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Abstract. Depth from Focus (DFF) and Depth from Defocus (DFD) methods are theoretically unified with the
geometric triangulation principle. Fundamentally, the depth sensitivities of DFF and DFD are not different than those
of stereo (or motion) based systems having the same physical dimensions. Contrary to common belief, DFD does
not inherently avoid the matching (correspondence) problem. Basically, DFD and DFF do not avoid the occlusion
problem any more than triangulation techniques, but they are more stable in the presence of such disruptions. The
fundamental advantage of DFF and DFD methods is the two-dimensionality of the aperture, allowing more robust
estimation. We analyze the effect of noise in different spatial frequencies, and derive the optimal changes of the
focus settings in DFD. These results elucidate the limitations of methods based on depth of field and provide a
foundation for fair performance comparison between DFF/DFD and shape from stereo (or motion) algorithms.
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1. Introduction

In recent years range imaging based on the lim-
ited depth of field (DOF) of lenses has been gaining
popularity. Methods based on this principle are nor-
mally considered to be a separate class, distinguished
from triangulation techniques such as depth from
stereo, vergence or motion (Besl, 1988; Engelhardt and
Hausler, 1988; Jarvis, 1983; Krotkov and Bajcsy, 1993;
Marapane and Trivedi, 1993; Scherock, 1991; Stewart
and Nair, 1989; Subbarao et al., 1997). Cooperation
between depth fromfocus, stereo and vergence proce-
dures has been studied in Abbott and Ahuja (1988,
1993), Dias et al. (1992), Kristensen et al. (1993),
Krotkov and Bajcsy (1993), Stewart and Nair (1989),
and Subbarao et al. (1997). Cooperation of depth
from defocuswith stereo was considered in Darwish
(1994), Klarquist et al. (1995), and Subbarao et al.
(1997).

Successful application of computer vision algo-
rithms requires sound performance evaluation and
comparison of the various approaches available. The
comparison of range sensing systems that rely on dif-
ferent principles of operation and have a wide range
of physical parameters is not easy (Besl, 1988; Jarvis,
1983). In particular, in such cases it is difficult to distin-
guish between limitations ofalgorithmsto those arising
from fundamental physical bounds.

The following observations and statements are com-
mon in the literature:

1. The resolution and sensitivity of Depth from De-
focus (DFD) methods are limited in compari-
son to triangulation based techniques (Besl, 1988;
Hwang et al., 1989; Pentland, 1987; Pentland
et al., 1989, 1994; Rajagopalan and Chaudhuri,
1997; Stewart and Nair, 1989; Subbarao, 1988;
Subbarao and Surya, 1994; Subbarao and Wei,
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1992; Subbarao et al., 1997; Surya and Subbarao,
1993).

2. Unlike triangulation methods, DFD avoids the
missing-parts (occlusion) problem (Bove, 1989,
1993; Ens and Lawrence, 1993; Nayar et al.,
1995; Pentland et al., 1994; Saadat and Fahimi,
1995; Scherock, 1991; Subbarao and Liu, 1996;
Subbarao and Surya, 1994; Subbarao and Wei,
1992; Subbarao et al., 1997; Surya and Subbarao,
1993; Watanabe and Nayar, 1996).

3. Unlike triangulation methods, DFD avoids match-
ing (correspondence) ambiguity problems (Bove,
1989, 1993; Darwish, 1994; Ens and Lawrence,
1993; Hwang et al., 1889; Nayar et al., 1995;
Pentland, 1987; Pentland et al., 1989, 1994;
Rajagopalan and Chaudhuri, 1995a; Saadat and
Fahimi, 1995; Scherock, 1991; Simoncelli and
Farid, 1996; Subbarao and Liu, 1996; Subbarao and
Surya, 1994; Subbarao and Wei, 1992; Subbarao et
al., 1997; Surya and Subbarao, 1993; Swain et al.,
1994; Watanabe and Nayar, 1996; Xiong and Shafer,
1993).

4. DFD is reliable (Nayar et al., 1995; Pentland, 1987;
Pentland et al., 1989; Subbarao and Wei, 1992).

Similar statements were made with regard to Depth
from Focus (DFF) (Abbott and Ahuja, 1993; Darrell
and Wohn, 1988; Dias et al., 1992; Engelhardt and
Hausler, 1988; Krotkov and Bajcsy, 1993; Marapane
and Trivedi, 1993; Subbarao and Liu, 1996). There
have been several attempts to explain these observa-
tions. For example, the limited sensitivity of DFD
was associated with suboptimal selection of param-
eters (Rajagopalan and Chaudhuri, 1997), leading to
interest in optimizing the changes in imaging system
parameters. A major step towards understanding the
relations between triangulation and DOF has been re-
cently taken in Adelson and Wang (1992), Farid (1997),
and Farid and Simoncelli (1998). A large aperture lens
was utilized to build a “monocular stereo” system, with
sensitivity that has the same functional dependence on
parameters as in a stereo system (without vergence).

We show that the difference between methods that
rely on the limited depth of field of the optical system
(DFD and DFF) and “classic” triangulation techniques
(stereo, vergence, motion) is mainly due to technical
reasons, and is hardly a fundamental one. In fact, DFD
and DFF can be regarded as ways to achieve triangu-
lation. We study the fundamental characteristics of the
above mentioned methods and the differences between

them in a formal and quantitative manner. The first
statement above claims superiority of stereo over DFD
with regard to sensitivity. However, the origins of this
observation are primarily in the physical size differ-
ence between common implementations of focus and
triangulation based systems, not in the fundamentals.
Generally, this statement does not hold.

As to the second and third statements (that un-
like stereo, the occlusion and matching problems are
avoided in DFD), they again follow mainly from phys-
ical size differences in the common implementations.
As they are expressed, these two statements do not hold.
Actually, we note a fundamental matching problem in
DFD, analogous to the problem in stereo. There are,
however, some differences between DFD, stereo, and
DFF with respect to matching ambiguity and occlusion
that can be expressed quantitatively.

In contrast, the fourth observation (reliability of
DFD) has a solid foundation. DFF and DFD rely on
more data than common discrete triangulation meth-
ods, and are thus potentially more reliable. Note that an
approach and algorithm similar to DFD can also be ap-
plied in Depth from Motion Blur(smear) (Fox, 1988),
leading to improved robustness. Still, unlike motion
smear which is one dimensional (1D), DFF and DFD
rely on two dimensional (2D) blur and thus have an
important advantage.

In order to study the influence of noise on the various
ranging methods considered in this paper, we analyze
its effect in each spatial frequency of which the image
is composed. We show that some frequencies are more
useful for range estimation, while others do not make a
significant or reliable contribution. Our analysis leads
to a new property of depth of field: it is the optimal
interval between focus-settings in depth-from-defocus
for robustness to perturbations. We also show that in
DFD, if the step used is larger by a factor of 2 or higher,
the estimation process may be very unstable. We thus
obtain the limits on the interval between focus settings
that ensures stable operation of DFD. Some prelimi-
nary results were presented in Schechner and Kiryati
(1998, 1999).

2. Sensitivity

2.1. DFD

Consider the imaging system sketched in Fig. 1. The
sensor at distancẽv behind the lens can image in-focus
a point at distancẽu in front of the lens. An object point
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Figure 1. The imaging system with an apertureD is tuned
to view in focus object points at distanceũ. The image of an
object point at distanceu is a blur circle of radiusr in the
sensor plane.

at distanceu is defocused, and its image is a blur-circle
of radiusr in the sensor plane.

In this system the blur radius is (Scherock, 1991)

r = D

2

|uF− ṽu+ F ṽ|
Fu

(1)

whereF is the focal length andD is the aperture of the
lens. For simplicity we adopt the common assumption
that the system is invariant to transversal shift. This
is approximately true for paraxial systems, where the
angles between light rays and the optical axis are small.

Suppose now that the entire lens is blocked, except
for two pinholes on its perimeter, on opposite ends of
some diameter (Adelson and Wang, 1992; Hiura et al.,
1998), as shown in Fig. 2. Only two rays pass the lens.
The geometrical point spread function (PSF) thus con-

Figure 2. An imaging system similar to that of Fig. 1, with
its lens blocked except for two pinholes on its perimeter, on
opposite ends of some diameter. The image of an out-of-focus
object point is two points, with disparity equal to the diameter
of the blur circle that would have appeared had the blocking
been removed.

Figure 3. A stereo system with a baselineD equal to the
lens diameter in Fig. 1. The distanceṽ from the entrance
pupil to the sensor is also the same. The vergence eliminates
the disparity for the object point at distanceũ. The result-
ing disparity caused by the object point atu is equal to the
diameter of the blur kernel formed by the system of Fig. 1.

sists of only two points,xL andxR. The distance be-
tween the points is

|xR− xL| = 2r. (2)

The fact that the image of each object point consists
of two points, separated by a distance that depends on
the depth of the object, gives rise to the analogy to
stereo. Note that for an object point at a distanceũ, the
image points coincide, i.e. have no disparity. To accom-
modate this in the analogy, we incorporatevergence
into the stereo system. Now, consider the stereo & ver-
gence system shown in Fig. 3 that consists of two pin-
hole cameras. It hasthe same physical dimensionsas
the system shown in Fig. 1, i.e., the baseline between
the pinholes is equal to the width of the large aper-
ture lens, and the sensors are at the same distanceṽ

behind the pinholes. The image of an object point at
u is again two points, now one on each sensor. Since
the angles are small (e.g.,D ¿ u) the disparity can be
well approximated by

d = x̂R− x̂L = D
uF− ṽu+ F ṽ

Fu
= Df (u). (3)

Comparing this result to Eqs. (1) and (2) we see that

|x̂R− x̂L| = |xR− xL | = 2r. (4)
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The same result is also obtained foru > ũ. Thus,for
a triangulation system with the same physical dimen-
sions as a DFD system, the disparity is equal to the
size of the blur kernel.An alternative interpretation is
to consider the stereo baseline as asynthetic apertureof
an imaging system. A proportion between the disparity
and blur-diameter in a system as Fig. 2 (with the holes
on the diameter having a finite support) was noticed in
Adelson and Wang (1992).

