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Abstract

We present 3DeepCT, a deep neural network for com-
puted tomography, which performs 3D reconstruction of
scattering volumes from multi-view images. The architec-
ture is dictated by the stationary nature of atmospheric
cloud fields. The task of volumetric scattering tomography
aims at recovering a volume from its 2D projections. This
problem has been approached by diverse inverse methods
based on signal processing and physics models. However,
such techniques are typically iterative, exhibiting a high
computational load and a long convergence time. We show
that 3DeepCT outperforms physics-based inverse scatter-
ing methods, in accuracy, as well as offering orders of
magnitude improvement in computational run-time. We
further introduce a hybrid model that combines 3DeepCT
and physics-based analysis. The resultant hybrid technique
enjoys fast inference time and improved recovery perfor-
mance.

1. Introduction

There is increasing effort to develop deep neural net-
works (DNNs) for reconstructing three dimensional (3D)
shapes or projections of opaque objects. These DNNs
use either explicit outer-shell or volumetric representations
[7, 11, 12, 13, 19, 24, 28, 35, 53, 58, 59, 67, 78, 79, 80, 82].

However, there is still a significant gap in advancing re-
construction of 3D heterogeneous volumetric translucent
fields, such as the atmosphere (Fig. 1). 3D heterogeneous
translucent objects are reconstructed, essentially, using to-
mographic data. Radiation that propagates through the
medium yields a set of multi-view two dimensional (2D)
radiometric images. Analysis retrieves from the data the
volumetric spatial distribution of material density in 3D.
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Figure 1. Shallow cumulus cloud fields [76].

This is computed tomography (CT). It is used extensively in
biomedical imaging and earth sciences [3, 5, 23, 37, 57, 66]

DNNs advance medical CT [29, 34, 65, 72, 77]. Nev-
ertheless, most CT modalities are based on a linear image
formation model. Linear models can be solved well using
established signal processing methods, including optimiza-
tion of a convex functional, without requiring learning. It
may be argued that 3D tomography does not lend itself eas-
ily to current DNNs. The reason is that DNNs require big
training data, but it is extremely difficult to obtain sufficient
ground-truth data of volumetric heterogeneous translucent
objects.

Reconstructing such objects poses a serious challenge
which is worth tackling by DNNs. We believe this chal-
lenge and opportunity occur when these conditions are met.
(1) The tomographic model is very complex: nonlinear, not
unimodal. Then, methods of linear-CT analysis cannot ap-
ply. Moreover, optimization-based estimation is very slow,
unscalable and too dependent on initialization. (2) Scal-
ability is critically needed to analyze huge 3D fields. (3)
While the imaging model is nonlinear, it is continuous: an
infinitesimal change of the medium continuously affects the
image data, and vice versa. (4) There is a physics-based
way to generate a large and diverse database. Under these

5671



conditions, a DNN can realistically learn to express the rich-
ness of large translucent fields, and the physical processes
that generate both 3D translucent objects and their images.
Moreover, the inference speed offered by a trained DNN can
significantly overtake explicit physics-based optimization.

We pose a problem that should greatly benefit from a
DNN for CT. The problem is imaging of a very large ran-
dom 3D spatially heterogeneous scattering medium [2, 10,
25, 46, 55, 68, 69, 74]: the atmosphere. In computer vi-
sion, imaging through a scattering medium has usually been
related to dehazing [33, 51], defogging [43], underwater
descattering [2, 71], or recovering properties of a medium,
assuming its spatial uniformity [10]. Here, however the fo-
cus is on imaging of clouds [50, 84]. Clouds have interac-
tions with the global climate system which are not well un-
derstood. This leads to major uncertainties in climate pre-
dictions [4, 6, 8]. This is a major motivation to properly
sense these volumetric translucent objects internally.

Clouds are usually highly heterogeneous. Furthermore,
multi-view images of clouds are governed by 3D radiative
transfer (RT) [20, 31, 64]: a nonlinear, recursive forward
model, which expresses arbitrary multiple scattering in 3D.
Inverting this model is highly complex. Common methods
in remote sensing try to bypass this complexity by imposing
a model [60, 61] where clouds are horizontally uniform, in-
finitely broad, and RT is roughly vertical (one dimensional).
This is inconsistent with nature, particularly when clouds
are small. Recent work in computer vision introduced 3D
scattering tomography [1, 16, 25, 26, 32, 40, 45, 46, 47] and
proposed it as a viable path to study clouds. However, it is
still slow and has not been scaled.

Ref. [22] shows that thick clouds have a veiled core, to
which images are insensitive. Relying only on images may
lead to major errors in a veiled core: the data term is ill-
conditioned in thick clouds. Regularization should be valu-
able. A learning-based system may address this: Using ex-
amples as it trains, the system implicitly learns a prior of
the nature and structure of clouds. 3DeepCT trains on phys-
ically realistic clouds, expressing both RT (fidelity) and the
nature of clouds (regularization). We thus believe that a
neural network (NN) is the way to better condition cloud
tomography.

