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Abstract. We introduce a differentiable monotonicity prior, useful to
express signals of monotonic tendency. An important natural signal of
this tendency is the optical extinction coefficient, as a function of alti-
tude in a cloud. Cloud droplets become larger as vapor condenses on
them in an updraft. Reconstruction of the volumetric structure of clouds
is important for climate research. Data for such reconstruction is multi-
view images of each cloud taken simultaneously. This acquisition mode
is expected by upcoming future spaceborne imagers. We achieve three-
dimensional volumetric reconstruction through stochastic scattering to-
mography, which is based on optimization of a cost function. Part of the
cost is the monotonicity prior, which helps to improve the reconstruc-
tion quality. The stochastic tomography is based on Monte-Carlo (MC)
radiative transfer. It is formulated and implemented in a coarse-to-fine
form, making it scalable to large fields.
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1 Introduction

Clouds have a key role of the climate system. They are part of the water cycle
(the source of freshwater supply), and account for ≈ 2/3 of the Earth’s albedo.
Inaccurate models of cloud properties yield the largest errors in climate pre-
dictions. To put matters in perspective, an error of ≈ 1% in cloud properties
yields errors in current climate predictions, that are comparable to climatic ef-
fects of man-made greenhouse gases. To reduce climate prediction uncertainties,
it is required to model clouds far better than the state-of-the-art. Models, nat-
urally, need observations to set parameters and statistics. Observations require
both relevant raw data and proper ways to extract information from this data,
regarding cloud structure.

However, current observations cannot meet this need. Cloud observations on
a planetary scale rely on 2D satellite images to provide raw data. Then, analysis
of the data assumes the atmosphere is layered. In other words, the prevailing as-
sumption underlying analysis and modeling is that clouds are homogeneous hor-
izontally for infinite extents, having only 1D vertical variations. This is termed
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cloud droplets

aerosols

updraft

Fig. 1. As air containing water vapor ascends, humidity starts condensing at the con-
densation level z0, forming a cloud base. Condensation is initiated by aerosols (conden-
sation nuclei), which are much smaller than water droplets. In the cloud, condensation
increases the size (radius) of the droplets, with altitude. The clouds are irradiated by
the sun and observed by multiple cameras. From the images, 3D volumetric information
is sought.

the plane parallel model. Analysis is based on 1D radiative transfer (RT) across
layers. However, clouds are naturally 3D volumetric objects having spatial het-
erogeneity, and light propagates in them according to 3D-RT. This discrepancy
yields significant errors and uncertainties the smaller the clouds are. While such
clouds are small, they are numerous.

For these reasons, it is important to derive the volumetric structure of small
clouds. This requires devising 3D computed tomography (CT) based on multiple
scattering [1, 8, 15, 16, 19, 25, 31–33] and passive imaging. Scattering-based CT
stands contrary to traditional CT, which relies on linear image formation mod-
els [3, 17, 18, 40, 57, 59] and treats scattering as a disturbance. It has recently been
shown [14] that scattering-based bio-medical CT can have advantages relative to
linear X-ray CT, in terms of radiation dose, chemical analysis and elimination
of moving parts.

This paper advances scattering-based tomography of small clouds. To enable
imaging over wide scales, the assumed imaging setup is a formation of orbiting
satellites, designed to image cloud fields simultaneously from multiple directions
(Fig. 1). This is in accordance to a space mission planned to provide raw image
data dedicated for tomographic analysis [54]. CT analysis relies on optimized
fitting of an image formation model to data, while complying with priors. In
this paper, we introduce and use a differentiable monotonicity prior. It is helpful
for expressing the nature of convective clouds. Consequently, the prior helps in
lowering the recovery error and reaching faster convergence.
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cooling cooling

Fig. 2. An illustration of an isolated air parcel, demonstrating cloud-droplet conden-
sation, as described in Sec. 2. The absolute humidity is AH, and the relative humidity
is RH. The right-most stage is at saturation or super-saturation

Moreover, our algorithm is scalable to large fields. It is a stochastic approach,
based on MC RT, where accuracy is a matter of time to simulate transport of
photons. We develop the recovery in a coarse-to-fine (hierarchical) approach, to
speed convergence and handling of large fields. This is contrary to prior atmo-
spheric scattering CT, which is based on discrete ordinates [31, 32]. The latter
uses high quality RT which is memory-limited: the domain size is severely limited
by memory resources, and not designed for grid coarsening.

Proper real raw spaceborne data is expected to become available in a few
years [54]. Therefore, we test the methods using simulations. The simulations
emulate realistic photon (Poisson) noise, by using realistic photon counts per
pixel in the raw images.

2 Droplets in Convective Clouds

To form priors on an object, it is helpful to know its nature. We put to use
a cloud trend. First, we note three terms: saturation, absolute humidity and
relative humidity. Absolute humidity quantifies the density of water vapor in air([

gr/m3
])

. Saturation is a state at which vapor is at equilibrium with liquid
water. Relative humidity is the ratio of absolute humidity of an air parcel, to the
parcel’s absolute humidity at saturation. By definition at saturation, the relative
humidity is 100%. For an unsaturated isolated air parcel, the absolute humidity
is fixed, but relative humidity increases as temperature decreases.

