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Abstract: Outdoor imaging in haze is plagued by poor visibility. A major
problem is spatially-varying reduction of contrast by airlight, which is
scattered by the haze particles towards the camera. However, images can be
compensated for haze, and even yield a depth map of the scene. A key step
in such scene recovery is subtraction of the airlight. In particular, this can be
achieved by analyzing polarization-filtered images. This analysis requires
parameters of the airlight, particularly its degree of polarization (DOP).
These parameters were estimated in past studies by measuring pixels in
sky areas. However, the sky is often unseen in the field of view. This paper
derives several methods for estimating these parameters, when the sky is not
in view. The methods are based on minor prior knowledge about a couple
of scene points. Moreover, we propose blind estimation of the DOP, based
on the image data. This estimation is based on independent component
analysis (ICA). The methods were demonstrated in field experiments.
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1. Introduction

Imaging in poor atmospheric conditions [1, 2] affects human activities [3], as well as remote
sensing and surveillance. Hence, analysis of images taken in haze is important. Moreover, such
research promotes other domains of vision through scattering media, such as water [4–6] and
tissue. It is widely acknowledged that exploiting polarization in imaging can enhance visibil-
ity in such conditions [7–16]. Various studies suggest acquiring frames at distinct polarization
states, and then mathematically manipulating the pair of frames to see better. This path is mo-
tivated by evidence of such a process in biological systems [17–19].

An additional approach to the problem of imaging in haze is to model and invert the image-
formation process, based on a-priori knowledge about the scene [1, 20, 21]. The polarization
and inversion paths were both combined in an approach described in [22, 23]. There, the in-
version of the image formation process capitalizes on the fact that one of the sources of image
degradation in haze is partially polarized. Such analysis yields an estimate for the distance map
of the scene, in addition to a dehazed image. Interestingly, recovery of a three dimensional range
map based on polarization is also used for studying solid objects [24]. The feasibility of inver-
sion of haze effect based on analysis of polarization is enhanced by advances in polarimetric
cameras [25–31].

To achieve such inversion, environmental parameters are required. In particular, it is impor-
tant to know the parameters of stray light (called airlight [3,14,22,32–35]) created by haze,
which greatly decreases image contrast. These parameters can be determined from the image
data itself. Originally [23], the required parameters were derived from measurements of pixels
that correspond to the sky by the horizon (even automatically [22]). In this paper we refer to that
method as sky-based. For example, a hazy scene is shown [36] in Fig. 1(a) and the sky-based
dehazing result is shown in Fig. 1(b).

The prior parameter estimator [22, 23] relies, thus, on the existence of sky in the field of
view (FOV). This reliance has been a limiting factor, which inhibited the usefulness of the
approach. Often, the FOV does not include a sky area. This occurs, for example, when viewing
from a high vantage point, when the FOV is narrow, or when there is partial cloud cover on
the horizon. In this work we address this problem. We manage calibration of the environmental
parameters and consequently enable successful dehazing, despite the absence of sky in the FOV.
Moreover, we propose a method that blindly separates the airlight radiance (the main cause for
contrast degradation) from the object’s signal. The parameter that determines this separation
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Fig. 1. Dehazing of Scene 1 (distant up to 34 km). (a) The best polarized image. The two
circles mark buildings. The rectangles mark arbitrary points at different distances. (b) The
environmental parameters are estimated using the sky (sky-based dehazing). (c) Result of
a feature-based method assisted by ICA (d) Result of a distance-based method assisted by
ICA (e) Distance-based result.

is the degree of airlight polarization. It is estimated without any user interaction. The method
exploits mathematical tools developed in the field of blind source separation (BSS), also known
as independent component analysis (ICA).

ICA has already contributed to solving image separation [37–39], particularly with regard
to reflections. The problem of haze is more complex than reflections, since object recovery is
obtained by nonlinear interaction of the raw images. Nevertheless, we show that the radiance
of haze (airlight) can be separated by ICA, by the use of a simple pre-process. Dehazing had
been attempted by ICA based on color cues [40]. However, an implicit underlying assumption
behind Ref. [40] is that radiance is identical in all the color channels, i.e. the scene is gray. This
is untypical in nature.

We successfully performed calibration of the required atmospheric environmental parame-
ters (including polarization), in multiple real experiments conducted in haze. Skyless dehazing
then followed. We obtained blind parameter estimation which was consistent with direct sky
measurements. Partial results were presented in Ref. [41].

2. Theoretical background

To make the paper self-contained, this section briefly reviews the known formation model of
hazy images. It also describes a known inversion process of this model, which recovers visi-
bility. This description is based on Ref. [23]. As shown in Fig. 2, an acquired frame is a com-
bination of two main components. The first originates from the object radiance. Let us denote
by Lobject the object radiance as if it was taken in a clear atmosphere, without scattering in the
line of sight (LOS). Due to atmospheric attenuation [23], the camera senses a fraction of this
radiance. This attenuated signal is the direct transmission

D = Lobjectt , (1)
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Fig. 2. [Dashed rays] Ambient light is scattered towards the camera by atmospheric parti-
cles, creating airlight A. It increases with object distance. [Solid ray] The light emanating
from the object is attenuated as the distance increases, yielding the direct transmission D.
Without scattering, the object radiance would have been Lobject.

where
t = e−β z (2)

is the transmittance of the atmosphere. The transmittance depends on the distance z between the
object and the camera, and on the atmospheric attenuation coefficient β , where ∞ > β > 0. The
second component is the path radiance (airlight). It originates from the scene illumination (e.g.,
sunlight), a portion of which is scattered into the LOS by the haze. Let a(z) be the contribution
to airlight from scattering at z, accounting for attenuation this component undergoes due to
propagation in the medium. The aggregate of a(z) yields the airlight

