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Abstract

We derive computed tomography (CT) of a time-varying
volumetric scattering object, using a small number of mov-
ing cameras. We focus on passive tomography of dynamic
clouds, as clouds have a major effect on the Earth’s cli-
mate. State of the art scattering CT assumes a static object.
Existing 4D CT methods rely on a linear image formation
model and often on significant priors. In this paper, the an-
gular and temporal sampling rates needed for a proper re-
covery are discussed. Spatiotemporal CT is achieved using
gradient-based optimization, which accounts for the corre-
lation time of the dynamic object content. We demonstrate
this in physics-based simulations and on experimental real-
world data.

1. Introduction
Computed tomography (CT) aims to recover the inner

structure of three dimensional (3D) volumetric heteroge-
neous objects [15, 16]. CT has extensive use in many do-
mains. These include medicine [14, 41], sensing of at-
mospheric pollution [2], geophysics [49] and fluid dynam-
ics [27, 51, 52]. CT requires multi-view imaging [3, 22].
In nearly all CT approaches, the object is considered static
during the multi-view acquisition. However, often the ob-
ject changes while views are acquired sequentially [8, 53].
Thus, effort has been invested to generalize 3D CT to four-
dimensional (4D) spatiotemporal CT, particularly in the
computer vision and graphics communities [42, 52, 53].
This effort has focused on linear-CT modalities. Linear
CT is computationally easier to handle, thus common for
decades, mainly in medical imaging [19]. Medical CT of-
ten exploits the periodic temporal nature of organ dynamics,
to synchronize sequential acquisitions [41].

This paper deals with a more complicated model: scat-
tering CT. It is important to treat this case for scientific, so-
cietal and practical reasons. The climate is strongly affected

𝑡1 𝑡4 𝑡7
Time

orbit orbit
orbit

Figure 1. Multiple moving sensors image a time-varying object
(cloud) from multiple-views. Tomography seeks the inner content.

by interaction with clouds [13]. To reduce major errors in
climate predictions, this interaction requires a much finer
understanding of cloud physics. Current models are based
on remote sensing data that is analyzed under the assump-
tion that the atmosphere and clouds are made of very broad
and uniform layers. This leads to errors in climate under-
standing. To overcome this problem, 3D scattering CT has
been suggested as a way to study clouds [29, 30, 46].

Scattering CT of clouds requires high resolution multi-
view images from space. There are spaceborne and high-
altitude systems that may provide such data, such as AirM-
SPI [6], MAIA [4], HARP [38], AirHARP [35] and the
planned CloudCT formation [43]. These systems are so ex-
pensive, that it is unrealistic to deploy them in large num-
bers to simultaneously image the same clouds from many
angles. Therefore, in practice, platforms move above the
clouds: a sequence of images is taken, in order to span
and sample a wide angular breadth (Fig. 1), but the cloud
evolves meanwhile. Hence there are important reasons to
derive 4D scattering CT of clouds.

We pose conditions for performing this task. These relate
to temporal sampling and angular breadth, in relation to the
correlation time of the evolving object. Then, we general-
ize prior 3D scattering CT, to spatiotemporal recovery using
data taken by moving cameras. We present an optimization-
based method to reach this. The method is demonstrated
both in rigorous simulations and on real data.
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2. Theoretical Background
2.1. Cloud Microphysical Parameters

Warm clouds are composed of water droplets. The
droplet size distribution is typically parameterized by an ef-
fective radius re and a dimensionless droplet variance ve

(see [17] for details). These parameters vary with spatial lo-
cation x, and assumed here to be uniform in a voxel around
x. An additional characterization is the liquid water con-
tent (LWC), L, which increases linearly with the number-
density and volume of droplets in a voxel [17, 30].

A common approximation in convective cloud models
is that L and re tend to increase with altitude inside a
cloud [32, 47, 54]. Let z0 be the cloud base. For adiabatic
convection, at z > z0

re ≈ ξr(z − z0)
1
3 + re0 , L ≈ ξL(z − z0) , (1)

where re0 is the effective radius at the cloud base and
ξr, ξL > 0. The error of this approximation grows as the
cloud mixes with its surroundings air at the cloud shell,
mainly at its top. The values of re, ve tend to be rather
uniform per altitude, while L can change significantly in
3D [21].

Overall, the vector νt = [Lt, ret , vet ] characterizes a voxel
at time t. Concatenating these parameters across all spa-
tial voxels results in a vector νt, which expresses the cloud
structure at time t.

2.2. The Forward Model

The interaction of radiation with a scattering volumetric
object is modelled by 3D radiative transfer, which includes
multiple scattering. DefineMλ[·] as a differentiable opera-
tor that maps microphysical parameters to macroscopic op-
tical parameters corresponding to wavelength λ, using Mie
theory [12, 30]. Let

L(x,Ω, t) = RT(Mλ[νt]) (2)

be the radiance resulting from radiative transfer at each spa-
tial location x and each direction Ω. There are various
algorithms to implement RT(Mλ[νt]), including Monte-
Carlo [32, 34] and the spherical harmonic discrete ordi-
nate method (SHDOM). We use the latter, as it is consid-
ered trustworthy by the scientific community [9] and has an
open-source1 online code [28] .

A camera observes the scene from a specific location,
while each pixel in a camera samples a viewing direction

1Eqs. (3,6,7,16) use the forward model F and Jacobian ∂F/∂ν as
black boxes, agnostic to a specific implementation. A differential RT
solver as Mitsuba2 [39] can be used, as any other solver. Currently, how-
ever, Mitsuba2 supports neither heterogeneous media having a mixture of
spatially varying materials (both air molecules and water droplets with
varying densities), nor mixtures of Mie phase functions. To comply with
atmospheric science standards, we use SHDOM as our renderer.

Ω. Hence, imaging (forward model) amounts to sampling
the output of 3D radiative transfer at the camera locations
and the lines of sight of the pixels. This sampling integrates
over the camera exposure time and spectral bands. Camera
sampling is denoted by a projection operator Px,Ω.

The forward image formation model F (νt) yields the
expected graylevel at a pixel, at time t:

Ix,Ω,t = F (νt) ≈ γcamPx,Ω {RT(Mλ[νt])} . (3)

Here γcam expresses camera properties, including the lens
aperture area, exposure time, spectral band, quantum effi-
ciency and lens transmissivity. Eq. (3) assumes that the ex-
posure time is sufficiently short, such that within this time,
the scene and the camera pose vary insignificantly.

Empirical measurements include random noise [2,6,48].
The noise mainly originates from the discrete nature of pho-
tons and electric charges, which yields a Poisson process.
There are additional noise sources, and their parameters can
be extracted from the sensor specifications. Denote incor-
poration of noise into the expected signal by the operator
N . Then, a raw measurement is

yx,Ω,t = N {Ix,Ω,t} . (4)

Per t, all multi-view, multi-pixel measurements are concate-
nated into a vector yt. Concatenating yt over all t yields the
vector y.

2.3. Scattering 3D Tomography of Clouds

This section expresses the state of the art in 3D scattering
tomography [32,44,47], in which νt is assumed to be invari-
ant to t. Hence, t is generally dropped from the derivations
here. Estimation of ν is done by minimization of a cost E ,
which penalizes the discrepancy between y and the forward
model,

ν̂ = argmin
ν
E [y,F (ν)] . (5)

Eq. (5) can be solved efficiently by gradient-based meth-
ods. By setting

E [y,F (ν)] =
1

2
‖y −F (ν) ‖22 , (6)

the gradient of Eq. (5) with respect to ν is

g(ν) ≡ ∂E [y,F (ν)]

∂ν
=
∂F (ν)

∂ν
[F (ν)− y] . (7)

Gradient-based optimization performs per iteration k

ν(k + 1) = ν(k)− ηg[ν(k)] (8)

where η is a step size. In scattering CT, computing the Ja-
cobian ∂F (ν) /∂ν is complex. However, there are approx-
imations to the Jacobian of 3D RT, which can be computed
efficiently [29, 31, 32], making recovery tractable.
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We stress that traditional CT methods cannot apply to
cloud recovery. To see this, let Lsun be the solar irradiance.
Let aground ≈ 0.05 be the ground albedo. The range of
the optical depth Tcloud of warm clouds is typically 10-100.
The albedo of warm clouds is acloud ≈ 0.5. The radiance
directly transmitted from the ground through a cloud to a
sensor above is

D ∼ Lsunagroundexp(−Tcloud) . (9)

Sunlight reflected above by a cloud has radiance

S ∼ Lsunacloud . (10)

From these orders of magnitude, D � S. The measured
signal is dominated by S. Suppose a naive approach fol-
lowing traditional CT, associating a measured signal with
direct transmission i.e., S ≈ D. Then from Eqs. (9,10),
CT estimates T̂cloud ≈ log(aground/acloud). From these or-
ders of magnitude, T̂cloud < 0, which is not-physical. Thus,
traditional CT is irrelevant for cloud tomography in visible
light.

