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Abstract

Differential entropy is a quantity used in many signal processing problems. Often we need to calculate not only the

entropy itself, but also its gradient with respect to various variables, for efficient optimization, sensitivity analysis, etc.

Entropy estimation can be based on an estimate of the probability density function, which is computationally costly if

done naively. Some prior algorithms use computationally efficient non-parametric entropy estimators. However,

differentiation of the previously proposed estimators is difficult and may even be undefined. To counter these obstacles,

we consider non-parametric kernel entropy estimation that is differentiable. We present two different accelerated kernel

algorithms. The first accelerates the entropy gradient calculation based on a back propagation principle. It allows

calculating the differential entropy gradient in the same complexity as that of calculating the entropy itself. The second

algorithm accelerates the estimation of both entropy and its gradient by using fast convolution over a uniform grid. As

an example, we apply both algorithms to blind source separation.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Differential entropy (DE) is used as a quality
criterion in various signal processing problems
such as segmentation, detection, source separa-
tion, image registration, channel equalization,
neural networks and estimating depth from focus
e front matter r 2005 Elsevier B.V. All rights reserve
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[2,3,10,19,25,27,31,35,37,39]. Some algorithms es-
timate the entropy using rough parametric models
for the probability density function (PDF). The
use of a low-dimensional vector to parameterize
the PDF reduces the complexity of calculating the
DE. However, this may lead to inaccurate solu-
tions. Therefore we concentrate here on non-
parametric kernel estimators, also called Parzen

windows estimators [33,37]. These estimators may
have a large complexity if implemented naively.
This complexity can be reduced if the estimation
is implemented by on-line stochastic gradient
d.
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1Our analysis is by no means limited to the Gaussian kernel,

but can be applied to any differentiable kernel.
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algorithms [11,30]. However, stochastic methods
may have a larger asymptotic error than batch
methods. Thus in this work we focus on batch
methods, which rely on all the samples for which
the entropy is estimated.

Often, for efficient optimization and sensitivity
analysis it is beneficial to exploit the gradient
rather than solely relying on global optimization
methods [20]. Therefore, the differentiability of the
cost function is very important. It is worth noting
that there are efficient non-parametric methods for
DE estimation with OðN log NÞ complexity
[13,14], where N is the sample size. However,
those methods are based on building tree struc-
tures, which are discrete and depend on the input
samples for which the DE is estimated. In some
applications, the samples are not constant data but
variables. As optimization progresses, the variable
values are modified iteratively. This may change
the tree structure abruptly during iterations. Hence
formulation of derivatives of the DE estimator is
hindered. Additional efficient entropy estimators
are based on order statistics [18,36], however, they
are based on sample sorting, which hinders
differentiation as well.

To counter these problems, we present two
methods to bypass the computational load of
estimating the kernel entropy and its gradient. In
Section 3, we describe a general method for
accelerating the DE gradient calculation. We use
an approach in the spirit of the back propagation

algorithm, which is used for neural network
training (see for example Ref. [9]). This principle
is known as backward packing in the community of
automatic differentiation [15,22,26]. Applying this
principle here allows calculation of the entropy
gradient with the same complexity needed to
calculate the entropy itself.

In Sections 4 and 5, we propose a method which
accomplishes our task in a complexity of
OðN log NÞ: It is inspired by an approximation
of the PDF [12,32,38]. We extend this approxima-
tion to the task of estimating the entropy and its
gradient. We do so in a way that reduces numerical
problems during optimization. The approximation
of the kernel estimator is calculated using a fast
convolution over a uniform grid. The errors
caused by this approximation are reasonably
small. Therefore, our method can be a practical
tool for problems involving large sample sets.

Finally, we apply the algorithms to linear blind
source separation (BSS) problems, also called
independent component analysis (ICA) [5,6]. ICA
can be based on minimization of the mutual
information (MI) criterion. MI is based on the
entropy of signals. By applying our methods to
this problem, we boost the performance of ICA as
demonstrated in Section 6. Partial results were
presented in Ref. [34].
2. Background

Let s ¼ ½sð1Þ; . . . ; sðNÞ� be an arbitrary signal. In
general, s is a function of several measurements,

sðnÞ ¼ f ðn; y;wÞ, (1)

where we denote the vector of measurements as y;
while n is an index of a sample of s: Here, w is the
vector of parameters of the function f. This vector
has a dimension of Ndim: In the trivial case of
calculating the entropy of some measurements,
f ðn; y;wÞ ¼ yðnÞ; thus sðnÞ ¼ yðnÞ and Ndim ¼ 0:

The Parzen-windows estimator for the PDF of s
at value t is

p̂ðtjsÞ � ð1=NÞ
XN

n¼1

j½t� sðnÞ�, (2)

where jðtÞ is a smoothing kernel. There are several
options for selecting the kernel [8,33,35]. We use a
Gaussian1 with zero mean and variance s2;

jðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp �

t2

2s2

� �
. (3)

