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Many studies analyze resolution limits in single-channel, pan-chromatic systems. However, color imaging is
popular. Thus, there is a need for its modeling in terms of resolving capacity under noise. This work analyzes
the probability of resolving details as a function of spatial frequency in color imaging. The analysis introduces
theoretical bounds for performance, using optimal linear filtering and fusion operations. The work focuses on
resolution loss caused strictly by noise, without the presence of imaging blur. It applies to full-field color
systems, which do not compromise resolution by spatial multiplexing. The framework allows us to assess
and optimize the ability of an imaging system to distinguish an object of given size and color under image
noise. © 2014 Optical Society of America
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1. INTRODUCTION
Many imaging problems are characterized by pointwise image
formation models [1,2]. These models treat each pixel inde-
pendent of its surroundings, unlike effects such as optical
blur. Such problems include specularities over a diffuse reflec-
tion [3,4], flash photography [5], attenuation and path radiance
in haze [6–11], and dirt on windows [12]. Even in such point-
wise problems, which lack optical blur, noise degrades the ef-
fective resolution (see Fig. 1), as shown in [2]. However, the
analysis in [2] applies to single-channel, monochrome sensors.

Color imaging is common. Medicine [13], astronomy [14],
and defense [15] are just a few domains of use. Color imaging
requires the capture of several spectral measurements. Some
systems use more than the red–green–blue (RGB) trichro-
matic channels. A statistical study of hyperspectral images
is presented in [16]. For color, some psycho-physical studies
were conducted, in an effort to gain better understanding of
human vision [17–20]. Practical approaches for resolution en-
hancement using data from multiple image sensors have also
been presented [21–23].

Several image acquisition techniques exist for color imag-
ing. Some systems split the light and project it onto (typically
three) separate monochrome sensors, using a prism. Different
forms of time-multiplexing techniques are also available, typ-
ically for hyperspectral imaging [24–29]. In this concept, one
sensor is used for capturing all spectral channels, at different
times. Another possibility is to use spatial-multiplexing tech-
niques. Here, the spectral channels are captured across differ-
ent areas of a single monochrome sensor. As a result, spatial
resolution is compromised. Spatial-multiplexing was demon-
strated using a prism [30]. However, the most popular way
of generating color images is using a color filter array (CFA).
A generalized CFA approach has been proposed for hyper-
spectral imaging [31]. For RGB images, a Bayer pattern
CFA [32] is commonly used. Reference [33] discusses Bayer
sensors and their inherent resolution limitations.

Noise and resolution analysis are part of performance pre-
diction models. These models are required as a tool for system
engineers during design. Sometimes, such models are also
used when the possibility to perform actual experiments is
limited due to high risk or cost [34]. Most available perfor-
mance prediction models are for single-channel systems, such
as pan-chromatic visible light sensors or single-channel infra-
red sensors [35].

Our work focuses on full-field color imaging systems,
which, unlike Bayer, do not fundamentally degrade resolution.
We show that a system’s spatial resolution can be enhanced by
multispectral information, in comparison to a pan-chromatic
imaging system.

This paper derives limiting cutoff frequency under noise, in
color imaging. The analysis is irrespective of a potential hu-
man in the process. This paper generalizes a prior study on
limits in monochrome images [2]. The analysis in our study
accounts for inherent detector noise, as well as potential noise
filtering, which is optimally derived for each color channel. It
also considers optimal image fusion, which can be viewed as
filtering as well, albeit in the color domain. The goal is to as-
sess, within a desired success rate, the spatial cutoff fre-
quency, given color specifications of a system and scenario.
An imaging system’s effective cutoff also defines its smallest
recoverable target size.