Our proposed learning-based system, 3DeepCT infers
3D scattering-CT. While its results have quality which is
comparable to explicit physics-based methods, it appears to
run five orders of magnitude faster. Moreover, after train-
ing, it can potentially be scalable to broad cloud fields,
exploiting GPU parallelism. We show how natural prop-
erties of clouds in cloud fields lead to the architecture of
3DeepCT. This includes a convolutional neural network
(CNN) based on 2D convolutions, the size of its receptive
field and layer-depth, and avoidance of dimensionality re-
duction. Furthermore, we provide an approach to train this

system using rigorous physics-based generation of simu-
lated fields and images.

2. Theoretical Background
We seek to recover the 3D volumetric optical parame-

ters of a medium, particularly 3D clouds. We now provide
background on inverse problems and focus on this domain.

2.1. 3D Radiative Transfer

Let x denote a 3D location and ω denote a 3D direction
unit vector. This vector expresses the propagation direc-
tion of radiation. The direction changes from ω′ to ω by
scattering. This change is set by the dimensionless scatter-
ing phase function at x, denoted p(x,ω · ω′). The phase
function is normalized, as it is equivalent to the probability
density of scattering between directions ω′ and ω.

When radiation interacts with a particle, the radiation
can be either scattered or absorbed. Scattering and absorp-
tion have, respectively, relative probabilities ϖ and 1 −ϖ,
where 0 ≤ ϖ ≤ 1 is the single scattering albedo of the
particle. In visible light, for both air molecules and cloud
water droplets, ϖ ∼ 1, i.e., absorption is negligible.

The extinction coefficient around location x is β(x).
There, interaction of any kind along an infinitesimal dis-
tance dx has probability β(x)dx. Transmittance on a
straight line between two points x1,x2 is

T (x1,x2) = exp

[
−
∫ x2

x1

β(x)dx

]
. (1)

The richness of multiple scattering, including various paths
to interaction, possible absorption or scattering events,
and scattering to different angles, embodies RT. It is ex-
pressed [9] by a set of recursively coupled equations:

I(x,ω) =I(x0,ω)T (x0,x)

+

∫ x

x0

J(x′,ω)β(x′)T (x′,x) dx′,

J(x,ω) =
ϖ(x)

4π

∫
4π

p (x,ω·ω′) I (x,ω′) dω′.

(2)

Here I(x,ω) is the radiance field at each location and di-
rection and I(x0,ω) is input radiance to the medium in di-
rection ω at boundary point x0 (boundary condition). The
field J(x,ω) is termed the source function.

Eq. (2) provides the radiance anywhere. Imaging sam-
ples this radiance field: then, x is the camera’s center of
projection, while ω corresponds to a line of sight (LOS) that
projects to a specific pixel in the camera at x. Hence, the
forward model F comprises two consecutive steps: (a) Run
Eq. (2), which depends on the medium β, and (b) sample
the radiance at the camera locations and LOS that project to
pixels in these cameras. This sampling is independent of β.
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For a given medium, Eq. (2) is computed by estab-
lished methods, such as SHDOM [1, 18, 20] and Monte
Carlo [15, 16, 32, 54, 56]. Moreover, in recent years, ap-
proximations to the Jacobian ∂F(β)/∂β have been de-
rived by the computer vision and graphics communities
[25, 26, 42, 45, 52, 83]. Here, β concatenates the extinc-
tion coefficients across all voxels to a vector. The vector
length equals the number of voxels in the domain.

In clouds, Eqs. (1,2) are highly nonlinear in β. In con-
trast, in medical (traditional) CT, the signal is dominated
by linear dependency on β and ≈ 1/2 the photons do not
scatter [23], making SART viable, at least for initialization
[23]. In clouds, the optical depth is O(10 . . . 100). Thus di-
rect transmission of ground radiance and single-scattering
events are negligible, and cannot be a realistic source of ini-
tialization, eg., using SART.

2.2. Inverse Problem

The forward model F(β) renders images given β. The
measured radiance image data are expressed in a vector y.
Its length is the product of the number of camera image
pixels, viewpoints, spectral bands and possibly polarization
channels. Estimation of β is an inverse problem. Often, it
is formulated as an optimization problem:

β∗ = argmin
β

E(β) , (3)

where E is a cost function. Specifically,

E(β) = ||y −F(β)||22. (4)

In scattering media, F is nonlinear in β. Hence, Eq. (3)
cannot be solved using linear-algebra tools of matrix in-
version. Nevertheless, thanks to the approximate Jacobian
mentioned in Sec. 2.1, an approximate gradient ∂E(β)/∂β
is derived. This enables a practical solution to (3) using
gradient-based methods.

Gradient-based optimization has two main problems.
First, the solution significantly depends on an initial guess,
because F(β) is non-linear in β and E(β) is not unimodal.
Second, the problem is very difficult to scale [52], and it
runs typically on small domains. Computation of F(β) and
∂E(β)/∂β is complex. It requires recursive evaluation of
the fields I and J , relying on Eq. (2) as well as rendering
of modeled projected images, during iterated optimization.
We seek to mitigate this load, by designing a learning-based
system for volumetric scattering CT.

2.3. Simulated Data and Noise

Learning-based systems for analysis of high-
dimensional data and unknowns require a large training
database. It is very difficult to obtain large databases
for real-world, large heterogeneous volumetric objects.