2.4. Temporal Sampling of a Random Object

A temporal sample indexed l corresponds to continuous
time t′l. The time interval between consecutive samples is
T = |t′l+1− t′l|. Consider a continuously varying object βt.
A temporal sample is denoted βsample

t′ . The Nyquist sam-
pling theorem [40] relates to objects whose time-spectrum
is limited to temporal frequencies ω satisfying |ω| < B,
where B is a cutoff frequency. Then, time domain samples
satisfying T ≤ (2B)−1 can yield reconstruction of βt using
a linear superposition:

βt(x) ∼
∑
t′

wt(t
′|T )βsample

t′ (x) . (11)

There, the superposition uses wt(t′|T ) = sinc[(t− t′)/T ].
There is a generalization, however, to cases where the

object βt is random and not strictly band-limited. The tem-
poral auto-correlation of βt is

α(τ |σ) = 〈βt(x),βt−τ (x)〉t,x . (12)

The function α(τ |σ) generally decays with |τ |, where σ
is the effective decay time of α, termed correlation time.
Two limiting cases are illustrative. For σ −→ ∞, we have
α(τ |σ) −→ constant. This means that the object β is ef-
fectively static. In contrast, for σ −→ 0, we have α(τ |σ) −→
δ(t − t′), i.e., a Dirac delta function. This means that the
object β varies so fast, that at any time t its state is uncor-
related to the state at other times.

Once again, βt can be linearly reconstructed from tem-
poral samples using Eq. (11), but wt(t′|T ) can be general.
Any sampling rate and reconstruction kernel can be used,
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Figure 2. Illustration of Eq. (13) for Gaussian or triangular spectra.

but then there is a reconstruction error. The reconstruction
mean squared error (MSE) has a bound [36]. Let Λ(ω) be
the time-spectrum of the random object, i.e., the Fourier
transform of α(τ |σ). The MSE bound [36] is then

MSE(T ) =
T

2π

∫ π

−π

Λ(ω)−

∑
q∈Z

Λ2[ω − (2π/T )q]∑
q∈Z

Λ[ω − (2π/T )q]

 dω .
(13)

For illustration, Fig. 2 plots MSE(T ) for objects that have
Gaussian or triangular spectra. When T < σ, the error is
negligible, but error accumulates significantly as the sam-
pling interval T increases beyond σ. Hence, to keep recon-
struction error small, an efficient temporal sampling interval
should satisfy T ≈ σ.

3. Clouds: Correlation Time and Sampling
Warm convective clouds are governed by air turbulence

of decameter scale. In these scales [13], the correlation time
of content in a voxel is about 20 to 50 seconds. This indi-
cates that 4D spatiotemporal clouds can be recovered well
using 4D spatiotemporal samples, if the temporal samples
are about 25 seconds apart. The lifetime of a warm convec-
tive cloud is typically measured in minutes.

Consider a cloud simulation, described in detail in
Sec. 6. The cloud evolves for about 10 minutes. For each
cloud voxel, we calculated the temporal auto-correlation of
Lt. Similarly, temporal auto-correlations were derived for
horizontally-averaged ret and vet . The auto-correlation func-
tions of Lt and ret are plotted in Fig. 3a (Eq. 12). The auto-
correlation function of ret behaves similarly to that of vet .
Clearly, the correlation times of ret and of vet are very long,
comparable to the lifetime of a cloud, and longer than the
typical time it takes to acquire multi-view data of clouds.
Hence, when recovering microphysical parameters re and
ve, we neglect temporal variations.

On the other hand, Lt has a short correlation time:
σ ∼ 25 sec. Hence, 4D recovery is necessary for Lt, if data
is sparsely sampled in time. Following the conclusion of
Sec. 2.4, it is advisable to sample warm convective clouds
at temporal sampling interval of T ≈ σ ≈ 25 sec.

From Sec. 2.4, at an arbitrary t, reconstruction of Lt
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Figure 3. (a) Auto-correlation of cloud field microphysics. The
auto-correlation of LWC and re decrease to 0.5 after 25 sec and
185 sec, respectively. Typical cloud multi view sensing is about a
minute, during which the LWC auto-correlation decreases to 0.26,
while the auto-correlation of re is 0.82. (b) MSE (Eq. 13) of LWC
and re.

from samples would use a temporal kernel whose effective
width is σ. In CT, however, we do not have direct access to
the object samples. We only have noisy projections of radi-
ance scattered by the object. Thus, reconstruction does not
involve direct application of the optimal kernel [36], which
achieves the bound in Eq. (13). Reconstruction involves a
tomographic process, which we describe in Sec. 5.

4. Tomographic Angular Extent
Section 2.4 dealt with sampling of an object, as if 4D

measurements are done in-situ. However, in CT, we have no
direct access to νt: we only measure projections yt. As we
discuss now, projections must have a wide angular breadth,
while object evolution is small.

Consider an extreme case. Let a cloud be temporally
constant and reside only in a single voxel, over the ocean.
Viewed from space by two cameras simultaneously, cloud
recovery here amounts to triangulation. In triangulation, the
best cloud-localization resolution is obtained if the angular
range between the two cameras is 90◦. At small baselines,
localization decreases linearly with a decreasing angular ex-
tent. When more than two cameras operate, the trend is
similar. Consider an error measure that has been used in 3D
cloud scattering CT [20, 29, 30, 32],

ε =
‖Ltrue − L̂‖1
‖Ltrue‖1

. (14)
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Figure 4. A static heterogeneous cloud and a single-voxel “cloud”
(having size 20m× 20m× 20m) are recovered from nine view-
points using [30]. The plots are of errors defined in Eq. (14).

Here L̂ is the estimated 3D cloud LWC field. Fig. 4 plots
ε when CT attempts to recover a single-voxel of a static
cloud (extending 20 m), when 9 cameras surround it from
500 km away, while the true re, ve are used. Above ≈ 60◦

total angular extent, recovery reaches a limiting excellent
quality, but quality is very poor at narrow angle spans.

In general, objects have multiple voxels. In linear-CT (as
in medical X-ray CT), information loss due to limited-angle
imaging is known as the missing cone of frequencies [1,33].
In scattering CT, with the exception of very sparse objects,
the missing cone linear theory does not apply. While a pure
theory for nonlinear CT does not exist, the implication of
angular span can be assessed numerically. Let us consider a
static cloud in a single state, simulated as in Sec. 6. There
are no dynamics. We can then see how angular sampling
alone affects the quality of recovery. Results are shown in
Fig. 4. There is a marked degradation of quality if the an-
gular extent is narrow.

So far, this section dealt with static clouds. Clouds are
considered nearly static between times t, t′ if |t − t′| < σ.
The viewing angular extent covered in those times (and
in intermediate times) is denoted Θ(t, t′), in radians. So,
within time span approximately equal to σ, good recovery
can be achieved only if 2Θ(t, t′)/π is large. If it is low, then
spatial (altitude) resolution in CT recovery is lost. Most CT
systems cover wide angular extent, eventually. So, quality
is set by the angular rate. Define a dimensionless figure

ρ =
2Θ(t, t′)

π

σ

|t− t′|
. (15)

Good 4D recovery requires ρ & 1, while T . σ (Sec. 3).
The more these conditions are violated, the worse 4D CT is
expected to perform.

