
How to Choose a Timing Model?

Idit Keidar Alexander Shraer
{idish@ee, shralex@tx}.technion.ac.il

Department of Electrical Engineering, Technion, Haifa 32000, Israel

Abstract

When employing a consensus algorithm for state ma-
chine replication, should one optimize for the case that
all communication links are usually timely, or for fewer
timely links? Does optimizing a protocol for better mes-
sage complexity hamper the time complexity? In this pa-
per, we investigate these types of questions using math-
ematical analysis as well as experiments over Planet-
Lab (WAN) and a LAN. We present a new and efficient
leader-based consensus protocol that hasO(n) stable-
state message complexity (in a system withn processes)
and requires onlyO(n) links to be timely at stable times.
We compare this protocol with several previously sug-
gested protocols. Our results show that a protocol that
requires fewer timely links can achieve better perfor-
mance, even if it sends fewer messages.

Keywords: synchrony assumptions, eventual syn-
chrony, failure detectors, consensus algorithms, FT
Middleware.

1 Introduction

Consensus is an important building block for
achieving fault-tolerance using the state-machine
paradigm [20]. It is therefore not surprising that the
literature is abundant with fault-tolerant protocols for
solving this problem. But how does a system designer
choose, among the multitude of available protocols, the
right one for her system? This decision depends on a
number of factors, e.g., time and message complexity,
resilience to failures (process crashes, message loss,
etc.), and robustness to unpredictable timing delays.

In this paper we focus on the latter, namely the as-
sumptions the protocol makes about timeliness. These
are captured in atiming model. We study the impact of
the choice of timing model on performance in terms of
time and message complexity. It is important to note that
although the physical system is often given, the system
designer has freedom in choosing the timing model rep-

resenting this system. For example, one seldom comes
across a system where the network latency can exceed
an hour. This suggests that in principle, even the most
unpredictable systems can be modeled as synchronous,
with an upper bound of an hour on message latency. Al-
though a round-based synchronous protocol works cor-
rectly in this system, it can take an hour to execute a
single communication round, and hence may not be the
optimal choice. Indeed, measurements show that timely
delivery of 100% of the messages is feasible neither
in WANs nor under high load in LANs[10, 6, 4]. In-
stead, systems choose timeouts by which messagesusu-
ally arrive (e.g., 90% or 99% of the time); note that by
knowing the typical latency distribution in the system,
a designer can fine-tune the timeout to achieve a de-
sired percentage of timely arrivals. One can then em-
ploy protocols that ensure safety even when messages
arrive late [10, 21, 15]. Such protocols are called indul-
gent [17].

While indulgent protocols ensure safety regardless of
timeliness, they do make some timeliness assumptions
in order to ensure progress. Periods during which these
assumptions hold are calledstable. For example, it is
possible to requireEventual Synchrony (ES)[15, 10],
where messages among all pairs of processes are timely
in stable periods. Alternatively, one can use weaker
majority-based or leader-based models, where only part
of the links are required to be timely in stable peri-
ods. This defines a tradeoff: whereas weaker models
may require more communication rounds for decision,
they may also be stable more often (that is, their time-
liness requirements will be satisfied more often). A
second consideration is message complexity: protocols
that send more messages per round may require fewer
rounds. Thus, there may also be a tradeoff between the
time and message complexities.

In order to provide insights into such tradeoffs, this
paper (1) defines a new timing model, (2) introduces
a novel time and message efficient algorithm, and (3)
presents an evaluation of different consensus algorithms
using probabilistic analysis, as well as concrete mea-

1

surements in a LAN and in WAN over PlanetLab [5].
We next elaborate on each one of these contributions.

We define a new model (Section 2), eventually weak
leader-majority♦WLM . This model includes a leader
oracle, and only requires that in stable periods, there be
timely links from a designated leader process to other
processes and from a majority of processes to the leader.
Nothing is required before stabilization. The leader or-
acle can be implemented with linear (inn, the number
of processes) per-round stable state message complex-
ity [22, 24].

We then present a new efficient algorithm for
♦WLM (Section 3), which has linear stable state mes-
sage complexity, and decides within5 rounds from sta-
bilization. If the leader stabilizes earlier than the com-
munication, our algorithm decides in4 rounds. Previ-
ously known protocols for♦WLM [21, 11], may take
O(n) rounds after stabilization [13]. Note that we study
the performance of consensus in♦WLM without tak-
ing into account the cost of leader election. This is jus-
tified since election protocols often ensure leader stabil-
ity [24, 1, 16], i.e., the leader is seldom re-elected. Thus,
the same leader may persist for numerous instances of
consensus (possibly thousands).

Section 4performs probabilistic analysis of the be-
havior of consensus in different indulgent models, com-
paring our new algorithm with three previously known
algorithms. We focus on algorithms that take constant
number of rounds from stabilization, all of which also
have quadratic message complexity. Our analysis stud-
ies the number of rounds needed to reach stabilization
and then decision in each model. Although it makes sim-
plifying assumptions, this analysis gives a good starting
point to understand such behaviors in real systems.

We then compare the performance of the above al-
gorithms in LAN and WAN (Section 5). To this end,
we implement a round synchronization protocol and de-
ploy it in PlanetLab. We compare our measurements
with the probabilistic analysis and explain discrepan-
cies that arise. We give insights to the effect of good
leader election on leader-based consensus protocols. We
show that our message efficient protocol, although re-
quiring more stable communication rounds than several
previously known protocols, incurs practically no cost in
terms of actual running time, due to its easier to satisfy
weak timeliness requirements: it achieves comparable
(and sometimes superior) performance to that of the best
O(n2) (message complexity) protocol, provided that ad-
equate timeouts are set.

