear.

Shadows and dark and bright albedostypically coexist in
the same frames. Let the system expose the brightest points
without saturation. Then, image regions corresponding to
low radiance will be captured with low SNR.

Specular highlightsare limited to small parts of the image,
but may be much brighter than most image parts. Suppose
the systems is set to avoid saturation of the highlights, then
for the rest of the image, the signal readings are low.

Low power illumination sourcesmay not cast enough light
to sufficiently illuminate even the bright scene points. Can’t
we always use a brighter source? In practice we cannot due
to a tradeoff between the directional resolution of the setup
and the power of each source. We want to have a high direc-
tional resolution of the illumination setup, with hundreds, or
even tens of thousands of sources illuminating the objects.
It becomes a practical problem to make the sources dense
enough and keep each of them at high power. It is much
easier to create systems having a very high directional reso-
lution made up of low power sources, as we show in Sec. 6.

Problems of low object radiance may be overcome using
long exposures [4, 15, 17] for each illumination direction.
However, long exposures significantly increase the total ac-
quisition time. In addition, dark current noise increases with
exposure time.

3 Solution by Multiplexing
3.1 The Case of 3 Sources
For a moment, let us consider a special case in which the
number of light sources is three, typically the case with pho-
tometric stereo. We label the light sources as1,2 and3.

We denote the acquired measurements bya. The image ir-
radiance under one of the sources is denoted byi, and an
estimate ofi is denoted bŷi. Suppose that for each acquired
image, only one source is “on.” The estimated intensity at a
pixel due to any of the sources is trivially given by

 îsingle
1

îsingle
2

îsingle
3


 =


 1 0 0

0 1 0
0 0 1





 a1

a2
a3


 . (1)

In this case, on average only a 1/3 of the illumination re-
sources are exploited for any single measurement (pixel). A
more efficient method uses two sources for each acquired
image. Each of the three acquired measurements exploits
in average 2/3 of the illumination resources. The values ac-
quired by the detector are now

 a1,2
a2,3
a1,3


 =


 1 1 0

0 1 1
1 0 1





 i1

i2
i3


 . (2)

The multiplexing of illumination sources causes more light
to be sensed at any acquired measurement. While the inten-
sities corresponding to the individual light sources are not
obtained as trivially as in the method of Eq. (1), they can be
easily demultiplexed from the measurements:

 îdecoded
1

îdecoded
2

îdecoded
3


 =

1
2


 1 −1 1

1 1 −1
−1 1 1





 a1,2

a2,3
a1,3


 . (3)

What has been gained from the multiplexing process? Sup-
pose each measurement (e.g.,a1, a3, a2,3, a1,2..) includes
an independent additive noise having varianceσ2. This
noise level is the same for all images obtained by Eq. (1).
However, it is easy to show that the noise variance re-
duces to(3/4)σ2 in the images extracted from the lighting-
multiplexed acquired measurements, using Eq. (3).

Thus, for the same number of measurements (three), the
multiplexing scheme yields a better signal to noise ratio in
the final output. The only cost is a negligible demultiplex-
ing calculation. It can be said that at practically no addi-
tional cost, multiplexing leads to better results (up to limi-
tations described in Sec. 4). Similar considerations exist in
domains completely unrelated to illumination: some color
cameras use cyan, magenta, and yellow filters, in order to
extract better red-green-blue color images [23].

3.2 General Light Multiplexing
Consider the setup depicted in Fig. 2. The object is illumi-
nated by many light sources simultaneously, using a multi-
plexing code. This creates a strong irradiance of the object,
leading to bright, clear acquired images. The acquired im-
ages are later decoded (demultiplexed) on a computer.

Let the vector�Θ parameterize the direction from which
the source illuminates an object point. The vector�Θ is mea-
sured in the global coordinate system of the illumination
system.2 Let i�Θ(x, y) denote the value of a specific im-

2�Θ is unrelated to the surface normals of the object.
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Figure 2. In Hadamard-multiplexed illumination, about half
of the light sources are on simultaneously, creating brighter,
clearer captured images. These images are later demulti-
plexed (decoded) on a computer. The setup can be created
by projecting light patterns containing bright segments on a
wall/screen. Each segment behaves as an independent source.