A discussion about a selection of s is given in Ref.
[33]. The Parzen-windows entropy estimator [2,37]
for a signal s is

Ĥs ¼ �
1

N

XN

l¼1

log
1

N

XN

n¼1

j½sðlÞ � sðnÞ�

( )
. (4)

Define Nf as the number of operations needed to
calculate f ðn; y;wÞ using Eq. (1). We need to
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calculate f ðn; y;wÞ for all N samples of s: In
addition, Eq. (4) requires N2 calculations of j:
Thus, the overall complexity of the Parzen-
windows entropy estimator is

Oexplicit
entropy ¼ OðN2 þNf NÞ. (5)

Define the Ndim-dimensional gradient of f with
respect to w as

gðn; y;wÞ ¼ rwf ðn; y;wÞ. (6)

Then, the gradient of the Parzen-windows entropy
with respect to w is

rwĤs

¼ �
1

N

XN

l¼1

PN
n¼1j

0ðSl;nÞSl;nGðl; n; y;wÞPN
n¼1j½sðlÞ � sðnÞ�

, ð7Þ

where j0 is the derivative of j: Here

Sl;n � ½sðlÞ � sðnÞ� (8)

and

Gðl; n; y;wÞ � ½gðl; y;wÞ � gðn;w; yÞ�. (9)

Eq. (7) has two explicit nested summations, for
each of the Ndim components of Gðl; n; y;wÞ: In
addition, let Ng be the number of operations
needed for calculating gðn; y;wÞ per sample n. Thus
the overall complexity of estimating the entropy
gradient is

Oexplicit
gradient ¼ OðNdimN2 þNgNÞ, (10)

if this estimation is based explicitly on Eq. (7).
Often, a very large number of samples is used,
while f and g are simple. We focus in this paper on
such scenarios, i.e. where NbNf ;Ng: Thus,
Oexplicit

gradient  NdimO
explicit
entropy:
Fig. 1. Graphs of the forward (a) and back (b) propagation,

corresponding to the function in the example of Section 3.1.
3. Entropy gradient via back propagation

In Section 2 we showed that direct implementa-
tion of the entropy gradient is more computation-
ally expensive than direct implementation of the
DE itself. In this section we describe a method that
allows calculation of the gradient as efficiently as
calculating the DE. This method is applicable to
differentiable functions. We start by presenting the
general method in Section 3.1. Then, we apply the
method to the calculation of the entropy gradient
in Section 3.2.
3.1. Gradient calculation using back propagation

The back propagation technique [15,22,26]
allows calculation of a gradient of a differentiable
function with the same complexity of calculating
the function itself. First, the function is described
by slack variables and atom functions. We define
atom functions as very simple operations into
which the quality function can be factored. Each
of the atom functions can have several inputs. As
an example, the function

f ðx1; x2; x3Þ ¼ F½Cðx1Þ;Yðx2 þ x3Þ� (11)

is described using the slack variables z � x1 þ x2;
z1 � Cðx1Þ; z2 � YðzÞ; and the atom functions
F;C and Y: The description of the function with
slack variables is equivalent to describing the
calculation as a directional graph. For example,
the directional graph corresponding to the exam-
ple of Eq. (11) is illustrated in Fig. 1a. The
function is calculated by forward propagation
through the graph, where the slack variables
represent inner graph layers.
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Fig. 2. Graphs for forward (a) and back (b) propagation for

estimating the entropy and its gradient.
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During forward propagation, we calculate the
value of each atom function, based on its direct
slack variable inputs. While we calculate the
output value of any atom function, we also
calculate the gradient of this atom function with
respect to its direct inputs. We save the values of
these gradients for future use. For example, when
calculating z1 ¼ Cðx1Þ; we also calculate and save
qCx1

=qx1; which is the coefficient of the differ-
ential dz1 ¼ ðqCx1

=qx1Þdx1:
We now show that we can calculate the value of

the gradient by the back propagation algorithm, in
a similar manner to neural network training.
Training a neural network starts by updating the
network output layer. Then, the update is propa-
gated backwards in the network. In a similar way,
the process of back propagation of differentials is
equivalent to replacing all the atom functions in
the directional graph with multipliers. The multi-
pliers’ values are the gradients of the atom
functions with respect to their direct inputs, which
we had calculated during the forward propagation.
In addition, we flip all the directional edges in the
graph, and use 1 as an input to the inverted graph.