Convective clouds require three ingredients: humidity (water vapor), ascend-
ing air current (updraft) and condensation nuclei (aerosols). The ascending air
lifts water vapor and aerosols. Ascent leads to cooling of air with altitude z.
A lower temperature increases the relative humidity. At some altitude, cooling
yields a critical temperature at which relative humidity reaches (or surpasses)
100%. This altitude is termed condensation level, or cloud-base, z0. Above this
level, the vapor reaches over-saturation and thus starts to condense on the aerosol
particles, creating tiny water droplets (Fig. 2). As the air continues to rise,
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the droplets grow in size. Water vapor that had not condensed into droplets
at lower altitude continues to condenses onto the ascending droplets, enlarging
them (Fig. 1).

We now formulate the above mathematically. Denote by ρw ≈ 1 gr
cm3 the mass

density of liquid water. Denote by r the random radius of a single water droplet.
A unit air volume includes many distinct cloud droplets, whose size distribution
is n(r). The total number of cloud droplets in the unit volume is

∫∞
0
n(r)dr.

Aggregating all droplets in the unit volume, the mass of liquid water is termed
Liquid Water Content (LWC). The LWC and effective radius reff of these droplets
are defined [35] by

LWC =
4

3
ρw

∫ ∞
0

πr3n(r)dr , reff =

∫∞
0
πr3n(r)dr∫∞

0
πr2n(r)dr

. (1)

Intuitively, reff is a weighted sum of the droplets radiuses, according to the
geometric cross section of each droplet. In nature, both reff and LWC tend to
increases with altitude inside a cloud [34, 39, 60]. A model for this at z > z0 is

reff ∝ (z − z0)
1
3 , LWC ∝ (z − z0) . (2)

The relations in (2), however, are approximate. They assume, as mentioned
in the beginning of this section, that air parcels are isolated, exchanging nei-
ther material nor heat with surrounding parcels. This assumption is common
in atmospheric models, and is termed the adiabatic approximation. Real clouds
experience mixing with surrounding air parcels, evaporation and in some cases,
precipitation. Therefore, we do not impose Eq. (2) as a constraint, but it leads
us to regularization that tolerates deviation (Sec. 4).

3 Radiative Transfer and Memory Loads

Many methods in remote sensing of the atmosphere assume a plane parallel
medium [23, 36, 41], in which the atmosphere is assumed to be layered. There,
radiance varies essentially only vertically [10, 27], i.e. the model is 1D-RT. How-
ever, we seek recovery of clouds as they are: 3D volumetric and heterogeneous.
This is consistent with recent work in computer vision [2, 19, 31]. In a 3D hetero-
geneous medium, the forward model is 3D-RT. Attempting 3D-RT is computa-
tionally complex. Compounding complexity is pursuit of a 3D inverse problem:
recovering an unknown 3D scattering medium. Solving such an inverse problem
requires repeated, iterative calculations: 3D-RT calculations are to be repeated
over a hypothetical medium, which varies as iterations progress.

One approach for 3D-RT forward model calculations is deterministic, epit-
omized by the Spherical Harmonics Discrete Ordinate Method (SHDOM) [11].
As in analysis of reflection in computer vision [4, 50], spherical harmonics help
in efficient analysis of angular scattering. SHDOM is fast and accurate for small
domain sizes, when many radiometric quantities (i.e. pixels for image synthe-
sis) are sought. However, its memory use is very expensive, as we explain.
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SHDOM uses a discrete representation of angles. Let Nvoxels be the number
of voxels and Nangles be the number of angles. Typically, Nangles ≈ 500. To
reach accuracy, SHDOM [11] relies on an adaptive subdivision of voxels and a
finite number of spherical harmonics. This leads memory requirements to in-
flate by a factor C. In a typical cloudy scene, C ≈ 75. Hence, memory load is
≈ CNanglesNvoxels ≈ 4 ·104 ·Nvoxels. This expense inhibits scalability to large do-
mains. Moreover, subdivision is enforced, because SHDOM is based on assump-
tions of cloud voxels having high internal uniformity and small optical depth.
Consequently, SHDOM is not amenable to hierarchical coarse-to-fine analysis.

Contrary to SHDOM, stochastic forward model RT done by MC [38, 58] is
not prone to these problems. In MC, simulated photons independently roam the
domain and interact randomly (Sec. 5). Angles are not discretized in memory
structure per voxel. Hence, memory consumption is ≈ Nvoxels. MC is highly
parallelizable due to photon independence [48]. Accuracy is controlled (as is
runtime) by the number of photons simulated. The variance of the RT result
decreases linearly with the number of photons sampled, and does not require
adaptive spatial subdivision. It is, therefore, scalable to large domains. Using
MC as the forward model along with our hierarchical coarse-to-fine approach,
enables solving large scale inverse scattering problems.

4 Inverse Problem

We seek to recover the volumetric optical parameters of a scattering medium,
based on two dimensional images, i.e. perform scatter-based tomography. A scat-
tering medium domain is M ⊂ R3. Consider an infinitesimal volume element,
voxel v, around location x ∈ M. The extinction coefficient of the medium at a
point x is denoted by β(x). When multiple particle types exist in a medium,
each has its own extinction coefficient. For example, if a volume has air molecules
and cloud droplets, then their respective extinction coefficients are βa(x) and
βc(x). The total extinction coefficient at x is

β(x) = βa(x) + βc(x). (3)

The field βa(x) is known from auxiliary measurements of the atmosphere, e.g.
through radiosondes (weather balloons). Therefore, the computer vision task is
to recover the unknown cloud extinction βc

v for each voxel v ∈ [1, . . . , Nvoxels].
The vector of unknowns is β =

[
βc

1, β
c
2, . . . , β

c
Nvoxels

]
.