Fig. 1. From left to right: original image, image corrupted by white
Gaussian noise, image corrupted by twice stronger white Gaussian
noise. Fine details, such as small branches and grass are lost, as
the level of noise increases.
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2. BACKGROUND
A. Pointwise Degradations
Let lobjectc �x� be the image irradiance of an object acquired at
pixel x � �x; y�, in color channel c, under ideal conditions,
without any degradation effects. Due to pointwise degrada-
tion effects, the measured signal in each color channel takes
the form

Ic�x� � lobjectc �x�tc�x� � ac�x� � nc�x�: (1)

Here, tc�x� and ac�x� ≥ 0 are, respectively, deterministic
multiplicative and additive effects per color channel [36].
The pointwise model applies to a wide range of problems.
For example, tc�x� can be a distance-dependent atmospheric
transmittance [1,2]. Then, ac�x� accounts for path radiance
(airlight) [10]. In addition, nc�x� accounts for random noise.
The c dependency generalizes the monochrome model given
in [2]. We aim to assess resolution limits in color imaging
systems. We account for loss of details due to pointwise deg-
radations, such as random noise. Usually, pointwise degrada-
tions are considered as effects which reduce sensitivity, rather
than resolution.

According to [1,2,37–39], the overall noise variance (assum-
ing a camera without amplifier nonlinearities [40,41]) in the
image is σ2c�x� � χc ~Ic�x� � ψ c, where χc;ψc > 0, while ~Ic�x�
is the expected image intensity given in Eq. (1), excluding
nc�x�. The term χc parameterizes signal-dependent photon
(shot) noise [42,43]. The term ψc expresses signal-
independent random noise components. As detailed in
[39,42,44], ψc � ρ2c-read � ρ2c-digit � DcTc, where ρc-read is the de-
tector readout noise standard deviation (STD), ρc-digit is the
noise STD of the sensor quantizer, Dc is the detector dark cur-
rent, and Tc is the exposure time.

Following Eq. (1), the signal-to-noise (SNR) can be different
between color channels. One reason is that noise variance de-
pends on the local image signal. The non-negative additive
component ac�x� also has spectral dependency. In Section 3
we account for variability in SNR among the color channels,
suggesting an optimal fusion process in the color domain, that
suits a given color distribution of SNR values.

The model presented here for pointwise degradations is
meant to describe a category of problems that our model
for limiting cutoff frequency applies to. Some works focus
on estimating various model parameters such as tc�x� and
ac�x�, in various scenarios. In this work we study the funda-
mental resolution limits due to unknown random noise and
not due to a systematic error of model parameters. If there
is such a systematic error, it of course biases the error further.
We do not aim to estimate these parameters in this work. They
are assumed to be known.

B. Monochrome Resolution Cutoff
The ability to recover an object of given size depends on the
SNR [2]. At low spatial frequencies, the signal can be distin-
guished even for very low SNR, contrary to the situation in
higher spatial frequencies. Reference [2] finds a monochrome
effective cutoff frequency due to random noise, within a de-
sired success rate of object recovery. The analysis also ac-
counts for potential linear noise filtering. The notion of
frequency response and thus the limiting cutoff frequency
is enabled by linear systems theory. Given an effective limiting

cutoff frequency ucutoff �cy∕pixel�, the transversal length of the
smallest object that can be recovered successfully is [2]

m � 1
2ucutoff

�pixels�: (2)

Consider a single-channel image signal of the form

s�x� � A cos�2πu0x�: (3)

It has horizontal spatial frequency u0 ∈ �0; 12� cy∕pixel and
amplitude A. This signal is corrupted by white Gaussian noise
with STD σ. A signal at a specific spatial frequency is studied,
since it indicates the potential of recovering an object of given
size [Eq. (2)]. Similar to Ref. [2], we define the SNR of such an
input signal as

SNRin � jAj
σ

: (4)

Reference [2] shows that applying a linear averaging win-
dow filter can increase an output SNR. Themaximum increase
is achieved for a window of size

Wmax�u� � �2u�−1: (5)

Note that the maximal window size is constrained by the
signal spatial frequency. If a larger window size was chosen,
signal details would be lost.

The SNR increase factor for this optimal window size is

Cmax�u� �
1

sin�πu� : (6)

The SNR in the processed image is thus

SNRout�u� � Cmax�u�SNRin�u�: (7)

Let ρ ∈ �0; 1� be a minimum required rate of successful
object recovery. The rate ρ imposes [2] a minimal required
output SNR

SNRmin
out � erf−1�ρ�: (8)

Substituting Eq. (6) into Eq. (7), the maximum resolvable cut-
off spatial frequency is

ucutoff �
1
π
· arcsin

�
SNRin

SNRmin
out

�
: (9)

Spatial filtering using Wmax�u� is not meant [2] to be a prac-
tical denoising method. It rather serves as an accessory to
obtaining a closed-form expression for a resolution bound,
ucutoff . In Section 3, this approach for assessing the limiting
cutoff is extended to color images.