5. 4D Scattering Tomography
5.1. Estimation of the Liquid Water Content

We now generalize Eq. (8) to 4D CT. Data is captured se-
quentially at the time set T = {t1, t2, . . . , tNstate}, while
the object evolves. At each t′ ∈ T , the object is viewed
simultaneously from a set of viewpoints Ct′ , yielding a con-
catenated data vector yt′ . At that time, the modelled LWC
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is the vector Lt′ . The set of LWC values in all sampled
times is denoted B = {Lt′}t′∈T . At optimization iteration
k, the set of all modelled LWC values is B(k).

Let wt(t′|σ) be a normalized weighting function. Con-
sider the vector

gt(B) =
∑
t′∈T

wt(t
′|σ)

∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] , (16)

and an iteration move to assess Lt at arbitrary time t

Lt(k + 1) = Lt(k)− ηgt[B(k)] . (17)

We use Eqs. (16,17) iteratively for 4D scattering tomogra-
phy. We use wt(t′|σ) which decays in effective time σ.

Sec. 2.4 serves as a guideline for the kernel properties.
However, as said in Sec. 3, we do not have access to the
LWC, but to noisy images. Hence we approximate the opti-
mal kernel using a cropped Gaussian,

wt(t
′|σ) = s exp

(
−|t− t

′|2

2σ2

)
. (18)

Here s is a normalization factor, set so
∑
t′∈T wt(t

′|σ) = 1
while wt(t

′ /∈ T |σ) = 0. In the limiting case where
wt′(t|σ) → 1/N state, the cloud is considered static (cor-
relation time is very long). Then, Eqs. (16,17) degenerate
to Eqs. (7,8). That is, recovery of Lt is tightly related to
{Lt′}t′∈T . More generally, the correlation time σ has a fi-
nite value. Thus, when estimating Lt, there is gradually
lower information carried by Lt′ , as |t′ − t| increases, and
particularly as |t′ − t| > σ. Thus, an iteration to refine an
estimate of Lt should give less weight to Lt′ . Eqs. (16,17)
provide this capacity in a natural way.

Eq. (16) is equivalent to a gradient of a cost function.
This interpretation is detailed in the Supplementary mate-
rial. The complexity of Eqs. (16,17) is similar to static 3D
CT (5), as discussed in the Supplementary material. We
performed iterations using L-BFGS-B [55]. Following [30],
prior to iterations, the set of voxels to estimate is bounded
using space-carving [25]. Space-carving bounds a 3D shape
by back-projecting multi-view images. A voxel is labeled
as belonging to the object, if the number of back-projected
rays that intersect this voxel is greater than a threshold. We
adapt this bounding to dynamic scenarios using two ways:
(i) by setting a coarse spatial grid for carving and (ii) using
a low threshold for labeling voxels as potentially being part
of a cloud.

5.2. Estimation of the Effective Radius

We exploit simplifications with regards to re and ve. As
discussed in Sec. 3, we may treat re and ve as time-invariant
per voxel, in the scale of minutes. Furthermore, by Sec. 2.1,
re can be approximated as laterally uniform (varying verti-
cally) [21], using a parametric model (1) [47]. Moreover, it
can be often assumed that ve = 0.1 [30].

Hence, we focus here on time-invariant estimation of re,
using the model in Eq. (1), namely, estimating the global
parameters ξr, re0, z0. This is done intermittently, among
optimization of the LWC (Sec. 5.1). Overall we estimate
both LWC and re using the following steps:
{i} Perform exhaustive search on ξr, ξL, re0, z0, in a coarse
grid of values, to minimize Eq. (6), assuming time invari-
ance. This sets the initial values of re, {Lt}t∈T .
{ii} Hold re temporally fixed. Run the gradient-based op-
timization described in Sec. 5.1, to estimate {Lt}t∈T in 4D.
Here 10 iterations are run.
{iii} Hold {Lt}t∈T fixed. Perform exhaustive line-search
on ξr, in a fine grid of values, to minimize Eq. (6).
{iv} Return to step {ii}.

6. Simulations

We now test the feasibility of 4D cloud scattering tomog-
raphy. The tests demonstrate the effect of varying σ, the
kernel parameter in Eq. (18), and the importance of the an-
gular breadth. The evolving concentration of cloud water
droplets is the main unknown we sense and seek.2

For realistic complexity, we use a rigorous simulation
based on cloud physics. Clouds are simulated using the
System of Atmospheric Modeling (SAM) [24], which is a
non-hydrostatic, inelastic large eddy simulator (LES) [18,
37, 50]. It describes the turbulent atmosphere using equa-
tions of momentum, temperature, water mass balance and
continuity. We couple SAM to a spectral (bin) microphys-
ical model (HUJI SBM) [11, 23] of the droplets’ size. It
propagates the evolution of the droplet size distribution,
by solving the equations for nucleation, diffusional growth,
collision-coalescence and break-up. This is done on a loga-
rithmic grid of 33 size bins in the domain [2µm, 3.2 mm].

The simulation runs according to the BOMEX case [45]
of trade wind cumulus clouds near Barbados. Humidity and
potential temperature profiles are used as initial conditions,
while the surface fluxes and large-scale forcing are constant.
The mean horizontal background wind is zero. The hori-
zontal boundary condition is cyclic. The domain is 5.12 km
long (cloud diameter is ≈ 800 m) at 10 m resolution. The
vertical resolution is 10 m from sea level to 3 km, coarsen-
ing to 50 m above. Cloud tops reach 2 km. The simulation
expresses an hour, of which 30 minutes includes the cloud’s
lifetime. The temporal resolution is 0.5 sec.

We present results using two different time-varying
clouds: Cloud (i) has size 43× 30× 45 voxels (see Fig. 5).
Cloud (ii) has size 60× 40× 45 (see Supplementary mate-
rial). A voxel size is 10 m× 10 m× 10 m.

2Scatter by droplets is usually more dominant and spatiotemporally
variable than aerosols. Molecular density changes mainly vertically and
is usually known using non-imaging sensors. Molecules then scatter ac-
cording to the known Rayleigh theory. Thus, we focus on droplets.
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Figure 5. Cloud (i). Results of recovery by the Baseline and
Setup A are compared to the ground-truth by a 3D presentation
and scatter plots that use 20% of the data points, randomly selected
for display clarity. The Baseline and Setup A scatter plot
correlations are 0.9 and 0.86, respectively.

6.1. Rendered Measurements

The scene is irradiated by the sun, whose illumination
angle changes in time, relative to the Earth’s coordinates,
while cameras overfly the evolving cloud. The solar
trajectory in Earth coordinates corresponds to Feb/03/2013
at 13:54:30 - 14:01:00 local time, around 38N 123W. We
tested several types of imaging setups :

Setup A: Three satellites orbit at 500 km altitude, one
after the other. Their velocity is 7.35 km/s. The orbital arc-
length between nearest-neighboring satellites is 500 km.
At mid-time of the simulation, t = (t1 + tNstate)/2, the
setup is symmetric around the nadir direction. Then, the
setup spans an angular range of 114◦. Each satellite carries
a perspective camera. The camera resolution is such that at
nadir view, a pixel corresponds to 10m at sea level. Images
are taken every 10 sec, during 60 sec, i.e., N state = 7. This
setup is illustrated in Fig. 1.

𝑡1 𝑡11 𝑡21
Time

Figure 6. Illustration of Setup C. A domain is viewed at 21 push-
broom angles, sequentially.

Baseline: The baseline uses all the accumulated 21
viewpoints of Setup A. However, all viewpoints here
have perspective cameras that simultaneously acquire the
cloud. In other words, this baseline is not prone to errors
that stem from temporal sampling. The baseline is used for
recovery only at time t = (t1 + tNstate)/2.

Setup B: This setup is similar to Setup A, but it uses
only two satellites. Thus, at mid-time of the simulation, the
setup spans a 57◦ angular range.

Setup C: A single camera, similar to the Multi-angle
Spectro-Polarimeter Imager (AirMSPI) [6], is mounted on
an aircraft flying 154◦ relative to North at 20 km altitude.
Imaging has a pushbroom scan geometry, having 10 m spa-
tial resolution at Nadir view. AirMSPI scans view angles
in a step-and-stare mode [6]. Based on AirMSPI PODEX
campaign [5], we set 21 viewing angles along-track:
±65◦, ±62◦, ±58◦, ±54◦, ±50◦, ±44◦, ±38◦, ±30◦,
± 21◦,±11◦ off-nadir and 0◦ (nadir). For example, three
sample angles are illustrated in Fig. 6. It takes ≈ 1 sec
to scan a cloud domain in any single view angle, during
which the cloud and solar directions are assumed constant.
Dynamics are noticeable between view angles.