Images are obtained from several viewpoints, in different locations and angles.
The radiance measurements are indexed by d ∈ [1, . . . , Ndetectors]. They are
concatenated into a data vector imeasured. We fit to imeasured a corresponding
model image set, concatenated to a vector, i(β). Data fitting is quantified by the
difference between measurements imeasured and the corresponding model image
set i(β), using

F (β) =
1

2
‖i(β)− imeasured‖22 . (4)
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The field β is estimated by optimization

β̂ = arg min
β≥0

[F (β) +R(β)] . (5)

Here R(β) is a regularization term, which expresses priors on the medium.
The optimization problem in Eq. (5) is solved using stochastic gradient de-
scent (SGD). Sec. 5 describes the image formation model imeasured, its impli-
cations to F (β) and the optimization problem in Eq. (5). We now discuss the
regularization term.

Regularization

Priors are useful to better constrain results to more physically plausible solutions
and aid convergence and quality performance. Recall Sec. 2. For a given droplet
size distribution n(r), the extinction coefficient [35] by cloud droplets is

βc =

∫ ∞
0

Qeff(r)πr2n(r)dr . (6)

Here Qeff(r) is an extinction efficiency factor. For cloud droplets3, Qeff(r) ≈ 2
thus insensitive to r. Combining Eqs. (1,6),

βc(x) =
3

2πρw

LWC(x)

reff(x)
. (7)

Then, considering Eqs. (2,7), for z > z0,

βc(x) ∝ (z − z0)
2
3 . (8)

As written in Sec. 2, Eq. (2) is an approximation, thus we use Eq. (8) to form
a loose prior: βc(x) tends to monotonically increase with z, within a cloud. The
trend of vertical increase in βc(x) only applies to voxels in which a cloud resides:
outside cloud voxels, βc(x) ≡ 0. Hence the monotonicity preference is nulled
outside a cloud.

For a possible expression for such a prior, define 1{statement} to be a binary
column vector. Each element corresponds to a voxel v and satisfies

1{statement}v =

{
1 statement is true in v

0 otherwise
. (9)

Further, let Dz be a matrix expressing discrete vertical differentiation, in lieu of
continuous differentiation ∂βc(x)/∂z. Then, consider this term:

Rmon = − [1 {Dzβ
c > 0}]ᵀ 1 {βc > 0} , (10)

3 The factor Qeff(r) depends on the wavelength λ. For clouds, typically r � λ. Then,
it is reasonable to neglect the dependency of Qeff on r and λ [35].



Monotonicity Prior for Cloud Tomography 7

Fig. 3. A 1D example illustrating the denoising capability of the monotonicity prior
Rmon, when applied to a non-negative signal whose origin tends to be monotonous or
null. [Left] The input y noise is ∼ N (0, 5). Using Eq. (13), the error in β̂ is ε = 15%.
[Right] The input y noise is ∼ N (0, 10). The error in β̂ is ε = 20%.

where ᵀ denotes transposition.
Consider voxels where βc increases vertically. These voxels decrease Rmon.

This lowers the optimization cost (5), if Rmon is used for regularization. Voxels
which are not in a cloud or have vertical decrease of the extinction coefficient do
not contribute to decreasing of Rmon, meaning essentially a higher cost.

Eq. (10) is not differentiable with respect to βc. To enable practical opti-
mization based on SGD, we use a softer version. For an arbitrary vector q, let
tanh(q) be a diagonal matrix, where the diagonal is defined by the hyperbolic-
tangent of each element of q. Let 1 be a column vector, of all whose elements
are ones. We use

Rmon(βc) = −1ᵀ tanh (c1Dzβ
c) tanh (c2β

c)1 {βc > 0} . (11)

The constants c1, c2 ≥ 0 control the slope of the hyperbolic-tangent functions.
In addition, we let the field βc be spatially smooth. This is expressed by pe-

nalizing the energy of the Laplacian-filtered field βc. The 3D Laplacian operator
is represented by matrix A. Overall, the regularization term is

R(βc) =
1

2
µ1‖Aβc‖22 + µ2Rmon(βc) , (12)

where µ1, µ2 ≥ 0 control the weight of the regularization components. For the
gradient of the regularization term, see the supplementary material.
Example of simple use of the monotonicity prior. We illustrate here the
effect of the prior on a 1D denoising problem, unrelated to scattering tomography.
The original signal βtrue(z) ∈ [0, 70], is a representative vertical profile of a cloud,
containing 27 samples. The signal βtrue(z) monotonically increases within part
of the domain. The monotonic increase ends with an abrupt fall. The signal has
null value in other parts of the domain, as seen in Fig. 3. The noisy input is yv =
βtrue
v +nv where nv ∼ N (0, 5) is white and v ∈ [1, . . . , 27]. The denoised estimate

is β̂ = arg min[‖β− y‖22 + 10Rmon(β)]. The result, plotted in Fig. 3, shows that
the estimate is less noisy than the data, not blurred, while preserving the main
peak. To evaluate the recovery quality we use the following local reconstruction
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error measure [2]

ε =
‖β̂ − βtrue‖1
‖βtrue‖1

. (13)

The mean error over 1, 000 realizations of y is ε = 16%, down from 18% without
the prior. For a higher noise level, nv ∼ N (0, 10), ε = 32% down from 37%.