Related work
Model and Algorithm. In an earlier paper [19],

we introduced a round-based framework, GIRAF, for

describing timing models and indulgent protocols that
exploit them. We have studied the number of rounds re-
quired for consensus in stable periods in several timing
models. Nevertheless, [19] studies neither how long it
takes to reach stability in practical network settings, nor
the round durations in these models. Thus, it provides
little insight regarding which model is best to use. The
current paper provides analysis and measurements of the
actual time it takes to reach consensus while assuming
the different models in a LAN and a WAN (PlanetLab).
Moreover, [19] focuses on time complexity, and com-
pletely ignores message complexity, which is often no
less important; all the protocols presented in [19] send
Θ(n2) messages in each round. Our new protocol has
O(n) stable state message complexity.

The ♦WLM model satisfies the progress require-
ments of the well-known Paxos protocol [21], and re-
cent improvements, such as [11]. But as noted in [13],
although these algorithms ensure constant time decision
in Eventual Synchrony (ES), they may take a linear num-
ber of communication rounds after stabilization to de-
cide in weaker models like♦WLM . Most other pre-
viously suggested leader-based protocols, e.g., [12, 18],
require the leader to receive timely messages from a ma-
jority in each round, including during unstable periods,
and hence do not work in♦WLM .

Malkhi et al. [24] have presented a somewhat weaker
timing model intended for use with Paxos, where, as
in ♦WLM , some process has bidirectional timely links
with a majority, but unlike♦WLM , this process does
not have outgoing timely links to the rest of the pro-
cesses. Although their model allows Paxos to make
progress so that some of the processes decide, it does
not allowall the processes to reach consensus decision
in a timely manner [19]. Here, we measure time un-
til global decision, i.e., until all processes decide, and
therefore strengthen the model accordingly.

Evaluation. Several previous papers evaluated re-
lated algorithms in practical settings. Cristian and Fetzer
[10] studied stable periods, but only for a model similar
to ES, over a LAN. The insight that a leader-based al-
gorithm can work better thanES appears in previous
measurements on WANs [4, 3] and simulations [26].
However these studies treated different questions than
we do, e.g., did not measure the time required to get a
sufficiently long stable period that allows for consensus
decision. Additionally, unlike most of the previous eval-
uations, our evaluation includes mathematical analysis
as well as measurements in both LAN and WAN, thus
identifying general trends that do not depend on a spe-
cific setting.

2

Algorithm 1 Generic algorithm for processpi.

States:
ki ∈ N , initially 0 /*round number*/

senti[Π] ∈ Boolean array,
initially ∀pj ∈ Π : senti[j] = true

FDi ∈ OracleRange, initially arbitrary
Mi[N][Π] ∈Messages∪{⊥},

initially ∀k ∈ N∀pj ∈ Π : Mi[k][j] = ⊥
Di ∈ 2Π, initially ∅

Actions and Transitions:
input receive(〈m, k〉)i,j , k ∈ N

Effect: Mi[k][j]← m

outputsend(〈Mi[ki][i], ki〉)i,j

Precondition:j ∈ Di \ {i} ∧ senti[j] = false
Effect: senti[j]← true

inputend-of-roundi
Effect: FDi ← oraclei (ki)
if (ki = 0) then 〈Mi[1][i], Di〉 ← initialize (FDi)
else〈Mi[ki + 1][i], Di〉 ← compute(ki, Mi, FDi)
ki ← ki + 1
∀pj ∈ Π : senti[j]← false

2 Model and Problem Definitions

We consider an asynchronous distributed system con-
sisting of a setΠ of n > 1 processes,p1, p2, . . . , pn,
fully connected by communication links. Processes
and links are modeled as deterministic state-machines,
called I/O automata [23]. Communication links do not
create, duplicate, or alter messages. Messages may be
lost by links or take unbounded latency. Specific timing
models defined below will restrict such losses and late
arrivals. Less thann/2 processes may fail by crashing.
A process that does not fail iscorrect.

Algorithms and models are defined using the GIRAF
framework [19], which we extend here to allow for arbi-
trary communication patterns. For space limitations, we
only overview GIRAF; for formal treatment see [19]. In
GIRAF, all algorithms are instantiations of Algorithm1,
a generic round-based algorithm. Processpi is equipped
with a failure detector oracle, which can have an arbi-
trary output range [8], and is queried using theoraclei

function. To implement a specific algorithm, one imple-
ments two functions:initialize(), andcompute(). Both
are passed the oracle output, andcompute()also takes as
parameters the set of messages received so far and the
round number.

Each process’s computation proceeds inrounds. The
advancement of rounds is controlled by the environment
via theend-of-roundinput action. Theend-of-roundi ac-
tions occur separately in each processpi, and there are
no restrictions on the relative rate at which they occur at
different processes, i.e., rounds are not necessarily syn-
chronized among processes. However, specific environ-

ment properties defined below do require some synchro-
nization between processes, e.g., that some messages are
received at one process at the same round in which they
are sent by another. Therefore, an implementation of
an environment that guarantees such properties needs
to employ some sort of round or clock synchronization
mechanism. One way to do so is using synchronized
clocks (e.g., GPS clocks) when present. Alternatively,
an implementation that does not rely on synchronized
clocks can be employed, such as the one we present in
Section 5.1and deploy in PlanetLab.