3. FULL-FIELD COLOR IMAGES
We extend the principles of Section 2.B to color imaging sys-
tems. We focus on general systems, putting aside human per-
ception considerations. In this work, we discuss high-end
imaging systems that, unlike Bayer-based sensors [33], do not
compromise resolution by spatial multiplexing. A prism-based
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3CCD system is the most common example. Other designs in-
clude N-CCD (N > 3), time multiplexing (e.g., a camera with
an external spectral filter wheel), and FOVEON X3 technology
[45,46]. They consist of three distinct sensor arrays corre-
sponding to the R, G, and B channels. The Bayer sensor, a
popular means of acquiring color images, is outside the scope
of this paper. Its inherent resolution loss is analyzed sepa-
rately in Ref. [33].

AssumeN image channels. Each channel c contains a signal
as in Eq. (3)

sc�x� � Ac cos�2πu0x� � Bc; (10)

where Ac is the per-color signal amplitude, and Bc is a con-
stant (“DC”) background level. The values of fAcg and fBcg
jointly define the color of the object. A per-color phase com-
ponent is neglected following analysis in [33]. The noise STD
in each channel is σc. The SNR per channel is

SNRin
c �u� �

jAcj
σc

: (11)

An example of such a signal is shown in Fig. 2, in RGB rep-
resentation. It is a yellow signal over a green background. We
can see that the variations are easier to distinguish in low spa-
tial frequencies, or high SNR. Figure 2 is a sample color rep-
resentation of a monochrome plot [2]. The solid black line
represents a monochrome cutoff, according to [2]. The dotted
horizontal arrow denotes SNRmin

out . Below this arrow, the
signal’s SNR is greater than SNRmin

out , and the formula for
the limiting cutoff frequency [Eq. (9)] is not used. When the
SNR is greater than this threshold, there is no need for aver-
aging filtering as described in Section 2.B. A signal’s probabil-
ity of recovery is independent of spatial frequency when its
raw SNR is above the minimal threshold SNRmin

out .

A. Filtering in the Spectral/Color Domain
A technique for SNR optimization [47] is linear fusion based
on the Rayleigh principle [48]. It ultimately results in a
weighted sum of the color channels: a linear filter in the color
domain. A measured signal level is

ŝc�x; y� � sc�x; y� � nc�x; y�; (12)

where sc�x; y� is given by Eq. (10), and nc�x; y� ∝ N �0; σ2c� is
spatially uncorrelated (white) Gaussian noise with STD σc.
The vector of measured values is ~s�x; y� � �~s1�x; y�;
~s2�x; y�;…; ~sN �x; y��T , where T denotes transposition. Using
vector notations for the signal and noise in all image channels

~s�x; y� � s�x; y� � n�x; y�: (13)

A fused image is a weighted sum of the rawmultichannel pixel
data

g�x; y� � hα; ~s�x; y�i �
XN
c�1

αc ~sc�x; y�; (14)

where hi is the inner product operator, α is a pixelwise weight
vector, and αc is its cth element.

The respective powers of the signal and noise in the fused
image are

‖gA�x; y�‖2 � αTA�x; y�AT �x; y�α; (15)

‖gn�x; y�‖2 � αTn�x; y�nT �x; y�α: (16)

Let

CA � A�x; y�AT �x; y� (17)

be the cross-color signal amplitude correlation matrix, and

Cn � Efn�x; y�nT �x; y�g (18)

be the noise covariance matrix, where E is the expectation
operator. Since nc�x; y� ∝ N �0; σ2c�, Cn � diag�σ2c �.