For example, in clouds, which are dynamic, a real-world
ground-truth training database would require, for each
real-world cloud, in-situ measurements of cloud droplets,
simultaneously in O(105 − 106) voxels, using this number
of airborne cloud-droplet sensors. It is doubtful if such a
large distributed ground-truth in-situ system would ever
exist. Even if it will exist, it would need to be scaled to
sample a large database of clouds, in varying atmospheric
and illumination conditions.

To overcome the practical absence of real-world labeled
data, we train the tomographic analysis system using metic-
ulous simulations. We explain the simulations that relate to
clouds in Sec. 4. Our simulations of a perspective camera
have a noise model based on the CMV4000 sensor [14].
The pixel size is 5.5 × 5.5micron2, readout noise stan-
dard deviation is 13 electrons, the sensor dark current is
125electrons/sec at 25oC, full well of a pixel is 13,500
electrons. It uses 10bit quantization, thus the number
of photo-electrons required to change a unit gray level is
ge = 13, 500/210. The exposure time is adjustable accord-
ing to the radiance that reaches the camera such that the
camera sensor reaches the full well. Additional information
about the noise model are in the supplementary material.

2.4. Clouds in a Field

We test learned-tomography on atmospheric clouds.
This medium has characteristics that affect our system.
Significance of warm clouds. Warm clouds are made of
liquid water droplets. Clouds account for two thirds of
Earth’s albedo while warm shallow clouds constitute a ma-
jor part of it. In visible light, this albedo forms the most
significant part of clouds’ radiative effect on Earth’s energy
balance. Warm clouds over the ocean have a particularly
dramatic effect. Consider Fig. 1. The ocean is dark (highly
absorbing) while clouds are white (highly scattering and
reflecting). Thus, the difference between cloudy and non-
cloudy regions has an extreme effect on Earth’s energy bal-
ance. Due to their significance both in the optical signal of
scattering and on climate, the focus of our work here is on
warm clouds over the ocean.
Vertically thin, horizontally wide domain. There are
marked differences between vertical and horizontal coordi-
nates. Atmospheric domains of interest, and cloud fields
in particular, can be thousands of kilometers wide. On
the other hand, the vertical dimension is thin. Atmo-
spheric pressure (approximately the density) falls exponen-
tially with altitude, dropping to half sea-level pressure at
≈ 5 − 6 km. Warm clouds have tops that are typically un-
der ≈ 2 km. Hence, there is a difference of orders of mag-
nitude between horizontal and vertical lengths. Moreover,
clouds are created by vertical air currents driven by gravity
and buoyancy of air parcels due to temperature gradients.
In contrast, horizontal wind is driven by a subtle horizontal
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pressure gradient, which may be null. For this reason, our
learning-based system is anisotropic, treating vertical and
horizontal variations very differently.
Horizontal Stationarity. As seen in Fig. 1, cloud fields
maintain rather stationary statistics over long ranges [75].
This is particularly true for clouds on the ocean, far from
land. Because the statistics are approximately space in-
variant (in the horizontal coordinates), our analysis system
is space invariant as well: this naturally leads to a convo-
lutional architecture when treating horizontal coordinates.
The vertical coordinate is separate and not space invariant.

3. 3DeepCT
Here we present a system, 3DeepCT, for learning 3D

scattering CT. Based on a DNN, 3DeepCT learns and then
infers volumetric domains. 3DeepCT is faster by orders of
magnitude, relative to pure physics-based scene analysis.
Its input is multi-view images of the scene, and its output is
an estimated 3D heterogeneous β̂. As described in Sec. 2.3,
it is challenging, to say the least, to empirically acquire
a large training database for large heterogeneous volumet-
ric media, which are typically dynamic. Hence, training is
based on rigorous physics-based models of the true scenes
{βtrue}, images and realistic noise. Using such a simulated
database, learning is performed by minimizing a loss. The
loss we use is the mean square error (MSE):

LossMSE(β
true, β̂) = ||βtrue − β̂||22 (5)

3DeepCT is based on physics-based training data, hence
in inference of test data, physics plays an implicit role.
However, for scientific needs, it benefits that the final word
is given to an explicit physics-based solution to the inverse-
problem. A hybrid system can do this. Given a new data of
an unknown scene, 3DeepCT can provide a solution which
is comparable to explicit iterated physics-based inversion,
yet doing so very fast. The solution obtained by 3DeepCT
is then used as initialization for the much slower physics-
based inversion. Only a few iterations would then be needed
for explicit physics-based inversion.

These principles can apply to any type of computed to-
mography and any media. However, it benefits an expert
system to be tailored to an imaging modality and the media
being observed. Therefore, from this point on, we describe
how the architecture and implementation of 3DeepCT is tai-
lored to scattering CT of warm clouds.

3.1. Architecture Tailored to Cloud Fields

These architectural principles follow the natural traits of
clouds, some of which are described in Sec. 2.4:
{1} Due to the horizontal stationarity of cloud fields, both
as volumetric objects and in images, 3DeepCT is a convo-
lutional neural network (CNN). Convolution kernels are op-
erated in the horizontal domain.