When theend-of-roundaction first occurs, it queries
the oracle and callsinitialize(), which returns the mes-
sage for sending in round1 and a set,Di, of the desti-
nations of this message. Subsequently, in each round, a
process sends a message to processes inDi \ {i} (there
is no need for a process to explicitly send messages to it-
self) and receives messages available on incoming links,
until theend-of-roundaction occurs, at which point the
oracle is queried andcompute()is called, which returns
the message for the next round, and a new setDi of tar-
get processes.

Environments are specified usinground-based prop-
erties. This paper considers onlyeventualproperties,
which hold from some unknown round onward. Namely,
the system may be asynchronous for an arbitrary period
of time, but eventually there is a round GSR (Global Sta-
bilization Round), so that from GSR onward, the system
is stable, in the sense that no process fails and all even-
tual properties hold in each round. GSR is thefirst round
that satisfies this requirement.

We now define some round-based properties. The
link from ps to pd is timely in roundk, if the follow-
ing holds: if (i) end-of-rounds occurs in roundk, (ii)
d ∈ Ds in roundk, and (iii) pd is correct, thenpd re-
ceives the roundk message ofps in roundk. A process
p is a♦j-sourcev if in every roundk ≥ GSR, there are
j processes to which it has timely outgoing links. Cor-
rectness is not required from the recipients, andp’s link
with itself counts towards the count ofj1. The subscript
“v” indicates that the set ofj timely links is allowed to
change in each round (i.e., the failures are mobile). Sim-
ilarly, a correct processp is a♦j-destinationv if in every
round k ≥ GSR, it hasj timely incoming links from
correct processes.

An Ω failure detector outputs a process so that there is
some correctpi s.t. for every roundk ≥ GSR and every
correctpj , oraclej(k) = i.

We study the following four timing models:

ES (Eventual Synchrony)[15]: in every roundk ≥GSR,

1The notion ofj-timely links was first defined in [2], where the link
from p to itself is not counted; hence aj-source in our terminology is
a (j − 1)-source in theirs.

3

all links between correct processes are timely.
♦LM (Leader-Majority)[19]: Ω failure detector, the leader

is a♦n-source, and every correct process is a♦(
⌊

n
2

⌋

+1)-
destinationv.

(New)♦WLM (Weak-Leader-Majority): Ω failure detec-
tor, the leader is a♦n-source and a♦(

⌊

n
2

⌋

+ 1)-
destinationv.

♦AFM (All-From-Majority) [19] (simplified): every correct
process is a♦(

⌊

n
2

⌋

+1)-destinationv, and a♦(
⌊

n
2

⌋

+1)-
sourcev.

Consensus A consensus problem is defined for a given
value domain,Values. We assume thatValuesis a totally
ordered set (our algorithm makes use of this order). Ev-
ery processpi has a read-only variablepropi ∈ Values,
initialized to some valuev ∈ Values, and a write-once
variabledeci ∈ Values∪{⊥} initialized to⊥. We say
that pi decidesd ∈Valuesin roundk if pi writes d to
deci whenki = k.

A consensus algorithm must ensure: (a) (validity) if
a process decidesv thenpropi = v for some processpi,
(b) (agreement) no two correct processes decide differ-
ently, and (c) (termination) every correct process even-
tually decides. We say that algorithmA achievesglobal
decisionat roundk if every process that decides decides
by roundk and at least one process decides at roundk.

3 Time and Message Efficient Algorithm
in ♦WLM

Algorithm 2 is a consensus algorithm for♦WLM,
which has a linear stable state message complexity and
reaches global decision within5 rounds of GSR.

As in many indulgent algorithms, including Paxos,
processes commit with increasing timestamps (called
“ballots” in [21]), and decide on a value committed by
majority. In Paxos, the leader always attempts to dis-
cover the highest timestamp in the system before com-
mitting on a new one. Although this occurs promptly in
ES, in♦WLM , even after stabilization, the leader can
continue to hear increasing timestamps forO(n) rounds.
Each time it receives a timestamps higher than the one it
has, the decision attempt is aborted, leading to a linear
worst case decision time after GSR [13]. Our algorithm
must avoid such scenarios in order to always achieve
constant time decision. Nevertheless, like Paxos, we still
need the leader to start a new decision attempt with a
fresh timestamp higher than those possessed by any pro-
cess in the system. But unlike Paxos, our algorithm does
not assume that the leader knows all the timestamps of
correct processes. Instead, the new timestamp is chosen
to be the round number, which is monotonically increas-
ing. This must be done with care, so as to ensure that the
leader does not miss timestamps of real decisions.

The key idea to preserving consistency when the
leader does not know the highest timestamp is to trust
the leader, even if it competes against a higher times-
tamp, provided that it indicates that at least a majority
believes it to be the leader. The latter is conveyed using
themajApprovedmessage field, which attests to the fact
that the leader’s timestamps reflect “fresh” information
from a majority, and therefore any timestamp it does not
know of could not have led to decision.

A second challenge our algorithm addresses is avoid-
ing “wasted” rounds when the system stabilizes in the
middle of a decision attempt. This poses a problem,
as we strive to reduce the number of rounds as much
as possible, so that the system does not have to main-
tain stability for a long time in order for consensus to
be reached. The solution we employ is to pipeline pro-
posals. Namely, the leader tries in each round to make
progress toward a decision, based on its current state
and the messages it gets in the current round, regard-
less of the unknown status of previous attempts to make
progress.

