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Polarization and statistical analysis of scenes
containing a semireflector
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We present an approach to recover scenes deteriorated by reflections off a semireflecting medium (e.g., a glass
window). The method, based on imaging through a polarizer at two or more orientations, separates the re-
flected and transmitted scenes and determines which is which. We analyze the polarization effects, taking
into account internal reflections within the medium. The scene reconstruction requires the estimation of the
orientation (inclination and tilt angles) of the transparent (invisible) surface. The inclination angle is esti-
mated by seeking the value that leads to the minimal mutual information of the estimated scenes. The limi-
tations and the consequences of noise and angle error are discussed, including a fundamental ambiguity in the
determination of the plane of incidence. Experimental results demonstrate the success of angle estimation
and consequent scene separation and labeling. © 2000 Optical Society of America [S0740-3232(00)00802-4]
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1. INTRODUCTION
The situation in which several (typically two) linearly su-
perimposed contributions exist is common in real-world
scenes. For example,1–4 looking out of a car (or room)
window, we see both the outside world (termed the real
object4–6) and a semireflection of the objects inside,
termed virtual objects (Fig. 1). The separation of the
contributions is important for understanding and analy-
sis of the scene (for example, the superposition can cer-
tainly confuse autofocusing devices4). The mere detec-
tion of the phenomenon indicates the presence of a clear,
transparent surface in front of the camera at a distance
closer than the actual imaged objects.4,5

The term transparent layers has been used to describe
situations in which a scene is semireflected from a trans-
parent surface.2,7,8 The image is decomposed into depth-
ordered layers, each with an associated map describing
its intensity (and, if applicable, its depth or motion8). We
adopt this terminology but stress the fact that we do not
deal with imaging through an object with variable opac-
ity. Approaches to reconstructing each of the layers by
eliminating the other relied mainly on motion,2,7 stereo,9

and focus.4 An a priori assumption of these procedures is
that the superimposed layers lie at significantly different
optical distances from the camera, and reconstruction of
the low-frequency components is ill conditioned4 (while
the dc component is ill posed). Other fundamental ambi-
guities in the solutions obtained by motion and stereo
were discussed in Refs. 10 and 11.

Suppressing the virtual layer by incorporating a polar-
izer into the imaging system is a well-known photo-
graphic technique.1 Progress in this direction is marked
by advanced polarizing cameras,3,12–19 which were ap-
plied in particular for removal of specular reflections su-
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perimposed on diffuse scattering from opaque
surfaces.15,18,19 Some previous works attempted to re-
move the virtual layer by using just the raw output of the
polarization analyzer (Fig. 1) in front of the camera.3,5

These methods suggested taking several images of the
scene at different states of the polarizer and picking one
of them as the reconstruction of the real layer. However,
polarization filtering eliminates the reflected (virtual)
layer only at the Brewster angle1,20 (good filtering was
demonstrated in Ref. 5 at this angle). Independent-
components analysis of polarization-filtered images dem-
onstrated the potential of polarization as an initial step
for good separation achieved by signal postprocessing.21

A significant disadvantage of the above-indicated
works is that they could not determine which of the re-
constructed images is of the real object and which is of the
virtual one. Obviously, there is an exception when the
transparent surface is oriented at the Brewster angle.5

Earlier works also did not extract any information about
the invisible semireflecting surface itself unless the sur-
face was curved. For this case a method is available6 for
its geometric analysis and the classification of local fea-
tures as real or virtual.

This work extends the preliminary analysis that we
presented in Refs. 22 and 23. In Ref. 22 we analyzed the
physical process and demonstrated an approach for the
reconstruction of the contributing layers in case the sur-
face orientation is known. We took into account the im-
plication of internal reflections within double-surfaced re-
flecting media (e.g., glass windows). The method enables
the automatic labeling of the reconstructed layers as vir-
tual or real. Unlike methods that rely on stereo, motion,
or defocus, the reconstruction is not ill conditioned at low
spatial frequencies and does not require the layers to
2000 Optical Society of America
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have different depths or motion fields. In Ref. 23 we pro-
posed a method to determine the angle of incidence (AOI)
on the transparent surface, which was based on decorre-
lation of the images. However, in the following we show
that this approach may yield erroneous results in case the
original images are somewhat correlated, and we propose
to use mutual information for this purpose. Further-
more, we analyze the effects of noise and error of the AOI
on the reconstruction. The estimation of the azimuthal
tilt angle of the plane of incidence (POI) completes the re-
covery of the orientation of the invisible semireflecting
surface in space. We uncover a fundamental ambiguity
in the determination of the POI, which is common with
transparent scenes, in contrast to reflections off opaque
media.