{2} Data is in the form of multi-angular images, i.e., the in-
put has angular channels corresponding to different view-
points (view angles). To capture 3D information from mul-
tiview images, all angular channels participate. There is no
preference to angular-neighborhood, contrary to a convo-
lutional operation. Moreover, output clouds have a verti-
cal structure expressed by vertical channels. As written in
Sec. 2.4, cloud vertical structure is not stationary. Therefore
in all layers of the DNN, convolution kernels operate only in
2D. The channels on the complementary coordinate, specif-
ically angular channels in the input and vertical channels in
the output, are completely intertwined, per NN layer.
{3} Due to the effective thinness of the atmospheric do-
main (Sec. 2.4) and typically small number of viewpoints,
having a completely intertwined architecture in the vertical
or angular direction is not a computational burden. On the
other hand, due to the very wide extent of cloud fields and
high resolution of images, a horizontal CNN makes analysis
scalable. Principles {1, 2} are addressed directly by using
the Conv2D operation at the entry stage of any layer of the
3DeepCT neural network.
{4} A small warm cloud cell typically has size of hundreds
of meters to a kilometer. Thus an output neuron needs to
have some statistical dependency to the output of other neu-
rons in that range. This dictates the minimum receptive
field range R of the overall DNN. This determines the DNN
depth, i.e, its number of layers. Let the camera horizontal
resolution be r meters/pixel. In principle {3}, operations
per layer are based on Conv2D, which uses kernels having a
small 2D support, of length h pixels. The number of layers
needs to be L ∼ R/(rh).
{5} Usually, clouds are created by chaotic turbulent flow.
Thus they are not highly structured objects as the human
body. Consequently, clouds are not amenable to signifi-
cant dimensionality reduction. Moreover, tomography tries
to resolve voxels, whose number is comparable to the data
size. Therefore, contrary to auto-encoder networks, we do
not include dimensionality reduction (pooling) operations.

3.2. Architecture Simplicity

3DeepCT has a simple structure. Yet, it outperformed
many alternatives that we tried and tested. Specifically, we
tested deep unfolding by formulating an iterative proximal-
gradient and unrolling it to construct a deep feed forward-
NN (resembling the RNN of [49]). We further examined
ResNet, U-Net, CNN with 3D convolution layers and ele-
ments from [53]. Inspired by [10], we incorporated physics-
based rendering in training using loss of both 3D object and
rendered images, but rendering all objects in each epoch
takes too long to be practical. In all cases, the results proved
to be inadequate. Performance results of U-Net and ResNet
are shown in the supplementary material. Eventually, our
study led us to the 3DeepCT structure described here. This
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Figure 2. 3DeepCT neural network architecture: A convolutional neural network receives multi-view satellite-images of a cloud as
input and reconstructs the 3D extinction field of the cloud. (a) The architecture we use to train the network. The images are of single
isolated clouds. (b) Illustration of the architecture for inference, where the input can be large images that capture a large cloud field. A
space-carving mask is incorporated. A batch normalization layer degenerates to linear operations of scaling and bias.

may not be a coincidence: as we explained, the nature of
our problem may suit this structure.

3.3. Implementation Details

The architecture is illustrated in Fig. 2. 3DeepCT has
L layers, indexed l = 1 . . . L. In each layer, there are, re-
spectively C in

l and Cout
l input and output channels, where

C in
l = Cout

l−1 for l ̸= 1. The number of viewpoints sets C in
1 ,

while Cout
L is the number of resolved vertical altitudes in the

volume. Each input image (data per input channel) is of size
H ×W pixels. Since we have no dimensionality reduction,
each layer in 3DeepCT maintains a 2D size of H ×W , and
this is the horizontal size of the estimated volume domain.
Moreover, Cout

l ≥ C in
l , gradually increasing or maintaining

the number of channels per layer. Each layer l is composed
of a Conv2D operator, followed by batch-normalization and
ReLU activation function.

We found that inference significantly improved by
space-carving (SC) [44] of the domain. SC is a known
method to approximate a bounding hull of a 3D object. SC
helps significantly also in physics-based inverse rendering,
as reported in [46]. Clouds have significant contrast rel-
ative to the dark ocean background. Hence, a moderate
cloud-mask is applied per input image, followed by SC.
This yields a simple bounding constraint on which voxels
may potentially have water droplets. An ablation study of
the SC is described in the supplementary material.

We implemented 3DeepCT using the Pytorch frame-
work [63]. Due to the convolution architecture, inference
is possible at larger or smaller H,W . The network training
and testing architectures are illustrated in Fig. 2. Its com-
ponents and hyper-parameters were carefully examined and
tuned by ablations studies (see the supplementary material).
We used an NVIDIA GeForce RTX 2080 GPU, an Adam

optimizer, StepLR scheduler (step size 10, gamma of 0.9),
an initial learning rate of 1e-3, and batch size b = 32.