We now describe the algorithm in detail. Algorithm2
works in the framework of Algorithm 1 described in
Section 2, and therefore implements theinitialize() and
compute()functions. These function are passedleaderi,
the leader trusted bypi’s Ω oracle in the current round.
Processpi maintains the following local variables: an
estimate of the decision value,esti; the timestamp of the
estimated value,tsi; the maximal timestamp received in
the current round,maxTSi; the maximal estimate re-
ceived with timestampmaxTSi in the current round,
maxESTi (recall thatValuesis a totally ordered set);
the leader provided by the oracle at the end of the previ-
ous round,prevLDi, and in the current round,newLDi;
a Booleanflag, majApprovedi, which is used to indi-
cate whetherpi received a message in the current round
from a majority of processes that indicatedpi as their
leader; and the message type,msgTypei, which is used
as follows: Ifpi sees a possibility of decision in the next
few rounds, then it sends aCOMMIT message. Oncepi

decides, it sends aDECIDE message in all subsequent
rounds. Otherwise, the message type isPREPARE.

We now describe the computation of roundki. If pi

has not decided, it updates its variables (lines 18-21),
and then executes the following conditional statements:

• If pi receives aDECIDE message then it decides on
the received estimate by writing that estimate to
deci (rule decide-1, line 23), and sets its message
type (for the roundki + 1 message) toDECIDE.

• If pi receives aCOMMIT message from a majority,
including itself (ruledecide-2), and receives a mes-
sage from itself with themajApprovedindicator as

4

Algorithm 2 leader–based algorithm, code for processpi.
1: Additional state
2: esti ∈ Values, initially propi

3: tsi, maxTSi ∈ N , initially 0
4: majApprovedi ∈ Boolean, initially false
5: prevLDi, newLDi ∈ Π
6: msgTypei ∈ {PREPARE, COMMIT, DECIDE}, initially PREPARE

7: Message format
8: 〈msgType∈ {PREPARE, COMMIT, DECIDE}, est ∈ Values, ts ∈ N , leader ∈ Π, majApprovedi ∈ Boolean〉

9: procedureDestinations(leaderi)
10: if (leaderi = pi) then returnΠ.
11: elsereturn{leaderi}

12: procedure initialize(leaderi)
13: prevLDi ← newLDi ← leaderi

14: return〈〈msgTypei, esti, tsi, newLDi, majApprovedi〉, Destinations(leaderi)〉

15: procedurecompute(ki, M[*][*], leaderi)
16: if deci = ⊥ then
17: /*Update variables*/
18: prevLDi ← newLDi; newLDi ← leaderi
19: maxTSi ←max{ m.ts|m ∈M [ki][∗] }
20: maxESTi ←max{ m.est|m ∈M [ki][∗] ∧m.ts = maxTSi }
21: majApprovedi ← (|{ j |M [ki][j].leader = pi }| > ⌊n/2⌋)
22: /*Round Actions*/
23: if ∃m ∈M [ki][∗] s.t.m.msgType = DECIDE then /*decide-1*/
24: deci ← esti ← m.est; msgTypei ← DECIDE

25: else if((|{ j |M [ki][j].msgType = COMMIT }| > ⌊n/2⌋) ∧M [ki][i].msgType = COMMIT) /*decide-2*/
and (M [ki][i].majApproved) then /*decide-3*/

26: deci ← esti; msgTypei ← DECIDE;
27: else if(M [ki][prevLDi].majApproved) then /*commit*/
28: esti ←M [ki][prevLDi].est; tsi ← ki; msgTypei ← COMMIT;
29: elsetsi ← maxTSi; esti ← maxESTi; msgTypei ← PREPARE

30: return〈〈msgTypei, esti, tsi, newLDi, majApprovedi〉, Destinations(leaderi)〉

true (rule decide-3), it decides on its own esti-
mate and sets its message type toDECIDE (line 26).
Rule decide-3ensures that no other process com-
mits or decides in the same round with a different
value, since thecommitrule checksmajApproved
of the leader, and two processes cannot claim to
be majApproved in the same round, since it is
not possible that different processes were trusted to
be leaders by a majority in the same round (round
ki − 1). Rule decide-2ensures that a majority
of processes have the latest information about the
decided value. Since commits in further rounds
require the leader to hear from a majority (the
majApproved indicator required by rulecommit),
the leader must hear from at least one process that
has this information, and this will ensure that it
does not promote a value that contradicts agree-
ment.

• Let prevLDi be the leader indicated inpi’s round
ki message. Ifpi receives a roundki message
from prevLDi with the majApprovedindicator as
true, thenpi sets its message type (for the round
ki + 1 message) toCOMMIT, adopts the estimate
received fromprevLDi, sayest′, and sets its times-

tamp to the current round numberki (line 28). We
say thatpi commits in roundki with estimateest′.
ThemajApproved indicator ensures that commits
of the same round are on the same value, since
any such commit is on an estimate received from
a leader that was trusted by a majority in the previ-
ous round (ki-1), and majorities intersect.

• Otherwise,pi prepares (sets his message type to
PREPARE) and adopts the estimatemaxESTi and
timestampmaxTSi (line 29).