A =
∫ z

0
a(z′)dz′ = A∞(1− t) . (3)

Here A∞ is the value of airlight at a non-occluded horizon. It depends on the haze and illumi-
nation conditions. Contrary to the direct transmission, airlight increases with the distance and
dominates the acquired image irradiance

Itotal = D+A (4)

at long range. The addition of airlight [42] is a major cause for reduction of signal contrast.
In haze, the airlight is often partially polarized. Hence, the airlight image component can be

modulated by a polarizer mounted on the camera (analyzer). At one polarizer orientation the
airlight contribution is least intense. Since the airlight disturbance is minimal here, this is the
best state of the polarizer. Denote this airlight component as Amin. There is another polarizer
orientation (perpendicular to the former), for which the airlight contribution is the strongest,
and denoted as Amax. The overall airlight given in (Eq. 3) is given by

A = Amin +Amax . (5)

Assuming that the direct transmission is not polarized, the energy of D is equally split among
the two polarizer states. Hence, the overall measured intensities at the polarizer orientations
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mentioned above are

Imin = Amin +D/2 , Imax = Amax +D/2 . (6)

The degree of polarization (DOP) of the airlight is defined as

p = (Amax−Amin)/A , (7)

where A is given in Eq. (3). For narrow FOVs, this parameter does not vary much. In this work
we indeed use a narrow FOV, hence assume that p is laterally invariant. Eq. (7) refers to the
aggregate airlight, integrated over the LOS. Is p invariant to distance? Implicitly, this would
mean that the DOP of a(z) is unaffected by distance. This is not strictly true. Underwater, it has
recently been shown [18] that the DOP of light emanating from z may decay with z. Such depo-
larization [43] may also be the case in haze, due to multiple scattering. Multiple scattering also
causes blur of D. For simplicity, we neglect the consequence of multiple scattering (including
blur), as an effective first order approximation, similarly to Refs. [22, 23]. Note that

0≤ p≤ 1 . (8)

It follows that
Imin = A(1− p)/2+D/2 , Imax = A(1+ p)/2+D/2. (9)

It is easy to see from Eqs. (4,9) that an estimate for Itotal can be obtained by

Îtotal = Imin + Imax . (10)

Dehazing is performed by inverting the image formation process. The first step separates the
haze radiance (airlight) A from the object’s direct transmission D. The airlight is estimated as

Â = (Imax− Imin)/p . (11)

Then, Eq. (4) is inverted to estimate D. Subsequently, Eq. (1) is inverted based on an estimate
of the transmittance (following Eq. 3)

t̂ = 1− Â/A∞ . (12)

These operations are compounded to

L̂object = (Îtotal− Â)/t̂ . (13)

Two problems exist in this process. First, the estimation (i.e., separation) of airlight requires
the parameter p. Secondly, compensation for attenuation requires the parameter A∞. Both of
these parameters are generally unknown, and thus provide the incentive for this paper. In past
studies that used polarization for dehazing, these parameters were estimated based on pixels
which correspond to the sky near the horizon.

A method to calibrate the parameters when the sky is unseen was theoretically proposed in
Ref. [23]. However, it has not demonstrated practical feasibility. It required the presence in the
FOV of at least two different classes of multiple objects, each class having a similar (unknown)
radiance in the absence of haze. For example, the classes can be buildings and trees. We found
that method to be impractical. It can be difficult to identify two sets, each having a distinct
class of similar objects. Actually, sometimes scenes do not have two such classes. Moreover,
to ensure a significant difference between the classes, one should be darker than the other.
However, estimating the parameter based on dark objects is prone to error caused by noise.
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Therefore, in practical tests, we found the theoretical skyless possibility mentioned in Ref. [23]
to be impractical.

We now recap the assumptions underlying our model, as expressed by the above expressions.
First, single scattering is dominant. Hence, blur and depolarization due to multiple scattering
do not have a strong influence. Second, the distribution of scattering particles in the scene is
spatially homogeneous. In reality, these assumptions do not hold accurately, particularly as this
paper deals with methods to use in field experiments. Therefore, they are used as an approxi-
mation model, that yields algorithms having practical effectiveness in the field. The errors of
this approximation may cause small but noticeable deviations, as discussed in Sec. 6.

3. Skyless parameter calibration and dehazing

This section introduces several methods to recover the environmental parameters p and A∞
when the sky is not in view. The method presented in Sec. 3.1 requires the use of just a single
class of objects residing at different distances. The consecutive methods assume that the pa-
rameter p is known. This parameter can be blindly derived by a method described in Sec. 4.
Consequently, there is reduction of the information needed about objects and their distances.
The method presented in Sec. 3.2 only requires the relative distance of two areas in the FOV,
regardless of their underlying objects. The method described in Sec. 3.3 requires two simi-
lar objects situated at different, but not necessarily known distances. Table 1 summarizes the
requirements of each of these novel methods.

3.1. Distance-based dehazing

In this section, we develop a method for estimating p and A∞ based on known distances to sim-
ilar objects in the FOV. An idea to estimate atmospheric parameters by marking selected scene
points was suggested in [20]. Motivated by this idea, suppose we can mark two scene points
(xk,yk), k = 1,2, which, in the absence of scattering, would have a similar (unknown) radiance.
For example, these can be two similar buildings which have an unknown radiance Lbuild. The
points, however, should be at different distances from the camera z2 > z1. For example, the two
circles in Fig. 1(a) correspond to two buildings, situated at known distances of 11km and 23km.
Using Eqs. (1,2,3,6), the image values corresponding to the object at distance z1 are

Imax
1 =

Lbuild

2
e−β z1 +Amax

∞ (1− e−β z1) , (14)

Imin
1 =

Lbuild

2
e−β z1 +Amin

∞ (1− e−β z1) (15)

Similarly, for the object at distance z2,

Imax
2 =

Lbuild

2
e−β z2 +Amax

∞ (1− e−β z2) , (16)

Table 1. The requirements of prior knowledge in the different methods.
Section Similar objects required? Known distances required?