The sensitivity (and resolution) of the triangulation
systems are equivalent to those of DFD systems and
are related to the disparity/PSF-support size (Eq. (4)):
Depth deviation from focus is sensed if this value is
larger than the pixel period1 1x (See Refs. (Abbott
and Ahuja, 1993; Engelhardt and Hausler, 1988) and
Subsection 5.5). The conclusion is thatmethods that
rely on the depth of field are not inherently less sen-
sitive than stereo or motion. In particular the rate of
decrease of the resolution with object distance is fun-
damentally the same. In practice, however, the typi-
cal lens apertures used (Adelson and Wang, 1992) are
merely in the order of∼1 cm while stereo baselines are
usually one or two orders of magnitude larger, leading
to a proportional increase of the sensitivity.

It is interesting to note that the common limits on
lens apertures can be broken by the use of holographic
optical elements (HOE). Holographic “lenses” are very
thin, yet allow the deviation of rays by large angles.
The design of such elements for imaging purposes is
non-trivial, but HOE are actually in use in wide-angle
head-up and helmet displays for aircraft (Amitai et al.,
1989).

Consider depth from motion, that can be regarded
as a “classic” triangulation approach. We shall see that
it provides an effect analogous to 1D defocus blur. If
discrete images are taken, the baseline between the ini-
tial and final frames dictates the depth resolution. Most
DFD and motion approaches differ in the algorithms
used: In DFD the support of the blur kernel is calculated
by comparison to a small-aperture (reference) image,
while motion based analysis relies on matching. How-
ever, the principle of operation ofDepth from Motion
Blur (DFMB) (Fox, 1988), is similar to DFD: A fast-
shutter photograph is compared to an image blurred
by the camera motion (slow shutter), to estimate the
motion extent (Chen et al., 1996), from which depth is
extracted (Fig. 4).

The analogy between DFD and DFMB can be en-
hanced by demonstrating the equivalent to a focused
point in motion blur. Consider the system shown in

Figure 4. While the shutter is open, the camera moves along
an arc, pointing to the arc axis atũ. This point is sharply
imaged while closer or farther points are motion blurred, in
a manner analogous to defocus.

Fig. 4. The camera moves along an arc of radiusũ,
with its optical axis pointing towards the center of the
circle. While the scene is generally motion blurred, a
point at a distancẽu remains unblurred! The analo-
gous DFD system is constructed by removing part of
the blocking shown in Fig. 2, exposing a thin line on the
lens, between the former pinholes (thus the system can
still be analyzed as having a single transversal dimen-
sion). Thus, the analysis of the spread is not based only
on the two marginal points, but on a 1D continuum of
points.

2.2. DFF

In DFF, depth is estimated by searching for the state
of the imaging system for which the object is in-focus.
Referring to Fig. 1, this may be achieved by chang-
ing eitherṽ (the lens to sensor distance),F (the focal
length) oru (the object distance), or any combination
of them. Images are taken for each incremental change
of these parameters. The state of the set-up for which
the best-focused image was taken indicates the depth
by the relation

1

ũ
= 1

F
− 1

ṽ
. (5)

The process of changing the camera parameters to
achieve a focused state is analogous to changing the
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convergence angle between two cameras in a typi-
cal triangulation system. This qualitative analogy has
been stated before (Abbott and Ahuja, 1988; Pentland,
1987; Pentland et al., 1989). This can be seen clearly in
Figs. 1–3. For example, focusing the system of Fig. 1
by axial movement towards/away from the object point
changesu, to haveu → ũ, until the blur-radius is
zero (or undetectable) has the same effect as moving
the stereo system of Fig. 3 in that direction. Alterna-
tively, focusing by changing the focal lengthF does
not induce magnification, but shiftsv so thatv→ ṽ

by changing the refraction angles of the light-rays in
Figs.1 and 2. This has the same effect as changing the
convergence angle in Fig. 3. Focusing by axially mov-
ing the sensor changesṽ so thatṽ → v. This changes
the magnification as well as the angles of the light-rays
which hit the sensor at focus. This has the same ef-
fect as changing both̃v and the convergence angle in
Fig. 3. We note that magnification corrections (Darrell
and Wohn, 1988; Nair and Stewart, 1992; Subbarao,
1988), which are usually insignificant (Stewart and
Nair, 1989; Subbarao and Wei, 1992), enable focusing
when the settings change is accompanied with magni-
fication change.

The sensitivity to changes in parameters in DFF is
related to the smallest detectable blur-diameter, while
the sensitivity in stereo & vergence is related to the
smallest detectable disparity. Both the disparity and the
blur-diameter are sensed if they are larger than the pixel
period. Since for the same system dimensions the blur-
diameter and the disparity are the same, the sensitivity
of DFF is similar to that of depth from convergence.

In Stewart and Nair (1989) the disparity in a stereo
image pair was found empirically to be approximately
linearly related to the focused state setting of a DFF
system. We can now explain this result analytically.
Suppose the system is initially focused at infinity. In
order to focus on the object atu, the sensor has to be
moved by

1ṽ = v − F, (6)

which according to Eq. (5) is

1ṽ = Fv

u
. (7)

The sensor positioñv, or its distance1ṽ from the focal
point, indicate the focus setting. The stereo baseline is
Dstereo. In the system of Stewart and Nair (1989), the
stereo system was fixated at infinity thus the disparity

was

d = Dstereo· ṽ
u
= Dstereo· v

u
, (8)

where in the right hand side of Eq. (8) we assumed that
the disparity was measured at the state for which the
object was focused, in that cooperative system. Com-
bining Eqs. (7) and (8) we get

d = Dstereo

F
1ṽ (9)

which is a linear relation between the focus setting
and the disparity. If focusing is achieved differently
(e.g. moving the lens but keeping the sensor position
fixed), there are higher order terms in the relation be-
tween focus-setting and disparity, but in practice they
are negligible compared to the linear dependence.

3. Occlusion

3.1. DFD

The observation that monocular methods are not prone
to the missing parts (occlusion) problem is mostly a
consequence of the small “baseline” associated with
the lens. The small angles involved reduce the num-
ber of points that will be visible to a part of the lens
while being occluded at another part (vignetting caused
by the scene). However, such incidents may occur
(Adelson and Wang, 1992; Asada et al., 1998; Farid,
1997; Marshall et al., 1996).

Note that the same applies to stereo (Simoncelli and
Farid, 1996) (or motion) with the same baseline! Al-
though mechanical constraints usually complicate the
construction of stereo systems with a small baseline,
such systems can be made. An example is the “monoc-
ular stereo” system presented in Farid and Simoncelli
(1998), whose principle of operation is similar to that
shown in Fig. 2. Another possibility is to position a
beam-splitter in front of the triangulation system. There
is, of course, no “free lunch”: the avoidance of the oc-
clusion problem (and also the correspondence problem
as will be discussed in Section 4) by decreasing the
baseline leads to a reduction in sensitivity (Pentland
et al., 1994).

The main differences between DFD and common
triangulation methods arise when we consider the 2D
nature of the image. It turns out that for the same
system dimensions,the chance of occurrence of the
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Figure 5. The stereo PSF consists of two distinct impulse func-
tions. The line segment that defines the disparity between them is the
support of the motion blur kernel, and the diameter of the defocus
blur kernel for the same system dimensions. An occluding object is
in-focus (and in perfect convergence in the stereo case) in this dia-
gram, hence has sharp boundaries. In (a) the object is occluding only
a DFD setup but not the stereo/motion setups. In (b) occlusion makes
stereo matching impossible, and an error occurs in DFMB and DFD.
In DFD, the diameter parallel to the occluding edge makes error-free
recovery possible.

occlusion phenomenon is higher for DFD than for
stereo(Fig. 5(a)). This is due to the fact that the de-
focus point-spread is much larger than for stereo. That
is, there may be many situations in which occlusion oc-
curs for the DFD system, and not for the stereo system.

Nevertheless, there is a difference in the conse-
quences of occlusion. In stereo, the fact that one of
the rays is blocked makes matching and depth estima-
tion impossible (Fig. 5(b)). In contrast, DFD relies on a
continuum of rays, thus allowing estimation, although
with an error. If the occluded part is small compared
to the support of the blur-kernel, and its depth is close
to that of the occluding object, the error will be small.
Depth from motion blur, acquired as described in Fig. 4
(or even a discrete sequence of images acquired as the
camera is in motion) will have a similar stable behavior
(Fig. 5(b)).