2. IMAGE FORMATION
A. Polarizing Effects
For our analysis we represent the various light intensities
by their polarization components, I i (polarization parallel
to the POI) and I' (polarization perpendicular to the
POI). At each interface of the transparent medium, each
component has, respectively, reflectivities R i , R' and
transmissivities T i , T' derived from the Fresnel
equations.20 However, cases of reflection from double-
surfaced media (windows) are by far more common than
reflection by a single surface, and internal reflections may
be significant. Assuming incoherent light and negligible
absorption, for each polarization component the total re-
flectivity is (Refs. 22 and 23)

R̃ 5 R 1 T2R(
l50

`

~R2!l 5
2

1 1 R
R. (1)

We assume also that the shift of the image on consecutive
reflections is negligible within the significant reflection
orders. The transmissivity of each component is given by
T̃ 5 1 2 R̃. When we recall that R' . R i ,1 it is easy to
show also that R̃' . R̃ i .

Fig. 1. The image of a real object is partially transmitted
through a transparent window inclined at an angle w. The win-
dow also creates a virtual image by partially reflecting the image
of another object. The combined scene can be viewed through a
polarization analyzer (filter) at angle a. The polarization com-
ponent perpendicular to the plane of incidence is best transmit-
ted for a 5 u' .
Consider now the influence of the window on the polar-
ization. Since light is generally partially polarized,
transmission through the analyzer (Fig. 1) is maximal or
minimal for certain analyzing angles a. The intensities
at these angles are denoted Imax and Imin , respectively.
The degree of polarization of partially linearly polarized
light16,19 is (Imax 2 Imin)/(Imax 1 Imin). We defined23 the
polarizing effect (PE) of a process as the degree of polar-
ization that it induces on unpolarized incident light.
Thus the polarizing effects in a double-surfaced medium
are

PER~window! 5
R̃' 2 R̃ i

R̃' 1 R̃ i

,

PET~window! 5
T̃ i 2 T̃'

T̃' 1 T̃ i

, (2)

while in a single surface R and T replace R̃ and T̃. We
believe that the polarization effect is a better indicator of
the polarization properties of the medium than the ratio
of the Fresnel coefficients (used, for example, in Ref. 19),
since it is bounded. The PE’s of these processes in glass
are plotted in Fig. 2. Well-known facts are manifested in
this plot. For example, PER 5 1 at the Brewster angle,
at which the parallel component vanishes, and it is zero
for AOI w 5 0°, 90°. For most AOI’s PER is larger than
PET . Compared with that from a single surface, the PE
of reflection from a window is slightly smaller, but the PE
of transmission is significantly larger and is almost twice
as large at most incidence angles.

Now we consider the relative polarizing effect as the ra-
tio of the PE of transmission and that of reflection. It is
easy to show that

PET~window!

PER~window!
5

R̃av

T̃av

, (3)

where R̃av 5 (R̃' 1 R̃ i)/2 and T̃av 5 (T̃' 1 T̃ i)/2 are the
reflectivity and the transmissivity of unpolarized light,

Fig. 2. Polarizing effects (PE’s) of reflection and transmission
through a single air–glass interface as a function of the angle of
incidence (AOI) (solid curves) and PE’s of reflection and trans-
mission through a glass window (dashed curves).
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respectively. Therefore, neglecting the degree of polar-
ization induced on the transmitted light (PET) is equiva-
lent to neglecting the reflection phenomenon (which is in-
valid in the cases discussed in this work).