Finally,pi returns the message for the next round and
a subset of processes to which this message is intended.
This group is calculated using procedureDestinations()
as follows: ifpi believes that it is the leader of the cur-
rent round, thenDestinations()returns the set of all pro-
cesses, and otherwise, the procedure returns the trusted
leader. Thus, starting from the first round in which all
processes indicate the same leader in their messages (at
most one round after GSR), every process sends a mes-
sage to this leader, and the leader sends a message to
every other process. The stable state message complex-
ity is therefore linear inn.

We prove the correctness of Algorithm2 in

5

Appendix A, and show (Theorem 10) that it reaches
global decision by round GSR+4, i.e., in5 rounds start-
ing at GSR. If the eventual requirements of theΩ leader
are satisfied starting from round GSR−1 (instead of
starting from round GSR as the model requires), then
all correct processes decide by round GSR+3, i.e., in4
rounds (if GSR= 1 this means that querying the oracle
before the first communication round returns the correct
Ω leader at all processes). We make this distinction in
order to analyze the performance of the algorithm in the
common case, when leader re-election is rare.

4 Probabilistic Comparison of Decision
Time in Different Models

We analyze the expected number of communica-
tion rounds it takes to achieve stabilization, and sub-
sequently achieve global consensus decision, in various
models. We study four models: ES,♦LM , ♦WLM ,
and♦AFM , and the fastest known algorithm in each
model – 3 rounds for ES ([14]), 3 for ♦LM ([19]), 4
with stable leader for♦WLM (Section 3), and 5 for
♦AFM ([19]).

In this section we model link failure probabilities as
Independent and Identically Distributed (IID) Bernoulli
random variables (as do most studies giving closed-form
analyses, e.g., [25]). By “link failure” we mean that the
link fails to deliver a message in a timely manner, i.e.,
in the same round in which it is sent. The IID-based
analysis is aimed to provide intuition on how the dif-
ferent models and algorithms relate to each other. In
the next section we present real-life measurements, and
check whether the IID-based predictions are accurate in
practice.

For the sake of the analysis, we assume that processes
proceed in synchronized rounds, although this is not re-
quired for correctness. We look at runs with no process
failures, which are common in practice. Additionally,
we do not take the cost of leader election into account,
since we assume a stable leader, i.e., a leader that is sel-
dom re-elected (e.g., [24, 1]). Such a leader can persist
throughout numerous instances of consensus. We de-
note the probability that a message arrives on time byp.
For simplicity, we do not treat a process’ link with itself
differently than other links. Our metric in this section is
number of rounds until global decision. The length of
each round is the time needed to satisfyp, and it is the
same for all algorithms we deal with, while the number
of rounds depends on the algorithm. InSection 5.3we
investigate the effect of changing the explicit time length
of each round on the overall decision time in each model.

4.1 Mathematical Analysis

All communication in some single roundk can be
represented as ann by n matrix A, where the rows
are the destination process indices, the columns are the
source process indices, and each entryAi,j is 0 if a mes-
sage sent bypj to pi does not arrive in roundk, and1 if
it does reachpi in roundk. p is the probability of any
entryAi,j to be1. Note that our protocol for♦WLM
may not send messages on some links. If a message is
not sent, we denote the corresponding entry inA by ⊥.
We define random variables for decision time in differ-
ent models subscripted by the model name, e.g.,DES is
the total number of rounds until decision (including the
time until stabilization) in ES. We denote byPM (e.g.,
PAFM) the probability of a communication round to sat-
isfy the requirements of modelM .

Analysis of ES Recall that ES requires all entries in
the matrixA to be1. The probability for this is:

PES = pn2

(1)

An optimal ES consensus algorithm reaches a global
decision in 3 rounds from stabilization, thus we need
the assumptions of ES to be satisfied for 3 consecutive
rounds starting at some roundk ≥ 1. The probability of
this to happen at any given roundk is (PES)3. Thus:

E(DES) =
1

(PES)3
+ 2 (2)

Analysis of ♦LM Let pk be the stable leader. For
♦LM , it is required thatA has a majority of ones in
every row. Additionally,♦LM requires that∀1 ≤ j ≤
n Aj,k = 1. Denote the event that there is a majority of
ones in rowAj by M and the event thatAj,k = 1 by L.
We haven independent rows, and thus:

P♦LM = (Pr(L∩M))n = (Pr(L)∗Pr(M |L))n (3)

Note thatPr(L) = p. Given thatAj,k = 1, the proba-
bility that more thann

2 −1 of the remainingn−1 entries
of row j are1 is:

Pr(M |L) =

n−1
∑

i=⌊n

2 ⌋

(

n − 1

i

)

pi(1 − p)n−1−i (4)

Global decision is achieved in 3 rounds from stabiliza-
tion in ♦LM , meaning that this condition onA has to
be satisfied for 3 rounds, and thus:

E(D♦LM) =
1

(P♦LM)3
+ 2 (5)

6

Analysis of ♦WLM Let pk be the stable leader.
♦WLM requires thatA has a majority of ones in row
Ak. We denote this event byM . Additionally, it requires
that∀1 ≤ j ≤ n Aj,k = 1. We denote this event byL′.

P♦WLM = Pr(L′ ∩ M) = Pr(L′) · Pr(M |L′) (6)

Note thatPr(L′) = pn, andPr(M |L′) = Pr(M |L)
(defined in Equation4) since rowAk is independent
of other rows. Note that these conditions only exam-
ine the row and column corresponding to the leader,pk.
Sincepk is stable, all processes agree on its identity, and
thus, the leader sends messages to all other processes,
while every other process sends a message to the leader.
Hence, the entries of A are not⊥.