The back propagation graph is illustrated in
Fig. 1b. We use the same graph structure for
calculating both the function value and the
function derivative. Thus, we calculate the values
of the gradient coefficients with the same complex-
ity of calculating the value of the function itself.
3.2. Efficient calculation of the entropy gradient

In this section, we describe how to use back
propagation in order to calculate the entropy
gradient with the same complexity of calculating
the entropy value. We start by defining slack
variables and atom functions for the entropy
equation (Eq. (4)). The slack variables we use are
the signals s and

pðlÞ � ð1=NÞ
XN

n¼1

j½sðlÞ � sðnÞ�. (12)

Define

L½pðlÞ� � log ½pðlÞ�. (13)

The atom functions we use are j and L.
The directional graph describing the entropy
calculation is illustrated in Fig. 2. In order to
calculate the entropy value, we use forward
propagation. It constitutes the following consecu-
tive steps:

ðaÞ 8l 2 f1; . . . ;Ng,

sðlÞ ¼ f ðl; y;wÞ; save gðl;w; yÞ,

ðbÞ 8l 2 f1; . . . ;Ng,

pðlÞ ¼
1

N

XN

n¼1

jðSl;nÞ; save j0ðSl;nÞ,

ðcÞ Hs ¼ �
1

N

XN

l¼1

L½pðlÞ�;

save L0½pðlÞ� ¼ ½pðlÞ��1, ð14Þ

where L0 is the derivative of L. Note that whenever
we calculate one of the slack variables in the
forward propagation, we also calculate its gradient
with respect to its direct inputs. The complexity of
step (a) is O½NðNg þNf Þ�: The complexity of step
(b) is OðN2Þ: The complexity of step (c) is OðNÞ:
Therefore, the overall complexity of forward
propagation is

Oforward ¼ O½NðNg þNf Þ þN2 þN�

¼ O½NðNg þNf Þ þN2�. ð15Þ

After we finish calculating the entropy value,
we calculate the gradient by back propaga-
tion of differentials. The differentials of the
entropy and all the slack variables used in
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Fig. 3. Pseudo-code for calculating the entropy gradient via

back propagation.
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Eq. (14) are

ðaÞ 8l 2 f1; . . . ;Ng; dsðlÞ ¼ hgðl;w; yÞ;dwi,

ðbÞ 8l 2 f1; . . . ;Ng,

dpðlÞ ¼
1

N

XN

n¼1

j0ðSl;nÞ½dsðlÞ � dsðnÞ�,

ðcÞ dHs ¼ �
1

N

XN

l¼1

L0½pðlÞ�dpðlÞ. ð16Þ

The back propagation is equivalent to substitution
of Eq. (16) in a reversed order

ðiÞ 8l 2 f1; . . . ;Ng;
q

qpðlÞ
Hs ¼ L0½pðlÞ�,

ðiiÞ 8l 2 f1; . . . ;Ng,

q
qsðlÞ

Hs ¼
1

N

XN

n¼1

j0ðSl;nÞ
q

qpðlÞ
Hs

� 	
,

ðiiiÞ 8n 2 f1; . . . ;Ng,

q
qsðnÞ

Hs ¼
�1

N

XN

n¼1

j0ðSl;nÞ
q

qpðlÞ
Hs

� 	
,

ðivÞ rwHs ¼
XN

l¼1

gðl;w; yÞ
q

qsðlÞ
Hs

� 	
. ð17Þ

In Eq. (17), the complexity of step (i) is OðNÞ: The
complexity of steps (ii) and (iii) is OðN2Þ: The
complexity of step (iv) is OðNdimNÞ: Therefore, the
overall complexity of back propagation is

Oback ¼ OðN2 þNdimN þNÞ

¼ OðN2 þNdimNÞ. ð18Þ

The complexity Oback is similar to Oforward: There-
fore, combining all the algorithm steps yields
estimation of both the entropy and its gradient
in a complexity of

O
gradient
backpropagation

¼ Oforward þ Oback

¼ O½N2 þNðNdim þNg þNf Þ�. ð19Þ

This complexity is less expensive than the complex-
ity of Eq. (10).

Note that the structure of the graphs in Figs. 1
and 2 does not depend on the optimization
variables, e.g. w and s: Had it been otherwise, it
would not have been possible to define differen-
tials corresponding to edges of the graphs. There-
fore back propagation is difficult to apply to
methods like [13,14]: those methods do not
maintain a constant graph structure during the
optimization of the entropy of s:

We summarize the algorithm in a pseudo-code
(Fig. 3). This approach is general. Thus, a
reduction of the complexity of the entropy
estimator (as we describe in the next section),
implies a similar reduction in the gradient com-
plexity.
4. DE estimation in N log N

In this section, we develop a non-parametric
kernel entropy estimator that has a complexity of
OðN log NÞ: In contrast to other OðN log NÞ

estimators [13,14,36], this estimator is differenti-
able with respect to the input samples. We
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approximate the entropy using a convolution on a
resampled version of the signal, as had been done
for PDF estimation in Refs. [12,32,38]. This
formulation leads in Section 5 to an efficient
approximation to the entropy gradient, which is
both numerically stable and has OðN log NÞ

complexity.
Calculating the DE using Eq. (4) requires N2

calculations of j: Consider, however, the inner
sum of Eq. (4), which is the PDF estimator (Eq.
(2)). This sum can be seen as a convolution

p̂ðtjsÞ ¼ P̂ � j, (20)

where

P̂ðtÞ ¼ ð1=NÞ
XN

n¼1

d½t� sðnÞ�. (21)

It is known that fast convolution can be performed
in OðN log NÞ operations if done over a uniform

grid. Therefore, we resample (interpolate) P̂ðtÞ to a
uniform grid. Then we convolve it with a
uniformly sampled version of j which we denote
jsampled: Finally, we interpolate the results back to
the set of points sðlÞ: This process is illustrated in
Fig. 4.