Consider small occlusions, covering less than half
the blur PSF. In these cases the chief ray (the light
ray that would have passed through a pinhole camera
and marks the center of the PSF) is not occluded.2 As
seen in Fig. 6 the relative error in the support of the
defocus blur is smaller than that of motion blur. This
is an advantage of DFD over DFMB. Moreover, from
Fig. 5 one can notice that with DFD it is also possible
(although not by the current algorithms known to us)
to fully recover the true blur diameter using a line in
the PSF that is parallel to the occluding edge.

Evidence of problems near occlusion boundaries in
a “monocular stereo” system is reported in Adelson
and Wang (1992). These problems occur since some

Figure 6. The occluding edge of Fig. 5b is at a certain distance to
the right of the chief ray. For small occlusions the chief ray is visible
and the relative part of the PSF that is occluded is smaller for DFD
[dashed line] than for motion [solid line].

points in the scene were occluded to certain parts
of the lens aperture. Had that system been used for
DFF/DFD, similar occlusions would have taken place.
Ref. (Adelson and Wang, 1992) reported that the oc-
clusion effect is small. This is due to the small baseline
associated with that system. Experimental evidence
of the phenomenon is also reported in Asada et al.
(1998).

To conclude, DFD does not avoid the occlusion prob-
lem anymore than stereo/motion methods (on the con-
trary). It is, however more stable to such disruptions. In
principle, with DFD it is possible to fully recover the
depth as long as the occlusion is small.

3.2. DFF

From the discussion in Subsection 3.1, it follows that
occlusion is present also in DFF. In a stereo system
with a baseline that is as small as the aperture of typ-
ical DFF systems, the occlusion phenomenon would
be much less noticeable than in a stereo system with a
large baseline. Moreover, as described in Fig. 5(a), for
systems of the same physical dimensionsthe chance of
occlusion is higher in DFF than in stereodue to the 2D
nature of the PSF.

The imaging of occluded objects by finite aperture
lenses was analyzed in Marshall et al. (1996). Since the
occluding object is out of focus, it is blurred. However,
this object causes vignetting to the objects behind it.
Thus, the occluded objectfadesinto the occluder. If
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the occluded object is left of the occluding edge (in the
image space), the image obtained using an apertureD
is

gD = Occluded· (1− hD ∗ Step(x0))

+Occluder∗ hD, (10)

where Step(x0) is the step-function at the occluding
edge positionx0. In Eq. (10) the blur kernelhD of
the occluding object has a radiusr while the occluded
object (for which we seek focus) is assumed to be
focused.

Inspecting Figs. 7 and 8, there are four classes of
image points:

1. x < x0− r . The point is not occluded. Depth at the
point is unambiguous.

2. x0 − r ≤ x < x0. The point is slightly occluded
(See Fig. 7(a)). The chief ray from this object point
reaches the lens. The point may appear focused but
the disturbance of the blurred occluder may shift
the estimation of the plane of best focus in DFF.
In a stereo & vergence system of the same physi-
cal dimensions, each of the two pinholes will see a
different object, either the occluder or the occluded
one. Thus fixation is ill posed (no solution).

3. x0 ≤ x ≤ x0 + r . The point is severely occluded.
The chief ray from this object point does not reach

Figure 7. (a) If the chief ray is not occluded but resides within the
blurred image of the occluding edge (slight occlusion) focusing is
possible but may be erroneous. (b) For the same system dimensions
matching the occluded object point in the stereo/vergence images is
not possible.

Figure 8. (a) If light emanating from the object point reaches the
sensor but the chief ray is occluded (severe occlusion) focusing on
this occluded point is possible. (b) The same transversal image point
is also in focus if the system is tuned on the occluder. Thus, the depth
at the pointx is double valued. Matching stereo/vergence points is
possible only in case (b) (see Fig. 7).

the lens. The point may appear focused but during
the focus search the same pointx will indicate a fo-
cused state also when the occluder is focused (see
Fig. 8). The solution is not unique (double valued).
Simple DFF is thus ambiguous. Nevertheless, the
depth at the point may be resolved if the possibil-
ity of a layered scene is taken into account (See
(Schechner et al., 1998) for a proposed method for
DFF with double valued depth).

The occluder at that point is seen to both pinholes
in the stereo & vergence system. Thus convergence
is possible and the correct depth of the occluder will
be the solution at pointx. This is a unique solution
since matching the occluded point is impossible,
for the same reason detailed in the case of slight
occlusion.

4. x > x0+ r . The focusing (DFF) and fixation (con-
vergence) are done on the close (possibly occluding)
object. Depth at the point is unambiguous.

Occlusion is present in cases 2 and 3 above, and a cor-
rect and unique matching is not guaranteed. However,
if the occlusion is small (i.e. the chief ray is visible) the
situation is similar to that described in Subsection 3.1:
the stereo/vergence system cannot yield the solution
while DFF yields a depth value that approaches the
correct one for smaller and smaller occlusions. On the
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other hand, if the occlusion is severe (the chief ray is
occluded) DFF yields an ambiguous estimation (which
can be resolved if alayeredscene is admitted, as in
Schechner et al. (1998)) while depth from convergence
yields a correct and unique depth estimation.

4. Matching (Correspondence) Ambiguity

Defocus measurement is not a point operation in the
sense that in order to estimate depth at given image
coordinates it isnot sufficient to compare the points
having those coordinates in the acquired images. In
DFD, depth is extracted by matching a spot (sharp or
blurred) in one image with a corresponding blurred
spot in another image. Even if the center of the blurred
spot is known, its support is unknown—unless the
scene consists of sparse points. It is possible to esti-
mate the support of the blur kernel for piecewise planar
scenes (Scherock, 1991), or scenes with slowly vary-
ing depth, as long as the support of the blur-kernel is
sufficiently small to ensure that the disturbance from
points of different depths is negligible. The estimation
of the blur kernel support is generally difficult, though
not impossible, if large depth deviations can take place
within small neighborhoods. Note that in stereo too the
disparity should be approximately constant over the
patches (which are segments along the epipolar lines)
to ease their registration between the images (Abbott
and Ahuja, 1988; Abbott and Ahuja, 1993).

The neighborhoods used for the estimation of the
kernel need to be larger than the support of the PSF.
A good demonstration for this aspect is given in Rioux
and Blais (1986). In that work, the object was illumi-
nated with sparse points and the PSF was a ring. The
depth was estimated by the ring-diameter.3 This seems
like an easy task since the points are sparse. However,
this task would have been much more complicated if
adjacent rings had overlapped. Thusto avoid ambigu-
ity, the ‘image patches’ had to be larger than the largest
possible blur kernel.

In natural scenes, if a significant feature is outside
the neighborhood used in the estimation, and its dis-
tance from the patch is about the extent of the point-
spread,edge bleeding(Jarvis, 1983; Nair and Stewart,
1992; Stewart and Nair, 1989) occurs, spoiling the so-
lution. This demonstrates that DFDis not a pointwise
measurement(but rather a point-to-patch or a patch-to-
patch comparison). Thus the assumption that in DFD
each image point corresponds simply to the point with
the same coordinates in the other image is erroneous.

This wrong assumption cannot be used to overrule the
possibility of matching (correspondence) problems.

Image patches that contain the support of the blur
kernel (or the disparity) are needed in DFD as well
as in stereo, when trying to resolve the disparity/blur-
diameter. However the implications are much less sig-
nificant in stereo/motion, since there the search for
the matching is done only along the epipolar lines
so the “patches” are 1D (very narrow). Usually, the
correspondence problem in stereois solvable, but
its existence complicates the derivation of the solu-
tion. We claim that a similar problem exists also in
DFD, and it also may complicate the estimation. We
now concentrate on the simple situation where the
patches are sufficiently large and depth-homogeneous.
Then, analysis in the spatial-frequency domain is
possible.

4.1. Stereo

One of the disadvantages attributed to stereo/motion
is the correspondence problem. Adelson and Wang
(1992) interpreted this problem as a manifestation of
aliasing. Let the left image begL(x, y) while the right
image isgR(x, y) = gL(x − d, y). We postpone the
effect of noise to Section 5. Having the two images,
we wish to estimate the disparity, for example by min-
imizing the square error

E2(d̂) = |gR(x, y)− gL(x − d̂, y)|2, (11)

where the baseline is along thex-axis. We denote a
spatial frequency byEν = (ν cosφ, ν sinφ). In case the
image is periodic (Abbott and Ahuja, 1993; Marapane
and Trivedi, 1993; Pentland et al., 1994; Stewart and
Nair, 1989), for example, if the image contains a single
frequency componentgL(x, y) = Aej 2πν(x cosφ+y sinφ),
the solution is not unique:

d̂ = d + k

ν cosφ
k = . . .− 2,−1, 0, 1, 2, 3 . . . (12)

This difficulty arises from the fact that the transfer func-
tion between the images,

H(Eν) = e− j 2πνd cosφ, (13)

is not one-to-one. The problem is dealt with by restrict-
ing the estimation to be in frequency bands for which
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the transfer function is one-to-one, for example by
demanding

|νd cosφ| < 1

2
or 0< νd cosφ < 1. (14)

Subject to these restrictions, the registration of the two
images is easy and unique. Thus, the correspondence
problem is greatly reduced if the disparity is small. If
the frequency or disparity are too high (larger than the
limitation posed by Eq. (14)), the ambiguity is anal-
ogous to aliasing (Adelson and Wang, 1992). If the
stereo system is built with a small baseline (Adelson
and Wang, 1992; Farid and Simoncelli, 1998) as in
common monocular systems, the correspondence prob-
lem will be avoided (Adelson and Wang, 1992).