4. Data

4.1. Physics-based Clouds

Recall from Sec. 2.3 the practical infeasibility of ob-
taining an empirical real-world database of clouds. Thus,
3DeepCT trains using rigorous physical simulations. The
simulations couple three components:
[A] Initial and environmental conditions (aerosols, wind,
temperature, surface fluxes, humidity field etc.) are set us-
ing either the BOMEX [73] or CASS [85] setups. They are
described in the supplementary material. Each setup yields
a database having a domain size and resolution, as specified
Table 1. The simulated domains are divided to voxels 50 m
wide and 40 m thick.
[B] A dynamical large eddy simulation (LES), which solves
the coupled equations of a turbulent atmosphere. LES is the
main numerical tool for generating and studying clouds at
the altitudes of relevance to our work [30, 62, 81]. Here
we use the System for Atmospheric Modeling (SAM) [39].
SAM is a non-hydrostatic, inelastic model.
[C] Representation of the droplet’s microphysics by a spec-
tral model (HUJI SBM [21, 38]). It explicitly evolves phys-
ical equations of the processes that affect cloud droplet
growth, yielding the size distribution of droplets per voxel.
This distribution is sampled into 33 bins, logarithmically
spread in the range [2 µm, 3.2 mm]. This leads to the
ground-truth optical extinction coefficient βtrue per voxel
and the phase function, through Mie theory [27].

To enable representation and network expression of
smaller optical depths, we constructed a CASS-Aux dataset
from the CASS dataset. There, liquid water content of each
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Dataset Horizontal Vertical Voxels Train Evaluation Test
BOMEX 1.6km× 1.6km 1.2km 32× 32× 32 4, 800 1, 200 286

CASS 3.2km× 3.2km 1.2km 64× 64× 32 8, 726 2, 181 1, 000
CASS-Aux 3.2km× 3.2km 1.2km 64× 64× 32 3, 744 686 1, 000

Table 1. Datasets specifications: horizontal and vertical extent of the volumes; number of voxels of the volume; number of samples in the
training, evaluation and test sets.

Model# Geometry Dataset L H ×W epochs Training Duration [hours] C in
1 Cout

L

1 32 satellites BOMEX 33 32× 32 1000 11 32 32
2 10 satellites BOMEX 33 32× 32 1000 8 10 32
3 10 satellites CASS 80 64× 64 1000 48 10 32
4 10 satellites CASS, CASS-Aux 80 64× 64 800 14 10 32

Table 2. 3DeepCT models specifications: geometry from the geometries described in Sec. 4.2; dataset from Table 1 the model trained on;
parameters L,H,W of the network; number of training epochs; training duration; C in

1 , Cout
L parameters of the network.

CASS cloud is reduced by a factor of 10.

4.2. Physics-based Rendering

Given ground-truth clouds, rendering uses a physics-
based RT solver (SHDOM), which has an open-source
code [48]. Rendering is set per solar angle, viewing geom-
etry and sensor characteristics. We separately trained ver-
sions of 3DeepCT for several distinct imaging geometries:
32 Viewpoints. A northbound string-of-pearls [41] for-
mation of 32 satellites orbit at 600km altitude. Nearest-
neighbor satellites are 100km apart. They view the same
field in off-nadir angles −75.2◦, ±73.5◦, ±71.7◦, ±69.6◦,
±67.4◦, ±64.8◦, ±62◦, ±58.8◦, ±55.2◦, ±51◦, ±46◦,
±40.6◦, ±34◦, ±26◦, ±18◦, ±9◦, and 0◦. Each carries
a perspective camera. The field of view of each camera
is 0.22◦, corresponding to a ground footprint of 1.6km ×
1.6km at nadir , at 50 m ground resolution. The sensor
noise characteristics correspond to the CMV4000 sensor
[14]. Solar azimuth and zenith angles are 45◦ and 30◦, re-
spectively.
10 Viewpoints. This geometry is motivated by the
CloudCT space mission [70]. This mission plans 10
nanosatellites carrying perspective cameras, which will si-
multaneously image clouds in a multiview geometry. This
geometry is visualized in the supplementary material. The
parameters are similar to those of the 32 Viewpoints geom-
etry. Here, however, we use off-nadir angles −46◦, ±34◦,
±26◦, ±18◦, ±9◦ and 0◦.

In total, we experimented with several models, each us-
ing a certain cloud database (Sec. 4.1) and geometry. Each
model was then trained on a distinct data and network set-
tings. These are summarised in Table 2.

5. Simulated Inference Results
We present inference (test) results of trained models, in

different geometries. We compare four approaches:

A. 3DeepCT. It runs on an NVIDIA GeForce RTX 2080
GPU, where it takes just milliseconds to reconstruct each
cloud. This enables us to test hundreds of cloud samples.
B. Physics-based inverse scattering. This explicit opti-
mized iterated fit of a physical model to the data is the state
of the art [45, 46, 47]. It uses an SHDOM code from the
public domain [48]. It is initialized by a default constant
value of βinitial = 0.01 globally for all the cloud’s space-
carving mask. To run this method we use 20 cores of In-
tel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz with 72 cores.
The state-of-the-art approach does not exploit a GPU, as
its complex calculations require CPUs. It takes about an
hour to reconstruct each cloud in this system. Hence, when
performing cross-method comparisons, we used a subset of
seven specific clouds from the test dataset. This subset is
shown in the supplementary material.
C. Hybrid system. The result of A provides an initializa-
tion to subsequent use of approach B, similar to [10]. Then,
iterations explicitly optimize physics-based inverse scatter-
ing [48], as in B.
D. Quick hybrid system This is similar to C, but using
only 10 iterations shortening the overall run time.