Resampling P̂ starts by defining a vote function
v on a uniform grid of length M, with a step size of
Fig. 4. Efficient estimation of a PDF: (a) the function P̂; (b)

resampling on a uniform grid; (c) discrete convolution with a

sampled kernel; (d) interpolation to the original samples. The

latter step makes the subsequent entropy estimation more

accurate.
dv: Let m# be the index of the grid node closest to
the value of sðnÞ; that satisfies

m#psðnÞ=dvpm# þ 1. (22)

Define the distance of the signal value sðnÞ from
the index m# (normalized by dv) as

Z ¼
sðnÞ

dv
�m#. (23)

Let hðZÞ be a window function2 that satisfies

hð1� ZÞ ¼ 1� hðZÞ 0pZp1. (24)

Then, for each sample of the signal sðnÞ; n ¼

1; 2; . . . ;N we update the voting by

vðmÞ

 
vðmÞ þ hðZÞ for m ¼ m#;

vðmÞ þ 1� hðZÞ for m ¼ m# þ 1;

(
ð25Þ

where Z is given by Eq. (23). After the voting is
over, resulting in a vector v; we associate the
resampled P̂ with v=N: This transfers the function
illustrated in Fig. 4a to the function illustrated in
Fig. 4b. Then, following Eq. (20), we convolve3

v=N with jsampled (Fig. 4b,c),

p̂quant ¼ ðv=NÞ � jsampled. (26)

Apparently, a natural method to estimate entropy
from a quantized PDF is to follow the discrete
entropy definition and use

~Hs ¼
XNbins

m¼1

p̂quantðmÞ log ½p̂quantðmÞ�. (27)

However, the use of discrete binning creates
fluctuations in the entropy estimate as a function
of w: In addition, the entropy calculated by Eq. (4)
is based on a PDF estimate at sðlÞ; rather than the
discrete probability pquant: We thus estimate
p̂½sðlÞjs� by interpolating pquant onto the points
sðlÞ; using the same interpolation function hðZÞ as
before (Fig. 4c,d)

p̂½sðlÞjs� ¼ hðZÞp̂quantðm
#Þ

þ ½1� hðZÞ�p̂quantðm
# þ 1Þ. ð28Þ
2We use a linear interpolation function hðZÞ ¼ 1� Z:
3We used a Matlab code for fast convolution based on FFT,

which had been written by Luigi Rosa, email: luigi.rosa@tisca-

li.it, http://utenti.lycos.it/matlab.

http://utenti.lycos.it/matlab
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Fig. 5. Quantization of functions and derivatives. A continuous

function (dotted). A quantized version of the function (dashed).

A version of the function, based on a quantized derivative
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Finally, the estimate of the DE is calculated by

Ĥs ¼ �ð1=NÞ
XN

n¼1

log fp̂½sðlÞjs�g. (29)

The voting, the interpolation and the entropy
calculation (Eqs. (25), (28) and (29)) require OðNÞ
operations. The convolution (Eq. (26)) requires
OðM log NkernelÞ operations,4 where Nkernel is the
length of jsampled: In addition, calculating the
sources (Eq. (1)) requires OðNNf Þ operations.
Therefore, the overall complexity of calculating
the DEs is

Oentropy
approx ¼ OðN log N þNNf Þ. (30)

This is significantly lower than the complexity
Oexplicit

entropy given in Eq. (5).
(solid).
5. Estimation of the entropy gradient

5.1. Drawbacks of an intuitive approach

We considered several approaches for estimat-
ing the gradient of the DE in OðN log NÞ: The
most intuitive approach is to differentiate the
entropy approximation that we derived in Section
4 and calculate it efficiently using back propaga-
tion. However, as we already mentioned, discrete
binning causes fluctuations in the entropy value.
Fig. 5 crudely illustrates the effect of quantization
on optimization. Three curves are presented: the
dotted curve depicts a continuous function with a
single global minimum. The dashed curve depicts a
quantized version of this function. Differentiating
the quantized curve amplifies the quantization
noise. This might hinder the convergence of
gradient based optimization.