5 The Forward Model

The image formation model i(β) is known in the literature [9, 13–15, 19, 38, 48,
49, 52]. We provide it to make the paper self-contained and provide the back-
ground for deriving the data-fitting gradient ∂F (β)/∂β. Terms relating to vol-
umetric scattering are often used in dehazing or defogging computer vision lit-
erature [5, 22, 28, 42–46, 53, 55, 56].

In an infinitesimal volume, the interaction can be scattering or absorption.
Relative to the incoming radiance, the energy scattered in an infinitesimal vol-
ume is set by the coefficient $β(x). Here $ ∈ [0, 1], the single-scattering albedo,
is the ratio of the scattering coefficient to the total extinction coefficient β(x).
The single-scattering albedo of air molecules and cloud droplets are denote by
$a, and $c respectively.

Denote direction by ω,ω′ ∈ S2, where S2 is the unit sphere. Scattered light is
distributed angularly relative to the radiation incident on point x, from direction
ω. When scattering particles are oriented randomly and uniformly in a voxel, the
probability density for scattering to direction ω is expressed by a phase function
f(θ), where θ = arccos(ω ·ω′) is the scattering angle. The phase functions of air
molecules and cloud droplets are denoted by fa(θ), and f c(θ) respectively.

To describe the forward model by MC RT, we draw some definitions and
notations from [14, 19]. MC RT aggregates random photon paths. Denote by Ld
the set of all possible photon paths via M, connecting a source to a detector
d. The source in our case-study is the sun, located at a distant location x�.
A specific photon path, denoted by L = (x0,x1, . . . ,xB) is a sequence of B
interaction points. One way for photons to contribute a signal to a detector d is
for a photon to perform a random walk (via L) from the source to a terminal
location xB at a camera aperture. There, the photon deposits a terminal intensity
IB(L) at a pixel d. A clear signal at detector d is the expectation of a photon to
reach d, multiplied by the number of photons (Nphot) generated at the source,

id(β) = Nphot

∫
Ld

P (L)IB(L)dL. (14)

Here P (L) is the probability density of a general path L. However, a random
walk from the source to a camera pixel is a relatively rare event. For efficient
rendering, we sample light paths in the medium using Backward MC.

The Backward MC process, illustrated in Fig. 4, back-propagates mathe-
matically photons from a detector to the source. Denote the direction to the
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Fig. 4. Backward MC simulated imaging. This illustration demonstrates a photon path
from a detector through the medium. The contribution to id is the sum of signals along
the yellow lines towards the sun (local estimation).

source (sun) by ω�. From each camera pixel d, photons are back-projected in a
corresponding direction ωd and then traced through the medium, as follows:
(i) Initially, a photon has associated intensity I0. The photon is back projected
along a ray denoted R0, which has a direction ωd and starts at detector (pixel)
d at location xd, meaning, x0 = xd.
Per iteration b:
(ii) On ray Rb, a random location xb+1 is sampled. The photon propagates to
xb+1. This random distance, along Rb, is sampled as described in [19]. It is a
function of the spatially varying extinction coefficient β(x).
(iii) If xb /∈M, the photon is terminated. If xb /∈M while Rb||ω�, the photon
contributes intensity to pixel d.
(iv) If xb ∈ M, then the photon interacts there with a particle. The type of
particle (air molecule or cloud droplet) is sampled randomly based on the ratio
of extinction coefficients βa(xb), β

c(xb). If the scattering event at xb is due to
air, the single scattering albedo is $b = $a. If the scattering event at xb is due
to a cloud droplet, the single scattering albedo is $b = $c. The intensity carried
by the photon is attenuated to Ib = $bIb−1, hence

Ib = I0

b∏
b′=1

$b′ . (15)

If Ib is lower than a threshold, the photon can be stochastically terminated [20].
(v) The extinction coefficient at xb is determined by the type of particle that
caused the scattering. Meaning, β(xb) = βa(xb) if the particle is an air molecule,
and β(xb) = βc(xb) if the particle is a cloud droplet. Denote ωb as the unit
vector between xb and xb+1. According to the phase function [6, 12, 19], the
photon scatters to a new random direction ωb+1. The scattering angle between
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ωb−1 and ωb is θb−1,b = arccos(ωb−1 ·ωb). If the photon is scattered by air, the
phase function is f(θb−1,b) = fa(θb−1,b). If scattering is by a cloud droplet, the
phase function is f(θb−1,b) = f c(θb−1,b). Scattering yields a new ray, Rb+1 from
point xb+1 in direction ωb+1, thus a new iteration of propagation (ii).

5.1 Efficient Rendering

MC can efficiently estimate id using local estimation [35]. Index a photon by
p ∈ [1, . . . , Nphot]. Its random path is L(d, p). Local estimation expresses the
probability that a photon scatters from point xb towards the light source (in our
case, the sun at distant location x�), without interacting again.

The line segment between xb−1 and xb is denoted xb−1xb, and contains all
points satisfying {x = α̃xb−1 + (1− α̃)xb, ∀α̃ ∈ [0, 1]}. The transmittance of the
medium on this line segment is

a (xb−1xb) = exp

{
−
∫ xb

xb−1

[βa (x) + βc (x)] dx

}
. (16)

As illustrated in Fig. 4, the line between xb and x� intersects with the top of
the atmosphere (TOA). This intersection is denoted by x�b . Analogously, define

the line segment xbx
�
b . Along this segment, the transmittance is a

(
xbx

�
b

)
.