The raw images are usually not restricted to the cut-
off frequencies dictated by Eq. (14), whend is larger
than a pixel. Thus the images should be blurred before
the estimation is done, either digitally as in Bergen
et al. (1992) or by having the sensor placed out of fo-
cus as in Adelson and Wang (1992), and Simoncelli
and Farid (1996). In this process information is lost,
leading to a rough estimate of the disparity (as will be
indicated by the results in Section 5). This coarse es-
timate can be used to resolve ambiguity in the band
0 < νd cosφ < 2, and thus the estimation can be
refined. This in turn allows further refinement by us-
ing even higher frequency bands. This is the basis of
the coarse-to-fineestimation of the disparity (Bergen
et al., 1992). The larger the productνd, the more cal-
culations are needed to establish the correct match-
ing. This is compatible with the observations that the
complexity of stereo matching increases as disparities
grow (Klarquist et al., 1995; Marapane and Trivedi,
1993) and that edgel-based stereo (which relies on high
frequency components) is more complex than region
based matching (Marapane and Trivedi, 1993). The
source of the coarse estimate is not necessarily achieved
by the same stereo system, but is nevertheless needed
(Dias et al., 1992; Klarquist et al., 1995; Marapane and
Trivedi, 1993; Subbarao et al. 1997).

4.2. DFD by Aperture Change and DFMB

Does DFD avoid the matching ambiguity problem at
all? We shall now show that the answer is, generally,
no. We consider in the following the pillbox model
(Nayar et al., 1995; Watanabe and Nayar, 1996) which
is a simple geometrical optics model for the PSF. In

this model the intensity is spread uniformly within the
blur kernel. In 1D blurring, the pillbox kernel is simply
the window functionhD = D/d for |x| < d/2. The
total light energy collected by the aperture (and spread
on the sensor) is proportional to its widthD in this
1D system. This system is analogous to DFMB. The
transfer function is

HD(Eν) = D
sin(πνd cosφ)

πνd cosφ
= D sinc(νd cosφ), (15)

where the blur diameterd is given by Eq. (3). Inserting
Eq. (1) into Eq. (15) and taking the limit of smallD,
the transfer function of the pinhole (reference) aperture
is

H0(Eν) = D0 (16)

for all ν, whereD0 is the width of the pinhole. Having
the pinhole imageg0 and the large-aperture imagegD,
we wish to estimate the blur diameter, for example by
minimizing an error criterion (Hiura et al., 1998), like

E2(d̂) = |gD ∗ h0− g0 ∗ ĥD|2. (17)

In the case where the image is periodic and consists of
a single frequency component,

g0(x, y) = D0Gej 2πν(x cosφ+y sinφ), (18)

the solution is again not unique since the transfer func-
tion between the images

H(Eν) = HD(Eν)
H0(Eν) =

D

D0
sinc(νd cosφ), (19)

is not one-to-one (The DFMB transfer function is pro-
portional to the one in Eq. (19), where the aperture
dimensions ratio is replaced by the ratio of exposure
times.). Since the transfer function is not one-to-one, a
measured attenuation is the possible outcome of several
blur kernel diameters.

As done in stereo (Adelson and Wang, 1992), we
may restrict the estimation to frequency bands for
which the transfer function is one-to-one. For DFMB
this dictates that

0< νd cosφ < 1.43, (20)

where 1.43 is the location of the first minimum of ex-
pression (19). So, we can use a wider frequency band
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than that used in stereo systems (14) having the same
physical dimensions, before needing a coarse to fine
approach.

In the 2D pillbox model (Nayar et al., 1995;
Watanabe and Nayar, 1996), the PSF ishD = D2/d2

for
√

x2+ y2 < (d/2)2. The defocus transfer function
is

HD(Eν) = πD2

2

J1(πνd)

πνd
(21)

while

H0(Eν) = π D2
0

4
. (22)

Thus

H(Eν) = 2
D2

D2
0

J1(πνd)

πνd
(23)

is also not one-to-one. Thus, the ambiguity (corre-
spondence) problem also occurs in the DFD approach,
and finite-aperture monocular systems do not guarantee
uniqueness of the solution for periodic patterns.There
are scenes for which the solution of DFD (i.e. matching
blur kernels in image pairs) is not unique.

The defocus transfer function in Eq. (21) is mono-
tonically decreasing in the range

0< νd < 1.63. (24)

Eq. (24) appears as if it enables unique matching in a
wider band than can be used in stereo (Eq. (14)). How-
ever, note that very high spatial frequencies may be
used in the stereo process without matching ambiguity,
as long as the component along the baseline has a suf-
ficiently small frequency. On the other hand, Eq. (24)
does not allow that. Hence, in contrast to common be-
lief, common triangulation techniques (as stereo) may
be less proneto matching ambiguity than 2D-DFD.

The above discussion is relevant not only for peri-
odic functions. Integrating Eq. (11) or Eq. (17) over a
patch is equivalent to integrating the square errors in
all frequencies. Furthermore, disparity/blur estimation
by fitting a curve or a model to data obtained in several
frequencies has been used (Bove, 1989; Hiura et al.,
1998; Pentland, 1987; Pentland et al., 1994; Watanabe
and Nayar, 1996).

The conclusion that the ambiguity problem is present
in DFD is not restricted to the pillbox model, but
to all transfer functions which are not one-to-one,

particularly those having side lobes (see Castleman
(1979), FitzGerrell et al. (1997), Hopkins (1955), Lee
(1990), and Schneider et al. (1994) for theoretical
functions). Hopkins (1955) explicitly referred to the
phenomenon of increase of contrast at large defocus
due to un-monotonicity of the transfer function at the
high frequencies. In other words, although the two ac-
quired images and the laws of geometric optics impose
constraints on the spread parameter (blur-diameter)
(Subbarao, 1988; Subbarao and Liu, 1996), there may
be several ‘intersections’ between these constraints,
leading to ambiguous solutions.

Empirical evidence for the possibility of this phe-
nomenon can be found by studying the results reported
in Klarquist et al. (1995). In that work, flat objects tex-
tured with a single spatial frequency were imaged at
various focus settings. The graphs given in Klarquist
et al. (1995) show that, especially at high spatial fre-
quency inputs, the attenuation as a function of focus
setting (i.e., the blur diameter) is not monotonous, po-
tentially leading to ambiguous depth estimation.

The common assumption in DFD that the PSF is
a Gaussian simplifies calculations (Subbarao, 1988;
Surya and Subbarao, 1993) but generally is incorrect
(Bove, 1993). This assumption should not be taken as
a basis for believing that the actual transfer function
is one-to one (using the wrong transfer function will
lead to a wrong estimation ofd). If, however, the ac-
tual transfer function is one-to-one for all frequencies
(Lee, 1990), the ambiguity phenomenon does not ex-
ist, and there is a unique match. However, as will be
discussed in Section 5, in that situation the problem is
still ill conditioned in the high frequencies.

4.3. DFD by Change of Focus-Settings

The change in the blur-diameter between the input im-
ages may be achieved by changing the focus settings
rather than changing the aperture size. For example, the
sensor array may move axially between image acquisi-
tions. We shall show that this leads to the same limita-
tion as when DFD is done by changing the aperture size
(Eq. (24)). We assume that geometric changes in mag-
nification are compensated or do not take place (e.g.
by the use of a telecentric system (Nayar et al., 1995;
Watanabe and Nayar, 1996), depicted in Fig. 9). The
aperture sizeD is constant, so in this Subsection we pa-
rameterize the transfer function by the blur diameterd.

Let the two images beg1 = g0 ∗ hd and g2 =
g0 ∗ hd+1d.1d is the change in the blur-diameter due



Depth from Defocus vs. Stereo 151

Figure 9. In a telecentric system, the aperture stop is at the front
focal plane. Such a system attenuates the magnification change while
defocusing. Shifting the sensor position by1v causes a change of
1d in the blur diameter.

to the known shift1v in the sensor position (Fig. 9).
This change is invariant to the focus settings and the
object depth in telecentric systems (Nayar et al., 1995;
Schechner et al., 1998). The transfer function between
the images is now

H(Eν) = Hd+1d(Eν)
Hd(Eν) . (25)

At frequencies for which|Hd(Eν)| ¿ |Hd+1d(Eν)| we
can take the reciprocal of Eq. (25) as the transfer func-
tion between the images (in reversed order).

In Subsection 4.2 we showed that ifH(Eν) is not
one-to-one ind, the estimation may be ambiguous.
Fig. 10 plots the response to a specific frequencyν

of the 2D pillbox model (21) as a function of the
blur-diameter. The figure also plots the response at the
axially-displaced image (1d = 1/(2ν) in this exam-
ple), which is the same as the former response, but
shifted along thed axis. Each ratio between these re-
sponses can be yielded by many diametersd. To il-
lustrate, view Fig. 11, which plots the ratio between
the frequency responses in Fig. 10. The ratio is indeed
not one-to-one. The lowest band for which the ratio
is one-to-one in this figure is 0< νd < 1.46. How-
ever, if the axial increments of the sensor position are
smaller, this bandwidth broadens. As1d is decreased,
the responses shown in Fig. 10 converge. Convergence
is fastest near the local extrema ofHd(ν). Hence, as
1d → 0 the lowest band in which the matching (cor-

Figure 10. [Solid line] The attenuation of a frequency component
ν between a focused and a defocused image as a function of the
diameter of the blur kerneld. The horizontal axis is scaled byν.
[Dashed line] The attenuation of the same frequency component
when the focus settings are changed so that the blur diameter is
d +1d, for the case1d = 1/(2ν).