B. Imaging
We denote the spatial intensity distribution that is due to
the real layer (with no window) by IT and the spatial in-
tensity distribution that is due to the virtual layer (as-
suming a perfect mirror replacing the window) by IR .
Let u' be the orientation of the polarization analyzer for
best transmission of the component perpendicular to the
POI. Generally, the orientation of the analyzer is a. As-
suming initially unpolarized natural light, the observed
intensity is

f~a! 5 S f' 1 f i

2 D 1 S f' 2 f i

2 D cos@2~a 2 u'!#, (4)

where f' 5 f(u') 5 IRR̃'/2 1 ITT̃'/2 and f i 5 f(u'

1 90°) 5 IRR̃ i/2 1 ITT̃ i/2.
The intensity is a sinusoidal function of the analyzer’s

orientation, as with any partially polarized light. How-
ever [see Eq. (3)],

f' 2 f i 5 PERR̃avIR 2 PETT̃avIT 5 PERR̃av~IR 2 IT!.
(5)

Thus, if IT 5 IR , the amplitude in Eq. (4) is zero, i.e., the
light leaving the reflecting medium is unpolarized, even
though each of the contributing layers is partially
polarized.24 If the real object is brighter than the virtual
one (IT . IR) (e.g., when looking out of the room window
during daylight), the intensity f(a) would be minimal at
a 5 u' . The low PET (relative to PER) at low and mod-
erate incidence angles is compensated by the high ratio of
transmissivity to reflectivity at these angles. Therefore
the polarization induced on the transmitted light, rather
than on the reflected light, may dominate the determina-
tion of the overall polarization.

3. RECONSTRUCTION
A. For a Given Angle of Incidence
Suppose now that the geometry of the setup is known,
that is, the plane of incidence (hence u') and the angle of
incidence w are known or can be estimated. In this case
the estimates of f' and f i (denoted as f̂' and f̂ i) can easily
be obtained. These images are not sensitive to small er-
rors in the estimation of u' , since ]f/]u' 5 0 at a
5 u' , u' 1 90°. Moreover, in this case R̃' and R̃ i are
known; thus23 the estimated intensities can be written as

ÎT~ w! 5 F 2R̃'~ w!

R̃'~ w! 2 R̃ i~ w!
G f̂ i 2 F 2R̃ i~ w!

R̃'~ w! 2 R̃ i~ w!
G f̂' ,

(6)

ÎR~ w! 5 F 2 2 2R̃ i~ w!

R̃'~ w! 2 R̃ i~ w!
G f̂' 2 F 2 2 2R̃'~ w!

R̃'~ w! 2 R̃ i~ w!
G f̂ i .

(7)

Equations (6) and (7) show that if the incidence is at the
Brewster angle (for which R̃ i 5 0), ÎT can be directly as-
sociated with f̂ i , as demonstrated in Ref. 5. But even at
that angle, ÎR is not proportional to f̂' 2 f̂ i , in contrast to
Ref. 5. Nevertheless, operation at the Brewster angle is
a rare situation, and one should generally use Eqs. (6)
and (7).

Consider the images shown in the top row of Fig. 3 as
the true layers in simulating an indoor scene reflected off
a window through which an outdoor scene25 is viewed (the
results of an experiment with a physical setup are de-
scribed in Section 4). The bottom row shows the simu-
lated images f i and f' (all images are contrast stretched
for clarity) for an AOI of 80°. Since this angle is far from
the Brewster angle, f i does not suffice to clear the re-
flected disturbance. However, when the correct AOI was
used, the inversion of the image formation process was ac-
curate and correctly separated and labeled the layers, just
as shown in the original images in the top row of Fig. 3.

B. Effect of Noise
Suppose that noise n' , n i is added to the raw images,
which thus become f̂' 5 f' 1 n' and f̂ i 5 f i 1 n i . The
reconstructed images then become

ÎT 5 IT 1 2
R̃'~ w!n i 2 R̃ i~ w!n'

R̃'~ w! 2 R̃ i~ w!
,

ÎR 5 IR 1 2
T̃'~ w!n i 2 T̃ i~ w!n'

T̃'~ w! 2 T̃ i~ w!
. (8)

If n' and n i are independent, with zero mean and vari-
ance s 2, then the variances of the noise in the resulting
images are

Fig. 3. Real layer IT (top left) and virtual layer IR (top right),
and simulated images at an AOI of 80° (bottom). Although the
reflected component in f i (left) is weak (especially when com-
pared with f' on the right), significant cross talk of the layers ex-
ists.
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sT
2 5 2s 2F 1

PER
2 ~ w!