A spherical harmonic discrete ordinate method
(SHDOM) code [10] provides the numerical forward
model F . Simulated measurements {yt}t∈T include noise.
The noise model follows the AirMSPI sensors parame-
ters [6, 48]. There, the sensor full-well depth is 200,000
photo-electrons, readout noise has a standard deviation of
20 electrons, and the overall readout is quantized to 9 bits.

6.2. Results of 4D Tomography of the LWC

The rendered and noisy images, in the spectral band of
λ = 660 nm, served as input to 4D tomographic reconstruc-
tion. The voxel size in the recovery was set to 10 m× 10 m
horizontal, 25 m vertical and 10 sec resolution. For paral-
lelization, optimization ran on a computer cluster, where
each computer core was dedicated to rendering a modelled
image from a distinct angle.

In this section, we recover only the cloud LWC. Hence,
we set re = 10µm and ve = 0.1 to be uniform constants
during optimization (though they were not uniform in the
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Figure 7. Cloud (i). The errors εt are marked by colored circles,
whose saturation decays the farther the sampling time is from (t1+
tNstate)/2. The measure ε is marked by solid or dashed lines, with
corresponding colors. The setting σ =∞ refers to the solution by
the state of the art, i.e. 3D static scattering tomography.
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Figure 8. Setup C. The error ε of Cloud (i), for different acqui-
sition inter-angular temporal intervals, T . The setting σ = ∞
refers to the solution by the state of the art, i.e. 3D static scattering
tomography.

simulated data). The LWC optimization was initialized by
{Lt}τ∈T = 0.01 g/m3. Convergence was reached in several
dozen iterations. Depending on the number of input images,
it took between minutes to a couple of hours to converge.

For result assessment, we generalize Eq. (14) to the
whole sample set t ∈ T by

ε =
1

N state

∑
t∈T

εt , where, εt =
‖Lt

true − L̂t‖1
‖Lt

true‖1
. (19)

From Sec. 2.4, we assess that a value σ ∼ 20 sec is natural.
Indeed, this is supported numerically in the plots of εt, ε for
Cloud (i) (Fig 7). A naive solution may only use measure-
ments captured at each sampled time t, to solve Lt, inde-
pendently of other times. This solution is reached by σ = 0
and presented in Figs. 7 and 8. The 3D tomographic results
of Cloud (i) at t = (t1 + tNstate)/2 using Setup A are
shown in Fig. 5. Recovery used σ = 20 sec. In the Supple-

0

0.25

0.5

0.75

1

0 20 40 60 80

(a)

(b)

3 4 5 6 7 8

0.6

0.7

0.8

0.9

Figure 9. Cloud (i), joint recovery of re,L. (a) The errors εt of the
LWC are marked by colored circles, whose saturation decays the
farther the sampling time is from (t1 + tNstate)/2. The measure
ε is marked by solid or dashed lines, with corresponding colors.
The setting σ =∞ refers to solution by the state of the art, i.e. 3D
static scattering tomography. (b) The estimated re is presented in
blue dashed line. The true horizontally-averaged ret are presented
in solid lines, for different time samples.

mentary material we present analogous plots for Cloud (ii)
and additional results using Setup B.

Setup C uses a single platform, which is challenging.
Results depend significantly on how fast the aircraft flies,
i.e., how long it takes to capture the cloud from a variety
of angles (up to 21 angles). Fig. 8 compares the results
for inter-angle time interval of 5 sec, 10 sec and 20 sec. As
expected, quality (ε) improves with velocity. Moreover, if
the camera moves slowly (long time interval between an-
gular samples), results improve by using a longer temporal
support, observing the cloud from a wider angular range,
despite its dynamics.

6.3. Microphysics Estimation

In this section, we recover both LWC and re as described
in Sec. 5.2. We use Setups A,B and Baseline, as
described in Sec. 6.1, with an additional spectral band at
λ = 865 nm. Fig. 9 shows the results for Cloud (i).
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Figure 10. (a) Recovered 3D LWC field using real data. (b) A raw
AirMSPI nadir image. Corresponding rendered views of a cloud,
that was estimated using data that had excluded the nadir, either
by our 4D CT approach (c) or current static 3D CT (d). Gamma
correction was applied on (b,c,d) for display clarity. (e) A scatter
plot of rendered vs. raw AirMSPI images at nadir. The scatter plot
correlations of our solution and the static solution are 0.862 and
0.656, respectively.

7. Experiment: Real World AirMSPI Data
We follow the experimental approach of [29], and use

real-world data acquired by JPL’s AirMSPI, which flies on
board NASA’s ER-2. The geometry is exactly as described
in Setup C in Sec. 6.1, including location and time. An
atmospheric domain of size 1.5 km × 2 km × 2 km in the
East-North-Up coordinates is examined. We discretized the
domain to 80× 80× 80 voxels. Because N states = 21, the
total number of unknowns is 10,752,000.

The inter-angle time interval in this experiment is around
20 sec. Based on Fig. 8, we set here σ = 60 sec in Eq. (18).
We want to focus on dynamic tomography of the evolving
cloud, and not on global motion due to wind in the cloud
field. Hence, we used the pre-processing approach of [29]
to align the cloud images. Additionally, the ground albedo
is estimated to be 0.04. The pre-processing and albedo esti-
mation are described in the Supplementary material.

A recovered volumetric reconstruction for one time in-
stant is displayed in Fig. 10. We have no ground-truth for
the cloud content in this case. Hence we check for con-
sistency using cross-validation. For this, we excluded the
nadir image (Fig. 10b) from the recovery process. Thus to-
mography used 20 out of the 21 raw views. Afterward, we
placed the recovered cloud in SHDOM physics-based ren-

+54◦ view nadir view −54◦ view
Static solution 1.73 0.94 0.61
Ours 0.96 0.38 0.24

Table 1. Analysis of empirical data in different view angles. Quan-
titative fit (6) of our 4D result to the data, as compared to the error
of state-of-the-art static 3D CT.

derer [10], to generate the missing nadir view. The result
is then compared to the ground-truth missing view. Fig. 10
compares the result of this process for two solutions: our
4D tomographic solution, and the state-of-the-art, i.e., 3D
static scattering tomography.

The same cross-validation process was repeated for the
±54◦ view angles. Quantitatively, we measure the fitting
error using Eq. (6). The results are summarized in Table 1.

8. Discussion

We derive a framework for 4D CT of dynamic objects
that scatter, using moving cameras. The natural temporal
evolution of an object indicates the temporal and angular
sampling needed for a good reconstruction. Given these
conditions, 4D CT recovery can be done, even with a small
number of cameras. Fig. 7 and specifically Setup A may
indicate that 4D CT may be achieved using σ = 0 and
strong priors. This possibility should be a welcome topic for
further computer vision research. In a sense, our work also
uses a cloud prior, which is temporal correlation in clouds
(Sec. 3): the correlation is analyzed using signal processing
tools, and implemented by gradient weights wt.

The model introduced in Sec. 5 to account for temporal
correlations is independent of the differentiable renderer.
Eqs. (16-18) can be combined with any differentiable
renderer that can compute the derivative term ∂F/∂L in
Eq. (16). This can be either a differentiable renderer based
on SHDOM, or a Monte Carlo differentiable renderer
like those of [15, 39]. Additionally, some of our findings
may be helpful in other fields. Bio-medical CT [7] and
flow imaging [26] already have tools exploiting controlled
illumination. Elements of this work may add to that toolkit.

Acknowledgements: We thank Aviad Levis and Tali Treib-
itz for their advice, and Johanan Erez, Ina Talmon and
Daniel Yagodin for technical support. Yoav Schechner is
the Mark and Diane Seiden Chair in Science at the Tech-
nion. He is a Landau Fellow supported by the Taub Foun-
dation. His work was conducted in the Ollendorff Minerva
Center. Minvera is funded through the BMBF. This project
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (CloudCT, grant agreement No.
810370).