We avoid this problem by taking a different
approach. Rather than differentiating an approx-
imation based on quantization, we elect to
approximate the DE derivatives directly. The solid
curve in Fig. 5 depicts a version of the dotted
curve, that has quantized values of the derivative.
Clearly, quantization of the derivative itself does
4Typically the number of bins M and the kernel support

Nkernel are of the order of N or smaller. Therefore, the

complexity needed is at most OðN log NÞ:
not corrupt the function as much. Thus optimiza-
tion based on the quantized derivative suffers less
from quantization noise amplification.
5.2. Distinct estimation of the gradient

The entropy gradient is calculated using a chain
rule. First, we derive the entropy gradient with
respect to the signal samples. Then, we calculate
the entropy gradient with respect to the desired
parameters by

rwHs ¼
1

N

XN

l¼1

gðl;w; yÞ
qHs

qsðlÞ

� 	
, (31)

where gðl;w; yÞ is given in Eq. (6). The entropy
derivatives in Eq. (31) are given by

qHs

qsðrÞ
¼ �

1

N

XN

l¼1

1
N

PN
n¼1j

0ðSl;nÞðdl;r � dn;rÞ

1
N

PN
n¼1jðSl;nÞ

¼ �
1

N

1
N

PN
n¼1j

0ðSr;nÞ

p̂½sðrÞjs�

þ
1

N

XN

l¼1

1
N
j0ðSl;rÞ

p̂½sðlÞjs�
, ð32Þ

where dl;r is the Kroneker delta and p̂½sðlÞjs� is
defined in Eq. (20).
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Until this stage the gradient equations have been
accurate analytical formulae. Now we will derive a
fast approximation to these formulae using FFT.
Define

F0½sðlÞjs� � ð1=NÞ
XN

n¼1

j0½sðlÞ � sðnÞ� (33)

and

F 0½sðlÞ� �
1

N

XN

n¼1

j0½sðnÞ � sðlÞ�

p̂½sðnÞjs�
. (34)

Eq. (32) can be written as

qHs

qsðlÞ
¼

1

N

F0½sðlÞjs�
p̂½sðlÞjs�

� F 0½sðlÞ�. (35)

Note that p̂½sðnÞjs� is known, since we had
calculated it with the DE itself, prior to the
gradient calculation.

Recall that Eq. (2) is represented by Eq. (20). In
analogy, Eq. (33) is equivalent to

F0ðtjŝkÞ ¼ P̂ � j0, (36)

where P̂ is given by Eq. (21), and j0mirror
ðtÞ ¼

j0ð�tÞ: We compute a discrete approximation to
Eq. (36) using the array v (which is P̂; uniformly
resampled by Eq. (25))

F̂
0

quant ¼ ðv=NÞ � j0sampled. (37)

Here j0sampled is a sampled version of j0: Then, we
interpolate F̂

0

quant to the set of points sðlÞ: We do so
similarly to Eq. (28).

In a somewhat analogous manner, Eq. (34) is
equivalent to

F 0ðtjŝkÞ ¼ ðP̂=p̂Þ � j0mirror
. (38)

It is approximated by uniformly resampling P̂=p̂:
similarly to Eq. (25), we define a weighted vote
function vw on the uniform quantization grid. For
each sample sðlÞ; we update the voting by

vwðmÞ

 

vwðmÞ þ
hðZÞ

p̂½sðnÞjs�
for m ¼ m#;

vwðmÞ þ
1� hðZÞ
p̂½sðnÞjs�

for m ¼ m# þ 1;

8>>><
>>>:

ð39Þ
where p̂½sðnÞjs� had been computed in Eq. (28),
while m# and Z are defined in Section 4. We
associate vw=N with the resampled P̂=p̂: We then
define a sampled version of j0mirror; termed
j0mirror

sampled: We thus imitate Eq. (38) by

F̂
0

quant ¼ ðvw=NÞ � j0mirror
sampled. (40)

Finally, we interpolate F̂
0

quant to the set of points
sðlÞ; similarly to Eq. (28).

Recall from Section 4 that the complexity of the
voting and the interpolation is OðNÞ; while the
complexity of the discrete convolution is
OðN log NÞ: Moreover, the complexity of
Eq. (31) is OðNdimN þNgNÞ; while the complexity
of Eqs. (33)–(35) is OðNÞ: Thus the overall
complexity of calculating the DE gradient is

Ogradient
approx ¼ O½N log N þNðNdim þNgÞ�. (41)

This complexity is significantly smaller than
Eq. (10). Moreover, in the common case for which
the number of degrees of freedom Ndim is much
smaller than the sample size N, a significant benefit
is achieved even relative to Eq. (19). A pseudo-
code for the estimator and of the DE and its
gradient is given in Fig. 6.

Note that the formulation up to Eq. (38) is made
up of analytic formulae of the kernel entropy
gradient. The quantization is done only after the
differentiation. Therefore, there is no amplification
of quantization noise. The benefit with respect to
numerical performance is demonstrated in Fig. 7.
It presents the norm of the gradient during
optimization for two implementations run on an
example. The solid curve presents the gradient
calculated using the implementation considered in
Section 5.1. The dashed curve presents the
gradient calculated by the implementation de-
scribed in Section 5.2. Both implementations used
identical data and optimization parameters. The
former approach did not converge to the desired
minimum. The reached norm of the gradient was
higher by two orders of magnitude than the
expected quantization error. On the other hand,
the optimization based on the approximation of
the entropy gradient converged quickly to a lower
gradient value, which is in the order of magnitude
of the expected quantization error. Moreover, we
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Fig. 6. Pseudo-code for calculating the entropy and its gradient

via fast kernel convolutions.