3.1 yes yes
3.2 no yes
3.3 yes no
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Imin
2 =

Lbuild

2
e−β z2 +Amin

∞ (1− e−β z2) . (17)

Let us denote
C1 = Imax

1 − Imin
1 , C2 = Imax

2 − Imin
2 . (18)

It can be shown that C2 > C1. Note that C1 and C2 are known, since Imax
k and Imin

k constitute the
acquired data at coordinates in the FOV.

Now, from Eqs. (14,15)
C1

(1−V z1)
= Amax

∞ −Amin
∞ , (19)

while Eqs. (16,17) yield
C2

(1−V z2)
= Amax

∞ −Amin
∞ , (20)

where
V ≡ e−β . (21)

Dividing Eq. (19) by Eq. (20) yields the following constraint

G(V )≡C1V z2 −C2V z1 +(C2−C1) = 0 . (22)

Let a zero crossing of G(V ) be at V0. We now show that based on this V0, it is possible to
estimate p and A∞. Then, we prove the existence and uniqueness of V0.

Estimation of the parameters is done in the following way. It can be shown that

(Imax
1 + Imin

1 ) = LbuildV z1 +(Amax
∞ +Amin

∞ )(1−V z1) , (23)

and
(Imax

2 + Imin
2 ) = LbuildV z2 +(Amax

∞ +Amin
∞ )(1−V z2) . (24)

Following Eqs. (5,23,24), an estimate for A∞ is obtained by

Â∞ = (Amax
∞ +Amin

∞ ) =
(Imax

2 + Imin
2 )V z1

0 − (Imax
1 + Imin

1 )V z2
0

V z1
0 −V z2

0
. (25)

Based on Eqs. (14,15), define

∆A≡ Amax
∞ −Amin

∞ =
Imax
1 − Imin

1
1−V z1

0
. (26)

Using Eqs. (7,25,26),

p̂ =
∆A
Â∞

. (27)

Thus, Eqs. (25,26,27) recover the required parameters p and A∞. Two known distances of sim-
ilar objects in the FOV are all that is required to extract parameters used for polarization-based
dehazing, when the sky is not available.

Let us now prove the existence and uniqueness of V0.

• Recall that ∞ > β > 0, therefore 0 < V < 1 (Eq. 21).

• G|V=0 > 0, since C2 > C1.

• G|V=1 = 0. This root of G is not in the domain.
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Fig. 3. The function G(V ) at each color channel, corresponding to distances z1 = 11km
and z2 = 23km in Scene 1. Note that G|V=0 > 0 and G|V=1 = 0. Since G(V ) has a single
minimum, it has only a single root in the domain V ∈ (0,1).

• The function G(V ) has only one extremum. The reason is that its derivative

∂G
∂V

= z2C1V z2−1− z1C2V z1−1 (28)

is null only when

V =
(

z1C2

z2C1

) 1
(z2−z1)

. (29)

• This extremum is a minimum. It can be shown that ∂ 2G/∂V 2 > 0.

Due to these facts, Eq. (22) always has a unique root at V0 ∈ (0,1). Typical plots of G(V ) are
shown in Fig. 3. Due to the simplicity of the function G(V ), it is very easy to find V0 using
standard tools (e.g., Matlab).

The solution V0 can be found even when z1 and z2 are only relatively known, i.e., it is possible
to estimate the parameters A∞ and p based only on the relative distance z̃ = z2/z1, rather than
absolute distances. For example, in Fig. 1(a), z̃ = 2.091. Denote

Ṽ = V z1 = e−β z1 . (30)

Then, Eq. (22) is equivalent to the constraint

G̃(V )≡C1Ṽ z̃−C2Ṽ +(C2−C1) = 0 . (31)

Similarly to (22), also Eq. (31) has a unique root at Ṽ0 ∈ (0,1). Hence, deriving the parameters
is done similarly to Eqs. (25,26,27). Based on Ṽ0, A∞ is estimated as

Â∞ =
(Imax

2 + Imin
2 )Ṽ0− (Imax

1 + Imin
1 )Ṽ z̃

0

Ṽ0−Ṽ z̃
0

. (32)

Similarly to Eq. (26),

∆A =
Imax
1 − Imin

1

1−Ṽ0
. (33)

Then, Eq. (27) yields p̂.
Based on these parameters, Eqs. (11,12) yield Â(x,y) and t̂(x,y). Then L̂object(x,y) is derived

using Eq. (13), for the entire FOV. This dehazing method was applied to Scene 1, as shown in
Fig. 1(e). There is a minor difference between Figs. 1(b) and 1(e). This is discussed in Sec. 7.
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Fig. 4. The airlight map Â corresponding to Scene 1.

The absolute distances z1,z2 or their ratio z̃ can be determined in various ways. One option is
to use a map (this can be automatically done using a digital map), assuming the camera location
is known. Relative distance can be estimated using the apparent ratio of two similar features that
are situated at different distances. Furthermore, the absolute distance can be estimated based on
the typical size of known objects.

3.2. Distance-based dehazing, with known p

In some cases, similar objects at known distances may not exist in the FOV, or may be hard to
find. Then, we cannot use the method presented in Sec. 3.1. In this section we overcome this
problem, by considering two regions at different distances z1 < z2, regardless of the underlying
objects. Therefore, having knowledge of two distances of arbitrary areas is sufficient. The ap-
proach assumes that the parameter p is known. This knowledge may be obtained by a method
we describe in Sec. 4, which is based on ICA. Based on a known p and on Eq. (11), Â is derived
for every coordinate in the FOV. As an example, the estimated airlight map Â corresponding to
Scene 1 is shown in Fig. 4. The two rectangles represent two regions, situated at distances z1
and z2. Note that unlike Sec. 3.1, there is no demand for the regions to correspond to similar
objects.