The scattering angle to the sun is denoted by θb,�. Using Eq. (15,16), the local
estimation contribution of photon p at xb is

I le
b [L(d, p)] = Ibf(θb,�) a

(
xbx

�
b

)
. (17)

The MC estimate of id(β) is then

id(β) ≈
Nphot∑
p=1

B∑
b=1

I le
b [L(d, p)] . (18)

5.2 Gradient of the Model-Fit

The problem (4,5) is solved iteratively using SGD. This requires, specifically,
estimation of the gradient of F (β). A component of the gradient in voxel v is
given by

∂F (β)

∂βc
v

=

Ndetectors∑
d=1

[
id(β)− imeasured

d

] ∂id(β)

∂βc
v

. (19)

We now assess the Jacobian ∂id(β)/∂βc
v, i.e., how image pixels change in re-

sponse to an infinitesimal perturbation of the medium β. We describe here the
essence of the Jacobian. For more details and mathematical derivations, see the
supplementary material.

The domain of voxel v is denoted by Vv. The line segment xb−1xb traverses
several voxels. Denote by lb−1,v the length of the intersection of Vv with the line
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segment. Similarly, denote by l�v the length of the intersection of Vv with the

line segment and xbx
�
b . Then,

∂id(x)

∂βc
v

≈ −
Nphot∑
p=1

B∑
b=1

I le
b [L(d, p)] ·

l�v + lb−1,v −

 1
βc
v

xb ∈ Vv, & scatter
is by a cloud droplet

0 else

 .

(20)
Based on Eqs. (19,20) we solve Eq. (5) using SGD.

6 Coarse to Fine

We take several measures to enhance the estimation speed. We use a coarse-
to-fine approach, spatially and in RT quality. RT quality is coarsened by using
a small number of MC photons when estimating the gradient. The estimate is
then noisy (coarse), per iteration. However, this way, SGD iterations are fast,
and significantly advance the minimization (5) in its initial stages [51]. For more
details and figures regarding specific simulations and performances, see the sup-
plementary material. After a while, however, SGD in the coarse quality yields
diminishing returns. Therefore, we use the result based on the coarse quality as
initialization for a later stage, where the number of photons increases, leading
to finer quality, better accuracy yet slower iterations.

Spatial coarse-to-fine is similar to common analysis in image analysis. Here,
M is first represented in a coarse voxel grid. Thus the vector of unknown extinc-
tions coefficients has a small dimension. Furthermore, the modeled and measured
images are represented in a coarse resolution. The use of a small number of pixels
and voxels enables significant shortening of runtime while significantly advanc-
ing the minimization (5) in its initial stages. We use the result obtained in the
coarse voxels as initialization for the next stage: there, both M and the images
are represented by smaller elements, leading to finer spatial resolution, yet slower
iterations. This process is repeated in additional stages, where a result obtained
in a coarser resolution initializes iterations on a finer-resolution grid. The num-
ber of voxels and pixels used in each stage of our examples are specified in the
supplementary material.

We used additional speedup measures. Using the data images, we perform
space-carving [29] of M. This creates a photo-hull within which clouds poten-
tially reside, pruning many voxels from the optimization. To correspond to the
voxel resolution at the intermediate resolution steps described above, the photo-
hull map is coarsened by dilation, before subsampling.

Furthermore, Eq. (19) requires two MC simulations: one is for estimating
id(β) (forward model); the other is for estimating its Jacobian ∂id(β)/∂β. Per
iteration we use the same paths to sample both fields, saving about half the
runtime. We found that possible bias of the gradient is not a major concern to
the inverse problem, as each iteration samples a new random set.
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Fig. 5. 3D slices of the medium from scene C. [Left] Our recovered medium. [Middle]
The true medium. [Right] scatter plot of 25% of the data points, randomly selected.
The red line represents ideal reconstruction, where β̂ = βtrue. Some areas are not well
estimated. This is because they are occluded from the viewpoints of the cameras, by
higher and denser parts of the cloud.

Fig. 6. Scene F. [Left] Our recovered medium. [Middle] The true medium. [Right]
Scatter plot of 10% of the data points, randomly selected. The red line represents
ideal reconstruction, where β̂ = βtrue.

7 Simulations

Currently, there is no adequate gear for simultaneous multi-view imaging of small
clouds from space. However, proper orbiting cameras and data are upcoming in
a few years [54]. This paper develops methods in anticipation for the upcoming
spaceborne technological advancement. At such a stage, testing is by simulations,
as in several recent computer vision papers [15, 19, 31, 32] about scattering-CT.
As in [31, 32] a realistically complex scene is created by use a Large Eddy Simu-
lation (LES) [7, 37]. This is a tool used by atmospheric scientists as a standard
for computationally generating cloud fields from first principles. We deal with
two public domain scenes [37], with results shown in Figs. 5,6:
C has a single cloud in a 0.76km×0.76km×1.52km domain having 38×38×38 vox-
els (54, 872 unknowns). Cameras have 76× 76 pixels, each having 30 m ground-
level footprint (nadir view). In rendering of ground-truth data, Nphot = 8192
photons. Cameras are at z = 1.9km. One camera is 1.8◦ off the zenith. The
other eight reside on a ring ≈ 29◦ around the zenith.
F has several clouds in a 1.72km× 1.72km× 1.08km domain having 86× 86× 27
voxels (199, 692 unknowns). Cameras have 86 × 86 pixels, each having 20 m
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ground-level footprint, Nphot = 4096 photons. One camera is 0.4◦ off the zenith
at z = 2.16km. The other eight are at z = 1.86km on a ring ≈ 33◦ around the
zenith.
In both C and F, the sun is at the zenith, voxel are 20×20×40 m3 large, and the
background surface is Lambertian having albedo 0.05, emulating a dark ocean.
Each domain has background β = 0.01 km−1 wherever βc = 0. The domain
is observed by nine perspective cameras. To reduce the effect of air molecules
(which are not our object of interest), sensing focused on a red-colored wave-
length 632 nm.