As an example, Figs. 3 and 4 show recovery of one of
the clouds in the said subset of seven using Model 1 from
Table 2. We report numerical comparisons to the ground
truth βtrue. To be able to compare to prior art [45, 46, 47],
we use these respective criteria for relative average error and
relative total mass error.

ϵ =
||βtrue − β̂||1
||βtrue||1

, δ =
||β true||1 − ||β̂||1

||βtrue||1
. (6)

Fig. 5 summarizes the run-time and quality results relating
to the subset of seven clouds using Model 1. Clearly, in
these test cases, 3DeepCT has a huge advantage in terms of
runtime: it is about five orders of magnitude faster than the
state of the art, which is a physics-based explicit approach.

5676



 

   

   

    

            

 

       
  

 

   

   

    

       

 

       
  

 

   

   

    

             

 

       
  

 

   

   

    

      

 

       
  

 

   

   

    

            

 

       
  

 

  

   

   

   
      

Y [km]
X [km]

Z
 [

k
m

]

Y [km]
X [km]

Y [km]
X [km]

Y [km]
X [km]

Y [km]

Hybrid Quick-Hybrid3DeepCT Physics-BasedGround Truth
𝜖 = 66, 𝛿 = −3 𝜖 = 83, 𝛿 = 42 𝜖 = 53, 𝛿 = 5.7 𝜖 = 63, 𝛿 = −1

 

   

   

    

            

 

       
  

 

   

   

    

       

 

       
  

 

   

   

    

             

 

       
  

 

   

   

    

      

 

       
  

 

   

   

    

            

 

       
  

 

  

   

   

   
      

X [km]

200

150

100

50

0

[km−1]

Figure 3. 3D reconstructions of cloud extinction. These recovery results correspond to an example cloud out of the subset of seven clouds
tested. From left to right: 3D ground truth extinction of the cloud; 3D reconstructed extinction using four methods mentioned in Sec. 5:
Model 1 of 3DeepCT, Physics-Based Inverse Scattering, Hybrid system, Quick Hybrid system.
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Figure 5. Numerical results of the subset of seven clouds, discussed
in Sec. 5. Blue is ϵ and orange is δ (see Eq. 6). The circles are
the mean values and the lines express ± standard deviation (std)
of the results. The bottom table contains the run time (mean±std).

In terms of quality, 3DeepCT also yields, on average, better
results than the state of the art.

The reason for these findings may be that physics-based
inverse rendering solves a non-convex problem, while being
oblivious to the nature of clouds (typical spatial structure
statistics). Moreover, inverse rendering may converge to a
local minimum, as suggested in [10, 25, 86]. On the other
hand, 3DeepCT trains on clouds, thus implicitly learns not
only RT, but also 3D cloud statistics. This may be a rea-

Model# ϵ δ Time [millisec]
1 82±10% 32±16% 7± 0.9
2 86±10% 44±16% 7± 0.7
3 96±18% 3±50% 18± 2

Table 3. Summary of 3DeepCT test results: Mean ± standard de-
viation (std) of Model 1 and Model 2 described in Table 2. Defi-
nitions of ϵ and δ are in Eq. (6).

son that 3DeepCT can provide a quick solution which is
cloud-like and complies approximately with RT. Thus, the
3DeepCT output is valuable for initialization. In the supple-
mentary material compares this initialization to other ini-
tialization schemes that are used in prior art.

The Hybrid method yields a significant improvement of
quality, relative to the state of the art, for the same run-time.
The Quick-Hybrid method is a compromise of run-time and
quality between 3DeepCT and a Hybrid long-run.

When not comparing to slow physics-based optimiza-
tion, 3DeepCT can be assessed on the full test dataset. Re-
sults of Model 1 and Model 2 are summarised in Table 3.
There is a degradation in quality when the number of view-
points decreases. However, a 10 Viewpoints geometry is
more realistic in the short term, as planned by the CloudCT
space mission [70].

Model 3 trained on the CASS dataset, where cloud-
fields are four times larger than in the BOMEX dataset.
Two examples of results of large cloud fields are shown in
Fig. 6. Contrary to scalability of CNN, we could not run
the physics-based explicit optimization (state of the art) on
fields larger than about a kilometer, such as these. This is
because physics-based explicit optimization requires exces-
sive resources; this problem is also reported in [52].

6. AirMSPI Real World Data
NASA’s ER-2 aircraft flying at 20 km altitude imaged

a cloudy ocean scene at 28N 123W, at 2PM local time on
February 3, 2013. Imaging was performed by an AirMSPI
pushbroom imaging instrument [17] mounted on the air-
craft. We use 10 views at the 660nm channel, corresponding
to the following on-track angles 38◦,±30◦,±21◦ ± 11◦, 0◦

off nadir. Currently there are no real simultaneous multi-
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vs. ground-truth, for both scenes.

view satellites images of clouds.1 For consistency with the
perspective of 3DeepCT we performed the following steps:
(a) We took clouds appearing in AirMSPI pushbroom data.
(b) Applied physics-based inverse rendering. (c) Rendered
them perspectively, means the input to 3DeepCT originates
from image-based rendering. Fig. 7 shows recovery using
Model 4 of 3DeepCT. It also shows cross-validation: the
nadir view is left-out of the NN input, yet rendered based on
the estimated 3D β. This is compared to the left-out nadir
view. Additional images in the supplementary material.