From Eqs. (2,12),

e−β z = 1− Â
A∞

. (34)

For regions around image coordinates (x1,y1) and (x2,y2) having respective distances z1 and
z2, Eq. (34) can be written as

V z1 = 1− Â(x1,y1)
A∞

, V z2 = 1− Â(x2,y2)
A∞

, (35)

where V is defined in Eq. (21). It follows from Eq. (35) that

A∞(V z1 −V z2) = Â(x2,y2)− Â(x1,y1) (36)

and
A∞(2−V z1 −V z2) = Â(x2,y2)+ Â(x1,y1) . (37)

Dividing Eq. (36) by Eq. (37) yields the following constraint

Gp(V )≡ (α−1)V z2 +(α +1)V z1 −2α = 0 , (38)

where

α =
Â(x2,y2)− Â(x1,y1)
Â(x2,y2)+ Â(x1,y1)

. (39)
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Fig. 5. The function Gp(V ) at each color channel, corresponding to distances z1 = 11km
and z2 = 23km in Scene 1. Note that Gp|V=0 < 0 and Gp|V=1 = 0. Since Gp(V ) has a single
maximum, it has only a single root in the domain V ∈ (0,1).

Recall that Â is known via Eq. (11), since here p is known. Hence, α can be calculated. Since
z1 < z2, then α > 0.

Similarly to (22), Eq. (38) has a unique solution at V0 ∈ (0,1). We now prove the existence
and uniqueness of V0.

• Recall that ∞ > β > 0. Hence 0 < V < 1 (Eq. 21).

• Gp|V=0 < 0, since (−2α) < 0.

• Gp|V=1 = 0. This root of Gp is not in the domain.

• The function Gp(V ) has only one extremum: its derivative is null only once.

• This extremum is a maximum. It can be shown that ∂ 2Gp/∂V 2 < 0.

Due to these facts, Eq. (38) has a unique root at V0 ∈ (0,1). Typical plots of Gp(V ) are shown
in Fig. 5. Based on Eq. (35),

Â∞ =
Â(x1,y1)
1−V z1

0
. (40)

Similarly to Sec. 3.1, it is possible to estimate A∞ based only on the relative distance
z̃ = z2/z1, rather than absolute ones. Then,

G̃p(Ṽ )≡ (α−1)Ṽ z̃ +(α +1)Ṽ −2α = 0 , (41)

where Ṽ is defined in (30). Eq. (41) has a unique solution Ṽ0 ∈ (0,1). Based on Eqs. (35),

Â∞ =
Â(x1,y1)

1−Ṽ0
. (42)

This dehazing method was applied to Scene 1, as shown in Fig. 1(d).

3.3. Feature-based dehazing, with known p

In this section we describe a method to estimate A∞, based on identification of two similar
objects in the scene. As in Sec. 3.1, these can be two similar buildings which have an unknown
radiance Lbuild. Contrary to Sec. 3.1, the distances to these objects are not necessarily known.
Nevertheless, these distances should be different. As in Sec. 3.2, this method is based on a
given estimate of p̂, obtained, say, by the BSS method of Sec. 4. Thus, an estimate of Â(x,y) is
at hand.
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It is easy to show [23] from Eqs. (11,12,13) that

Îtotal
k = Lbuild +SbuildÂ(xk,yk) , (43)

where
Sbuild ≡

(
1−Lbuild/A∞

)
(44)

is a constant for these objects. Buildings at different distances have different intensity readouts,
due to the effects of scattering. Therefore, they have different values of Itotal and A. According
to Eq. (43), Îtotal as a function of Â forms a straight line. Such a line can be determined using
two data points. Extrapolating the line, its intercept yields the estimated radiance value L̂build.
Let the slope of the fitted line be Sbuild. We can now estimate A∞ as

Â∞ = L̂build/(1−Sbuild) . (45)

Based on Â∞ and p̂, we can recover L̂object(x,y) for all pixels, as explained in Sec. 3.1. As an
example, the two circles in Fig. 1(a) mark two buildings residing at different distances. The
values of these distances are ignored, as if they are unknown. The corresponding dehazing
result is shown in Fig. 1(c).

4. Blind estimation of p

Both Secs. 3.2, 3.3 assume that the parameter p is known. In this section, we develop a method
for blindly estimating p. First, note that Eq. (13) can be rewritten as

L̂object =
(1−1/p)Imax(x,y)+(1+1/p)Imin(x,y)

1− [Imax(x,y)− Imin(x,y)]/(A∞ p)
. (46)

This is a nonlinear function of the raw images Imax and Imin, since they appear in the denom-
inator, rather than just superimposing in the numerator. However, the image model illustrated
in Fig. 2 has a linear aspect: in Eqs. (4,10), the sum of the two acquired images Imin, Imax is
equivalent to a linear mixture of two components, A and D. This linear interaction makes it
easy to use tools that have been developed in the field of ICA for linear separation problems.
This section describes our BSS method for hazy images. The result of this BSS yields p̂.