age pixel(x, y) under a single, narrow light source at�Θ.
We require this value for a range of lighting directions, thus
i(x, y) denotes the vector of values of the image irradiance at
that single pixel, with varying�Θ. The length ofi(x, y) is n,
corresponding to the number of distinct lighting directions.
We denote bya(x, y) the vector of measurements acquired
under different lighting settings (typically with multiple si-
multaneous illumination sources). The number of acquired
images (the length ofa(x, y)) equalsn. We note that, while
we deal with image intensity measurements, they are equiv-
alent to the object radiance.3

The images acquired with different lighting conditions
represent light energy distributions. Therefore,i(x, y) and
a(x, y) are additive quantities, and are related to each other
by a linear superposition:

a(x, y) = W i(x, y) , (4)

whereW is a weighting matrix. Each rowm in the matrix
W denotes which of the light sources are “on” and which
are “off” when the image is acquired. Each columns in this
matrix corresponds to a specific illumination source, equiv-
alent to a specific�Θ. For this reason, in this paper we use
the notationis(x, y) interchangeably withi�Θ(x, y). We es-
timatei(x, y) by

î(x, y) = W−1 a(x, y) . (5)

When only a single light source is “on” at any time,
î(x, y) is equal to a raw measured value. ThusW = I,
whereI is the identity matrix. However, the intensities per
illumination direction can be multiplexed in the acquired

3The transformation between the radiance and the imagei�Θ
(x, y) is a

multiplication by a factor depending on the camera parameters, indepen-
dent of the lighting and the object.

measurements, i.e.,W can be general. Then, each measure-
menta(x, y) simultaneously acquires energy corresponding
to lighting from multiple directions. Thus, the energy in
a(x, y) can be made larger than in single-source lighting,
potentially increasing the quality of the estimatedî(x, y).

3.3 The Optimal Multiplexing Code
Suppose that statistically independent additive noiseη hav-
ing zero mean and varianceσ2 is present in the measure-
ments. The estimation (Eq. 5) propagates this noise to the
final output̂i(x, y). The output noise vector isW−1η. At
each pixel(x, y), the covariance matrixΣ of î is

Σ = E
{[̂

i(x, y) − ¯̂i(x, y)
] [̂

i(x, y) − ¯̂i(x, y)
]t

}

= σ2(WtW)−1 , (6)

whereE denotes expectation and¯̂i(x, y) = E [i(x, y)]. The
mean squared error ofî(x, y) at each pixel is then

MSE =
1
n

Trace(Σ) =
σ2

n
Trace

[
(WtW)−1

]
. (7)

In acquisition under a single source,W = I, thus

MSEsingle = σ2 . (8)

We aim to maximize the signal to noise ratio ofî(x, y).
Thus, the multiplexing matrixW should minimize the MSE.

An analogous mathematical problem was encountered in
the 1970’s in the fields of spectrometry and X-ray astron-
omy [9]. Let the elements of the matrixW bewm,s, where4

0 ≤ wm,s ≤ 1. The matrixW that has these characteristics
and optimizes the MSE is called anS-matrix [9, 27]. If
(n + 1)/4 is an integer, the rows of theS matrix are based
onHadamard codes of lengthn + 1. Ref. [9] details recipes
for creatingS. Briefly, the characteristics [9] ofS are:

• The value of each of its elementswm,s is either 0 or 1.
Thus each light source is either “on” or “off.”

• Each row or column hasn elements:(n + 1)/2 have the
value 1, and(n − 1)/2 have the value 0. Thus, the light en-
ergy corresponding to a little more than half of the sources
is captured in each acquired multiplexed measurement.

• InvertingS is simple, no matter how large it is. Defining
1n as ann × n matrix, all of whose elements are 1’s,

S−1 = [2/(n + 1)](2St − 1n) . (9)

Thus except for the global factor of2/(n + 1), each of the
elements ofS−1 is either 1 or -1.

The matrixW (or S) describes the binary state of the
illumination sources (“on” or “off”), and is thus independent
of the pixel coordinates(x, y). As an example [9], anS
matrix forn = 7 is

4Incoherent light energy from a source is not subtracted by multiplex-
ing. It is also not amplified (optical amplification occurs only in specialized
media). For this reason,0 ≤ wm,s ≤ 1.
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S =




1 1 1 0 1 0 0
1 1 0 1 0 0 1
1 0 1 0 0 1 1
0 1 0 0 1 1 1
1 0 0 1 1 1 0
0 0 1 1 1 0 1
0 1 1 1 0 1 0




. (10)

In this case, the rows ofS−1 are cyclic permutations of the
row vector(1/4)[1 1 1 − 1 1 − 1 − 1].