7. Summary

3DeepCT, a DNN for CT performs 3D reconstruction of
large translucent domains, focusing on cloud fields. There
is a significant advantage for this approach. In particular, it
achieves improved accuracy and dramatic reduction in run-
time compared to physics-based analysis. Thus, 3DeepCT
should enable reconstruction of large cloud fields.

Appearance fundamentally depends on the unknown
droplet size distribution (DSD), which sets the phase func-
tion, cloud albedo and extinction coefficient β. Here we
estimate β, which is a product of the DSD. We expect that
future research will generalize 3DeepCT to derive the DSD
parameters, motivated by [46]. Appearance depends also
on parameters known per location on Earth: solar angle (set
by local time) and surface (ground/ocean) albedo, derived
from prior satellites images. A NN can pre-train per Earth

1Data in [45, 46, 47] is push-broom. Data in [1, 32] has a hemispheric
field of view, and the images are taken inside the scattering domain, rather
than from space or high altitude, to which 3DeepCT is trained.
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Figure 7. AirMSPI cloud recovery. First row: 3D recovery by
Model 4 of 3DeepCT; scatter-plot comparison to physics-based
inverse scattering. Second row: Cross validation of the nadir view.
The physics-based inverse scattering left-out image is displayed in
the green channel; the 3DeepCT result is displayed in magenta;
scatter-plot of the cross-validation pixel values of radiance

location and time. This enables each NN to focus on the
mentioned major unknowns. Possibly, a single NN archi-
tecture may be found to be insensitive to the ground albedo
and solar angle, making training more efficient. Inclusion
of descriptors as in [36] can be the way.

Enriching the training using more diverse data is
expected to continuously improve the system. Moreover,
we believe significant benefits can stem from transfer-
learning. This will allow previously-trained models to be
reconfigured to new solar angles, viewpoint directions and
imaging systems. Additional scientific domains can benefit
from our approach. This can help solving complex tasks
where physics-based datasets exist and the computational
complexity of state-of-the-art reconstruction is high.
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Abstract

This is a supplementary document to the main
manuscript. Here we provide additional numerical results.

1. Introduction

This supplementary material contains eight sections.
Section 2 describes the BOMEX and CASS setups for the
cloud fields simulations. Section 3 describes the noise
model we use in our simulated database. Section 4 presents
a comparison between 3DeepCT and other initialization
schemes. Section 5 describes the 10 Viewpoints geometry.
Section 6 presents some of the ablation studies. Section 8
provides additional data and results of the subset of seven
clouds, which were not included in the main manuscript due
to space limits. Section 7 AirMSPI real data cross valida-
tion results.

2. Datasets

The cloud field was simulated using the BOMEX [5] and
CASS setups [6]. The BOMEX case study is based on sur-
face fluxes, large-scale tendencies, and profiles of wind, hu-
midity, and temperature in trade wind cumulus cloud fields
over the Atlantic ocean near Barbados.

The CASS simulation of terrestrial clouds is based on
a composite case called the Continental Active Surface-
Forced Shallow Cumulus (CASS) [6]. The setup was con-
structed from measurements of the ARM project (Atmo-
spheric Radiation Measurements), during 1997-2009 in the
Southern Great Plains of the USA. A composite of the diur-
nal cycle of surface fluxes, large-scale forcing, and profiles
of wind, humidity, and temperature was established over all

days of shallow convection with non-precipitating cumulus
clouds and was used to initiate the LES model.

The simulated domain for both setups is 12.82 km ×
12.82 km wide, with cyclic horizontal boundary conditions.
The time duration of the BOMEX simulation is 8 hours (in-
cluding 2 hours of spin-up time), while CASS simulates 12
hours with varying conditions according to the diurnal cy-
cle. From each simulation, we use a snapshot every 2 min-
utes, to produce the database of cloud fields. The simulation
evolved in 1 second increments, each yielding a different
3D spatial field which includes dozens of clouds. The data
created takes 1.2 TB of memory. It took ≈ 5 days to gener-
ate, on an Intel Xeon Gold 5115 with 256 cores.

3. Noise Model

Section 2.1 in the main manuscript explains how a
forward model derives a theoretic radiance field I(x,ω).
However, real-world radiance is in the form of a random
photon flux, which obeys a Poissonian distribution. The
photons are converted to discrete electric charges at the sen-
sor. Furthermore, the sensor introduces noise due to various
causes, according to its specifications. Let ie be the ex-
pected photo-electron count of a pixel. At darkness and in-
finitesimal exposure time, readout noise has standard devi-
ation ρread, in electrons. At temperature T , the sensor dark
current in electrons/sec is DT . The exposure time is ∆t.
The standard deviation of quantization noise in electrons is
ρdigit = ge/

√
12, where ge is the number of photo-electrons

required to change a unit gray level [4]. Overall, in a pixel
readout, in units of electrons, the noise has variance of ap-
proximately

V = ie +DT ∆t+ ρ2read + ρ2digit . (1)
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Figure 1. Recovering the cloud of Figs.3 of the main paper. (a)
SART yields negligible initialization. (b) Scatter plots following
coarse-to-fine analysis. (c) The error ϵ and run-time clock after
each coarse-to-fine stage.