4.1. Facilitating linear ICA

To facilitate linear ICA, we attempt to separate A(x,y) from D(x,y). ICA relies on independence
of A and D. Thus, we describe a transformation that enhances the reliability of this assumption.
From Eq. (9), the two acquired images constitute the following equation system:

[
Imax

Imin

]
= M

[
A
D

]
, (47)

where

M =

[
(1+ p)/2 1/2

(1− p)/2 1/2

]
. (48)

Thus, the estimated components are
[

Â
D̂

]
= W

[
Imax

Imin

]
, (49)
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Fig. 6. (a) A raw hazy image of Scene 2, whose distances are up to 22 km. (b) Sky-based de-
hazing. (c) Feature-based dehazing assisted by ICA. (d) Distance-based dehazing assisted
by ICA. (e) Distance-based result.

where

W =

[
1/p −1/p

(p−1)/p (p+1)/p

]
. (50)

Eqs. (47,49) are in the form used by linear ICA. Since p is unknown, then the mixing matrix
M and separation matrix W are unknown. The goal of ICA in this context is: given only the
acquired images Imax and Imin, find the separation matrix W that yields “good” Â and D̂. A
quality criterion must be defined and optimized. Typically, ICA would seek Â and D̂ that are
statistically independent (see [44–47]).Thus, ICA assumes independence of A and D. However,
the airlight A always increases with the distance z, while D tends to fall, in general, with z. Thus,
there is a negative correlation between A and D. To observe this, consider the hazy Scene 2,
shown in Fig. 6. The negative correlation between A and D, corresponding to this scene is seen
in Fig. 7. There are local effects that counter this observation, in places where the inherent
object radiance Lobject increases with z. Thus, the significant negative correlation mentioned
above occurs mainly in the lowest spatial frequency components: D decays with the distance
only roughly. On the other hand, in some frequency components we can expect significant
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Fig. 7. The direct transmission D has a strong negative correlation to the airlight A. These
images correspond to Scene 2. In a wavelet channel of these images, Ac,Dc have much less
mutually dependency.

independence (Fig. 7).
Hence, the assumption underlying ICA is enhanced by transforming the images to a repre-

sentation that is more appropriate than raw pixels. We work only with linear transformations
as in [48], since we wish to maintain the linear relations expressed in Eqs. (47)-(50). There are
several common possibilities for linear band-pass operations. We opted for a wavelet transfor-
mation (see for example [49]), but the derivation is not limited to that domain. Define

Dc(x,y) = W {D(x,y)} (51)

as the wavelet (or sub-band) image representation of D. Here c denotes the sub-band channel,
while W denotes the linear transforming operator. Similarly, define the transformed version of
A, Â, D̂, Imax and Imin as Ac, Âc, D̂c, Imax

c and Imin
c , respectively (see example in Fig. 7). Due to

the commutativity of linear operations,
[

Âc

D̂c

]
= W

[
Imax
c

Imin
c

]
, (52)

where W is the same as defined in Eq. (50).
We now perform ICA over Eq. (52). As we shall see in the experiments, this approach is very

effective. The assumption of statistical independence in sub-band images is powerful enough
to blindly deliver the solution. In our case, the solution of interest is the matrix W, from which
we derive p. Based on p, the airlight is estimated, and can then be separated from D(x,y), as
described in Sec. 2.

4.2. Scale insensitivity

When attempting ICA, we should consider its fundamental ambiguities [46]. One of them is
scale: if two signals are independent, then they remain independent even if we change the scale
of any of them (or both). Thus, ICA does not reveal the true scale of the independent com-
ponents. A special case of scale ambiguity is the sign ambiguity, for which the scale is −1.
This scale (and sign) ambiguity can be considered both as a problem, and as a helpful feature.
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The problem is that the estimated signals may be ambiguous. However, in our case, we have a
physical model behind the mixture formulation. As we shall see, this model eventually disam-
biguates the derived estimation. Moreover, we benefit from this scale-insensitivity. As we show
in Sec. 4.3, the fact that ICA is insensitive to scale simplifies the intermediate mathematical
steps we take [50].

4.3. Optimization criterion

Minimization of statistical dependency is achieved by minimizing the mutual information (MI)
of the sources. The MI of Âc and D̂c can be expressed as (see for example [51])

I (Âc, D̂c) = HÂc
+HD̂c

−HÂc,D̂c
. (53)

Here HÂc
and HD̂c

are the marginal entropies of Âc and D̂c, respectively, while HÂc,D̂c
is their

joint entropy. However, estimating the joint entropy from samples is an unreliable calculation.
Therefore, it is desirable to avoid joint entropy estimation. In the following, we bypass direct es-
timation of the joint entropy, and in addition we describe other steps that enhance the efficiency
of the optimization.

Let us look at the separation matrix W (Eq. 50). Its structure implies that up to a scale p,
the estimated airlight Â is a simple difference of the two acquired images. Denote Ãc as an
estimation for the airlight component Âc, up to this scale

Ãc = Imax
c − Imin

c . (54)

Similarly, denote
D̃c = w1Imax

c +w2Imin
c (55)

as the estimation of D̂c up to a scale p, where here

w1 ≡ (p−1) , w2 ≡ (p+1) . (56)

Hence, the separation matrix of D̂c and Âc is

W̃ =
[

1 −1
w1 w2

]
. (57)

Minimizing the statistical dependency of Âc and D̂c means that Ãc and D̃c should minimize
their dependency too. We thus minimize the MI of D̃c and Ãc,

I (D̃c, Ãc) = HD̃c
+HÃc

−HÂc,D̂c
(58)

as a function of w1 and w2. This way, the number of degrees of freedom of W̃ is two. Minimiz-
ing Eq. (58) yields estimates ŵ1 and ŵ2 which are related to w1 and w2 by an unknown global
scale factor. This aspect is treated in Sec. 4.4.