The values of Nphot are comparable to the full-well of common machine
vision cameras. Due to the randomness of MC rendering, this photon count
yields typical Poissonian noise resembling photon noise in cameras. The MC
kernel we used is by Mitsuba [21].

After estimation of the photo-hull (Sec. 6), tomographic estimation was ini-
tialized by β(x) = 2 km−1. We use the adaptive moment estimation method
(Adam) [26], with the following parameters: first moment decay η1 = 0.9, sec-
ond moment decay η2 = 0.999, ε = 10−8, and step size is α = 0.3 for all scenes.

Reconstruction quality is assessed by two measures [2] which compare the
estimated extinction field to the ground-truth. One of them is ε from Eq. (13).
The other is

δ =
‖β̂‖1 − ‖βtrue‖1
‖βtrue‖1

, (21)

which is a relative bias of the overall extinction.

Results

In the small scene C, the results are displayed in Fig. 5. Without using the
monotonicity prior, meaning only using a smoothness prior, the results were
δ = −11.5% and ε = 87% for a runtime of about 6.5 hours to convergence. Our
approach, with the monotonicity prior, yielded δ = 5.5% and ε = 84.5% for the
same runtime. Results of the cloud field (scene F) are displayed in Fig. 6. Without
a monotonicity prior, δ = −34.2% and ε = 54.8%, after 127 hours. Afterwards,
the error measures increased. The monotonicity prior improved results to δ =
−28.2% and ε = 44.7%. Results reached convergence after 134 hours.

Comparing our results to previous work, running a code based on [15] for
scene C, after a fixed 6.5 hours runtime, yielded ε = 196% and δ = 14%, and
code based on [19] yielded ε = 174% and δ = −9.6%, after the same runtime. To
compare the SHDOM-based tomography approach [31] (and [32], which uses the
same algorithm yet solves for micro-physics), we used an improved code [30] and
solved for scene C. The deterministic approach resulted in more accurate output,
having δ = −3.6% and ε = 72%. Moreover, the SHDOM-based tomography
code [30] ran for about an hour while our method ran for about 6.5 hours.
Recalling Sec. 3, this outcome is not surprising, as the deterministic SHDOM
is inherently faster and more accurate than random walks of MC. Yet, this
approach has a fundamental challenge to scale to large fields, contrary to MC.
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In accordance, for larger scenes, containing a 100s of thousands of voxels, like
scene F, [31] reported ε = 70% and δ = 30%, compared to our results in scene F.

Overall, the most significant cost reduction is achieved within minutes, using
the coarse scales. The finest scales are much slower, yet enable a significant
improvement of the results. See the supplementary for more details.

8 Conclusions

Spaceborne data of simultaneous imaging of cloud fields, in resolution that is
required for scattering-CT is not yet accessible by an experiment. However, a
future spaceborne mission [54] is planned to provide such data. Hence, priors
and algorithms developed for wide field scattering-CT should become useful in
several years, enabling scientists to draw new information and understanding of
nature. Moreover, advancement of scattering CT should be useful also to some
modalities of bio-medical imaging and material engineering.

To enhance speed, good initialization can be obtained in the future by a
neural-network. Current differential neural renderers (DNRs) are set for opaque,
reflective objects [24, 47]. A DNR based on 3D, volumetric RT in large heteroge-
neous scattering media requires large training sets that are currently unavailable.
Once suitable scattering training data and DNRs become available, it may effi-
ciently initialize our process, which is proper physics-based MC RT analysis. The
latter is needed as the results should be trusted by physicists studying nature.

We believe that the corase-to-fine stochastic approach taken in this paper
has significant potential. MC can excellently use technologies of parallel compu-
tations. The calculations per photon are mutually independent of other photons.
Since most of the calculation in MC rendering are similar, it is worthwhile to
adapt such a method to GPU, to accelerate the runtime. Encouragingly, the
most recent version of Mitsuba [48], states an implementation on GPU. For
these reasons, the developments of scattering tomography are timely.
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Abstract. This is a supplementary document to the main manuscript.
Here we provide the mathematical derivation of the gradient of the image
formation model and additional details about run times.

1 Outline

This supplementary material contains two parts. The first part (Secs. 2 and 3)
details the mathematical derivation of the gradient of the image fitting term, and
the prior. The second part, Sec. 4, provides additional information regarding the
simulations, i.e., run time, figures, and framework, and configuration details.
Moreover, we present an additional test and application: rendering a new view-
point from the reconstructed medium.