50 100 150 200 250 300

10
 -4

10
 -2

10
0

10
2

10
4

Fig. 7. The consequence of signal quantization (binning) on the

optimization process of the entropy. The norm of the DE

gradient is plotted as a function of the optimization iteration

for: the gradient of the entropy approximation (solid). The

approximation of the entropy gradient (dashed).
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note that the final value of the cost function
(beside the gradient of this function) was improved
by the method described in Section 5.2.
6. ICA using fast kernel entropy optimization

MI of signals is a natural criterion for statistical
dependency and is thus used in ICA algorithms
(see for example in Refs. [2,17,23,28,29] and
references therein). MI is based on estimates of
entropies of signals, and therefore we use it as an
application for our efficient optimization algo-
rithm.
6.1. ICA and mutual information

Let fs1; s2; . . . ; sKg be a set of independent
sources. Each source is of the form sk ¼

½skð1Þ; skð2Þ; . . . ; skðNÞ�
T: Let fy1; y2; . . . ; yKg be a

set of measured signals, each of which being a
linear mixture of the sources. Denote
fŝ1; ŝ2; . . . ; ŝKg as the set of the reconstructed
sources and W as a separation matrix. Then,

½ŝ1; ŝ2; . . . ; ŝK �
T ¼W½y1; y2; . . . ; yK �

T. (42)

The goal of ICA is to find the separation matrix W

that yields estimated sources that are independent,
thus inverting the mixing process. The indepen-
dence criterion is the MI of the estimated sources.
The MI of the K random variables ŝ1; ŝ2; . . . ; ŝK is
(see for example Ref. [17])

Iðŝ1; ŝ2; . . . ; ŝK Þ ¼Hŝ1
þ � � � þHŝK

� log jdetðWÞj

�Hmeasurements, ð43Þ

where HðŝkÞ is the entropy of ŝk: Here
Hmeasurements is independent of W and is thus
constant for a given measurements set
fy1; y2; . . . ; yKg: For this reason, we ignore
Hmeasurements in the optimization process. Thus,
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the minimization problem that we solve is

min
w

XK

k¼1

Hŝk
� log j detðWÞj þ lEnormalization

( )
,

ð44Þ

where

Enormalization �
XK

k¼1

kŝkkffiffiffiffiffi
N
p � 1

� �2

(45)

penalizes for un-normalized sources. This penalty,
weighted by a constant l resolves ambiguities
arising from the scale invariance of MI.5 The
complexity of calculating a signal norm is N.
Therefore, the complexity of Eq. (45) is
Onormalization ¼ OðKNÞ:

The gradient of Eq. (45) is

2ffiffiffiffiffi
N
p

XK

k¼1

1ffiffiffiffiffi
N
p �

1

kŝkk

� � XN

n¼1

ŝkðnÞUk;n

" #
, (46)

where Uk;n is a K � K matrix, all of whose rows are
zeros except the kth row. That row equals
½y1ðnÞ; . . . ; yK ðnÞ�: Eq. (46) has two nested summa-
tions over matrices, each having K non-zero
elements. Therefore, Eq. (46) has a complexity of
Onormalization

gradient ¼ OðK2NÞ: The gradient of
log j detðWÞj is (for example see Ref. [17]).

rw½log j detðWÞj� ¼ ðW�1Þ
T. (47)

The only terms in Eq. (43) that remain to be
addressed in the optimization formulation are the
entropies of the estimated sources Hŝk

:

6.2. Optimization of MI

Many existing ICA algorithms have assumed
rough models for the signals’ PDFs (see Refs.
[1,16,24]) or used high-order cumulants instead of
MI (see Ref. [4]). These approximations can
sometimes lead to failure, as demonstrated in
Ref. [2], as well as in our subsequent example. In
contrast, robust source separation can be achieved
with non-parametric entropy estimation. An ex-
isting non-parametric ICA method is based on
5This term does not affect the separation quality, but

improves convergence of the optimization algorithm as

explained in the appendix.
order statistics (Ref. [18]). It has an
O½ðK2=2ÞN log N� complexity, yet has two major
drawbacks. First, this estimator is not differenti-
able. Therefore the optimization is done by
exhaustive search, which is computationally costly
in high dimensions. Second, in order to achieve
this complexity, pre-whitening of the data was
used with consequent estimation of an orthogonal
separation matrix. This procedure may reduce the
separation performance (see for example [5]).