1 1G , sR
2 5 2s 2F 1

PET
2 ~ w!

1 1G .

(9)

The reconstructions become unstable and noise sensitive
as the polarizing effects approach zero (Fig. 2), that is, at
low or very high incidence angles. Note, however, that
the noise amplification at these angles depends on our
choice of w. Therefore, if observation is made at such a
problematic AOI, it may be preferable to intentionally in-
sert a more moderate AOI into the reconstruction equa-
tions, giving up inversion accuracy for lower noise in the
results. At most AOI’s the typically low values of PET ,
relative to PER , will make sR significantly larger than
sT . We can thus expect the noise in the reconstruction
of the virtual layer to be significantly stronger than that
in the real layer. At very high AOI, the real layer will be
noisier than the virtual one.

The noise can be significantly reduced by common spa-
tial filtering methods (e.g., Wiener filtering). If the noise
is white, local blurring can definitely reduce it but will
cause reduction of details. Thus the method will sepa-
rate the low-frequency components of the layers better
than the high-frequency ones. This is in contrast to
methods that rely on motion, stereo, or focus, for which
the high-frequency components are easily resolved while
instability occurs at the low frequencies.

C. Effect of Inclination Error
The reflectivities used in Eqs. (6) and (7) depend on the
AOI. Suppose that we assume that the AOI is w, while
the true AOI is actually wtrue . Then23

ÎT~ w! 5 ~1 2 r!IT 1 rIR ,

ÎR~ w! 5 ~1 2 t!IR 1 tIT , (10)

where

r~ wtrue , w! 5
R̃'~ w!R̃ i~ wtrue! 2 R̃'~ wtrue!R̃ i~ w!

R̃'~ w! 2 R̃ i~ w!
, (11)

t~ wtrue , w! 5
T̃'~ w!T̃ i~ wtrue! 2 T̃'~ wtrue!T̃ i~ w!

T̃'~ w! 2 T̃ i~ w!
. (12)

We note that r, t 5 0 if and only if w 5 wtrue . For a

range of assumed values of w, traces of IR are left in ÎT ,
while for other values of w the traces are negative.

For a moment suppose that the analyzer is not used
during imaging, so the intensity is IRR̃av 1 ITT̃av . If we
are interested only in the real layer, we regard ITT̃av as
the signal and IRR̃av as the noise. In general, we define
the contamination of the real layer as the reciprocal of its
signal-to-noise ratio, based on the raw unpolarized image:
contaminationT 5 IRR̃av /ITT̃av . So,

ÎT~without analyzer! 5 T̃avIT~1 1 contaminationT!.

(13)

If IRR̃av 5 ITT̃av , the noise is as strong as the signal;
thus the latter is 100% contaminated. On the other
hand, if we are interested only in the virtual layer, IRR̃av

is the signal and ITT̃av is the noise, so contaminationR

5 ITT̃av /IRR̃av and

ÎR~without analyzer! 5 R̃avIR~1 1 contaminationR!.

(14)
To get an indication about the effect of an erroneous

AOI on the reconstruction results, we rewrite Eqs. (10) as

ÎT~ w! 5 ~1 2 r!IT~1 1 cTcontaminationT!, (15)

ÎR~ w! 5 ~1 2 t!IR~1 1 cRcontaminationR!, (16)

where we define the contamination coefficients

cT~ w! 5
r~ w!

1 2 r~ w!

T̃av

R̃av

, cR~ w! 5
t~ w!

1 2 t~ w!

R̃av

T̃av

.

(17)
Comparing Eq. (13) with Eq. (15), we see that the con-
tamination (relative to the signal) of ÎT is multiplied by cT
if the reconstruction method is used. The contamination
of ÎR is multiplied by cR . If there is a 100% contamina-
tion in the unpolarized raw image (IRR̃av 5 ITT̃av), Eqs.
(17) indicate the relative contamination of each recon-
struction.