Figure 11. Two images are acquired with different focus settings.
The transfer function between the images is the ratio between their
individual frequency responses, plotted in Fig. 10. In the DOF thresh-
old (see Subsection 5.5)1d = 1/(2ν), for which the width of the
band without ambiguities satisfiesνd ≈ 1.46. For infinitesimal1d
this width satisfiesνd ≈ 1.63. For high frequencies or large diame-
ters the width of each band isνd ≈ 1 as in stereo.

respondence) ambiguity is avoided is between the two
first local extrema, i.e.,

0< νd < 1.63, (26)

which is the same as Eq. (24).
Simulation and experimental results reported in

Watanabe and Nayar (1996) support this theoretical
result. In the DFD method suggested in Watanabe and
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Nayar (1996), the defocus change between acquired
images was obtained by changing the focus settings.
The images were then filtered by several band pass op-
erators, and the ratios of their outputs were used to fit
a model. Watanabe and Nayar (1996) noticed that the
solution may be ambiguous due to the unmonotonic-
ity of the ratios, as a function of the frequency and the
blur diameter. However, the relation to correspondence,
which was related there only to stereo, was not noticed.
To avoid the ambiguity they limited the band used to
the first zero crossing of the pillbox model (21) which
occurs atνd = 1.22. However, their tests revealed that
the frequency band can be extended by about 30%,
i.e., toνd ≈ 1.6, in agreement with Eq. (26). The ratio
computed in Watanabe and Nayar (1996) is actually a
function of the transfer function defined in Eq. (25) be-
tween the images. Thus, the possibility of extending the
frequency band beyond the zero crossing is not unique
to the rational filter method; it is a general property of
DFD.

High frequencies were not used in Watanabe and
Nayar (1996) for depth estimation since they are be-
yond the monotonicity cutoff. It seems that these ‘lost’
frequencies can be used in a manner similar to the
coarse-to-fine approach in stereo (i.e., using the estima-
tion based on low frequencies to resolve the ambiguity
in the high frequencies).

4.4. DFF

We believe that by using a sufficiently large evaluation
patch and some depth homogeneity within the patch,
DFF is freed of the matching problem. Contrary to com-
mon statements in the literature, the avoidance of the
matching problem in DFF is not trivial.

Focus measurement (like defocus and disparity mea-
surements) is not a point operation. It must be calcu-
lated (Jarvis, 1983; Nair and Stewart, 1992; Stewart
and Nair, 1989; Subbarao and Liu, 1996) over a small
patch implicitly assuming that the depth of the scene
is constant (or moderately changing) within the patch
(Dias et al., 1992; Marapane and Trivedi, 1993). The
state of focus is detected by comparison of focus
(“sharpness”) measurements in the same patch over
several focus settings. To have a correct depth estima-
tion, the focus measure in the patch should be largest
in the focused state. The patch must be at least as large
as the support of the widest blur kernel expected in
the setup, otherwise errors due toedge bleeding(Nair
and Stewart, 1992; Stewart and Nair, 1989) could occur
(Fig. 12.). Assuming the patch to be sufficiently large,

Figure 12. Edge bleeding. The solid line shows an intensity edge.
The dashed and dotted lines show the edge in pillbox-blurred images
with several blur radii. The gradient at location 5− is maximal when
the radius is 5 rather than 0, misleading focus detection.

we can make some observations in the frequency do-
main.

Periodic images make depth from stereo ambiguous
(Subsec. 4.1). They do the same to depth from vergence.
As the vergence angles are changed, several vergence
states yield perfect matching. On the other hand, DFF
seems indeed to be immune to ambiguity due to pe-
riodic input (Abbott and Ahuja, 1993; Marapane and
Trivedi, 1993; Stewart and Nair, 1989). Since the blur
transfer function is a LPF, the energy at any spatial fre-
quency composing the image is largest at the state of
focus. As the image is defocused the high-frequencies
response quickly decreases (Hopkins, 1955), and de-
crease in the response to other frequencies (except
DC) follows. As the image is further defocused there
may be local risings of the frequency response (side
lobes in the response at some frequency, as a func-
tion of d). However, no local maximum is as high as
the response at focus in reasonable physical systems.
Thus, the determination of the focused state is unam-
biguous in each of the frequency components (except
DC).

5. Robustness and Response to Perturbations

In some previous works, it has been empirically ob-
served that DFD/DFF methods are more robust than
stereo. In this section we analyze the responses of
DFD, stereo and motion to perturbations, in a uni-
fied framework. Some of the results depend on the
characteristics of the specific model of the optical
transfer function (OTF), like monotonicity and the ex-
istence of zero-crossings. For defocus we use the pill-
box model (Nayar et al., 1995; Noguchi and Nayar,
1994; Watanabe and Nayar, 1996), since it is valid for
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aberration-free geometric optics, and has been shown
to be a good approximation for large defocus (Hopkins,
1955; Lee, 1990; Schneider et al., 1994). The effects
of physical optics and aberrations influence the results
but one must remember that these affect also stereo
and motion. Since the literature on stereo and motion
neglects these effects, we maintain this assumption so
as to have a common basis for comparison between
stereo/motion and DFD. Nevertheless, the procedure
used in this chapter is general and can serve as a guide-
line in the analysis of other models.

5.1. General Error Propagation

Let us analyze the effect of a perturbation in some spa-
tial frequency component of the image. The perturba-
tion affects the estimated transfer function between the
images, which in turn causes an error in the estimated
blur-diameter (DFD) or disparity (stereo). This leads
to an error in the depth estimation. As in Section 4
we note that studying the behavior of each spectral
component has an algorithmic ground: there are sev-
eral methods (Bove, 1989; Hiura et al., 1998; Pentland,
1987; Pentland et al., 1994; Watanabe and Nayar, 1996)
which rely directly on the frequency components or on
frequency bands (Pentland et al., 1994) for depth es-
timation. Since stereo, DFD or DFMB are based on
comparison of two acquired images, we shall check
the influence of a perturbation in any of the two. The
problem is illustrated in Fig. 13.

The transfer functionH(Eν) between the imageGD

(in the frequency domain) to a reference imageG0 is
parameterized by the disparity/blur-diameter. We wish
to estimate this parameter, for example by looking for
the transfer function̂H that will satisfy

GD(Eν) = G0(Eν)Ĥ(Eν). (27)

Let a perturbation occur at the reference imageg0. The
images are thus related by

GD(Eν) = [G0(Eν)− N0(Eν)]H(Eν), (28)

whereH(Eν) is the true transfer function andN0 is the
perturbation. Eqs. (27,28) yield

Ĥ(Eν) = H(Eν)− N0(Eν)H(Eν)/G0(Eν)

= H(Eν)− |N0(Eν)|
|G0(Eν)|e

jϑ(Eν)H(Eν), (29)

Figure 13. [Top]: In either of the depth estimation methods, two
images are compared, whereG1, G2 may beG0 andGD , respec-
tively, or vice versa. The comparison yields and estimate of the blur
diameter/disparity, leading to the depth estimate. The relation be-
tweend andu is similar for DFD/stereo/DFMB for the same system
dimensions. [Bottom] A perturbation added to one of the images
leads to a deviation in the estimation ofd, leading to an error in the
depth estimate.

whereϑ(Eν) is the phase of the perturbation relative to
the signal componentG0(Eν). Usually both constraints
(27,28) cannot be satisfied simultaneously at all fre-
quencies, hence a common method is to minimize the
MSE

E2=
∫
Eν
|GD(Eν)− Ĥ(Eν)G0(Eν)|2 dEν

=
∫
Eν
|G0(Eν)|2|[H(Eν)− Ĥ(Eν)] − N0H(Eν)/G0|2 dEν.

(30)

This is achieved by looking for the extremum points

∂(E2)

∂d̂
=−2Re

∫
Eν
|G0(Eν)|2

[
H(Eν)− Ĥ(Eν)

− N0H

G0

]
∂ Ĥ∗(Eν)
∂d̂

dEν = 0. (31)

Local minima ofE2 may appear at different estimates
d̂, for different signals and perturbations, depending on
their spectral content.

Attempting to analyze in a systematic way, let us
assume that the signal is made of a single frequencyEν,
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thus

G0(Eν ′) = D2
0G(Eν)δ(Eν − Eν ′). (32)

If at that frequency∂ Ĥ
∗
(Eν)/∂d̂ = 0, the estimation

of d̂ is ill posed (or very ill conditioned). Otherwise,
nulling the integrand yields Eq. (29), which shows how
the estimated frequency response changes with the in-
fluence of the perturbation. From̂H(Eν) the parameter
d̂ and the deptĥu are derived (3). The response of the
depth estimation to perturbations is

∂û(Eν)
∂|N0(Eν)| =

∂û

∂ f (û)

∂ f (û)

∂|N0(Eν)| , (33)

where f (u) = d/D is as defined in Eq. (3). As we
showed in Section 2,f (u) is the same for stereo and
DFD systems having the same physical dimensions,
thus the factor∂u/∂ f (u) is common for both systems.
Hence, in the coming comparison between these ap-
proaches we omit this factor and use∂ f (u)/∂|N0| as
a measure for the response to perturbations. Since the
estimation will be frequency-dependent, we write

∂ f (û, Eν)
∂|N0(Eν)| =

∂ f (û, Eν)
∂ Ĥ(Eν)

∂ Ĥ(Eν)
∂|N0|

= −ejϑ(Eν)H(Eν)
|G0(Eν)|

[
∂H(Eν)
∂ f (u)

∣∣∣∣
û

]−1

, (34)

whereG0 is given by Eq. (32).
Suppose now that the perturbation occurs in the

transformed (shifted, or blurred) image. Eq. (28) takes
the form

GD(Eν) = G0(Eν)H(Eν)+ ND(Eν), (35)

while Eq. (30) changes to

E2 =
∫
Eν
|GD(Eν)− Ĥ(Eν)G0(Eν)|2dEν

=
∫
Eν
|G0(Eν)|2|[H(Eν)− Ĥ(Eν)] + ND/G0|2 dEν.