We first analyze the algorithm ofSection 3, which
takes 4 rounds starting from GSR, under the stable
leader assumption. We get:

E(D♦WLM) =
1

(P♦WLM)4
+ 3 (7)

For comparison, we also examine an alternative so-
lution: we consider the optimal algorithm for♦LM
running over a simulation of♦LM in ♦WLM (shown
in Appendix B). We show that this simulation reaches
global decision in7 rounds. Therefore:

E(DSimulated ♦WLM) =
1

(P♦WLM)7
+ 6 (8)

Analysis of ♦AFM This model requiresA to have a
majority of ones in each row and column. Consider a
given rowk of A. We first analyze the probability that
the row includes a majority of ones. To this end, letXj

be the random variable representing the cellAk,j . Ac-
cording to our assumption,X1,X2, ...,Xn are indepen-
dent and identically distributed Bernoulli random vari-
ables with probability of success p. LetX =

∑n
i=1 Xi.

The probability that any given row in A has a majority
of 1’s is:

Pr(X >
n

2
) =

n
∑

i=⌊n

2 ⌋+1

(

n

i

)

pi(1 − p)n−i

For n (independent) rows we need to raise this expres-
sion to the power ofn. Now assume that every row has a
majority of1 entries. The probability of any given entry
to be1 is still at leastp. We therefore can make an iden-
tical calculation for the columns, raising the expression
again to the power of2.

P♦AFM ≥ (Pr(X >
n

2
))2n (9)

Since the algorithm for♦AFM achieves global deci-
sion in 5 rounds from GSR, this needs to hold for5 con-
secutive rounds, and therefore we additionally raise the
expression to the power of 5. We get:

E(D♦AFM) =
1

(P♦AFM)5
+ 4 (10)

In Appendix Cwe additionally investigate how Equa-
tions2, 5, 7 and10behave asn is increased.

4.2 Numerical results

We plot the upper bounds on expected decision times
given in Equations2, 5, 7, 8 and 10 for specific val-
ues ofp. We focus on the case thatn = 8, similarly
to the group sizes used in other performance studies of
consensus-based systems [10, 7, 3, 11], which used 4-9
nodes.

In Figure 1(a) we see that even with a very high prob-
ability of timely message delivery, performance in ES
deteriorates drastically asp decreases, while♦AFM ,
♦LM and the direct algorithm for♦WLM maintain ex-
cellent performance. The direct algorithm for♦WLM
does not incur practically any penalty for its improve-
ment of message complexity from quadratic inn to lin-
ear. We can also see that♦LM and our algorithm for
♦WLM outperform♦AFM in this high range ofp. Fi-
nally, the simulated algorithm for♦WLM (♦LM al-
gorithm running over the simulation fromAppendix B)
is worse than the direct one, since it is much harder to
maintain the needed timeliness conditions for7 rounds
than for4 rounds.

Figure 1(b) also examines smaller success probabili-
ties from0.9 and up. Here ES is no longer shown, since
it steeply deteriorates as we decreasep (e.g., ES requires
349 rounds forp = 0.97). The intuition of why ES per-
forms so poorly, is that it is practically impossible to
get 3 matrices not containing even a single zero entry,
if the probability for a zero is non-negligible. Our di-
rect algorithm for♦WLM greatly outperforms the sim-
ulated algorithm (e.g., forp = 0.92 our algorithm re-
quires 18 rounds, while the simulation-based requires
114 rounds).♦AFM is better than♦LM and♦WLM
whenp is low, but fromp = 0.96, ♦LM becomes bet-
ter, and starting fromp = 0.97, the direct algorithm for
♦WLM becomes better. Thus,♦AFM is better for
lower p values. For example, forp = 0.85, ♦AFM
is expected to take10 rounds, while♦LM is expected
to take69 rounds. Comparing the algorithms for♦LM
and♦WLM , we see that even though♦WLM requires
fewer timely links, ♦LM is slightly better, since the
dominant factor in the performance of both is the re-
quirement that the leader is a♦n-source, and satisfying
it for 4 rounds instead of3 is harder.

7

0.98 0.985 0.99 0.995 1
0

10

20

30

40

50

p

N
um

be
r

of
 r

ou
nd

s

(a) Expected number of rounds until global decision − IID

ES
<>AFM
<>LM
Simulated <>WLM
Direct <>WLM

0.9 0.92 0.94 0.96 0.98 1
0

10

20

30

40

50

60

70

p
N

um
be

r
of

 r
ou

nd
s

(b) Expected number of rounds until global decision − IID

<>AFM
<>LM
Simulated <>WLM
Direct <>WLM

0 0.5 1 1.5 2 2.5 3 3.5
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Timeout (ms.)

fr
ac

tio
n

of
 s

at
is

fy
in

g
ro

un
ds

(c) Measurements on LAN vs. IID predictions

ES (LAN)
<>AFM (LAN)
<>LM (LAN)
<>WLM (LAN)
ES (IID)
<>AFM (IID)
<>LM (IID)
<>WLM (IID)

90 120 150 180 210 240 270 300 330 350
0.61

0.64

0.67

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1

Timeout (ms.)

p

(d) Fraction of timely messages measured in WAN

100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Timeout (ms.)

fr
ac

tio
n

of
 s

at
is

fy
in

g
ro

un
ds

(e) Average incidence of rounds satisfying the model
WAN measurements with 95% confidence intervals

ES
<>AFM
<>LM
<>WLM

50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

Timeout (ms.)