An additional non-parametric ICA method is
based on kernel estimation of PDFs (see Ref. [2]).
Substituting Eq. (4) into Eq. (43) yields the MI
estimator

Iðŝ1; ŝ2; . . . ; ŝK Þ ¼ �
XK

k¼1

1

N

XN

l¼1

log
1

N

XN

n¼1

jðSl;nÞ

( )

� log jdetðWÞj, ð48Þ

where we ignore Hmeasurements and recalling that we
already handled the normalization term in Eqs.
(45) and (46). As in Eq. (1), denote f k as the
function creating the kth signal ŝk based on the
measurements ½y1; . . . ; yK �: Then,

ŝkðnÞ ¼ f kðn; y;wkÞ

¼ ½wk;1; . . . ;wk;K �½y1ðnÞ; . . . ; yK ðnÞ�
T, ð49Þ

where wk is the kth row of W: The gradient of Eq.
(49) is

gkðn; y;wkÞ ¼ ½y1ðnÞ; . . . ; yK ðnÞ�
T 8k. (50)

Differentiating Eq. (48) and substituting Eq. (50)
yields (see Refs. [2,19])

rwIðŝ1; ŝ2; . . . ; ŝK Þ

¼
XK

k¼1

1

Ns2

XN

l¼1

PN
n¼1 jðSl;nÞSl;nYk;l;nPN

n¼1jðSl;nÞ

" #
� ðW�1Þ

T,

ð51Þ

where Yk;l;n � Uk;l � Uk;n:
For any single source k 2 ½1; . . . ;K �; f kðn; y;wkÞ

involves K multiplications, i.e., Nf ¼ K : We
need to calculate the K sources and the DE for
each one of them. Accounting, in addition, for the
OðK3Þ calculations needed for log j detðWÞj; the
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Table 1

Simulation results: The accuracy of the separation is measured

in terms of the signal to interference ratio (SIR)

Algorithm SIR (dB) Time

Non-parametric ICA 18� 4 760 min

with back propagation

Non-parametric ICA 22� 3 1.2 min

with fast kernel convolution

Jade 7� 4 0.2 s

InfoMax 1� 0:5 1.4 s

InfoMax with pre-filtering 8� 4 1.6 s

Fast ICA 4� 4 1.1 s

Fast ICA with pre-filtering 5� 3 1.9 s

6The InfoMax and FastICA algorithms are more efficient

when the measured signals are sparse. We thus pre-filtered the

inputs to these algorithms using the derivative operator

½�1 0 1�=2:
7Our separation procedure was based on the BFGS Quasi-

Newton algorithm as implemented in the MATLAB optimiza-

tion toolbox (function FMINUNC).
8We used a grid having M ¼ 1000 bins. In order to limit the

signals to the grid range we use, we first performed a rough

normalization of the raw measurements. First, we subtracted

the mean of each signal. Then, we divided each signal by its

standard deviation.
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complexity of Eq. (48) is

Oexplicit
MI ¼ OðK3Þ þ KOexplicit

entropy

¼ OðK3 þ KN2 þ K2NÞ. ð52Þ

As for the complexity of the MI gradient, note that
gkðn; y;wkÞ is equivalent to the non-zero elements
of matrix Uk;n; which is used in Eq. (46). For this
reason, the matrix Yk;l;n in Eq. (51), is equivalent
to Gðl; n; y;wkÞ used in Eq. (7). In this case Ndim ¼

K while Ng ¼ 0: This applies to each of the K

sources. Accounting for all sources, the complexity
of Eq. (51) is

Oexplicit
MIgrad ¼ OðK3Þ þ KOexplicit

gradient

¼ OðK2N2 þ K3Þ, ð53Þ

where we include the OðK3Þ calculations needed for
inverting W: The complexity given in Eq. (53) is
very high.

A prior algorithm based on non-parametric
kernel estimation [23] has a complexity of
Oð3K N þ K2NÞ; which may be tolerated for a
small number of sources, but has exponential
growth in K. On the other hand, by applying back
propagation (Section 3.2) we achieve a complexity
of O

backpropagation
MIgrad ¼ OðKN2 þ K2N þ K3Þ for cal-

culating both the MI and its gradient. Moreover,
by applying entropy approximation by discrete
convolution (Sections 4 and 5) we reduce the
complexity to Oapprox

MI ¼ Oapprox
MIgrad ¼ OðKN log N þ

K2N þ K3Þ: This allows fast ICA, while exploiting
the advantages of non-parametric methods in
high-dimensional problems.