(36)

Reasoning similar to Eqs. (29) and (31) yields

Ĥ(Eν) = H(Eν)+ |ND(Eν)|
|G0(Eν)| e

jϑ(Eν). (37)

The response of the depth estimation to the perturbation
is

∂ f (û, Eν)
∂|ND(Eν)| =

∂ f (û, Eν)
∂ Ĥ(Eν)

∂ Ĥ(Eν)
∂|ND|

= ejϑ(Eν)

|G0(Eν)|

[
∂H(Eν)
∂ f (u)

∣∣∣∣
û

]−1

. (38)

5.2. Stereo—The Aperture Problem

For stereo, the transfer functionH(Eν) is given by
Eq. (13), so

∂ fstereo(û, Eν)
∂|N0(Eν)| =

ej [ϑ(Eν)−π/2]

|G(Eν)|
1

2πD2
0 D

1

ν cosφ
, (39)

∂ fstereo(û, Eν)
∂|ND(Eν)| =

ej [ϑ(Eν)+π/2+2πνd cosφ]

|G(Eν)|
1

2πD2
0 D

1

ν cosφ
.

(40)

The terms in these equations express in a quantitative
manner intuitive characteristics: the stronger the signal
G(Eν), the smaller is the response to the perturbation; the
DC component (ν = 0) contribution to the disparity es-
timation is ill-posed; estimation by the low frequencies
is ill-conditioned. The instability at the low frequen-
cies stems from the fact that much larger deviations
in d̂ are needed to compensate for the perturbation,
while trying to maintain Eq. (29), than in the higher fre-
quencies. Thus, Eq. (39) expresses mathematically the
weakness of stereo in scenes lacking high-frequency
content.

These equations also express mathematically the
aperture problemin stereo. The smaller the compo-
nent of the periodic signal along the baseline (Adelson
and Wang, 1992), the larger the error is. As|φ| → π/2
we need to haveD→∞ to keep the error finite.

5.3. Motion and 1D Blur

For DFMB (analogous to 1D-DFD) the transfer func-
tion is proportional to expression (19), which has zero
crossings. Perturbations in the reference image at fre-
quencies/diameters for whichH(Eν) = 0 influence
neither the error (30) nor the depth estimation (34).
Thus, if the transfer function has zero crossings (as in
Castleman (1979), FitzGerrell et al. (1957), Hopkins
(1955), Lee (1990), and Schneider et al. (1994), the
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Figure 14. For a specificEν the transfer functionH depends on
the blur-diameter. A true diameterd (larger than the monotonicity
cutoff) has several solutions (e.g.d̂1, d̂2). Close to a peak or trough a
small deviation in the estimated̂H causes a significant but bounded
error (seed̂2, d̂3). At the high frequencies or defocus blur the transfer
function is indifferent to changes ind, thus the error may be infinite
(seed̃ vs. ˆ̃d). Hence such frequencies would better be discarded.

estimation based on the zero-crossing frequencies is
completely immune to noise added to the reference
image, i.e.,

∂ f (û, Eν)
∂|N0(Eν)|

∣∣∣∣∣
H(Eν)=0, ∂H

∂d 6=0

= 0. (41)

As for perturbation in the blurred image,

∂ fDFMB(û, Eν)
∂|ND(ν)|

∣∣∣∣∣
H(Eν)=0

= ± ejϑ(Eν)

|G(Eν)|
1

D
f(û). (42)

Thus close to the zero crossings the results are stable
even when the frequency is high.

Nevertheless, if the transfer function has zero-
crossings it is not monotonous, having peaks and
troughs. In these situations∂ Ĥ/∂d̂ is locally zero,
yielding an ill conditioned estimation (see Fig. 14).
Note that these are exactly the limits between the bands
well posed for matching (Section 4). Assuming that a
change of defocus/motion blur diameter mainly causes
a scale change inH(Eν), as in the case of the pill-
box model (19), this phenomenon means that some
frequencies will yield an unreliable contribution to
the estimation. Still, a perturbation about a peak or
trough will usually yield a bounded error since lo-
cally, the range of frequencies in which∂ Ĥ/∂d̂ ≈ 0 is
small.

Consider for example the peak about the DC. Substi-
tuting Eq. (32) in Eq. (34), and expandingH (Eq. (19))

in a Taylor series we obtain that

∂ fDFMB(û, Eν)
∂|N0(Eν)|

∣∣∣∣∣
νd cosφ<1

∼ 1

D2
0 D2

1

(ν cosφ)2
, (43)

∂ fDFMB(û, Eν)
∂|ND(Eν)|

∣∣∣∣∣
νd cosφ<1

∼ 1

D0D3

1

(ν cosφ)2
. (44)

Eqs. (43) and (44) indicate that the estimation is very
unstable in the low frequencies (Subbarao et al., 1997):
the response to perturbations in 1D-DFD and DFMB
behaves asν−2 in the low frequencies, and thus these
methods are more sensitive to noise in this regime than
stereo (39), for which the response behaves asν−1. This
is due to the fact that DFD/DFMB use summation of
rays, and wide spatial perturbations affect them most.
However, since enlarging the 1D aperture enables more
light to reach the sensor, the signal is stronger and thus
the estimation is more stable. Thus, DFD/DFMB may
outperform stereo when the aperture (baseline) is large
(compared to the pinhole reference). This is due to the
fact that DFD relies on numerous rays for estimation.
This additional data makes the estimation potentially
more robust than simple discrete triangulation. Note
that according to Eq. (41) there are certain frequencies
for which a perturbation does not influence the estima-
tion by DFD/DFMB. As with stereo, the response to
perturbation of DFMB depends on the orientationφ of
the spatial frequency, since theaperture problemexists
also in motion.

5.4. 2D DFD

In comparison to stereo, motion and motion-blur sys-
tems of the same physical dimensions, 2D-DFD re-
lies on much more points in the estimation of depth
(Pentland, 1987; Pentland et al., 1989; Subbarao and
Wei, 1992) and is thus potentially more reliable (Farid
and Simoncelli, 1998) and robust. First of all, the
amount of light gathered through the large aperture is
proportional toD2 (compared withD0D for DFMB,
andD2

0 through a pinhole) making the signal to noise ra-
tio (Farid and Simoncelli, 1998) much higher for large
apertures. Eqs. (42) and (44) take the form

∂ fDFD(û, Eν)
∂|ND(Eν)| = −

ejϑ(Eν)

|G(Eν)|
1

D2

f (û)

J2[πνD f (û)]

ν→∞−→ ejϑ(Eν)

|G(Eν)|
π f 1.5(û)√

2

√
ν

D1.5 cos[(πνd̂)− π/4]
,

H(ν)=0−→ ± ejϑ(Eν)

|G(Eν)|
π f 1.5(û)√

2

1

D1.5

√
ν, (45)
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∂ fDFD(û, Eν)
∂|ND(Eν)|

∣∣∣∣∣
νd<1

≈ ejϑ(Eν)

|G(Eν)|
4

f (û)π2D4

1

ν2
. (46)

To derive these relations we used

∂[J1(ξ)/ξ ]

∂ξ
= −J2(ξ)

ξ
(47)

and

Jk(ξ)
ξ→∞−→

√
2/(πξ) cos[ξ − k(π/2)− (π/4)], (48)

for the circular pillbox model (21). As can be seen,
in this model the error due to perturbations decreases
faster with the aperture size, compared to the 1D tri-
angulation methods. Here too there is instability at
the very low frequencies. Indeed, to avoid the ill-
posedness at the DC, in Watanabe and Nayar (1996)
this component was nulled by band-pass filtering, and
as a by-product the unstable contribution of the low-
frequencies was suppressed.

For a circularly symmetric lens-aperture, the re-
sponse is indifferent to the orientation of the fre-
quency component. Hence theaperture problemdoes
not exist.4 This characteristic is valid also if the lens-
aperture is not circularly symmetric, as long as it is suf-
ficiently wide along both axes (the usual case). Hence,
more frequencies (components of the images) may par-
ticipate in the estimation by DFD and contribute sta-
ble and reliable information to the estimator. There-
fore DFD is potentially more robust than classic tri-
angulation methodsif the system dimensions are the
same.

The indifference of the transfer function to the ori-
entation of the frequency components was utilized in
Pentland (1987) and Pentland et al. (1989). In that
work, DFD was implemented by comparing an image
acquired via a circularly symmetric large aperture to
a small (“pinhole”) aperture image. Results were av-
eraged over all orientations in the frequency domain,
thus increasing the reliability of the estimation.