For theS matrix,

MSEHadamard =
4nσ2

(n + 1)2
−→ 4σ2

n
for large n . (11)

We measure the noise by the root-mean-squared (RMS) er-
ror. Following Eqs. (8,11), the SNR of the two methods are
related as

SNRHadamard

SNRsingle
=

√
n + (1/

√
n)

2
≈

√
n

2
. (12)

This increase in accuracy has been termed in the context of
spectrometry [9] as themultiplex advantage. For example,
if we haven = 255 light sources (direction samples), then
multiplexing will increase the accuracy of the estimated ob-
ject radiance by a factor of about 8. If we have104 light
sources (as will be described in Sec. 6), then the multiplex
advantage will be 50. Please note that this improvement
is obtained although thenumber or acquired images is the
same for single-source and multiplexed measurements.

4 Pros and Cons of Multiplexing
Consider a case in which a single source is sufficient to cre-
ate images with high intensity measurement values, for ex-
ample, a value 200 in an 8-bit camera. If the object is dif-
fuse, then other sources may yield a similar value. Then,
obviously, turning on several such sources simultaneously
will cause the image to saturate, thereby ruining the data
at the saturated points. This indicates that multiplexing has
limitations, which we describe in this section.

For a diffuse object, leti be a typical image readout when
the acquisition is done under a single source. This readout
is assumed to occur when the exposure time ist0, which
we term as thebaseline time. For example, we may set
t0 = 33ms as in video. In general, the exposure time ist,
thus the signal isit/t0. Suppose this value is estimated by
multiplexingN sources of similar irradiance over the object,
whereN ≤ n. Following Eqs. (11,12), the SNR ofî is

SNR ∼ i

σ

t

t0

√
N + (1/

√
N)

2

√
M . (13)

HereM is the number of frames taken with the same expo-
sure settings for each illumination pattern. Noise reduction
by simple averaging of redundant frames is accounted for by√

M . Note that Eq. (13) assumes a diffuse object with a con-
stant shadowing state, i.e., each illumination source yields a
similar signal in the image.

We aim to recover the images undern individual lighting
directions. The total acquisition time and the total baseline
acquisition time are

T = ntM and T0 = nt0 , (14)

respectively. This is true also for illumination multiplexing,
since it uses the same number of framesn. Eq. (14) applies
also whenN < n, i.e., when only part of the sources are
multiplexed. Thus,

SNR ∼ i

σ

1√
M

T

T0

√
N + (1/

√
N)

2
. (15)

For a single source (N = 1),

SNRsingle ∼ i

σ

1√
M

T

T0
. (16)

The above derivation assumes that the acquired images
are not saturated. However, saturation limits the ability to
multiplex, since(N + 1)/2 sources are “on” per frame. Ifv
is the saturation value of the camera, then we must boundt
andN so that

i(N + 1)t/(2t0) ≤ v ⇒ (N + 1)t < 2(v/i)t0 . (17)

We now look at special cases of interest.

Dim objects or sources:The acquired images are far from
saturation ifi � v. According to Eq. (15,17), we can
increase the SNR by extending the exposure timet, and
henceT . Alternatively (or in conjunction), the SNR can
be increased by increasingN , i.e., by multiplexing more
sources. Looking at Eqs. (15,16), we see that:

1) For a fixed acquisition timeT (e.g., T = T0), the
decoded images should have≈ √

N/2 better SNR than
those acquired under a single source.

2) Rather than increasing the SNR by increasingT , we may
acquire all the images faster by keepingT = T0 constant
and increasingN . Acquisition of illumination-multiplexed
images is then

√
N/2 faster than single-source acquisition.

For example, ifN = 255, we boost the speed by a factor of
≈ 8, while if N ≈ 1000 then the factor is≈ 16.

3) Let T extend so that under a single-source the SNR
matches the SNR obtained through multiplexed illumina-
tion. Then, in the total amount of time needed to captureN
single-source images, we can captureN2/4 illumination-
multiplexed images. This enables capturing a larger number
of illumination direction (�Θ) samples.

These benefits apply to image regions which are dim due to
the situations listed in Sec. 2: significant spatial variation
in image radiance due to albedo variations, shadows and
highlights, or sources which are individually dim.