6.3. Demonstrations

We performed several separation demonstra-
tions. A set of simulations dealt with random
sources. We simulated K ¼ 6 sources: four of the
sources were random i.i.d., while the other two
were extracted as data vectors from the Lena and
Trees standard pictures. The random i.i.d. sources
had different PDFs (an exponential PDF[a ¼ 2],
an exponential PDF[a ¼ 0:6], a normal PDF[0,1]
and a Rayleigh PDF[b ¼ 1]). The sample size of
each signal was N ¼ 3000: The sources were mixed
using randomly generated full rank matrices
(condition numberp20).
Source separation was attempted using three
parametric ICA algorithms (see Refs. [4,17,21]):
InfoMax, Jade and Fast ICA.6 The software for
those algorithms was downloaded from the web-
pages of the respective authors. In addition,
separation was attempted using two non-para-
metric7 ICA algorithms: the first is based on Ref.
[2]. We implemented the algorithm described in
Ref. [2] with the exception of using the method
described in Section 3, in order to accelerate the
gradient calculation. We then implemented the
algorithm8 described in Sections 4 and 5.

The results of the simulations are presented in
Table 1. The separation quality is given by the
signal-to-interference ratio (SIR). The SIR is the
energy of the signal divided by the energy of the
source cross-talk:

SIR ¼ min
k

kskk
2

ksk � ŝkk
2

� �
. (54)
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Fig. 8. Four samples of a set of 10 pictures involved in the separation simulation. The mixed signals were pre-filtered by a derivative

operator before the separation. The separation SIR is 20 dB.
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Note that Eq. (54) uses the signal k having the
minimal ratio, i.e., having the worst separation
quality.9 After performing numerous simulations,
we report the mean SIR and the standard
deviation of the SIR. Clearly, Table 1 shows that
practically no degradation of the separation
quality is caused by our entropy approximation.
On the other hand, the improvement in the run
time is huge, compared to the competing non-
parametric method. Our method does not compete
with the parametric algorithms over run time, but
it outperforms them in separation quality. We can
separate signals that the parametric methods fail
to handle. In order to demonstrate the separation
quality, we performed an additional set of separa-
tion simulations, this time based on 10 pictures.
The pictures were mixed using randomly generated
full rank matrices (condition numberp100). The
separation results are presented in Fig. 8.
7. Conclusions

We have presented two techniques for acceler-
ating the estimation of entropy and its gradient
using kernel methods. The first technique improves
gradient computation using back propagation,
and lowers the gradient complexity to be compar-
9As explained in the appendix, the estimated ŝk is prone to

permutation and scale ambiguities. Thus, Eq. (54) is applied to

separation results that are compensated for these ambiguities.
able to that of the entropy estimation itself. The
second technique provides further acceleration
using fast convolution, based on resampling
(quantization) of signals to a uniform grid. More-
over we presented an approach for gradient
approximation, which is more numerically sound
than the straightforward approach. The low
computational cost of our algorithms makes
non-parametric entropy estimation applicable to
high-dimensional problems and large sample sizes.
It will be interesting to explore extensions to this
approach to other entropy estimators such as
[13,14] and thus benefit from efficient gradient
based optimization of high dimensional joint
entropy estimators.10
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Appendix: Ambiguities in MI optimization

Optimization of MI possesses three ambiguities:
Permutation, sign and scale.

Permutation ambiguity: Let s1; s2 be two signals.
Then

Is1;s2
¼Hs1

þHs2
�Hs1;s2

¼Hs2
þHs1

�Hs2;s1
¼ Is2;s1

. ðA:1Þ

Therefore, the reconstructed signals appear in an
arbitrary order. This ambiguity does not concern
us in this work.

Scale and sign ambiguities: Let s1; s2 be two
statistically independent signals. Their joint PDF
is thus separable:

ps1;s2
ðs1; s2Þ ¼ ps1

ðs1Þps2
ðs2Þ. (A.2)

Therefore, the MI of s1; s2 is Is1;s2
¼ 0 (see

for example [7]). Denote s̄1 ¼ r1s1 and s̄2 ¼ r2s2:
The joint PDF of s̄1; s̄2 is still separable and
equals

ps̄1;s̄2
ðs̄1; s̄2Þ ¼ ps̄1

ðs̄1Þps̄2
ðs̄2Þ. (A.3)

Therefore, their MI is zero as well. Assume that
the matrix W is a solution to the optimization
problem, i.e. it causes the MI of the reconstructed
sources ŝ1; . . . ; ŝK to be zero. Thus, if R is a
diagonal matrix, then also RW is a solution to the
optimization problem. Here the MI of
r1ŝ1; . . . ;rK ŝK is zero, where r1; . . . ;rK are the
diagonal elements of R: Therefore, the solution W

is derived up to a scaling of each of its rows. The
sign ambiguity is a special case of the scale
ambiguity, for which r ¼ �1:

The scale ambiguity implies that we have
infinitely many solutions to the separation pro-
blem. This ambiguity may cause the optimization
algorithm to be unstable. In order to stabilize the
algorithm, we add a penalty term that determines
the scale of the estimated sources. We choose to
force the norm of the estimated sources to be

ffiffiffiffiffi
N
p

:
This normalization solves only the scale ambigu-
ity, but does not resolve the sign ambiguity.
Nevertheless, the sign ambiguity leads to a finite
number of solutions.
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