Suppose now that the error of the AOI is small. To es-
timate its implication, we differentiate cT( w) and cR( w)
around w 5 wtrue (where cT , cR 5 0). It can be shown
that in this case

dcT

dw
5

T̃av

R̃av

1

R̃' 2 R̃ i

S dR̃'

dw
R̃ i 2

dR̃ i

dw
R̃'D , (18)

dcR

dw
5

R̃av

T̃av

1

T̃' 2 T̃ i

S dT̃'

dw
T̃ i 2

dT̃ i

dw
T̃'D . (19)

These derivatives, indicating the first-order effect of an
error in the AOI, are plotted in Fig. 4. Note that the re-
construction of the virtual layer is quite stable to an error
in the AOI. This is so since a small AOI error yields a
small cR , which significantly attenuates the contamina-
tion. Thus, if we wish to reconstruct the reflection off a
slightly curved window (as a car windshield), we may re-
gard it as having the same AOI (flat along the axial direc-
tion) throughout the field of view.

The reconstruction of the real layer is more sensitive to
such an error, and the solid curve in Fig. 4 can give us an
indication of the performance in such circumstances. For
example, consider the case of a 100% contamination in
the unpolarized image (contaminationT 5 1). If the
photograph was taken at wtrue 5 30° and we erred in our
estimation by approximately 3°, we obtain '20% of con-
tamination ('7% per degree), which may be noticeable
but still is much better than it would be without the re-
construction method. The situation is improved if the re-
flection is weak. For example, suppose that wtrue 5 20°
and that the reflection is 1/10 the intensity of the trans-
mission (contaminationT 5 0.1). We may err by up to
approximately 10° (if the first-order approximation is still
valid) in the AOI and still get a better image than the un-
polarized one.
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D. Estimating the Angle of Incidence
Pointwise data analysis provides little information (if
any) on the AOI. To estimate it, we need an assumption
related to multiple points. Let us assume now that the
statistical dependence of the real and virtual layers is
small (even zero). This is reasonable, since they usually
originate from unrelated scenes. The Kullback–Leibler
distance measures how far the images are from statistical
independence, indicating their mutual information.26

Let the probabilities for certain values ĨT and ĨR be P( ĨT)
and P( ĨR), respectively. In practice, these probabilities
are estimated by the histograms of the reconstructed im-
ages. The joint probability is P( ĨT , ĨR), which in prac-
tice is estimated by the joint histogram of the images,
that is, the relative number of pixels in which ÎT has a
certain value ĨT and ÎR has a certain value ĨR at corre-
sponding pixels. The mutual information is then

I~ ÎT , ÎR! 5 (
ĨT, ĨR

P~ ĨT , ĨR!log
P~ ĨT , ĨR!

P~ ĨT!P~ ĨR!
. (20)

In this approach we assume that if the layers are cor-
rectly separated, each of their estimates contains a mini-
mum of information about the other. However, the dis-
tance [Eq. (20)] depends on the levels that the images ÎT

and ÎR are quantized to and their dynamic range, which
in turn depends on the brightness of the individual layers
IT and IR . To decrease the dependence on these param-
eters, we performed two normalizations. First, each es-
timated layer was contrast stretched to a standard dy-
namic range. Then I was normalized by the mean
entropy of the estimated layers when treated as indi-
vidual images. The self-information26 (entropy) of ÎT is

H~ ÎT! 5 2(
ĨT

P~ ĨT!log P~ ĨT!, (21)

and similar is that of ÎR . Thus the measure that we
used,

Fig. 4. Relative contamination of each layer, per 1° of error in
the AOI, if the reflected contribution is as bright as the transmit-
ted one (after the incidence on a glass window).
In~ ÎT , ÎR! 5
I~ ÎT , ÎR!