Bright objects and sources:When the acquired images sat-
urate, Eq. (17) takes effect. At the limit,

t/t0 = 2v/[i(N + 1)] . (18)

Using this limit in Eqs. (14,15),

4



specular highlights

diffuse object

Figure 3. [Top] Multiplexing does not apply to bright diffuse
objects, which may saturate. [Bottom] A highlight forces low
exposure settings to avoid its saturation. Multiplexing bright-
ens most of the image, but does not saturate the highlights,
thanks to their locality.

SNR ∼
√

iv

σ

√
T

T0

1 + (1/N)√
2

for large N. (19)

At the saturation limit, we would like toavoid multiplexing,
since the SNR somewhat decreases whenN increases. The
reason for this behavior is that at the limit, we can only
increaseN at the expense of the single frame exposure time
t (Eq. 18). This undermines our goal of capturing as much
light as possible per frame.

To conclude, illumination multiplexing should be done,
as long as it does not hit the saturation bound (See the top of
Fig. 3). The number of light sources to multiplex

N = min {n, int [2vt0/(it) − 1]} (20)

may depend on the image valuei. For dimmer object, we
can multiplex more sources for benefit.

If the image contains a large variability of brightness val-
ues, then for some image parts we would want to extract the
information without multiplexing at all (single-source im-
ages). For others we would want to extract the information
from the full multiplexing of the sources (N = n). For
some image parts, we may wish to multiplex only several
sources (N < n) per frame. This suggests that high dynamic
range data of all scene points can be obtained by taking sev-
eral illumination sequences, each with a different level of
multiplexing. This combined method might resemble other
methods which use multiple exposures with varying expo-
sure times [15, 17]. Nevertheless, the multiplexing method,
with a constant exposure timet = t0, takes a much shorter
acquisition time than methods which use long exposures.

Finally, recall that this limitation analysis was made on
the assumption of a diffuse object. When differences in
brightness are due to specular highlights, illumination mul-
tiplexing is much more efficient, as we show next.

5 Robustness to Specular Highlights
Studies of appearance with specularities [6, 13, 15, 16] can
benefit from our multiplexing scheme. Each measurement
is described by a rowm in Eq. (4). The acquired value is

am(x, y) =
n∑

s=1

wm,sis(x, y) , (21)

We represent the intensityis(x, y) as a sum of a diffuse com-
ponent and a specular component:

am(x, y) =
n∑

s=1

wm,s[idiffuse
s (x, y) + ispecular

s (x, y)]. (22)

The acquired image is composed of such components too:

am(x, y) = adiffuse
m (x, y) + aspecular

m (x, y) , (23)

where

adiffuse
m (x, y) =

n∑
s=1

wm,si
diffuse
s (x, y) . (24)

A highlight due to specular reflection at a pixel(x, y)
does not occur for most source directions�Θ. Rather, it oc-
curs if the illumination comes from a very narrow solid an-
gle around a single direction. For a highly specular surface
we thus say that, only one sources̃(x, y) produces a spec-
ular highlight at(x, y) which can be seen from the position
of the camera. Therefore,

ispecular
s (x, y) = ispecular

s (x, y)δ[s, s̃(x, y)] . (25)

It follows that

aspecular
m (x, y) = wm,s̃(x,y)i

specular
s̃(x,y) (x, y) . (26)

Suppose that in a single-source image, the light source
is “on” in a direction corresponding to the highlight, i.e.,
wm,s = δ(s, [s̃(x, y)]. The acquired image is then

asingle(x, y) = idiffuse
s̃ (x, y)+ispecular

s̃ (x, y) � idiffuse
s̃ (x, y)

(27)
In such cases, we get the familiar situation in which the spec-
ular highlight at(x, y) is much brighter than most of the im-
age pixels, which measure only the diffuse component (See
the bottom of Fig. 3). This creates a problem of dynamic
range (see Sec. 2).

In contrast, in our multiplexed method, when the light
source corresponding to the highlight is “on,” half of the rest
of the sources, which do not create a highlight in(x, y) are
“on” as well. Then,

amultiplexed(x, y) ∼ [n/2]idiffuse
s̃ (x, y) + ispecular

s̃ (x, y) .
(28)

The diffuse component in the acquired imageamultiplexed

is significantly brighter than inasingle, while the specular
component is (almost) not amplified. This is illustrated in
the bottom of Fig. 3. This greatly reduces the dynamic range
problem.
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Single−source imagesDecoded (de−multiplexed) imagesAcquired multiplexed images

Figure 4. Results of an experiment. All images are contrast stretched for display purposes. [Left] The images are acquired with
multiplexed illumination. [Middle] Two images decoded by our method, each showing the objects as if illuminated by a single light
source at a different direction. [Right] Corresponding images acquired by single-source illumination. The single-source images have
a significantly lower SNR than their corresponding decoded images, and low gray level information.