An example for the better robustness of DFD is the
“monocular stereo” system presented in Simoncelli and
Farid (1996), whose principle of operation is similar to
that shown in Fig. 2. This was demonstrated in Farid
(1997) and Farid and Simoncelli (1998). There, the
same system was used for depth sensing once by dif-
ferential DFD and once by differential stereo. The em-

pirical results indeed show that the estimated depth
fluctuations were significantly smaller in DFD than in
stereo.

Note, that at high frequencies the estimation be-
comes unstable, at a moderate rate(∼√ν). However,
for other models of the OTF, it might be much more
severe. Consider for example a Gaussian kernel for
DFD (Nayar, 1992; Rajagopalan and Chaudhuri, 1995;
Subbarao, 1988; Surya and Subbarao, 1993). Account-
ing for the total light energy (as in Eqs. (15) and (16),
the frequency response behaves like

HD(Eν)
H0

= D2

D2
0

e−[κνD f (u)]2
, (49)

whereκ is a constant (real). The response to the per-
turbation (38) is

∂ fgauss(û, Eν)
∂|ND(Eν)| = −

ejϑ(Eν)

|G(Eν)|2 f (û)κ2D4

1

ν2
e[κνD f (û)]2

,

(50)

which is very ill conditioned in the high frequencies.
This situation is also schematically described in Fig. 14:
if the slope of the frequency response from̃d to∞ is
very small, the estimation error is unbounded.

5.5. The Optimal Axial Interval in DFD

In this subsection we refer to the method considered
in Subsection 4.3, where the change between the two
images is achieved by changing the focus settings, in
particular the axial position of the sensor. Since the
apertureD is the same for all images, we parameterize
the transfer function by the blur diameterd in the equa-
tions to follow. Since the system has circular symmetry
we useH(ν) instead ofH(Eν). Let one image be (in the
frequency domain)

G1(ν) = G0(ν)Hd(ν)+ N1(ν), (51)

whereN1(ν) is a perturbation while the other image is

G2(ν) = G0(ν)Hd+1d(ν). (52)

If there is no perturbation, the two images should satisfy
the constraint

G2(ν)Hd(ν)− G1(ν)Hd+1d(ν) = 0. (53)
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We wish to estimatêd by searching for the value that
will satisfy

G2(ν)Hd̂(ν)− G1(ν)Hd̂+1d(ν) = 0. (54)

Similar to the discussion in Subsection 5.1, this can be
satisfied for a single frequency signal. For other signals
an error can be defined and minimized. Substituting
Eqs. (51) and (52) into Eq. (54) yields

Hd̂+1d(ν)Hd(ν)

= Hd̂(ν)Hd+1d(ν)− N1(ν)

G0(ν)
Hd̂+1d(ν). (55)

Assume for a moment thatHd(ν) 6= 0, and define (as
in Eq. (25))

H(ν) = Hd+1d(ν)

Hd(ν)
, Ĥ(ν) = Hd̂+1d(ν)

Hd̂(ν)
. (56)

Eq. (55) can be written as

Ĥ(ν) = H(ν)

[
1+ N1(ν)

G0(ν)Hd(ν)

]−1

. (57)

The perturbation causes the estimated transfer function
to change:

∂ Ĥ(ν)

∂|N1(ν)| = −
1[

1+ N1(ν)

G0(ν)Hd(ν)

]2

ejϑ(ν)

|G0(ν)|
Hd+1d(ν)

H2
d (ν)

≈ − ejϑ(ν)

|G0(ν)|
Hd+1d(ν)

H2
d (ν)

, (58)

where the approximation in the right hand side of
Eq. (58) is for the case that|N1(ν)| is small compared to
|G0(ν)Hd(ν)|. Similarly to Eq. (34) we seek the error
induced by the perturbation on the depth estimation.
For small perturbations we assume thatĤ(ν) ≈ H(ν),
so

∂ f (û, ν)

∂|N1(ν)| =
∂ Ĥ(ν)

∂|N1(ν)| ·
[
∂ Ĥ(ν)

∂ f (û)

]−1

≈− ejϑ(ν)

|G(ν)|D2
0

Hd+1d(ν)

D ∂Hd+1d(ν)

∂d Hd(ν)− D ∂Hd(ν)

∂d Hd+1d(ν)
.

(59)

According to Eqs. (58) and (59),if Hd+1d(ν) = 0 for
this frequency, a perturbation N1 does not affect the
estimation.

If |Hd(ν)|¿ |Hd+1d(ν)|we define the transfer func-
tion between the images as the reciprocal of Eq. (56):

H−1(ν) = Hd(ν)

Hd+1d(ν)
, Ĥ−1(ν) = Hd̂(ν)

Hd̂+1d(ν)
.

(60)

This takes care of the cases in whichHd(ν) = 0 but
Hd+1d(ν) 6= 0. Eq. (55) can be written as

Ĥ−1(ν) = H−1(ν)+ N1(ν)

G0(ν)Hd+1d(ν)
. (61)

The perturbation causes the estimated transfer function
to change:

∂ Ĥ−1(ν)

∂|N1(ν)| =
ejϑ(ν)

|G0(ν)|Hd+1d(ν)
. (62)

Calculating the influence on the depth estimation based
on this transfer function, we arrive at the same relation
as Eq. (59). Thus, we do not need to assume that|N1(ν)|
is small compared to|G0(ν)Hd(ν)|.

In the pillbox model we use Eq. (23), and Eq. (59)
takes a relatively simple form,

≈ ejϑ(ν)

2|G(ν)|
f (u)

D2

× J1[πν(d +1d)]

J2[πν(d +1d)]J1(πνd)− J2(πνd)J1[πν(d +1d)]
(63)

which at the high frequencies (or defocus) becomes
(48)

∂ f (û, ν)

∂|N1(ν)|

≈ ejϑ(ν)

|G(ν)|
πd
√
νd

D32
√

2

sin[πν(d +1d)− (π/4)]
sin(πν1d)

.

(64)

A similar relation is obtained in case a perturbationN2

is present inG2 rather than inG1:

∂ f (û, ν)

∂|N2(ν)| ≈−
ejϑ(ν)

|G(ν)|
π(d +1d)

√
ν(d +1d)

D32
√

2

× sin[πνd − (π/4)]
sin(πν1d)

. (65)
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To appreciate the significance of Eqs. (64) and (65),
observe that the reliability of the defocus estimation at
high frequencies is optimized (for unknownu, hence
for unknownd) if

|ν1d| = 0.5, 1.5, 2.5 . . . (66)

Then, the magnitude of the term sin(πν1d) in the de-
nominator is maximal, minimizing the effect of the
perturbation on the estimation̂d = D f (û, ν). Thus,
if DFD is achieved by changing the focus settings, the
change (e.g. the axial movement of the sensor) is opti-
mized if it causes the blur-diameter to change according
to Eq. (66), whereν is the high frequency of choice.
Alternatively,if 1d is given, Eq. (66) indicates the op-
timal frequencies around which the depth estimation
would be done.

On the other hand, if

|ν1d| = 1, 2, 3 . . . (67)

the denominator of Eqs. (64) and (65) is nulled. In
this situation the estimation is highly ill-conditioned.
Note that as the axial interval is increased, hence1d is
increased, for a given scene, the number of problematic
components that satisfy Eq. (67) is increased (as well as
the number of useful frequency components that satisfy
Eq. (66)).

The optimal1d was used in Figs. 10 and 11. Note
that at high frequencies Bessel functions resemble a co-
sine function, and the two functions (Fig. 10) are out of
phase byπ/2. Hence, in this situation extrema of theHd

are at zero-crossings ofHd+1d, and vice-versa, yield-
ing the maximum changes in the ratio between these
functions. On the other hand, if Eq. (67) is satisfied,
at the high frequencies the functions of Fig. 10 have
a ratio of≈±1 for all blur-diameters, except for the
zero crossings where the ratio is not defined. Thus, the
transfer function between the images is “indifferent”
to the exact blur diameter, and thus does not provide a
good estimation.

In Subsection 4.3 we noted that ifν1d is small,
the lowest band without ambiguities is 0<νd< 1.63
but that this band becomes narrower if1d increases.
If we use the guideline5 of Eq. (66), Fig. 11 (where
ν1d = 0.5) shows that for unambiguous estimation

0< νd < 1.46. (68)

This result too is supported by the tests performed in
Watanabe and Nayer (1996). Although the authors no-

ticed that range of unambiguous solutions can be ex-
tended toνd = 1.6, for reasons of numerical stability
(measured by the behavior of the Newton-Raphson al-
gorithm that was used for estimation), the frequency
band limit was actually set in Watanabe and Nayer
(1996) toνd = 1.46 (i.e.,νr = 0.73). Within this band
the results came out to be unique and stable, while be-
yond it the range estimation became unstable. Note that
this is in excellent agreement with Eq. (68)!