5527



References

[1] David A Agard, Yasushi Hiraoka, Peter Shaw, and John W
Sedat. Fluorescence microscopy in three dimensions. Meth-
ods in Cell Biology, 30:353–377, 1989. 4

[2] Amit Aides, Aviad Levis, Vadim Holodovsky, Yoav Y
Schechner, Dietrich Althausen, and Adi Vainiger. Dis-
tributed sky imaging radiometry and tomography. In Proc.
IEEE ICCP, pages 1–12, 2020. 1, 2

[3] Rushil Anirudh, Hyojin Kim, Jayaraman J Thiagarajan, K
Aditya Mohan, Kyle Champley, and Timo Bremer. Lose the
views: Limited angle ct reconstruction via implicit sinogram
completion. In Proc. IEEE CVPR, pages 6343–6352, 2018.
1

[4] Stacey W Boland, David J Diner, John C Pearson, and
Kevin A Burke. NASA’s Multi-Angle Imager for Aerosols
(MAIA) earth venture instrument investigation. AGU Fall
Meeting, 2018:GH41C–1443, 2018. 1

[5] David J Diner, Michael J Garay, Olga V Kalashnikova,
Brian E Rheingans, Sven Geier, Michael A Bull, Veljko M
Jovanovic, Feng Xu, Carol J Bruegge, Anthony B Davis,
et al. Airborne multiangle spectropolarimetric imager
(AirMSPI) observations over California during NASA’s po-
larimeter definition experiment (PODEX). In Polarization
Science and Remote Sensing VI, volume 8873, page 88730B.
SPIE, 2013. 6

[6] David J Diner, Feng Xu, Michael J Garay, John V Mar-
tonchik, Brian E Rheingans, Sven Geier, Anthony B Davis,
BR Hancock, Michael A Jovanovic, Veljko M andBull,
et al. The Airborne Multiangle Spectropolarimetric Imager
(AirMSPI): a new tool for aerosol and cloud remote sensing.
Atmos. Meas. Tech., 6(8):2007, 2013. 1, 2, 6

[7] Turgut Durduran, Regine Choe, Wesley B Baker, and Ar-
jun G Yodh. Diffuse optics for tissue monitoring and tomog-
raphy. Reports on Progress in Physics, 73(7):076701, 2010.
8

[8] Marie L Eckert, Wolfgang Heidrich, and Nils Thuerey. Cou-
pled fluid density and motion from single views. In Com-
puter Graphics Forum, volume 37, pages 47–58. Wiley On-
line Library, 2018. 1

[9] K Franklin Evans. The spherical harmonics discrete ordinate
method for three-dimensional atmospheric radiative transfer.
Journal of the Atmospheric Sciences, 55(3):429–446, 1998.
2

[10] K Franklin Evans and J Warren Wiscombe. Improvements to
the SHDOM radiative transfer modeling package. In Proc.
13th ARM Sci. Team Meeting, 2003. 6, 8

[11] Jiwen Fan, Mikhail Ovtchinnikov, Jennifer M Comstock,
Sally A McFarlane, and Alexander Khain. Ice formation
in Arctic mixed-phase clouds: Insights from a 3-D cloud-
resolving model with size-resolved aerosol and cloud micro-
physics. JGR: Atmospheres, 114(D4), 2009. 5

[12] Jeppe Revall Frisvad, Niels Jørgen Christensen, and Hen-
rik Wann Jensen. Computing the scattering properties of
participating media using Lorenz-Mie theory. In ACM TOG,
pages 60–es. 2007. 2

[13] Ted T Fujita. Mesoscale classifications: their history and
their application to forecasting. In Mesoscale Meteorology
and Forecasting, pages 18–35. Springer, 1986. 1, 3

[14] Adam Geva, Yoav Y Schechner, Yonatan Chernyak, and Ra-
jiv Gupta. X-ray computed tomography through scatter. In
Proc. ECCV, pages 34–50, 2018. 1

[15] Ioannis Gkioulekas, Anat Levin, and Todd Zickler. An eval-
uation of computational imaging techniques for heteroge-
neous inverse scattering. In Proc. ECCV, pages 685–701.
Springer, 2016. 1, 8

[16] James Gregson, Michael Krimerman, Matthias B Hullin, and
Wolfgang Heidrich. Stochastic tomography and its applica-
tions in 3D imaging of mixing fluids. ACM TOG, 31(4):1–10,
2012. 1

[17] James E Hansen and Larry D Travis. Light scattering in plan-
etary atmospheres. Space Science Reviews, 16(4):527–610,
1974. 2

[18] Thijs Heus, Harm JJ Jonker, Harry EA Van den Akker, Eric J
Griffith, Michal Koutek, and Frits H Post. A statistical ap-
proach to the life cycle analysis of cumulus clouds selected in
a virtual reality environment. JGR: Atmospheres, 114(D6),
2009. 5

[19] Harish P Hiriyannaiah. X-ray computed tomography for
medical imaging. IEEE Signal Processing Magazine,
14(2):42–59, 1997. 1

[20] Vadim Holodovsky, Yoav Y Schechner, Anat Levin, Aviad
Levis, and Amit Aides. In-situ multi-view multi-scattering
stochastic tomography. In Proc. IEEE ICCP, pages 1–12,
2016. 4

[21] Wei-Chun Hsieh, Athanasios Nenes, Richard C Flagan,
John H Seinfeld, G Buzorius, and H Jonsson. Parameteri-
zation of cloud droplet size distributions: Comparison with
parcel models and observations. Journal of Geophysical Re-
search: Atmospheres, 114(D11), 2009. 2, 5

[22] Anders P Kaestner, Beat Munch, and Pavel Trtik. Spatiotem-
poral computed tomography of dynamic processes. Optical
Engineering, 50(12):123201, 2011. 1

[23] Alexander Khain, Andrei Pokrovsky, Mark Pinsky, Axel
Seifert, and Vaughan Phillips. Simulation of effects of atmo-
spheric aerosols on deep turbulent convective clouds using
a spectral microphysics mixed-phase cumulus cloud model.
Part I: Model description and possible applications. JAS,
61(24):2963–2982, 2004. 5

[24] Marat F Khairoutdinov and David A Randall. Cloud re-
solving modeling of the ARM summer 1997 IOP: Model
formulation, results, uncertainties, and sensitivities. JAS,
60(4):607–625, 2003. 5

[25] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape
by space carving. IJCV, 38(3):199–218, 2000. 5

[26] Jonghwan Lee, Weicheng Wu, James Y Jiang, Bo Zhu, and
David A Boas. Dynamic light scattering optical coherence
tomography. Optics Express, 20(20):22262–22277, 2012. 8

[27] Aviad Levis, Daeyoung Lee, A. Joel Tropp, F. Charles Gam-
mie, and L. Bouman Katherine. Inference of black hole
fluid-dynamics from sparse interferometric measurements.
In Proc. IEEE ICCV, 2021. 1

5528



[28] Aviad Levis, Jesse Loveridge, and Amit Aides. Pysh-
dom. 2020. Available online. https://github.com/
aviadlevis/pyshdom. 2

[29] Aviad Levis, Yoav Y Schechner, Amit Aides, and Anthony B
Davis. Airborne three-dimensional cloud tomography. In
Proc. IEEE ICCV, pages 3379–3387, 2015. 1, 2, 4, 8

[30] Aviad Levis, Yoav Y Schechner, and Anthony B Davis.
Multiple-scattering microphysics tomography. In Proc.
IEEE CVPR, pages 6740–6749, 2017. 1, 2, 4, 5

[31] Aviad Levis, Yoav Y Schechner, Anthony B Davis, and
Jesse Loveridge. Multi-view polarimetric scattering cloud
tomography and retrieval of droplet size. Remote Sensing,
12(17):2831, 2020. 2

[32] Tamar Loeub, Aviad Levis, Vadim Holodovsky, and Yoav Y
Schechner. Monotonicity prior for cloud tomography. In
Proc. ECCV, pages 24–29, 2020. 2, 4

[33] Fernando Macias-Garza, Kenneth R Diller, and Alan C
Bovik. Missing cone of frequencies and low-pass distortion
in three-dimensional microscopic images. Optical Engineer-
ing, 27(6):276461, 1988. 4