6 Experiments
6.1 The Implementation Setup
The setup includes three elements: a PC-controlled pro-
jector, a white diffuse wall, and a camera. The projector
projects patterns of bright and dark segments on the wall.
The illuminated segments on the wall diffusely reflect light
into the room, acting as separate light sources, as depicted in
Figs. 1,2. This novel design allows a convenient and accu-
rate computer control of the high resolution light “sources.”
The light from the wall illuminates the object. We imaged
the object with a Sony NTSC monochrome camera having a
linear radiometric response.

The wall is divided inton = 255 segments, each of which
turns “on” and “off” according to the encoded patterns, as in
Fig. 2. This setup can easily be scaled to produce tens of
thousands of dense samples of the illumination directions,
since the projector display has millions of pixels. For each
of the demonstrations, we acquire images using our mul-
tiplexed illumination method. In addition, we also acquire
255 images under the corresponding individual sources (seg-
ments), using the same setup parameters (projector bright-
ness, exposure time, lens aperture and camera gain).

As in any implementation, imperfections occur. In par-
ticular, the dark sources (wall segments) are not completely
dark due to stray light and inter-reflections in the illumina-
tion system. As we prove in the Appendix, acquisition under
multiplexed lighting is more robust to this problem than ac-
quisition under a single source. Following the results in the
Appendix, we image the objects when a “dark pattern” is
projected. This “darkness image” is subtracted from all the
images acquired under active lighting.

6.2 Superior Signal to Noise Ratio
The viewed scene in this demonstration is composed of sev-
eral simple shapes. Two of the images acquired under mul-
tiplexed illumination are displayed on the left part of Fig. 4.
The captured images are bright, making the noise insignif-
icant. Based on all of the acquired multiplexed frames,
we derive the images with demultiplexed illumination, as if
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Figure 5. The noise in the decoded images [Solid], which is
∼ 0.08 graylevels, is significantly smaller than the noise in

the single-source images [Dotted], which is∼ 0.6 graylevels.

each image is illuminated by a single, small source. Two
of the decoded images are displayed in the middle part
of Fig. 4. The corresponding two images taken under a
single-source are displayed on the right part of Fig. 4. The
single-source images are very dark, and are linearly contrast
stretched in post-processing for display purposes.

The fact that any decoded image reproduces the single-
source image is easily seen in the cast shadows. Yet, the de-
coded images have a much better quality than the images ac-
quired under a single source. For a quantitative analysis, we
examine three patches over the flat shape faces. The noise
in each patch is estimated as the standard deviation of its
values at any image. In total, there are255 × 3 = 765 mea-
surements taken under single-source conditions, and corre-
sponding measurements of the decoded images. Fig. 5 plots
samples of these corresponding noise measurements. It is
easily seen that the noise in the decoded images is much
smaller than in the single-source images. On average, the
ratio between corresponding noise levels is 7.97, consistent
with the theoretical multiplex advantage of

√
256/2 = 8,

predicted by Eq. (12).
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Single source image Decoded image

Figure 6. Experimental results of imaging shiny objects.

The scene (window)

specular reflection
of the scene

Figure 7. Rendering the object based on the decoded images,
as if illuminated by a wide angle scene. Specular reflections
are densely rendered thanks to the large number of sources.

6.3 Specular Highlights and Rendering
Fig. 6 shows results of an experiment done with specular ob-
jects. For display purposes, we saturated the specular high-
lights in order to uncover the object details. Yet we stress
that none of the raw captured images has saturated pixels.
As in Sec. 6.2, the decoded image fits the single-source im-
age, but its noise is significantly reduced.