As mentioned, estimating the joint entropy is unreliable and complex. Yet, Eqs. (47,49) ex-
press pointwise processes of mixture and separation: the airlight in a point is mixed only with
the direct transmission of the same point in the raw frames. Following [46], for pointwise mix-
tures Eq. (58) is equivalent to

I (D̃c, Ãc) = HD̃c
+HÃc

− log |det(W̃)|−HImax
c ,Imin

c
. (59)

Here HImax
c ,Imin

c
is the joint entropy of raw frames. As such, its value is a constant set by the

raw data, and hence does not depend on W̃. For this reason, we ignore it in the optimization
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process. Moreover, note from Eq. (54), that Ãc does not depend on w1,w2. Therefore, HÃc
is

constant and can also be ignored in the optimization process. Thus, the optimization problem
we solve is simplified to

{ŵ1, ŵ2}= arg min
w1,w2

{
HD̃c

− log |w2 +w1|
}

, (60)

where the term log |w2 +w1| expresses log |det(W̃)| for the matrix given in Eq. (57).
At this point, the following argument can come up. The separation matrix W̃ (Eq. 57) has

essentially only one degree of freedom p, since p dictates w1 and w2. Would it be simpler to
optimize directly over p? The answer is no. Such a move implies that p = (ŵ1 + ŵ2)/2. This
means that the scale of ŵ1 and ŵ2 is fixed to the true unknown value, and so is the scale of
the estimated sources D̂ and Â. Hence scale becomes important, depriving us of the ability to
divide W̃ by p. Thus, if we wish to optimize the MI over p, we need to explicitly minimize
Eq. (53). This is more complex than Eq. (60). Moreover, this requires estimation of HÂc

, which
is unreliable, since the airlight A has very low energy in high-frequency channels c. Thus,
minimizing Eq. (60) while enjoying the scale insensitivity is preferable to minimizing Eq. (53)
over p.

4.4. Back to polarization calibration

The optimization described in Sec. 4.3 (which will later be simplified in Sec. 4.5) yields es-
timates ŵ1 and ŵ2. We now use these values to derive an estimate for p. Apparently, from
Eq. (56), p̂ is simply the average of ŵ1 and ŵ2. However, ICA yields ŵ1 and ŵ2 up to a global
scale factor, which is unknown. Fortunately, the following estimator

p̂ =
ŵ1 + ŵ2

ŵ2− ŵ1
(61)

is invariant to that scale. This process is repeated in each color channel.
Once p̂ is derived, it is used for constructing W in Eq. (50). Then, Eq. (49) separates the

airlight Â and the direct transmission D̂. This recovery is not performed on the sub-band images.
Rather, it is performed on the raw image representation, as in prior sky-based dehazing methods.

We stress that in this scheme, we bypass all inherent ICA ambiguities: permutation, sign
and scale. Those ambiguities do not affect us, because we essentially recover the scene using a
physics-based method, not a pure signal processing ICA. We use ICA only to find p̂, and this is
done in a way (Eq. 61) that is scale invariant.

4.5. Efficient optimization using a probability model

As written above, Eq. (60) yields ŵ1 and ŵ2, from which p̂ is subsequently derived. In this
section, we take steps that further simplify the estimation of the cost function (60). This would
allow for more efficient optimization.

Recall that we use sub-band images at various spatial frequencies. In natural scenes, sub-
band images are known to be sparse. In other words, almost all the pixels in a sub-band image
have values that are very close to zero. Hence, the probability density function (PDF) of a sub-
band pixel value is sharply peaked at the origin. A PDF model which is widely used for such
images is the generalized Laplacian (see for example [49])

PDF(D̃c) = µ(ρ ,σ)exp
[−(|D̃c|/σ)ρ]

, (62)

where ρ ∈ (0,2) and σ are parameters of the distribution. Here µ(ρ ,σ) is a normalization con-
stant. The scale parameter σ is associated with the standard deviation (STD) of the distribution.
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However, we do not need this scale parameter. The reason is that ICA recovers each signal up
to an arbitrary intensity scale, as mentioned. Thus, optimizing a scale parameter during ICA is
meaningless. We can thus set a fixed unit scale (σ = 1) to the PDF in Eq. (62). This means that
whatever D̃c(x,y) is, its values are implicitly re-scaled by the optimization process to fit this
unit-scale model. Therefore, the generalized Laplacian in our case is

PDF(D̃c) = µ(ρ)exp(−|D̃c|ρ) . (63)

This prior of image statistics can be exploited for the entropy estimation needed in the opti-
mization [53, 54]. Entropy is defined (see for example [51]) as

HD̃c
= E

{− log[PDF(D̃c)]
}

, (64)

where E denoted expectation. Substituting Eq. (63) into Eq. (64) and replacing the expectation
with empirical averaging, the entropy estimate is

ĤD̃c
= ν(ρ)+

1
N ∑

x,y
|D̃c(x,y)|ρ . (65)

Here N is the number of pixels in the image, while ν(ρ) = log[µ(ρ)]. Note that ν(ρ) does
not depend on D̃c, and thus is independent of w1 and w2. Hence, ν(ρ) can be ignored in the
optimization process. The generalized Laplacian model simplifies the optimization problem to

{ŵ1, ŵ2}= arg min
w1,w2

{
− log |w2 +w1|+ 1

N ∑
x,y
|D̃c(x,y)|ρ

}
. (66)

The cost function (66) is a simple expression of the variables. Recall that expressions such
as Eq. (53) or (60) use entropies, which may imply complex estimation of probability density
distributions based on image histograms. In contrast, Eq. (66) bypasses the need for entropies,
densities and histograms: it relies directly on the pixel values D̃c(x,y) in the sub-band images.