The square of the local SNR in the fused image is

SNR2�x; y� � Ef‖gA�x; y�‖2g
Ef‖gn�x; y�‖2g

� αTCAα

αTCnα
: (19)

Equation (19) is a generalization of Rayleigh’s quotient [48].
We seek a weight vector α that maximizes the SNR. Then, the
gradient of Eq. (19) with respect to α is null. Since Cn is pos-
itive-definite, this requirement leads to an eigenvalue problem

C−1
n CAα � SNR2α: (20)

Note that SNR2 is the eigenvalue of C−1
n CA, and α is the cor-

responding eigenvector.
By the Rayleigh principle [48], the SNR of the fused image is

maximized if α is the eigenvector corresponding to the largest
eigenvalue SNR2

max of C−1
n CA. The vector α is normalized so

that
P

N
c�1 αc � 1. The maximum SNR following spectral fu-

sion is SNRmax. It is the square root of the largest eigenvalue.
Equation (14) yields a monochrome image. This image is

then analyzed as in [2], using an optimal averaging window
per spatial frequency [Eq. (5)]. This completes a spatio-
spectral enhancement process.

Next, we demonstrate the benefit due to the proposed fu-
sion process. For this purpose, we define a gain factor. It is the
pixelwise ratio between the SNR of an optimally fused image

SNR

0.25

5
 [cy pixel ]u

0 0.5

Fig. 2. RGB signal of the form Bc � Ac sin�2πu0x�, where Bc is a bias,
Ac is the signal amplitude, u0 ∝ x, and c ∈ �R;G;B�. Spatially uncorre-
lated (white) Gaussian noise is added to each channel. Its variance
increases along the vertical axis. Beyond the solid black line, in
the upper-right corner, it becomes very difficult to distinguish the sig-
nal from the background. This line represents the limiting cutoff fre-
quency for a 50% success chance (ρ � 0.5), without accounting for the
potential benefit of color information (Section 2.B). The dotted hori-
zontal arrow corresponds to SNRmin

out . Below this arrow, all spatial
frequencies are resolvable. A signal with any spatial frequency can
be recovered if its SNR is large enough. In our work we show that
by utilizing color information, the limiting cutoff denoted by the solid
line is increased.
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and the SNR of a pan-chromatic image. The latter is equivalent
to the choice of a spectrally uniform weight vector α. The gain
factor is

Dmax ≡
SNRout

fused

SNRin
pan

; (21)

where SNRin
pan is the pan-chromatic SNR, and SNRout

fused is the
SNR following optimal color fusion (equivalent to SNRmax).

B. Demonstration
We applied our color fusion approach to a hyperspectral im-
age in the visible spectral range. The image was taken from
the database used in [16]. It consists of 1392 × 1040 pixels
and 31 spectral channels. Figure 3(a) shows the image we
chose, rendered in RGB. Figure 3(b) shows how it would ap-
pear, had it been captured with a pan-chromatic camera: pho-
tons from all 31 channels are simply integrated. The images
used in [16] were captured in good lighting conditions, using
a quality camera with high spatial resolution. Therefore, noise
is not significant in Fig. 3. The benefit of our approach is most
dominant when pointwise degradations such as noise are ap-
parent. So, we simulate image capture in two types of noisy
conditions. The original noiseless image in spectral channel c
is sc. We then add random noise with STD σc to each pixel in
every image channel. The resulting noisy image is ŝc.

In order to fuse the hyperspectral channels according to
Section 3.A, we need pixelwise estimates of Ac. In practice,

natural images contain many spatial frequency components.
However, we may estimate the signal amplitude locally by
a localized contrast estimation of sc, the noiseless image

jAc�x; y�j � jsc � �1 − havg�j; (22)

where havg is a 5 × 5 averaging filter. This yields the differential
signal of each pixel relative to an estimate of its close back-
ground level. This signal estimation is used along with the
noise STD σc in the pixelwise calculation of the optimal weight
vector α�x; y�.

Note again that we do not propose a denoising or spectral
fusion method. This linear process is done to demonstrate our
approach for assessing resolution capabilities in color images,
corrupted by noise.

The noise is estimated at each pixel location according to
the noise model from Section 2.A, σ2c�x� � χcsc�x� � ψc. We
used χc � 1, while ψ c was chosen differently in each of the
two scenarios that we analyzed.