@H~ ÎT! 1 H~ ÎR!#/2
, (22)

indicated the ratio of mutual information to the self-
information of a layer. In this approach

ŵ 5 arg min
w

In@ ÎT~ w!, ÎR~ w!#. (23)

We tested this approach in several AOI’s wtrue with the
images of Fig. 3. For each test this criterion produced
the exact AOI, although the minimum mutual informa-
tion was not zero. Typical curves of the information mea-
sure are plotted in Fig. 5. Note that in the method de-
scribed above we did not make assumptions about the
form of the probability distributions. The only assump-
tion concerns the minimal mutual information, as esti-
mated from the images themselves.

To gain some analytical insight, we make some stron-
ger assumptions. Suppose that the true layers are sta-
tistically independent (hence, when correctly separated,
I 5 0) and are jointly Gaussian. Then linear indepen-
dence of the reconstructions indicates the states of mini-
mum mutual information. Thus a possible approach is to
search for the zero crossing of the cross covariance (or
cross correlation) between the estimated images.23 How-
ever, the covariance (for any distribution, not just a
Gaussian) is [see Eqs. (10)]

Cov~ Î I , ÎR! 5 t~1 2 r!Var~IR!FVar~IT!

Var~IR!
2 hG , (24)

where h( wtrue , w) 5 2@r(1 2 t)#/@t(1 2 r)#. We note
that h monotonically increases with w and can take any
positive value. Thus, besides the desired zero crossing, a
zero value of the cross covariance at a wrongly assumed
AOI exists. Figure 6 indicates the range of AOI on glass
for which h . 0, leading to the possibility of error. If
wtrue is smaller than the Brewster angle, the wrong angle
of decorrelation will always be at w . wtrue . This en-
ables the removal of the ambiguity in case a priori knowl-
edge indicates that the AOI is smaller than the Brewster

Fig. 5. Mutual information (normalized) of the estimated layers
as a function of the assumed AOI w for wtrue
5 18°, 43°, 56°, 68°, 80°. The minimum mutual information
was achieved when w 5 wtrue .
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angle. The zero at the wrong w depends (through h) on
the variances of the specific images used. So, if color im-
ages are used, each channel will have a different ratio of
variances, leading to different wrong crossings. Alterna-
tively, we may analyze distinct parts of the images, so re-
gional estimates of the variance will be different in differ-
ent patches, leading to different wrong crossings.
Another possible way is to estimate the correlation be-
tween the images where they are shifted relative to their
original position by D. Then the wrong zero will appear
when h 5 Cov@IT(x), IT(x 1 D)#/Cov@IR(x), IR(x 1 D)#.
Assuming that this ratio is not constant in D, the wrong
crossing will be different for different shifts.

Searching for decorrelation may not be reliable enough,
since it relies solely on the second moment of the probabil-
ity distributions (estimated by the finite-size images) and
on the assumption that the correlation between the origi-
nal images is zero. To see a typical case, we consider a
simulation based on the images shown in the top row of
Fig. 3, with wtrue 5 20°. For each assumed w, the corre-
lation was calculated, as shown in Fig. 7. The ‘‘correct’’
zero crossing appears at w 5 19° (and the second,
‘‘wrong’’ crossing appears at 87°). The estimation of the
correlation coefficient based on the layers IT and IR
shown in the top row of Fig. 3 is '0.06, somewhat contra-
dicting the underlying assumption of the decorrelation
approach. This deviation leads to the small error in the
estimated AOI in that method. Such errors (even of 3°)
also occurred in other values of wtrue .

In contrast, as plotted in Fig. 5 and in Fig. 7(b), the mu-
tual information criterion yielded precise results. This
may also be related to the fact that it exploits the (esti-
mated) probability distributions and does not rely just (or
primarily) on their second moment. Therefore mutual
information seems to be a more favorable measure.

Let us consider the effect of additive noise expressed in
the terms on the right-hand sides of Eqs. (8). If n' and n i

are independent with zero mean and variance s 2, then
the covariance between the estimated images is the same
as Eq. (24) but with the addition of

24s 2
R̃'~ w!T̃'~ w! 1 R̃ i~ w!T̃ i~ w!