V
ar

ia
nc

e
(m

s.
2)

(f) Variance of satisfying rounds incidence (WAN)

ES
<>AFM
<>LM
<>WLM

100 150 200 250 300 350
0

50

100

150

200

250

timeout (millisec.)

N
um

be
r

of
 r

ou
nd

s

(g) Average number of rounds until global decision
WAN measurements with 95% confidence intervals

ES
<>AFM
<>LM
<>WLM

100 150 200 250 300 350
0

5

10

15

20

25

30

Timeout (ms.)

T
im

e
(s

ec
.)

 (h) Average time until global decision
WAN measurements with 95% confidence intervals

ES
<>AFM
<>LM
<>WLM

150 200 250 300
0

0.5

1

1.5

Timeout (ms.)

T
im

e
(s

ec
.)

(i) Minimal average time until global decision (WAN)

<>LM
<>WLM

0.73

0.65

Figure 1. Comparison betweenES, ♦AFM , ♦LM and♦WLM .

5 Measurements

In this section we compareES, ♦AFM , ♦LM and
♦WLM using experiments in two different practical
settings - a LAN and a WAN (using PlanetLab). Ad-
ditionally, we investigate whether the predictions made
assuming the IID model inSection 4were accurate.
Our experiments involve 8 nodes, like our analysis in
Section 4.2.

5.1 Implementation

The round mechanism (GIRAF, Algorithm 1) can be
implemented using synchronized clocks, when such are
available. Since this is not the case in a WAN, we imple-
mented round synchronization with the simple protocol
described below. Before starting the experiments, we
measure the average latency between every pair of nodes
in the system using pings. Each nodeni then has an ar-
ray Li, such thatLi[j] is the average latency between

nodeni and nodenj as measured byni. This infor-
mation is used for two purposes: to achieve round syn-
chronization, which we describe below, and to “elect”
one well-connected process as the leader, as discussed
in Section 5.2.

A process running GIRAF on a nodeni gets thetime-
out as a parameter and runs two threads. In each local
round ki, the task of the first thread is to receive and
record messages, inserting them into a message buffer
according to the round to which the message belongs
(this information is included in the message). Upon re-
ceipt of a message belonging to a future roundkj > ki

from a nodenj , this thread records the message and no-
tifies the second thread.

The second thread starts each roundki by sending
messages to its peers, and then waits for the remainder
of the round as specified by thetimeoutparameter. At
the end of each round it callscompute(). In case a notifi-
cation is received from the first thread about a receipt of

8

round-kj message from nodenj , this thread stops wait-
ing, i.e., the round is ended immediately, andcompute()
is called. It then starts roundkj , and the duration of this
round is set totimeout−Li[j].

This algorithm allows a slow node to join its peers
already in roundkj , thus utilizing the round-kj message
it received, and takes into account the expected latency
of this message to approximate the remaining time for
round kj in order to start roundkj + 1 together with
the peers. We found that this algorithm achieves very
fast synchronization, and whenever the synchronization
is lost, it is immediately regained.

5.2 LAN

Our experiment includes 8 nodes running simultane-
ously on a 100Mbit/sec LAN. Each process sent 100
UDP messages to all others. In a LAN, machines of-
ten have synchronized clocks, and there is no need for
a synchronization algorithm. We therefore do not focus
on round synchronization over LAN, and only measure
message latencies and their impact on satisfying the con-
ditions for consensus in different models.

The purpose of this experiment is to comparePM ,
i.e., the probability of a communication round to satisfy
modelM according to IID-based predictions to the per-
centage of such rounds in measurements on LAN, for
various timeouts. A message is considered to arrive in a
communication round if its latency is less than the time-
out. The IID-predicted values are calculated by taking
the fraction of all messages that arrived in all commu-
nication rounds of the experiment as an estimate forp
(the probability of a message to arrive on time in the
IID analysis) and then using Equations1, 3, 6 and 9
from Section 4.1. We found that the measuredp values
were high already for very short timeouts. For example,
whereas for a timeout of0.1ms. we measuredp = 0.7,
for a timeout of0.2ms. it was alreadyp = 0.976.

Figure 1(c) shows measured and predictedPES ,
P♦AFM , P♦LM and P♦WLM . We see that even in a
LAN, the ES model is hard to satisfy, which matches
the IID-based predictions. Although still worse than the
other models,ES is better in practice than what was pre-
dicted. The reason is that the messages that are late in a
run tend to concentrate, rather than to spread among all
rounds of the run uniformly as in IID. Thus, in practice,
there are fewer rounds that suffer from message loss, and
PES is higher.

On the other hand,♦AFM is worse in reality than
was predicted, since it is sensitive to a poor performance
of any single node. While in IID all nodes are the same,
in our experiment, one node was occasionally slow.
♦AFM requires this node, like any other, to receive a
message from a majority of processes, and its message

had to reach a majority of processes (these two require-
ments can be satisfied by the same set of links). Since
this node is slow, there is a higher chance of messages
to be late on its links than on other links (unlike in IID),
making it harder to satisfy♦AFM . As ♦LM requires
each process to receive a message from a majority, it
suffers from the same problem as♦AFM . ♦LM ad-
ditionally requires that the messages of the leader reach
all processes, which explains why there are more rounds
satisfying♦AFM than♦LM .