Eq. (66) appears to be relatively simple to optimize. However, we prefer a convex formulation
of the cost function, as it guarantees a unique solution, which can be reached efficiently using
gradient-based methods. Consider the following problem

{ŵ1, ŵ2}= minw1,w2

{
− log |w2 +w1|+ 1

N ∑
x,y
|D̃c(x,y)|

}
,

where D̃c = w1Imax
c +w2Imin

c .
(67)

This is an approximation of Eq. (66), in which ρ = 1. We explain in the appendix that this
approximation is unimodal and convex. Furthermore, the appendix discusses why this approxi-
mation is reasonable. Thus, Eq. (67) is the core of our ICA optimization. For convex problems
such as this, convergence speed is enhanced by use of local gradients. See [48] for the differen-
tiation of the absolute value function.

A note about channel voting

In principle, the airlight DOP p should be independent of the wavelet channel c. However, in
practice, the optimization described above yields, for each wavelet channel, a different esti-
mated value p̂. The reason is that some channels better comply with the independence assump-
tion of Sec. 4.1, than other channels. Nevertheless, there is a way to overcome poor channels.
Channels that do not obey the assumptions yield a random value for p̂. On the other hand, chan-
nels that are “good” yield a consistent estimate. Hence the optimal p̂ is determined by voting.

(C) 2009 OSA 19 January 2009 / Vol. 17,  No. 2 / OPTICS EXPRESS  488
#93293 - $15.00 USD Received 3 Mar 2008; revised 3 Aug 2008; accepted 7 Aug 2008; published 7 Jan 2009



Red Green Blue
p=0.38p̂=0.38^ p=0.38p̂=0.38^p=0.34^

Fig. 8. Histograms of p̂ across the wavelet channels, corresponding to Fig. 1. In each color
channel, the most frequent value of p̂ was selected.

Moreover, this voting is constrained to the range p̂ ∈ [0,1], due to Eq. (8). Any value outside
this range is ignored. As an example, the process described in this section was performed on
Scene 1. The process yielded a set of p̂ values, one for each channel. Fig. 8 plots the voting
result as a histogram per color channel. The dominant bar in each histogram determines the
selected values of p̂.

5. Inhomogeneous distance

To separate A from D using ICA, both must be spatially varying. Consider the case of a spatially
constant A. This occurs when all the objects in the FOV are at the same distance z from the
camera. In this case, HAc and I (Ac,Dc) are null, no matter what the value of the constant A is.
Hence, ICA cannot derive p here. Therefore, to use ICA for calibrating the DOP, the distance
z must vary across the FOV. Distance nonuniformity is also necessary in the other methods
(not ICA-based), described in Sec. 3, for estimating p and A∞. We note that scenarios having
laterally inhomogeneous z are the most common and interesting ones. In the special cases where
z is uniform, dehazing by Eq. (13) is similar to rather standard contrast stretch: subtracting a
constant from Itotal, followed by global scaling.

6. Additional experiments and comparisons

In addition to the experiments that correspond to images displayed in the previous sections,
we performed several additional experiments. The respective images are shown in Figs. 9,10
and 11. In all these figures, circles overlayed on the raw image mark buildings, while the
overlayed rectangles mark arbitrary points at different distances. The prior dehazing litera-
ture [22, 23] estimates the parameters directly from the sky, at the time the images were ac-
quired. This yields values psky and Asky

∞ , respectively. We have done so also in the experiments
shown in this paper. Then, we compare psky with the value of p̂ obtained by each of the meth-
ods and experiments described in this paper, per color channel. This comparison is shown in
Table 2. A similar comparison is done with respect to Â∞ in Table 3. Per scene and per color,
the values of p̂ are quite similar to one another and to psky. The absolute errors in the DOP
are ≈ 1− 3%. Since the DOP itself is given in percent, the relative deviations in the DOP are
typically ≈ 5%. The relative deviations in Â∞ are ≈ 8%.

What can be the reason for these deviations, and how critical are they? Each estimation
method can only be as good as its underlying assumptions. In this work, each of the methods is
based on some assumptions, which are accurate up to a point. Let us consider specific methods
described in this paper. Secs. 3.1 and 3.3 assume that two marked objects in the FOV, e.g., two
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Fig. 9. Dehazing of Scene 3, whose distances are up to 13.5 km. The scene contains
smoke. (a) The best polarized raw image. (b) Sky-based dehazing. (c) Result of a feature-
based method assisted by ICA (d) Result of a distance-based method assisted by ICA (e)
Distance-based result.
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Fig. 10. Dehazing of Scene 4, whose distances are up to 31 km. (a) The best polarized
image. (b) Sky-based dehazing. (c) Result of a feature-based method assisted by ICA (d)
Result of a distance-based method assisted by ICA (e) Distance-based result.

buildings, have the same underlying radiance Lobject. However, this is a rough assumption. It
can be expected that buildings at different geographical places built at different years would
have a somewhat different reflectance. The deviation from equality of the object reflectance
propagates to the numerical estimation of the airlight parameters.

Even psky and Asky
∞ are based on an assumption. These sky values correspond to objects at

an infinite distance from the camera. This assumes that atmospheric conditions and scattering
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Fig. 11. Dehazing of Scene 5, whose distances are up to 30 km. (a) The best polarized
image. (b) Sky-based dehazing. (c) Result of a feature-based method assisted by ICA (d)
Result of a distance-based method assisted by ICA (e) Distance-based result.

Table 2. The [red green blue] values of the parameter p̂ given in percent, estimated using
the methods described in Secs. 3.1 and 4. The results are compared to psky, which is based
on sky pixels. In Scene 4, there were no similar features residing at known distances, to be
used in Sec. 3.1.

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5
psky 33 34 36 32 34 36 22 20 19 15 15 16 15 16 16

Sec. 3.1 31 34 35 33 34 37 24 21 20 N.A. 14 17 18
Sec. 4 29 32 35 29 31 35 23 21 21 12 14 16 11 14 14

Table 3. The [red green blue] values of the parameter Â∞, given in percents of the camera
dynamic range. Estimations of Â∞ are based on various methods described in Secs. 3.1,3.2,
and 3.3. The results are compared to Asky

∞ , which is based on sky pixels. In Scene 4, there
were no similar features residing at known distances, to be used in Sec. 3.1.