1. Low Variability SNRin
c

In this scenario, we add noise with an identical ψ c ∀ c. This
component was chosen to be dominant relative to the signal-
dependent photon noise. In haze or fog, intense path radiance
reaches the camera in all spectral channels. The scattering is
dominant compared to the signal, so the photon noise has a
low variability across c, and so does the SNR. Low variability
SNR also occurs in cameras limited by spectrally constant
readout noise. Figure 4(a) shows the image obtained in this
case, rendered in RGB. Figure 4(b) shows the same image,
as it would appear in a pan-chromatic camera. Figure 4(c)
shows the resulting fused image, after performing color fusion
as explained in Section 3.A. In this scenario the two images
are very similar, with only slight improvement due to fusion.
Figure 4(d) shows Dmax�x; y�, the optimal SNR gain due to
color fusion [Eq. (21)].

2. High Variability SNRin
c

Now, we add noise with the component ψc inversely propor-
tional to the camera’s spectral sensitivity. The reason is that
channels with low sensitivity may require longer exposure
time, thus increasing dark current. Another possible reason
is the selection of a larger amplifier in channels with low

Fig. 3. (a) Original hyperspectral image [16] rendered in RGB.
(b) Original image, as it would appear in a pan-chromatic camera.

Fig. 4. (a) RGB-rendered image for low variability SNRin
c . (b) Same

image, as it would appear in a pan-chromatic camera. (c) Optimally
fused image, for low variability SNRin

c . Only slight improvement may
be noticed, e.g., in distinguishing the left side of the chimney from the
sky background. (d) Pixelwise ratio between the SNR of the optimally
fused image to the SNR of the pan-chromatic image, Dmax�x; y�. It
never goes below 1; thus the fused image is never degraded compared
to the pan-chromatic case. Here, the gain goes up to almost 2, but
mostly it takes values closer to 1.

Fig. 5. (a) RGB-rendered image for high variability SNRin
c . (b) Same

image, as it would appear in a pan-chromatic camera. (c) Optimally
fused image, for high variability SNRin

c . Significant improvement is no-
ticed in distinguishing small objects across the image. (d) The pixel-
wise ratio, Dmax�x; y�, between the SNR of the optimally fused image
and the SNR of the pan-chromatic image. Here, gain is up to nearly 62.
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sensitivity, thus increasing their readout noise. Figure 5(a)
shows the image obtained in this case, rendered in RGB. Fig-
ure 5(b) shows the same image, as it would appear in a pan-
chromatic camera. Figure 5(c) shows the resulting fused im-
age, after color fusion. Major improvement is obtained in dis-
tinguishing details compared to the image in Fig. 5(b). Figure 5
(d) shows Dmax�x; y� for this scenario.

4. CUTOFF IN FULL-FIELD SYSTEMS
We compare the optimal SNR resulting from the suggested
color fusion process to the SNR obtained in a pan-chromatic
image. The pan-chromatic case implies a uniform weight
α≊ �0.333; 0.333; 0.333�. It is important to note that the total
number of photons is set to be equal in both color and the
pan-chromatic images. This provides a “fair” comparison. It
ensures that any observed improvement in ucutoff is due to op-
timal utilization of multispectral data, even though the total
number of photons is equal in both cases. The SNR per color
channel, however, may vary (see Section 2.A).

The SNR following optimal color fusion (See
Appendix A) is

SNRout
fused �

�������������������������XN
c�1

�SNRin
c �2

vuut ; (23)

where fSNRin
c g are the input SNR values of the N color chan-

nels. The optimal SNR gain Dmax then becomes

Dmax ≡
SNRout

fused

SNRin
pan

� 1
SNRin

pan
·

�������������������������XN
c�1

�SNRin
c �2

vuut : (24)

The effect of polychromaticity on the maximum resolvable
cutoff frequency, ucutoff , is seen by generalizing Eq. (7) to

SNRout�u� � Cmax�u�DmaxSNRin
pan: (25)

Consequently, the expression for ucutoff in Eq. (9) becomes

ucutoff �
1
π
· arcsin

�
DmaxSNRin

pan

SNRmin
out

�
: (26)

Figure 6 shows the cutoff frequency, ucutoff for two different
success rates ρ [related to SNRmin

out through Eq. (8)], as a func-
tion of DmaxSNRin

pan. Unlike pan-chromatic images, low input

SNRin
pan can be amplified by a high value of Dmax, yielding a

high cutoff frequency.