[34] Bernhard Mayer. Radiative transfer in the cloudy atmo-
sphere. In ERCA 2008 - From the Human Dimensions of
Global Environmental Change to the Observation of the
Earth from Space, volume 1, pages 75–99. EDP Sciences,
2009. 2

[35] Brent A McBride, J Vanderlei Martins, Henrique MJ Bar-
bosa, William Birmingham, and Lorraine A Remer. Spatial
distribution of cloud droplet size properties from Airborne
Hyper-Angular Rainbow Polarimeter (AirHARP) measure-
ments. AMT, 13(4):1777–1796, 2020. 1

[36] Tomer Michaeli and Yonina C Eldar. High-rate interpolation
of random signals from nonideal samples. IEEE Transac-
tions on Signal Processing, 57(3):977–992, 2008. 3, 4

[37] Roel A J Neggers, Harm J J Jonker, and Pier Siebesma. Size
statistics of cumulus cloud populations in large-eddy simu-
lations. JAS, 60(8):1060–1074, 2003. 5

[38] Tim L Neilsen, Jose-Vanderlei Martins, RA Fernan-
dez Borda, Cameron Weston, Crystal Frazier, Dominik Cies-
lak, and Kevin Townsend. The Hyper-Angular Rainbow Po-
larimeter (HARP) CubeSat observatory and the characteri-
zation of cloud properties. In AGU Fall Meeting Abstracts,
volume 2015, pages A43A–0237, 2015. 1

[39] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse
renderer. ACM TOG, 38(6):1–17, 2019. 2, 8

[40] Alan V Oppenheim. Discrete-Time Signal Processing. Pear-
son Education India, 1999. 3

[41] Tinsu Pan, Ting-Yim Lee, Eike Rietzel, and George TY
Chen. 4D-CT imaging of a volume influenced by respiratory
motion on multi-slice CT. Medical Physics, 31(2):333–340,
2004. 1

[42] Yiming Qian, Minglun Gong, and Yee-Hong Yang. Stereo-
based 3D reconstruction of dynamic fluid surfaces by global
optimization. In Proc. IEEE CVPR, pages 1269–1278, 2017.
1

[43] Klaus Schilling, Yoav Y Schechner, and Ilan Koren.
CloudCT - computed tomography of clouds by a small satel-

lite formation. In Proc. IAA Symposium on Small Satellites
for Earth Observation, 2019. 1

[44] Yael Sde-Chen, Yoav Y Schechner, Vadim Holodovsky, and
Eshkol Eytan. 3DeepCT: Learning volumetric scattering to-
mography of clouds. In Proc. IEEE ICCV, 2021. 2

[45] A Pier Siebesma, Christopher S Bretherton, Andrew Brown,
Andreas Chlond, Joan Cuxart, Peter G Duynkerke, Hongli
Jiang, Marat Khairoutdinov, David Lewellen, Chin-Hoh Mo-
eng, et al. A large eddy simulation intercomparison study of
shallow cumulus convection. JAS, 60(10):1201–1219, 2003.
5

[46] Masada Tzabari, Vadim Holodovsky, Omer Shubi, Eshkol
Eitan, Orit Altaratz, Ilan Koren, Anna Aumann, Klaus
Schilling, and Yoav Y Schechner. CloudCT 3D volumet-
ric tomography: considerations for imager preference, com-
paring visible light, short-wave infrared, and polarized im-
agers. In Polarization Science and Remote Sensing X, vol-
ume 11833, page 1183304. International Society for Optics
and Photonics, 2021. 1

[47] Masada Tzabari, Vadim Holodovsky, Omer Shubi, Eshkol
Eytan, and Yoav Y Schechner. Advances in 3D scatter-
ing tomography of cloud micro-physics. arXiv preprint
arXiv:2012.03223, 2021. 2, 5

[48] Gerard Van Harten, David J Diner, Brian JS Daugherty,
Brian E Rheingans, Michael A Bull, Felix C Seidel, Rus-
sell A Chipman, Brian Cairns, Andrzej P Wasilewski, and
Kirk D Knobelspiesse. Calibration and validation of airborne
multiangle spectropolarimetric imager (AirMSPI) polariza-
tion measurements. Applied Optics, 57(16):4499–4513,
2018. 2, 6

[49] Tommy E Wright, Mike Burton, David M Pyle, and Tom-
maso Caltabiano. Scanning tomography of SO2 distribu-
tion in a volcanic gas plume. Geophysical Research Letters,
35(17), 2008. 1

[50] Huiwen Xue and Graham Feingold. Large-eddy simulations
of trade wind cumuli: Investigation of aerosol indirect ef-
fects. JAS, 63(6):1605–1622, 2006. 5

[51] Guangming Zang, Ramzi Idoughi, Ran Tao, Gilles Lubineau,
Peter Wonka, and Wolfgang Heidrich. Space-time tomog-
raphy for continuously deforming objects. ACM TOG, 37,
2018. 1

[52] Guangming Zang, Ramzi Idoughi, Ran Tao, Gilles Lubineau,
Peter Wonka, and Wolfgang Heidrich. Warp-and-project
tomography for rapidly deforming objects. ACM TOG,
38(4):1–13, 2019. 1

[53] Guangming Zang, Ramzi Idoughi, Congli Wang, Anthony
Bennett, Jianguo Du, Scott Skeen, William L Roberts, Peter
Wonka, and Wolfgang Heidrich. Tomofluid: Reconstruct-
ing dynamic fluid from sparse view videos. In Proc. IEEE
CVPR, pages 1870–1879, 2020. 1

[54] S Zhang, H Xue, and G Feingold. Vertical profiles of droplet
effective radius in shallow convective clouds. Atmospheric
Chemistry and Physics, 11(10):4633–4644, 2011. 2

[55] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge No-
cedal. L-BFGS-B: Fortran subroutines for large-scale bound-
constrained optimization. ACM TOMS, 23(4):550–560,
1997. 5

5529



4D Cloud Scattering Tomography
Supplementary Material

Roi Ronen, Yoav Y. Schechner
Viterbi Faculty of Electrical & Computer Eng.

Technion - Israel Institute of Technology
Haifa, Israel

ronen.roi@gmail.com

yoav@ee.technion.ac.il

Eshkol Eytan
Department of Earth & Planetary Sciences

The Weizmann Institute of Science
Rehovot, Israel

eshkol.eytan@weizmann.ac.il

Abstract

This is a supplementary document to the main
manuscript. Here we provide more numerical results.
Moreover, this document details pre-processing of real
world data, which is presented in section 7 of the main
manuscript. Additionally, we elaborate about the compu-
tational complexity of the method, give evaluation for the
Gaussian weights that were used in the main manuscript
and an interpretation using a hidden field for the iterative
procedure described in section 5.1 of the main manuscript.

1. Outline

This supplementary material contains five parts. The
first part (Sec. 2) elaborates on pre-processing which is ap-
plied to real world measurements, presented in Sec. 7 of
the main manuscript. This data was collected by the AirM-
SPI instrument. The second part, Sec. 3, provides an ad-
ditional example of the temporal auto-correlation of cloud
microphysics and more simulation results which were not
included in the main manuscript, for space limits. The third
part (Sec. 4) analyzes the computational complexity of our
proposed method. In Sec. 5, we give an interpretation for
the iterative procedure described in Sec. 5.1 of the main
manuscript using a hidden field representation. Sec. 6 pro-
vides an evaluation for the Gaussian weights that were used
in Sec. 5.1 of the main manuscript.

2. Pre-processing Real World Data

The main manuscript presents results using real world
measurements. The data were acquired by the AirMSPI in-
strument. As explained in Sec. 7 of the main manuscript,
while AirMSPI flies, clouds move due to wide-scale wind

0 10
0

10

20

Figure 1. Geometry of the AirMSPI real world setup which led to
the data presented in Sec. 7 of the main manuscript. The color
represents the locations of the cloud and the AirMSPI instrument
in the different time states. The cloud’s outer contour and its cor-
responding center of mass, marked in a circle, are presented per
state. The AirMSPI location and velocity are marked by arrows.
The arrows point to the AirMSPI flight direction azimuth of 154◦

relative to the North. Due to the domain size, not all AirMSPI
locations are illustrated here. Due to wind, the cloud moves at
57 km/h in azimuth 182◦ relative to the North.

at their altitude. The geometry of AirMSPI’s path and the
cloud drift during the experiment is presented in Fig. 1
above. In order to eliminate the influence of wide-scale



Cloud shadow

Nadir

Figure 2. Illustration of estimation of the cloud altitude using a
shadow.

wind, a registration process of the cloud images is done.
Moreover, for tomographic recovery, we need to have an as-
sessment of the Earth surface albedo, under the clouds. This
section describes how pre-processing estimates the wind
and albedo.