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Asky
∞ 42 45 53 48 50 56 62 69 73 34 39 48 35 41 50

Sec. 3.1 43 48 53 45 47 53 64 69 74 N.A. 42 44 53
Sec. 3.2 46 51 52 50 53 57 56 63 65 36 38 45 40 41 53
Sec. 3.3 49 51 56 53 53 57 61 70 78 43 44 51 45 47 57

effects are effectively uniform to infinity. However, along an infinite LOS, atmospheric param-
eters do change. Eventually, this LOS passes beyond the atmosphere, in outer space, due to the
Earth curvature. The direct sky measurement method thus assumes that most effects accumu-
late within a finite effective distance. Hence, the sky-based measurement, which was used in the
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prior art [20, 23], is by itself an approximation, based on a rough assumption. Even within finite
distances, the atmospheric effects may be slightly nonuniform. This somewhat affects each of
the parameter estimation methods, as each is using sets of points at different distances. These
effects and others make the resulting p̂ and Â∞ in any estimator deviate from the true value
and from the results obtained by other estimators. However, the results are rather close to each
other, given the uncontrolled, outdoor field conditions.

Based on the estimated parameters, dehazing was performed. The variations in p̂ and Â∞
affect the visual result of L̂object, as seen in Figs. 1,6,9,10 and 11. Nevertheless, in each exper-
iment, the result of each dehazing method is remarkably better than the original hazy image
Imin, which was taken using the best polarizer state. The contrast and color of distant objects
(trees, red roofs) are recovered from their dull bluish data. Hence, the enhancement achieved by
dehazing is significant, in any of the calibration methods. Dehazing is thus tolerant to parameter
uncertainties that arise from small deviations from the assumptions.

7. Discussion

While on its own each dehazing result is much better than the raw data, it is interesting to de-
termine which of the methods yields the “best visual” results. This is a perceptual matter, and it
requires a psychophysical methodology for testing and grading. The choice between methods
is complex since each of them is based on a different set of priors (distances, similar objects,
independent components). Objective evaluation of the accuracy of each method would require
very extensive empirical testing. This is required to capture the wide variability of natural con-
ditions in a statistically meaningful way. Hence, it would be useful to conduct such an empirical
study.

Multiple scattering events have two inhibiting effects. First, multiple scattering blurs the
object. Second, this scatter depolarizes the airlight, limiting the ability to exploit polarization for
estimation of the distance-dependent airlight and transmittance. However, the dehazing method
we work with assumes that single-scattering events are dominant. This assumption may lose its
validity at very long distances [18]. The reason is that light propagating for multiple attenuation
lengths increases the chance of experiencing secondary scattering effects. It may thus be worth
studying the limitations of the method, in this context.

A desirable task is to completely automate skyless calibration of the atmospheric parameters.
A significant part of this paper deals with blind estimation of the the DOP p. This was done by
taking a mathematical approach (ICA), which has solid foundations. To complete the automa-
tion, the estimation of A∞ should be blind. This is an important direction. It is worth pursuing
adaptations of this work to other scattering modalities, such as underwater photography [6, 52].
.

A. A convex formulation

In Sec. 4.5, the minimization problem of Eq. (66) is approximated using Eq. (67). In this ap-
pendix we explain this move. Recall that in numerical optimization it is preferable to use a
convex formulation of the cost function.

First, note that D̃c(x,y) is a convex function of w1 and w2, as seen in the linear relation given
in Eq. (55). Moreover, the term [− log |w2 +w1|] in Eq. (66) is a convex function of w1 and w2,
in the domain (w2 + w1) ∈ R+. The optimization search can be limited to this domain. The
reason is that following Eq. (56), (ŵ2 + ŵ1) = 2κ p, where κ is an arbitrary scale arising from
the ICA scale insensitivity. If κ > 0, then (w2 +w1) ∈R+ since by definition p≥ 0. If κ < 0,
we may simply multiply κ by −1, thanks to this same insensitivity. Hence, the overall cost
function (66) is convex, if |D̃c|ρ is a convex function of D̃c.
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ρ

Fig. 12. A histogram of ρ , based on PDFs fitted to data of 5364 different images D̃c(x,y),
which were derived from various values of p, wavelet channels c and different raw images.
In this histogram, ρ = 0.9±0.3.

The desired situation of having |D̃c|ρ convex occurs only if ρ ≥ 1. Apparently, we should es-
timate ρ at each iteration of the optimization, by fitting the PDF model (Eq. 62) to the values of
D̃c(x,y). Note that this requires estimation of σ as well. Such parameter estimation is computa-
tionally complex, however. Therefore, we preferred using an approximation and set the value of
ρ , such that convexity is obtained. Note that ρ < 1 for sparse signals, such as typical sub-band
images. The PDF representing the sparsest signal that yields a convex function in Eq. (66) cor-
responds to ρ = 1. Thus we decided to use ρ = 1 (see also [53–55]).By this decision, we may
have sacrificed some accuracy, but enabled convexity. In contrast to the other steps described
in sections 4.1,4.3 and 4.5, the use of ρ = 1 is an approximation. How good is this approxima-
tion? To study this, we sampled 5364 different images D̃c(x,y). These images were based on
various values of p, c and on different raw frames. Then, the PDF model (Eq. 62) was fitted to
the values of each image. The PDF fit yielded an estimate of ρ per image. A histogram of the
estimates of ρ over this ensemble is plotted in Fig. 12. Here, ρ = 0.9±0.3. It thus appears that
the approximation is reasonable.
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