Thanks to the ability of our method to handle low sig-
nals, the available projector light power is divided into many
small sources. This high density of illumination samples en-
ables a more realistic image-based rendering of specular re-
flections. The cup shown in Fig. 6 is assumed to have a gray
reflectance. In Fig. 7 it is rendered as if it is illuminated by a
window, out of which is a natural outdoor scene. The scene-
window is specularly reflected from various places on the
cup. The resolution of the reflected image is crude, having
255 “pixels” to represent it, corresponding to the illuminat-
ing segments in the image acquisition. Yet, this resolution is
sufficient for the example in Fig. 7, since the reflection oc-
cupies a couple of hundred pixels on the acquired image. It
is easy to scale the method to thousands of illumination seg-
ments and more, by using the appropriate Hadamard codes.

6.4 Color Multiplexing
Projecting color patterns enables us to capture the object
colors with the monochrome camera used in the previous
demonstrations. However, projecting red/green/blue colors
means that each measurement captures≈ 1/3 of the spec-
trum. It is more efficient to multiplex the color channels, in
analogy to some camera mosaics [23], and then decode the
primary colors from them. Hence, in conjunction to mul-
tiplexing the illuminationdirection, we also multiplex the
illumination color. We project cyan, magenta, and yellow
patterns, each capturing≈ 2/3 of the color bandwidth. Af-

Figure 8. [Top] Monochrome images taken under illumina-
tion by cyan, magenta and yellow patterns, which multiplex
the illumination color as well as direction. [Bottom] Decoded
color images of a face mannequin corresponding to different
illumination directions.

ter decoding the illumination direction and color, we obtain
true-color images as if illuminated by a single white source.
For an object, this demonstration uses a face mannequin.
Decoded images corresponding to different illumination di-
rections are shown in Fig. 8.

7 Discussion
Imaging objects under variable lighting conditions is an im-
portant aspect of a broad range of computer vision and im-
age based rendering techniques. Multiplexed illumination
can be highly beneficial to these techniques. It enables more
accurate imaging of dim objects. It is faster than methods
that increase the exposure time, and it facilitates easy im-
plementation of high resolution lighting systems. We expect
this approach to find a wide range of applications.

There are still questions open for further research, espe-
cially about the tradeoffs of the approach. It may be possible
to increase the upper bound limit on the number of multi-
plexed sourcesN , beyond those roughly estimated in Sec. 4.
The reason for this hypothesis is that the brightness of even
a diffuse scene point can vary dramatically with illumina-
tion direction; it may be in a shadow for some of the light
sources. We also explore the application of the multiplexing
principle in other domains of imaging and vision.

A Appendix: Non-Zero “Darkness”
Frequently, light comes from illumination sources which are
supposed to be completely dark. This is caused by stray light
in the illumination system or ambient light from possible
auxiliary sources. We now show that our multiplexed illu-
mination scheme is much more robust to such disturbances
than single-source illumination.

Typically, such disturbances increase the radiance of all
the illumination sources, no matter if they are “on” or “off”
for a specific measurementm. Thus, the valueswm,s are
perturbed byδws. This perturbation propagates to the ac-
quired measurements, which are perturbed by
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δam(x, y) =
n∑

s=1

δwsis(x, y) . (29)

Suppose that the recovery stage (5) uses the ideal, unper-
turbed matrixW−1, ignoring the unknown perturbations
that occurred in the acquisition stage. The measurements,
perturbed as in Eq. (29) affect the recovered estimation by

δîk(x, y) =
n∑

m=1

(
W−1

)
k,m

δam(x, y) , (30)

where(W−1)k,m is the element at rowk and columnm of
W−1. Combining Eqs. (29) and (30),

δîk(x, y) =
n∑

s=1

δwsis(x, y)
n∑

m=1

(
W−1

)
k,m

. (31)

If Hadamard coding is used, thenW−1 = S−1. Ac-
cording to Eq. (9),

∑
m(S−1)k,m = (2/n + 1). On the

other hand, in single-source imagingW−1 = I, thus
(
∑

m W−1)k,m = 1. Therefore,

δîsingle =
n∑

s=1

δwsis δîhadamard =
2

n + 1
δîsingle. (32)

Thus, when our multiplexed illumination is used, the effect
of illumination perturbations is much smaller than in single-
source illumination.

By taking an image of the object with all the sources in
the “off” state, we get some low estimate of the perturbation
image

∑n
s=1 δwsis(x, y). This “darkness image” can then

be subtracted froma(x, y). This compensation is partial,
since part of the ambient light is due to inter-reflections in
the illumination apparatus, originating from the light which
does hit its parts. Moreover, this dark image of the object
can be expected to be relatively noisy.
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