@R̃'~ w! 2 R̃ i~ w!#2
, 0. (25)

Fig. 6. For each wtrue there are domains (white) of assumed
angles w for which a zero of the correlation exists at a wrong
angle (besides the correct one).
Thus noise decreases the covariance. We note that the
derivative of the covariance with respect to w is positive at
the first crossing and negative at the second. Therefore
the noise leads to an increase of the first value (angle) of
zero crossing and a decrease of the second one. This is
demonstrated by the dashed curve in Fig. 7(a), where the
noise energy is approximately 2% of the raw images. A
way to mitigate this problem is to compensate it by add-
ing the absolute value of relation (25), calculated for each
assumed w, to the measured Cov( ÎT , ÎR) and then look for
the zero crossings. This requires an estimate of s. A
more straightforward way is to reduce s by low-pass fil-
tering the raw images before the estimation of the AOI
(and then use this estimated AOI with the raw images).
Indeed, in the example plotted in Fig. 7, after we con-
volved the images with an averaging 5 3 5 kernel, the
original zero crossings were recovered. Note that the
angle of minimum mutual information traced a similar
response to the noise and to the filtering.

Fig. 7. Decorrelation occurred at w 5 19°, while the minimum
mutual information correctly appeared at 20°. Additive noise
increased the estimated angle of the first crossing (as theoreti-
cally predicted), while consecutive low-pass filtering (LPF) of the
raw images recovered the noiseless results. Similar effects are
observed in the minimum mutual information.
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E. Plane-of-Incidence Ambiguity
The orientation of the POI indicates the azimuthal tilt of
the transparent (invisible) surface relative to the viewer’s
coordinate system. This tilt angle is perpendicular to u' .
Naturally, u' is important, since once it is determined, f̂'

and f̂ i are unique, enabling the scene recovery. The in-
tensity at each point [Eq. (4)] can be written as

f 5 C 1 A cos@2~a 2 u!#. (26)

It has 3 degrees of freedom: the dc level C, the amplitude
A, and u. Let tan(2u) 5 As /Ac , where we define Ac
[ A cos(2u) and As [ A sin(2u). Then fi
5 (1, cos(2ai), sin(2ai)) • (C, Ac , As). Thus three mea-
surements of the intensity fi taken with different general
orientations a i of the analyzer (see Fig. 1)12,14,16,19 suffice
to determine C, A, and u.

However, as discussed in Subsection 2.B, if we do not
know which object (real or virtual) is brighter at the point
measured, there exists a fundamental 90° ambiguity in
the determination of the plane of incidence in cases of
transparent scenes: It may be associated with either the
minimum or the maximum of the analyzer’s sinusoidal
output. Moreover, if in some parts of the field of view the
virtual objects are brighter while in other parts the real
objects are, the ambiguity may be unordered, so we can-
not associate f' either with the image of maximal inten-
sity or with the image of minimal intensity. This is in
contrast to the underlying assumption in Ref. 5 and the
common cases of reflection off opaque objects.16,19

A priori information about the illumination can help
eliminate this ambiguity. For example, when fishing,
watching the outside dark view from a lit room, or looking
into a car from a brightly illuminated environment, we
may associate u' with the maximal intensity.

Alternatively, if we have a crude estimation of the ori-
entation of the POI, within a 645° uncertainty interval,
the estimation of u' is unique. Suppose that we know
that 245° , u' < 45°, so we may simply obtain u'

5 0.5 tan21(As /Ac) and A 5 AAc
2 1 As

2. If Ac , 0, then
A 5 2AAc

2 1 As
2. Then

f̂' 5 C 1 A, f̂ i 5 C 2 A. (27)

4. RECONSTRUCTION EXPERIMENT
We imaged a scene, composed of several objects, through
an upright glass window. The window semireflected an-
other scene (virtual object). The optical distance be-
tween the video camera and both scenes was '3.5 m. A
linear polarizer was rotated in front of the camera be-
tween consecutive image acquisitions. For good demon-
stration quality, five frames were averaged for each ana-
lyzer state, but similar results were obtained also for a
single frame per state. For the calculation of the polar-
ization components, we used three images that were ac-
quired with the analyzer directed at angles a
5 0°, 45°, 90° relative to the assumed vertical direction.
Without a polarization analyzer in front of the camera,
the image value at each point is 2C, where C is the dc
component of the sinusoidal function of Eq. (26), calcu-
lated at that point. This unpolarized image is shown in
the left panel of Fig. 8.