2.1. Wind Estimation

Clouds are segmented from the surface automati-
cally [12]. Cloudy pixels are then used to estimate the
cloud center of mass in each image [7]. A registration
of these centers of mass can be done by triangulation.
However, triangulation of images of a moving object us-
ing a translating camera has an inherent ambiguity. This
ambiguity can be solved if the cloud height is known.
In this work, we assess this altitude of a cloud by its
shadow [1, 6, 8]. Let (xcl, ycl, zcl) and (xshad, yshad, 0)
be a point on a cloud and its corresponding shadow point
on the earth surface, respectively (see Fig. 2 above). Let
%shad =

√
(xcl − xshad)2 + (ycl − yshad)2. We obtain

xcl, ycl, xshad and yshad from the AirMSPI images. Given
the solar zenith angle relative to the nadir θsun, the altitude
zcl satisfies

zcl =
%shad

tan(θsun)
. (1)

For the example shown in Sec. 7 of the main manuscript, we
estimated the cloud base height as ≈ 500m and its top at
≈ 1100m. Indeed taking MODIS/AQUA [2] retrievals of
cloud top heights, indicate that the clouds’ top in the region1

does not exceed 1000 m, which makes our approximation
reasonable.

We approximate the cloud horizontal velocity by back-
projecting the images from the locations of the cameras to
the altitude of zcl. From the center of mass of these back-
projections, we assess the velocity. We register the camera
locations so the projections of the center of mass of all im-
ages intersect at the same point at altitude of zcl. The im-

1This data applies over the coast of California, 38N 122W,on
Feb/03/2013 at 13:30 local time.

ages and the new locations of the camera are the input for
the 4D tomographic recovery.

2.2. Surface Albedo Estimation

3D radiative transfer calculations require the surface
albedo. We use non-cloudy pixels to estimate the albedo.
Let Y be a set of non-cloudy pixels. We estimate the sur-
face albedo aground as,

âground = argmin
a

∑
y∈Y
||y −F(βair; a)||22 , (2)

where βair represents the extinction coefficient of air in 3D
with no clouds. Here F(βair; a) is a rendering (forward)
model, where the surface albedo is set to be a. That is, sun-
light interacts only with the air and the surface. Scattering
by air is assumed to be known [5, 13]. The optimization
problem is solved by the Brent minimization method [3],
implemented by the SciPy package [11]. For the example
shown in Sec. 7 of the main manuscript, the surface albedo
is estimated to be 0.04.

3. Additional Simulations
3.1. Cloud Temporal Spectrum

Sec. 3 of the main manuscript indicates that the correla-
tion time of a convective cloud at 10 sec resolution is about
20 to 50 seconds. Thus, a temporal sampling period of
30 sec or shorter is required. We assess this in an additional
cloud simulation. We conducted a single cloud simulation
in high resolution, using small changes, relative to the sim-
ulation described in Sec. 6 of the main manuscript. The
simulation parameters and setting are similar. However, the
perturbation that initiates the convection and turbulent flow
has a smaller horizontal size. This creates a smaller cloud
with a horizontal width of ≈400 m. This cloud is more sen-
sitive to mixing and evaporation than the cloud in the main
manuscript whose width is ≈800 m. Because mixing with
the environment is more intense here, the clouds’ growth is
inhibited. It cannot exceed a height of 1400 m, compared to
a 2000 m ceiling of the cloud in the main manuscript.

Using the same process described in Sec. 3 of the main
manuscript, the temporal auto-correlation functions of Lt
and horizontally-averaged ret are presented in Fig. 3[Top] in
the next page. The auto-correlation function of ret behaves
similarly to that of vet . Here the required temporal sampling
period is more tolerable compared to the presented temporal
sampling period in the main manuscript.

3.2. Additional Tomography Results

Recall that our method is demonstrated on two simu-
lated clouds, Cloud (i) and Cloud (ii), using several types
of imaging setups: Setup A, Setup B and Baseline.
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Figure 3. [Top] Auto-correlation of cloud field microphysics. The
auto-correlation of LWC and re decreases to 0.5 after 30 sec
and 310 sec, respectively. [Bottom] MSE (Eq. 13 in the main
manuscript) of LWC and re.
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Figure 4. Cloud (ii). Results of recovery by the Baseline and
Setup A are compared to the ground-truth.

Fig. 4 above presents the 3D tomographic results of
Cloud (ii) at t = (t1 + tNstate)/2 using Setup A. The
recovery used σ = 20 sec. Moreover, recall the error mea-
sures as Eq. (19) defined in the main manuscript. Fig. 5
above presents εt, ε for Cloud (ii). It reinforces the assess-
ment that a value σ ∼ 20 sec is natural, as explained in
Sec. 3 of the main manuscript.
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Figure 5. Cloud (ii). The errors εt in the main manuscript are
marked by colored circles, whose saturation decays the farther the
sampling time is from (t1+tNstate)/2. The measure ε in the main
manuscript is marked by solid or dashed lines, with corresponding
colors. The setting σ =∞ refers to the solution by the state of the
art, i.e. 3D static scattering tomography.

σ = 20 sec σ = 60 sec σ =∞
Setup A 0.45 0.55 0.64
Setup B 0.6 0.66 0.74
Setup C 0.79 0.74 0.9

Table 1. The error εt in the main manuscript at t = (t1 +
tNstate)/2 of Cloud (i), when T = 10 sec. The state of the art
3D static CT complies with σ =∞.

Figs. 6 and 7 in the next page respectively visualize the
results of Cloud (i) and Cloud (ii). The 3D cut-sections
of the error |Ltrue

t (x) − L̂t(x)| at t = (t1 + tNstate)/2
are presented for Setup A, Setup B and Baseline in
Figs. 6 and 7[Top]. Fig. 7[Bottom] uses scatter plots to
compare the ground-truth to the results obtained by either
the Baseline, Setup A or Setup B. Also, we com-
pare the recovery results at t = (t1 + tNstate)/2 quantita-
tively for the three setups in Table 1 above.

4. Computational Complexity
Sec. 5.1 of the main manuscript introduces an iterative

procedure for 4D CT estimation of cloud LWC

Lt(k + 1) = Lt(k)− ηgt[B(k)] , (3)

where

gt(B) =
∑
t′∈T

wt(t
′|σ)∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] . (4)

The time complexity for solving Eqs. (3,4) above is gov-
erned by the gradient calculation gt(B). Computing the Ja-
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Figure 6. Cloud (i). 3D cut-sections of the error |Ltrue
t (x)− L̂t(x)| at t = (t1 + tNstate)/2 for Baseline, Setup A and Setup B.
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Figure 7. Cloud (ii) comparison for Baseline, Setup A and Setup B. [Top] 3D cut-sections of the error |Ltrue
t (x) − L̂t(x)| at

t = (t1 + tNstate)/2. [Bottom] Scatter plots that use randomly selected 20% of the data points, for display clarity. The Baseline,
Setup A and Setup B scatter plot correlations are 0.92, 0.82 and 0.78, respectively.

cobian ∂F (Lt′) /∂Lt′ in Eq. (4) is complex, thus it is es-
tablished numerically by a surrogate function that evolves
through iterations [7, 9]. Calculating the gradient includes
two dominant time-consuming processes that are executed
in alternation. The first process calculates the forward
model for the N state cloud states {F (Lt′)}t′∈T . The

second process sums over the entire set of measurements,
which does not depend on the number of cloud states that
we seek to recover.

A spherical harmonic discrete ordinate method
(SHDOM) code is used for computing the numerical
forward model F(·) and the Jacobian. SHDOM iteratively



updates the estimation of 3D radiation fields until conver-
gence. Calculating the forward model for the N state cloud
states can be done in parallel. Thus, the time complexity
is governed by the temporal state, for which the SHDOM
forward model code takes the longest time to compute.
By calculating the forward model for all cloud states in
parallel, the time complexity of gradient calculation is in-
sensitive to the number of cloud states N state. Algorithm 1
is a pseudo-code of our algorithm. The source code is
publicly available at [10].