2 Gradient of the Image Fitting Term

We now describe the calculation of the gradient of the image model. Recall
Eq. (14) from the main manuscript, which is the analytical formulation of a
clear signal at detector d. It is the expectation of a photon to reach d, multiplied
by the number of photons (Nphot) generated at the source,

id(β) = Nphot

∫
Ld

P (L)IB(L)dL. (1)

Here P (L) is the probability density of a general path L ∈ Ld. Index a photon
by p, and an interaction point by b. The Monte-Carlo (MC) estimation of the
signal at detector d is

id(β) ≈
Nphot∑
p=1

B∑
b=1

I leb [L(d, p)] , (2)

where I leb [L(d, p)] is given in Eq. (17) of the main manuscript.
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Fig. 1: Illustration of a photon path from a detector through the medium. The
gradient is calculated according to the process described in Sec. 2 of this sup-
plementary document, and specifically, Eq. (19) herein.

Note that while P (L) is not needed explicitly for rendering, it is useful to
associate a probability to a given path. The usefulness is clear when approach-
ing the inverse problem. Following the definition of the transmittance function
a (xb−1xb), in Eq. (16) of the main manuscript, associate with a scattering event
at xb a probability a (xb−1xb) f(θb−1,b). Here, f(θb−1,b) is the phase function of
the scattering angle θb−1,b. Each scattering event and each extinction sampling is
independent. Hence, inspired by [1], the probability P associated with a general
path L is

P (L) =

B−1∏
b=1

a (xb−1xb)βbf(θb−1,b) . (3)

Note the different forms of Eq. (1) and Eq. (2) above:

– The probability P (L) in the integral is eliminated during summation, be-
cause path probability dictates the MC sampling in the sum.

– Point xB is not expected to reach the sun, when sampling a small number of
photons. Hence the signal in the summation relies on local estimation from
all nodes, in lieu of I(B).

We summarize the approximation of MC radiative transfer (RT) using the fol-
lowing operations:

IB =⇒
becomes

B∑
b=1

I leb [L(d, p)] ; Nphot

∫
Ld

P (L)(·)dL =⇒
becomes

Nphot∑
p=1

(·) . (4)

The optimization problem described in the paper is solved iteratively using
stochastic gradient descent (SGD). This requires, specifically, estimation of the
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gradient of F (β). A component of the gradient corresponding to voxel v is given
by

∂F (β)

∂βc
v

=

Ndetectors∑
d=1

[
id(β)− imeasured

d

] ∂id(β)

∂βc
v

. (5)

We now assess ∂id(β)/∂βc
v, i.e., how image pixels change in response to an in-

finitesimal perturbation of the medium β. Changes in the medium generally lead
to new paths being sampled as described in the paper. However, it is computa-
tionally demanding to sample new paths per degree of freedom of β. To derive
the gradient using existing paths, we use Eq. (1) for differentiation:

∂id(β)

∂βc
v

= Nphot

∫
Ld

∂[P (L)IB(L)]

∂βc
v

dL . (6)

The term inside the integral of Eq. (6) above can be written

∂[P (L)IB(L)]

∂βc
v

=

[
IB(L)

P (L)

∂P (L)

∂βc
v

+
∂IB(L)

∂βc
v

]
P (L) . (7)

Then, applying the transformations of Eq. (4) above, the sampled gradient is
assessed by

∂id
∂βc

v

≈
Nphot∑
p=1

B∑
b=1

∂id(p, b)

∂βc
v

, (8)

where
∂id(p, b)

∂βc
v

=
I leb [L(d, p)]

P (L)

∂P (L)

∂βc
v

+
∂I leb [L(d, p)]

∂βc
v

. (9)

Therefore,

∂id(p, b)

∂βc
v

= I leb [L(d, p)]
∂ log[P (L)]

∂βc
v

+
∂I leb [L(d, p)]

∂βc
v

. (10)

We now derive the terms of Eq. (10) above. In calculating I leb , the only

term explicitly dependent on βc
v is a

(
xbx

�
b

)
. Generally, the line segment xbx

�
b

traverses several voxels, as illustrated in Fig. 1 above. Let Vv be the domain of

voxel v. The intersection of voxel v with xbx
�
b is of length

l�v =
∣∣∣xbx�

b ∩ Vv
∣∣∣ . (11)

Notice that if xb,x
�
b ∩ Vv = ∅, then l�v = 0. Using Eq. (11) above and Eq. (16)

of the main manuscript, the transmittance a is

a
(
xbx

�
b

)
=
∏
v

exp
[
−l�v (βa

v + βc
v)
]
. (12)
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Following Eqs. (10,12) above,

∂I leb [L (d, p)]

∂βc
v

= −l�v I leb [L (d, p)] . (13)

Using Eq. (3) above,

∂ log [P (L)]

∂βc
v

=

B−1∑
b=1

[
∂ log [a (xb−1xb)]

∂βc
v

+
∂ log(βb)

∂βc
v

]
. (14)

Here we used the fact that given a scattering particle (air or cloud droplet) at
xb, the phase function f(θb−1,b) is independent of βc

v.

Generally, the line segment denoted xb−1xb traverses several voxels, as illus-
trated in Fig. 1 above. The length of the intersection of a voxel v with the set
xb−1xb is

lb−1,v = |xb−1xb ∩ Vv| . (15)

Similarly to Eq.(11) above, lb−1,v = 0 if xb−1xb ∩Vv = ∅. Using Eq. (15) above
and Eq. (16) of the main manuscript, the transmittance is

a (xb−1xb) =
∏
v

exp [−lb−1,v (βa
v + βc

v)] , (16)

hence
∂ log [a (xb−1xb)]

∂βc
v

= −lb−1,v . (17)

Most line segments xb−1xb cross relatively few voxels. Thus, the output of
Eq. (17) above is sparse over the domain.