Since we knew that the POI is approximately horizon-
tal, we were able to estimate u' within a 645° uncer-
tainty interval around the vertical direction, and also the
amplitude A [Eq. (26)]. Using Eqs. (27), we estimated f̂'

and f̂ i (which are very similar to the raw images taken at
a 5 0°, 90°). As can be seen in the right panel of Fig. 8,
the polarizer gives an initial attenuation of the reflected
scene, but it remains significant, since the angle of inci-
dence wtrue 5 27.5° 6 3° was far from the Brewster
angle.

The AOI w to be estimated was assumed to be between
5° and 85° (close to the singular angles 0° and 90°, the es-
timation is unstable). For each assumed angle, the cross
correlation between the images as well as their mutual
information was estimated. The mutual information has
a minimum at w 5 25.5°, while a decorrelation was ob-
tained at w 5 27° (Fig. 9). Both these values are within
the experimental error of the physical measurement of
wtrue . A second zero crossing of the correlation coeffi-
cient exists at 84°, in agreement with the theory, since for
this wtrue the threshold for the appearance of this crossing
(Fig. 6) is 80°.

Interestingly, the mutual information also has a mini-
mum at 83°. Hence, for this example, the mutual infor-
mation did not solve the AOI ambiguity problem. This
may happen in other cases, as seen in the simulation in
Fig. 7. Nevertheless, note that the simulation indicates
cases (seen in Fig. 5) where mutual information did solve
the ambiguity.

We applied Eqs. (6) and (7) to each point of the images
f̂' and f̂ i by using the estimated AOI w 5 25.5°. The re-
sults are shown in the top row of Fig. 10. The results can
be compared with the separate ‘‘ground-truth’’ images
shown in the bottom row of this figure. The reconstruc-
tion was very successful in most parts of the scenes.

It has been recognized16,19 that mechanical rotation of
the analyzer leads to small image distortions, causing the
creation of false polarization readings at image edges.
This technical problem leads to the appearance of false
edges in the reconstructions and can be alleviated by us-
ing special hardware, namely, liquid-crystal filters that
are mechanically stationary.16 To mitigate this problem,
we use an alternative approach based on image
processing:22 The raw images are locally aligned to mini-

Fig. 8. Combined scene, seen without an analyzer (left); al-
though the reflected component is smaller in f i , the image is still
unclear (right).
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mize the local gradients in the resulting reconstructed im-
ages (no blurring operator is employed).

5. CONCLUSIONS
Real and virtual objects superimposed by a reflecting sur-
face can be well separated by image processing that fol-
lows polarized imaging. This is accomplished by using a
proper reflection model (e.g., taking into account the ef-
fects of internal reflection within a glass window) and by
the inversion of the physical equations of image forma-
tion. Using the proper reflectance coefficients allows re-
construction away from the Brewster angle, that is,
where the problem cannot be solved by optics alone.
Contrary to previous methods of transparent layer sepa-

Fig. 9. At the estimated angle 27°, the estimated layers are
decorrelated (solid curve); the mutual information of the esti-
mated layers has a local minimum at 25.5° (dotted–dashed
curve).

Fig. 10. Reconstructions (top), real object photographed without
the interfering glass window (bottom left), and virtual object pho-
tographed by removing the objects behind the glass window (bot-
tom right).
ration, the present procedure enables the unique labeling
of the layers as reflected or transmitted. These results
can be the basis for useful techniques in professional and
amateur still photography, where polarizers are com-
monly used. The method automatically provides infor-
mation (the inclination angle) about the transparent (in-
visible) surface that lies between the camera and the
visible objects. This is in addition to the information on
the tilt angle of the plane of incidence, for which we indi-
cated a fundamental ambiguity.

We believe that our analysis of the effects of noise in-
dicates the sensitivity of any method that basically relies
on polarization for the scene separation, particularly by
independent-components analysis of polarization-filtered
images. Note that since the method that we presented is
more stable at low frequencies, while methods that rely
on triangulation for the layer separation are more stable
at high frequencies, it may be beneficial to fuse these ap-
proaches.
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