Algorithm 1 4D Cloud Scattering Tomography
Require: {yt′}t′∈T and σ ≥ 0
B(0) = {Lt′ = 0.01}t′∈T
k = 0
repeat

Calculate {F [Lt′(k)]}t′∈T . In parallel

Approximate
{

∂F
∂Lt′

[Lt′(k)]
}
t′∈T

. Ref. [7]

Calculate {gt′ [B(k)]}t′∈T . Eq. (4)
∀t ∈ T update Lt(k + 1) . Eq. (3)
k = k + 1

until converge {yt′ ≈ F [Lt′(k)]}t′∈T

As a numerical example, we used 20 iterations of the
L-BFGS-B optimization. Using measurements of Cloud (i)
acquired by Setup A, the run-time of the solution by our
method was 501 sec. The static solution took 301 sec. In
both, the computer was Intel® Xeon® Gold 6240 CPU @
2.60GHz with 72 cores. Although our method recovers
N state = 7 times more voxels, the run-time is less than
twice that of the static solution. The time difference is
caused by overheads of saving and loading larger data with
our method, and nonoptimal task division for the cores.

5. Cost on a Hidden Field
In this section, we present an interpretation for the itera-

tive procedure of solving the problem of 4D CT estimation
of cloud LWC (Eqs. 3,4 above). Recall that Eq. (18) in the
main manuscript defines wt(t′|σ) as Gaussian weights

wt(t
′|σ) = s exp

(
−|t− t

′|2

2σ2

)
, (5)

where s is a normalization factor. Let wt(t′|σ̃) be Gaussian
weights with variance σ̃2. Suppose the cloud LWC can be
represented by

Lt

[
Bhidden

]
=
∑
t′∈T

wt(t
′|σ̃)Lhidden

t′ , (6)

where Lhidden
t is a hidden representation at time t and

Bhidden = {Lhidden
t′ }t′∈T . The set Bhidden is equivalent

to the set B = {Lt}∀t through a linear transformation hav-
ing Gaussian weights. Let us formulate 4D CT using the
hidden field representation

B̂hidden = argmin
Bhidden

∑
t∈T
E
[
yt,F

(
Bhidden

)]
. (7)

Recall that yt, the measurements acquired at time t, de-
pends explicitly only on the cloud state at this time, Lt.
Thus,

E
[
yt,F

(
Bhidden

)]
=

1

2
‖yt −F

(
Lt[Bhidden]

)
‖22 . (8)

Eq. (7) above can be solved efficiently by gradient-based
methods. The gradient of Eq. (7) above is

∂

∂Lhidden
t

∑
t′∈T
E
[
yt,F

(
Bhidden

)]
=

∑
t′∈T

∂E [yt′ ,F (Lt′)]

∂Lt′

∂Lt′

∂Lhidden
t

. (9)

From Eq. (8) above,

∂E [yt′ ,F (Lt′)]

∂Lt′
=
∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] , (10)

while from Eq. (6) above,

∂Lt′

∂Lhidden
t

= wt(t
′|σ̃) . (11)

From Eqs. (9,10,11) above, for optimizing problem (7)
above, the gradient is

ghidden
t (B) =

∑
t′∈T

wt(t
′|σ̃)∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] .

(12)
A gradient-based approach then performs per iteration k:

Lhidden
t (k + 1) = Lhidden

t (k)− ηghidden
t [B(k)] (13)

where η is a step size. Every iteration, B(k) is updated by
Eq. (6) above,

Lt(k + 1) =
∑
t′∈T

wt(t
′|σ̃)Lhidden

t′ (k + 1) . (14)

Substitute Eq. (13) above into Eq. (14) above,

Lt(k+1) = Lt(k)− η
∑
t′∈T

wt(t
′|σ̃)ghidden

t′ [B(k)] . (15)

Now, we use the approximation

wt(t
′|σ) ≈

∑
t′′∈T

wt(t
′′|σ̃)wt′(t′′|σ̃) , (16)



where
σ =
√
2σ̃ . (17)

We explain the approximation in Eq. (16) above using prop-
erties of continuous Gaussian PDFs, as we now explain. Let
fµ(ξ|σ̃) and fµ′(ξ|σ̃) be two Gaussian PDFs with variance
σ̃2 and respective expectations µ and µ′. Being a PDF,∫ ∞

−∞
f(µ+µ′)/2(ξ|σ̃/

√
2) dξ = 1 . (18)

From [4],

fµ(ξ|σ̃)fµ′(ξ|σ̃) = fµ(µ
′|
√
2σ̃)f(µ+µ′)/2(ξ|σ̃/

√
2) .

(19)
From Eq. (18) above,

fµ(µ
′|
√
2σ̃) = fµ(µ

′|
√
2σ̃)

∫ ∞
−∞

f(µ+µ′)/2(ξ|σ̃/
√
2) dξ

=

∫ ∞
−∞
fµ(µ

′|
√
2σ̃)f(µ+µ′)/2(ξ|σ̃/

√
2) dξ .

(20)

From Eqs. (19,20) above,

fµ(µ
′|
√
2σ̃) =

∫ ∞
−∞

fµ(ξ|σ̃)fµ′(ξ|σ̃) dξ . (21)

Discretizing the integral of Eq. (21) above, an approximate
finite sum yields Eq. (16) above.

Substitute Eq. (16) above into Eq. (4) above

gt(B) ≈∑
t′∈T

∑
t′′∈T

wt(t
′′|σ̃)wt′(t′′|σ̃)

∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] .

(22)

Swap the summation order of Eq. (22) above:

gt(B) ≈∑
t′′∈T

wt(t
′′|σ̃)

∑
t′∈T

wt′(t
′′|σ̃)∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] .

(23)

Substitute Eq. (12) above into Eq. (23) above and use the
property that wt′(t′′|σ̃) = wt′′(t

′|σ̃). This yields,

gt(B) ≈
∑
t′′∈T

wt(t
′′|σ̃)ghidden

t′′ (B) . (24)

Substituting Eq. (24) above into Eq. (15) above yields the
iteration move in Eq. (3) above

Lt(k + 1) ≈ Lt(k)− η
∑
t′∈T

wt(t
′|σ̃)ghidden

t′ [B(k)]

= Lt(k)− ηgt[B(k)] . (25)

Thus, the iterative procedure for 4D CT estimation in the
main manuscript (Eqs. 3,4 above) can be interpreted as solv-
ing Eq. (7) above.
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Figure 8. [Top] Optimal wt(t
′) are presented in blue circles and

their Gaussian fit in red line. [Bottom] Comparison of true Lt and
L̂t by a scatter plot.

6. Kernel Assessment for Cloud Tomography

Recall Eq. (11) in the main manuscript,

βt ∼
∑
t′

wt(t
′|T )βsample

t′ . (26)

We now assess the approximation of using cropped Gaus-
sian as the kernel wt(t′|T ) for recovering cloud LWC. In
tomography, we do not have direct sampling of the Lsample

t′

at time t′ ∈ T . We only have projected images. Let L̃t′ be
the tomographic recovery of the LWC using only measure-
ments acquired at time t′. We approximate Lsample

t′ ≈ L̃t′ .
Hence instead of Eq. (26) above, suppose we approximate
Lt as

L̂t({wt(t′)}t′∈T ) ≈
∑
t′∈T

wt(t
′)L̃t′ . (27)



Let us seek the optimal set of weights {wt(t′)}t′∈T by

{ŵt(t′)}t′∈T = argmin
{wt(t′)}t′∈T

||Lt−L̃t({wt(t′)}t′∈T )||22 . (28)

Fig. 8[Top] herein shows the optimal wt(t′). The
plot shows that the weights are approximately Gaussian.
Fig. 8[Bottom] herein shows a scatter plot of L̂t vs. true
values Ltrue

t for Cloud (i), in Setup A. Fig. 8[Bottom]
indicates that L̂t({wt}t∈T ) based on this Gaussian-weight
set yields a good approximation of Lt. These results sup-
port the use of Gaussian weights for 4D CT of cloud LWC
(Eqs. 3,4 above).
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