Our simulations of a perspective camera have a noise
model based on the CMV4000 sensor [1]. The pixel
size is 5.5 × 5.5micron2, ρread = 13 electrons, DT =
125 electrons/sec at 25oC, full well of a pixel is
13,500 electrons. It uses 10bit quantization, thus ge =
13, 500/210. The exposure time is adjustable according to
the radiance that reached the camera such that the camera
sensor reaches the full well.

4. Initialization Schemes

3DeepCT provides good initialization to the physics-
based inverse rendering. We compare it with initializations
used in prior art. As expected, applying SART yields neg-
ligible values, 6-8 orders of magnitude lower than the true
β (See Fig. 1a above). Initialization by SART for cloud
scattering-CT is as initialization by a null cloud. Fig. 1b,c
here shows progression from ×8 coarser grids (in each spa-
tial coordinate) to full resolution by a coarse-to-fine [2, 3]
process. It does not seem to save much time here. It is far
slower and less effective than 3DeepCT.

5. 10 Viewpoints Geometry

The 10 Viewpoints geometry, presented in Sec. 4.2 of
the main manuscript is visualized in Fig. 2 herein. Recall
from the main manuscript that this geometry uses 10 satel-
lites which orbit at altitude of 600km. Nearest-neighbor
satellites are 100km apart. They view the same field in off-
nadir angles −46◦, ±34◦, ±26◦, ±18◦, ±9◦ and 0◦. Each
carries a perspective camera. The field of view of each cam-
era is 0.22◦, corresponding to a ground footprint at the nadir
of 1.6km × 1.6km, at 50 m ground resolution. Solar az-
imuth and zenith angles are 45◦ and 30◦, respectively.

Sat1
Sat2

Sat3
Sat5

Sat8 Sat9 Sat10

Sat4

Sat7
Sat6

Figure 2. 10 Viewpoints geometry; orbit at 600km altitude,
nearest-neighbor satellites are 100km apart, remotely sensing
clouds in the atmosphere from space.

Model ϵ δ Time [millisec]
U-Net 91±12% 38±16% 7± 1
ResNet 94.5±12% 43±20% 5± 0.7

Table 1. Summary of test results: Mean ± standard deviation (std)
of U-Net and ResNet models, discussed in Sec. 3.3 of the main
manuscript. Equations for ϵ and δ are in Eq. (8) of the main
manuscript.

6. Ablation Studies
The architecture of 3DeepCT, its components and hyper-

parameters were carefully examined and tuned by abla-
tion studies. For example, Fig. 3 herein shows how the
NN depth and batch normalization affect convergence, and
Fig. 4 herein shows the training and evaluation loss of
3DeepCT compared to U-Net and ResNet architectures. Ta-
ble 1 herein shows the summary results of these two archi-
tectures.

Space carving ablation studies were also examined.
Without space-carving, we obtain ϵ = 85 ± 14% and
δ = 9.5 ± 18% when using the Model 1 described in Ta-
ble 2 in the main manuscript. Space-carving improved the
results, as seen in Fig. 5 herein.

7. AirMSPI Cross Validation Results
Fig. 6 shows the perspective nadir view which was left

out of the 3DeepCT input. 3DeepCT recovered the volu-
metric cloud without using the nadir view of the cloud. We
rendered the recovered result in the nadir direction and per-
form cross validation between this rendered view and the
original left-out image.

8. Simulated Inference Results
Fig. 3 in the main manuscript shows the 3D reconstruc-

tions of cloud extinction. Fig. 4 of the main manuscript
shows the scatter plots of recovery results related to meth-
ods A and B, described in Sec. 5 of the main manuscript.
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Fig. 7 herein relates to the additional methods C and D.
Fig. 8 herein shows the subset of seven clouds. In the main
manuscript, inference results of our Model 1 are demon-
strated on one cloud out of the subset of seven clouds. This
cloud is shown in Fig. 8(a) herein. Three additional clouds
are shown in Figures 8(b)-(d) herein. Figures 9(a)-(c) herein
show their respective recovery, using the four approaches
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described in Sec. 5 of the main manuscript.
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Figure 8. The Subset of seven clouds.
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(a) 3D extinction recovery of cloud (b) from Fig. 8 herein.
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(b) 3D extinction recovery of cloud (c) from Fig. 8 herein.
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(c) 3D extinction recovery of cloud (d) from Fig. 8 herein.
Figure 9. [First row] From left to right: 3D ground-truth extinction of the cloud; 3D reconstructed extinction using the four methods
mentioned in Sec. 5 of the main manuscript. [Second row] Scatter plots of the recovery results. The plots relate to the four methods at the
top row. The reconstructed 3D extinction is β̂. The red line represents ideal reconstruction, where β̂ = βtrue.


	Sde-Chen_3DeepCT_Learning_Volumetric_Scattering_Tomography_of_Clouds_ICCV_2021_paper-1
	Sde-Chen_3DeepCT_Learning_Volumetric_ICCV_2021_supplemental-4