An important application of Eq. (66) is to show a
new aspect of depth of field. Suppose that the highest
frequency in the image isνmax = 1/(21x) where1x
is the inter-pixel period of the sensor (the Nyquist rate).
Sinceν ≤ νmax, Eq. (66) yields

1d ≥ 1

2

(
1

21x

)−1

= 1x. (69)

So, in order to obtain reliable results, it is preferable to
sample the axial position so that the change in the blur-
diameter is at least one inter-pixel spacing. However,
to avoid instability at any frequency, we should avoid
Eq. (67) and thus require thatνmax1d < 1. Hencethe
safe and optimal range of change of the focus settings
is such that the blur diameter change is bounded by

1x ≤ 1d < 21x. (70)

With the threshold1d = 1x, if one of the images
is in focus (havingd = 0), the blur kernel at the other
image will have a diameter ofdth = 0+ 1d = 1x.
This threshold diameter determines the depth of field
of the system (the threshold ofũ−u) by the geometric
relation (1). Thus, using a1d which is smaller than the
threshold given in Eq. (69) is an attempt to sense defo-
cus or change of defocus smaller than the uncertainty
imposed by the DOF. As noted above, optimality with
respect to noise sensitivity is achieved only above the
threshold. Hence,sampling the axial position in DOF
intervals (for which1d = 1x) is optimal with respect
to robustness to perturbations at the Nyquist frequency.
Changing the focus settings in a smaller interval means
that no frequency in the image will satisfy the optimal-
ity condition (66). Changing the focus settings in a
larger interval will be sub-optimal for the Nyquist fre-
quency, but will be optimal for some lower frequency.
If the interval of the axial position is twice than the
DOF or more, estimation based on some frequencies
will be very unstable (67).
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5.6. DFF

dth determines the DOF of the DFF system (see the
geometric relation (1)). Note that in the same man-
ner we can define the “DOF for vergence”, which is
the amount of axial displacement without detectable
disparity. The latter DOF is related todth by Eq. (3),
and is thus the same as the DOF of the DFF system,
for the same system dimensions. To sample the depth
efficiently6 the image slices should be taken at DOF
intervals (Abbott and Ahuja, 1988; Abbott and Ahuja,
1993). In this situation, the highest frequencies in the
image are detectably affected by defocus.

For transfer functions (between an image and a ref-
erence image) which change scale withd (including
stereo, the pillbox model and the Gaussian model), the
least detectable blur-diameter/disparity satisfies

dth(ν) ∝ 1

ν
, (71)

for 1D images. It is clear that for low frequencies the
blur-diameter/disparity has to be larger in order to be
detected (dth(ν) > dth). Thus if we sample the scene
efficiently, the frequencies belowνmaxwill yield results
which are within the inherent uncertainty of the system
and are thus ineffective.

For 2D images the DOF of the DFF system is
rotation-invariant. For allφ

dDFF
th (Eν) = dth

νmax

ν
, (72)

In stereo only the frequency component along the base-
line changes between the frames:

dstereo
th (Eν) = dth

νmax

ν cosφ
. (73)

Thus, for frequency orientations not parallel to the
baseline, the “DOF for vergence” (as defined above)
is larger than that of DFF (theaperture problem).

In critical sampling, the only frequency components
for which defocus/disparity will be detected are those
with ν = νmax. However, comparing Eqs. (72) and (73),
in stereo, all the frequencies yield results which are
within the inherent uncertainty of the measurement and
are thus ineffective, except for cosφ = ±1. For DFF,
all φ yield reliable results. Hence, DFF allows more
frequenciesEν to reliably participate in the detection
of depth deviation, leading to a more reliable depth
estimation.

6. Conclusions

We have shown that, in principle, the sensitivities of
Depth from Focus and Defocus techniques are not in-
ferior but similar to those of stereo and motion based
methods. The apparent differences are primarily due to
the difference in the size of the physical setups. This
also accounts for the fact that matching (correspon-
dence) problems are uncommon in DFD and DFF. The
“absence” of the occlusion problem in DFD and DFF is
not a fundamental feature and is mostly a consequence
of the small aperture (“baseline”) that is normally used.
Stereo systems having a similar level of immunity can
be constructed.

The observation that physical size (baseline in stereo,
aperture size in DFD/DFF) determines the character-
istics of various range imaging approaches in a simi-
lar manner is important in performance evaluation of
depth sensing algorithms. It indicates that performance
results should be scaled according to setup dimensions.
As long as enlarging the baseline is cheaper than enlarg-
ing the lens aperture (beyond a few centimeters), stereo
will remain the superior approach in terms of resolu-
tion/cost. Improvements of DFD/DFF by algorithmic
developments is limited in common implementations
by the small aperture size.

The monocular structure of DFD/DFF systems does
not ensure the avoidance of occlusion and match-
ing problems. Adelson and Wang (1992) formalized
the correspondence problem in the frequency domain.
They have shown that in stereo it is a manifestation of
aliasing, since the transfer function between the stereo
images is not one-to-one. Matching problems in DFD
arise due to the same reason. There are scenes for which
the solution of depth estimation by DFD (i.e. matching
blur kernels to image pairs) is not unique. Moreover,
for the same system dimensions, common triangula-
tion techniques, such as stereo, may be less prone to
matching ambiguity than DFD. A coarse to fine ap-
proach may resolve the matching problem in a way
analogous to a method used in stereo and motion (Irani
et al., 1994). In this way frequencies that are “lost”
(Watanabe and Nayar, 1996) can be used. Unlike DFD
(and stereo), DFF seems indeed to be immune to match-
ing ambiguities, if the evaluation patch of the focus
measure is larger than the support of the widest blur-
kernel expected, and if the depth is homogeneous in
that patch.

In contrast to common belief, for the same system
dimensions the chance of occurrence of the occlusion
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phenomenon is higher in DFD/DFF than in stereo or
motion. However, DFD/DFF are more stable in the
presence of such disruptions. Note that in the presence
of severe occlusion, straightforward DFF may yield
double valued depth. A layered scene model resolves
this ambiguity.

We analyzed the effect of additive perturbations by
examining their influence in each spatial frequency
component of the images. An estimation that relies
on some frequency components yields stable results,
while the contribution of other frequencies is very sen-
sitive to perturbations. A possible future research may
be on algorithms that rely on a coarse estimate of
the disparity/blur-diameter to select the optimal spa-
tial frequencies (for which the response to perturba-
tions is very small) to obtain a better estimate. In
DFD, if the frequency selected for the estimation is
ν, the axial movement of the sensor is optimal if it
causes the change1d in the blur diameter to satisfy
|ν1d| = 0.5, 1.5, 2.5 . . . . Sampling the axial position
in DOF intervals is optimal with respect to robustness
to perturbations. Using an interval which is twice or
more than that, may yield unstable results.

Our analysis of the response to perturbations is de-
terministic and is based on the assumption that a per-
turbation exists only in a single frequency. In order to
extend this analysis to the general case, and obtain the
response to noise, a stochastic analysis, based on the
deterministic results derived here, is needed.

The two dimensionality of the aperture is the princi-
pal difference between DFD/DFF and conventional tri-
angulation methods. It allows much more image points
to contribute to the depth estimation and the higher
light energy that passes the large-aperture lens leads
to a higher signal to noise ratio. This difference ac-
counts for the inherent robustness of methods that rely
on depth of field. In this respect DFF and DFD methods
are also superior to Depth from Motion Blur. Specifi-
cally, the insensitivity to the orientation of features in
DFD/DFF provides higher flexibility in the depth es-
timation process. Another advantage of DFD that fol-
lows from the two dimensionality of the PSF is that full
depth recovery may be possible in the presence of slight
occlusion. A practical implication of the advantages of
methods that are based on DOF is that if the full resolu-
tion potential of stereo imaging is not needed, and the
resolution obtainable with common DFD/DFF imple-
mentations is sufficient, DFD/DFF should be preferred
over small baseline stereo.

The analysis of the depth estimation methods done
in this work was based solely on geometrical optics,

and is thus valid for setups (i.e., objects and systems)
in which diffraction effects are not dominant. In par-
ticular, it does not apply to microscopic DFF. A more
rigorous analysis requires the consideration of physical
optics (e.g., diffraction). Doing the analysis in systems
based on depth of field is straightforward. However,
in comparison to stereo or motion, we should note
that geometric triangulation methods have tradition-
ally been based on the geometric optics approximation.
Therefore, for a full derivation of the relations between
DFD/DFF and stereo, a model for the diffraction effects
in triangulation has to be developed. Note also that the
comparison was based on the assumption of small an-
gles (paraxial optics) in the imaging setup. It would be
beneficial to extend this work to the general case. In
particular, the characteristics of the epipolar geometry,
and the space-varying transfer function between the im-
ages may provide new points of view in the comparison
between DFD and stereo. Another possible generaliza-
tion is to analyze DFD when the two images are taken
with a fixed focus setting, but with different apertures
of which none is a pinhole.
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Notes

1. Some improvement can be achieved by super-resolution tech-
niques.

2. Cases of severe occlusions, where the chief ray is occluded, are
ignored, since in this case the object point is not seen in the pinhole
image, thus the depth of the occluder will be measured.

3. A system based oncircular motion blur (Kawasue et al., 1998)
was recently presented. When the object po ints are sparse, this
method is analogous to the ring defocus PSF of Rioux and Blais
(1986).

4. This immunity is also shared by “stereo” systems having vertical
parallax as well as a horizontal one. However, these require at least
three images to be acquired and processed, in contrast to DFD
which requires two images. We therefore do not deal with such
systems. Nevertheless, this problem can be avoided by nonlinear
camera trajectory (in DFMB), as used in Kawasue et al. (1998).

5. This guideline is approximate for the low frequencies and exact
for the high ones.

6. Note that according to the conclusion in Subsection 5.5, these
intervals do not only make the sampling efficient for DFF but
also best for reliable estimation in DFD.
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