A. Examples
1. Numerical Examples
Let us consider two scenarios. In one, the SNR differs mod-
erately across color channels. The other consists of an object
with a very specific color (red) signal over an arbitrarily
colored background. We consider both scenarios to be domi-
nated by photon noise, due to the background “DC” signal. In
the first scenario, consider an image whose RGB signal
amplitude and background (given in photoelectrons) are,
respectively,

fAcg � �120; 100; 90�
fBcg � �10000; 15000; 5000�: (27)

The photon noise STD vector is

σc≊
� �������������

10000
p

;
�������������
15000

p
;

�����������
5000

p �
: (28)

The resulting input SNR vector is fSNRin
c g � �1.2; 0.82; 1.27�.

The color fusion process from Section 3.A yields an optimal
output SNR

SNRout
fused � 1.93; (29)

using the weight vector α � �0.33; 0.18; 0.49�. The pan-
chromatic SNR is obtained by a uniform α. Then,

SNRin
pan �

P3
c�1 Ac������������������P
3
c�1 σ

2
c

q � 1.79: (30)

Thus, from Eqs. (29) and (30)

Dmax≊1.08: (31)

For SNRmin
out � 3, which corresponds to a ρ � 0.97 success

rate, we obtain a cutoff frequency [Eq. (26)]

ufused
cutoff � 0.22

�
cy

pixel

�
: (32)

In the pan-chromatic case, we use Eq. (9), or apply
Dmax � 1 in Eq. (26) to obtain

upan
cutoff � 0.20

�
cy

pixel

�
: (33)

Here, upan
cutoff is 9% less than ufused

cutoff .
In the second scenario, consider the following signal (in

electrons):

fAcg � �300; 0; 0�;
fBcg � �10000; 15000; 5000�: (34)

It is a red object over a yellowish bright background. The
photon noise STD vector can be assumed the same as in
Eq. (28), since background signal is dominant. Thus, SNRin �
�3; 0; 0�. The color fusion process from Section 3.A locks on the
R channel alone. This yields an optimal output SNR

Fig. 6. Limiting cutoff frequency, ucutoff , as a function of
Dmax · SNRin

pan, for two different success rates, ρ. The blue solid line
corresponds to SNRmin

out � 1, which accounts for a success rate of ρ �
0.52 [Eq. (8)]. The black dotted line corresponds to SNRmin

out � 3, which
accounts for a success rate of ρ � 0.97.
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SNRout
fused � 3; (35)

using the weight vector α � �1; 0; 0�. The pan-chromatic SNR
obtained by Eq. (30) is SNRin

pan � 1.73, thus Dmax � 1.73.
Taking SNRmin

out � 3, which corresponds to a ρ � 0.97 success
rate, we obtain a cutoff frequency

ufused
cutoff � 0.5

�
cy

pixel

�
: (36)

In the pan-chromatic case

upan
cutoff � 0.20

�
cy

pixel

�
: (37)

Here, upan
cutoff is 60% less than ufused

cutoff .
We see that depending on the scenario, the benefit of

polychromatic imaging can vary a lot. If the variability in
SNR across the color channels is small, then it contributes
moderately. If the variability is large, it can enable discrimina-
tion of much smaller objects.

2. Simulation—Varying Spatial Frequency
Figure 7 emphasizes the improvement that can be achieved
using three image channels versus pan-chromatic imaging.
Here, the pan-chromatic SNR, SNRin

pan, varies between 0.25
and 5 in the vertical axis. The noise variance is identical in
all three channels. The signal was chosen as

fAcg � �0; 15; 0�; (38)

while u0 ∝ x.
Figure 7(a) shows the signal, rendered in RGB. The solid

blue line represents the limiting cutoff frequency for a 50%
success chance (ρ � 0.5), without accounting for the potential
benefit of color information (see Section 2.B).

Figure 7(b) shows the same signal, as it would appear in a
pan-chromatic camera (α≊ �0.333; 0.333; 0.333�). Figure 7(c)
shows the result of the color fusion process. In Fig. 7(c),
the SNR is increased relative to Fig. 7(b) (SNRin

pan) by aDmax ����
3

p
. Note that the solid blue line in Fig. 7(c) is closer to the

upper-right corner, meaning that the limiting cutoff frequency
has increased, for the same input SNR. This improvement is
obtained due to the optimal utilization of multispectral infor-
mation. In this example, the signal is fully associated with the
green channel, thus the chosen weight vector is α≊ �0; 1; 0�.