The term ∂ log(βb)/∂β
c
v in Eq. (14) above is relevant only to the particular

voxel at which scattering occurs. Moreover, air density is known irrespective of
βc
v. Scattering by an air molecule yields a null value of ∂ log(βb)/∂β

c
v. Conse-

quently,

∂ log(βb)

∂βc
v

=

{
1/βc

v xb ∈ Vv & scatter is by a cloud droplet

0 else
. (18)

Compounding Eqs. (10,13,14,17,18) above,

∂id(x)

∂βc
v

≈ −
Nphot∑
p=1

B∑
b=1

I leb [L(d, p)] ·(
l�v + lb−1,v −

{
1
βc
v

xb ∈ Vv & scattered by a cloud

0 else

)
.

(19)
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3 Gradient of The Prior

Recall the formulation of the prior,

R(βc) =
1

2
µ1‖Aβc‖22 + µ2Rmon(βc) , (20)

where

Rmon(βc) = −1ᵀ tanh (c1Dzβ
c) tanh (c2β

c)1 {βc > 0} . (21)

The gradient of the regularization term is

∂R(βc)

∂βc = µ1A
ᵀAβc + µ2

∂Rmon(βc)

∂βc . (22)

The corresponding gradient of the monotonicity term is

∂Rmon(βc)

∂βc = −

[
c1Dz cosh−2 (c1Dzβ

c) tanh (c2β
c)

+ c2 tanh (c1Dzβ
c) cosh−2 (c2β

c)

]
1 {βc > 0} .

(23)

Here cosh−2(q) is a diagonal matrix. The diagonal is defined by the squared-
reciprocal of the hyperbolic-cosine of each element of the argument vector. Recall
that we use SGD to solve the optimization problem in Eq. (5) of the main
manuscript,

β̂ = arg min
β≥0

[F (β) +R(β)] . (24)

After each SGD iteration, we clip negative values of βc.

4 Additional Details about the Simulations

As described in Sec. 6 of the main manuscript, estimation is done in coarse-to-
fine stages. We used six stages in scene F, and eight stages in scene C. The number
of voxels and pixels used in each stage of scene F, for example, are plotted in
Fig. 2 below.

The cost function in Eq. (24) above is a combination of a data fitting term
F (β), and a regularization term R(β). Moreover, recall the local reconstruction
error measure,

ε =
‖β̂ − βtrue‖1
‖βtrue‖1

. (25)

This measure ε compares the iteratively-estimated model to the ground truth.
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Fig. 2: The coarse-to-fine parameters as a function of the stages of the algorithm.
This figure displays the increasing number of voxels, pixels, photons per pixel,
and the overall number of photons.

We plot two criteria:

– The cost function from Eq. (24) above, as it evolves during SGD.

– The error measure Eq. (25) above, evolving during SGD.

Both are plotted as a function of time, during runs on our server. Scene F ran
on a two CPUs Intel R© Xeon R© Platinum 8175M 2.40GHz with 24 cores each.
And scene C ran on a two CPUs Intel R© Xeon R© Processor E5-2680 v4 2.40GHz
with 14 cores each.

Overall, the criteria are plotted in Fig. 3 and Fig. 4 herein. Termination of
each stage is color-marked in the plots here using a vertical colored line. Run
time is displayed in log-scale. Fig. 3 herein corresponds to scene F. Fig. 4 herein
corresponds to scene C.

Fig. 5 herein presents the effect of the monotonicity prior, beyond a smooth-
ness prior (scene F). The left plot presents how the cost function Eq. (24) above
evolves during the whole SGD process. The right figure presents a zoom-in of the
error measure Eq. (25) above in the last stage of the coarse-to-fine solution. The
orange lines present the cost Eq. (24) above, and error Eq. (25) above without
the monotonicity prior, i.e., R(βc) = 1

2µ1‖Aβc‖22. The blue lines present these
respective costs when solving the full optimization problem, as formulated in
the main manuscript, including the monotonicity prior. Here the regularization
term is R(βc) = 1

2µ1‖Aβc‖22 + µ2Rmon(βc). As stated in the main manuscript,
the monotonicity prior improves the quality and convergence.
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Fig. 3: Recovery of scene F. These plots present [Left] the cost function Eq. (24)
above, and [Right] the error function ε Eq. (25) above, as functions of run time.

Fig. 4: Recovery of scene C. These plots present [Left] the cost function Eq. (24)
above, and [Right] the error function ε Eq. (25) above, as functions of run time.
The hierarchical solution enables a faster convergence to a better solution.

Fig. 5: This figure illustrates the recovery of scene F, using exclusively the
smoothness prior (orange line), or using monotonicity compounded with smooth-
ness (blue line), as formulated in Eq. (24) above. [Left] The cost function eval-
uation, as a function of run time. [Right] The error ε during the last stage, as a
function of run time on our server. The error ε significantly improves using the
monotonicity prior.
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Rendering
from ground truth

Rendering
from estimated volume

Fig. 6: Rendering a new viewpoint, 50.4◦ off-nadir. This viewpoint was not used
during the reconstruction of scene C. This image was not an input to tomographic
recovery. [Left] Image rendered from the ground-truth medium. [Right] Image
rendered from the estimated medium.

Finally, Fig. 6 presents an application of scattering tomography. Here we
render a new viewpoint, that was not included in the input measurements of
scene C. For comparison, we render an image using the ground truth medium.
Then we render the same viewpoint using the estimated medium.
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