B. What If the Signal Is Uncertain?
Similar to the spatial filtering in the monochrome case (see
Section 2.B), note that the spectral fusion process presented
in Section 3.A is not meant for image processing. We rather
use it as a step in obtaining the expression for the limiting
cutoff frequency, ucutoff . If this method was to be used for fu-
sion in practice, an estimation of A�x; y� and n�x; y� would be
required.

Here, we show an example for the effect of uncertainty in
the per-channel signal components, fAcg. Suppose the noise
STD is known. Inaccurate fAcg implies suboptimal fusion
weight vector α, and thus suboptimal SNR [Eq. (19)]. This
yields an underestimated cutoff frequency [Eq. (26)]. As an
example, we take the per-channel signal and noise distribu-
tion of the first scenario presented in Section 4.A.1. Figure 8

shows the cutoff frequency that would be achieved as a func-
tion of the relative estimation error of each Ac component.
The dotted horizontal line represents the pan-chromatic cutoff
frequency. We can see that a relatively large uncertainty in any
Ac component would still ensure improvement over the pan-
chromatic case, even though the performance is less than op-
timal. So, in this scenario, the cutoff frequency is insensitive to
an error in fAcg.

Even if no signal and noise STD estimation is available, the
fusion weight vector α can be sought empirically: at low SNR,
a correct α reveals details in what otherwise appears as
random noise.
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 [cy pixel ]u
0 0.5

5
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 [cy pixel ]u
0 0.5
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 [cy pixel ]u
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(a)

(b)

(c)

Fig. 7. (a) RGB-rendered signal with varying SNR and spatial fre-
quency. (b) The same signal, as it would be seen in a pan-chromatic
camera. (c) The signal after optimal fusion in the color domain. The
cutoff frequency, represented by the solid blue line, has increased.

Fig. 8. Limiting cutoff frequency as a function of the relative estima-
tion error of each Ac component, in the first scenario presented in
Section 4.A.1. The dotted horizontal line represents the pan-chromatic
cutoff frequency.
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5. DISCUSSION
We analyzed an effective limiting cutoff that can be achieved
in a given color scenario, with given system properties, based
on linear systems theory. Our framework can serve as a guide-
line when designing a polychromatic imaging system and a
tool for performance evaluation. We presented a unified
spatiospectral domain framework, resulting in limiting cutoff
frequencies. Our work generalizes Ref. [2], which studies the
limiting cutoff frequency in a single-channel, monochrome
scenario. By utilizing a known linear technique for spectral
fusion, we derived an analytical expression for the fused
SNR. This increase in SNR expresses the objective benefit
of color information, over a pan-chromatic system with the
same total number of photons entering the system. Finally,
we propose a modified, color-enhanced expression for the
limiting cutoff frequency. We demonstrated our approach
to assessing limiting cutoff frequency in color images, by
numerical examples, simulations, and a demonstration using
a real hyperspectral image.

Analysis should also be done for the Bayer CFA sensor,
which is common in color imaging. Additional work can deal
with alternative fusion operations and nonwhite random
noise. Our analysis neglected a per-color phase component,
following analysis performed on natural RGB images [33].
In future work, it is worth considering image domains other
than RGB and hyperspectral visible data.

APPENDIX A: DERIVATION OF SNRout
fused

Let SNRout
fused be the square root of the largest eigenvalue λ of

C−1
n CA. The matrix Cn is diagonal with the per-channel noise

variance, σ2c as its eigenvalues. Thus, C−1
n takes the form
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Thus, C−1
n CA is
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Let l̂i and l̂j be the ith and jth columns of C−1
n CA, respectively.

It is evident that l̂j � Aj

Ai
l̂i; ∀ i; j. Thus, all columns of C−1

n CA

are linearly dependent, and rank�C−1
n CA� � 1. The number

of nonzero eigenvalues of a matrix M is at most rank�M�

[49]. Therefore, C−1
n CA has one eigenvalue at most. Another

theorem [50] states that trace�M� equals the sum of its eigen-
values. In our case, the sum of the eigenvalues of C−1

n CA

equals to its only nonzero eigenvalue (if one such exists).
Therefore,

SNRout
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p
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������������������������������
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q
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