According to IID-based prediction, at a high rate of
message arrival (p values),P♦LM andP♦WLM are al-
most identical as can be seen fromFigure 1(c), and both
are worse than♦AFM . In practice, for leader-based al-
gorithms, choosing a good leader helps. As implement-
ing a leader election algorithm is beyond the scope of
this paper, we designated one process to act as a leader
in all runs. We chose this process as follows: before
running our experiments, we measured the round-trip
times of all links using pings, and then chose a well-
connected node to be the leader. Given this leader, both
♦WLM and♦LM behaved much better than IID anal-
ysis predicted, and we see that♦WLM performs much
better than all other models. When we run♦LM and
♦WLM with a less optimal leader, whose links have
average timeliness, we saw that much bigger timeouts
are needed for reasonable performance, and in partic-
ular, bigger timeouts than for♦AFM . For example,
while ♦AFM reachesP♦AFM = 0.97 at a timeout of
0.9ms., having chosen an average leader♦WLM and
♦LM reach the same incidence only at a timeout of
1.6ms, whereas with a good leader♦WLM reaches this
point at a timeout of0.35ms. and♦LM at0.8ms.

5.3 WAN

We implemented GIRAF (Section 5.1) and deployed
it in PlanetLab, using 8 nodes located in Switzerland,
Japan, California USA, Georgia USA, China, Poland,
United Kingdom, and Sweden. The participating pro-
cesses on these nodes are started up non-synchronously,
and then synchronized and continue running for an over-
all of 300 communication rounds per experiment. We
consider only rounds that occur after the system sta-
bilizes for the first time (with respect to the model) to
eliminate startup effects. The experiment was repeated
with different timeouts, 33 times (runs) for each time-
out. The PlanetLab node located in United Kingdom
was chosen to serve as the leader for the leader-based
protocols, since it was found to be well connected us-
ing the same method as was done for our LAN experi-
ment (Section 5.2). We measure the time and number of
rounds until the appropriate conditions for global deci-
sion are satisfied for each model, starting at 15 random

9

points of each run, and the average of these represent the
run. Additionally, we measure the fraction of rounds in
each run that satisfy the timeliness requirements of the
different models.

Figure 1(d) shows how timeouts translate to fraction
of delivered messages (p in Section 4) as measured in
our experiment. We have chosen to work with timeouts
which assure that up to99% messages are delivered on
time, since it is known that in WANs, the maximal la-
tency can be orders of magnitude longer than the usual
latency [6, 4], and thus assuring100% is unrealistic.

Figure 1(e) shows the measuredPES , P♦AFM ,
P♦LM and P♦WLM , averaged over the repetitions of
the experiment for each timeout, as well as the95%
confidence interval for the average.Figure 1(f) shows
the varience of the values used to calculate the average
points inFigure 1(e). We see that the timeliness require-
ments of♦WLM are satisfied much more frequently
than for the other models. This is because♦WLM
only requires timeliness from the incoming and outgo-
ing links of the leader. We also observe that♦LM and
♦WLM are much easier to satisfy than♦AFM and
♦ES. For example, for a timeout of160ms. we get
PES = 0, P♦AFM = 0.4 while P♦LM = 0.79 and
P♦WLM = 0.94.

We see thatES rounds are really rare, especially with
short timeouts (for example when the timeout is less
than 200ms,PES = 0), which matches the IID-based
prediction ofSection 4(on average, a timeout of200ms.
corresponds top = 0.95 used in IID analysis, i.e.,95%
of messages arrive on time). We observe that while the
confidence intervals ofP♦AFM , P♦LM , andP♦WLM

are small and diminish as we increase the timeout, the
confidence intervals forES grow. Given a fixed number
of measurements, the interval length follows from the
variance.ES has high variance even for large timeouts,
due to message loss. While in some runs, over80% of
rounds satisfyES with a timeout of350ms., in others
only 30% do. For short timeouts the variance ofES is
low and its confidence intervals are short since the inci-
dence ofES rounds is consistently low.

Figure 1(f) shows that for longer timeouts, the high
incidence of♦AFM , ♦LM and♦WLM rounds varies
only slightly (unlike ES). However, we see that for
short timeouts,♦LM has high variance. This is caused
by its sensitivity to bad performance by any single node,
as was observed in LAN as well. Specifically, for a time-
out of 160ms., while in some runs95% of all rounds
satisfy the conditions of♦LM , in other runs little more
than15% do. This happened because, for several runs
with this timeout, the PlanetLab node located in Poland
was slow to receive messages, although most of the mes-
sages it sent arrived on time. While in IID all links are

the same, we saw that in reality this is not true. This af-
fects♦LM which requires every node to receive a mes-
sage from a majority. On the other hand,P♦AFM is con-
sistently low (around0.4, rarely above0.5) for this time-
out, hence the low variance. For larger timeouts, usually
all nodes manage to receive a message from a majority,
and we see that the incidence of♦AFM and♦LM is
high, while the confidence intervals become shorter and
the variance goes to 0.

Figure 1(g) andFigure 1(h) show the average (over
all runs) number of rounds and time (resp.) that were
needed to reach global decision in each model. We ob-
serve that for low timeouts the algorithm ofSection 3
achieves consensus much faster than the algorithms as-
suming any of the other models ([14, 19]). For time-
outs starting with approximately 180ms. and higher, its
performance is comparable to♦LM , whereas♦AFM
takes more rounds and time than both for timeouts less
than 230ms. As before, the choice of the leader gave
♦LM and♦WLM an advantage over♦AFM and thus
the difference from IID-based prediction inFigure 1(b)
(according toFigure 1(d), a timeout of160ms. corre-
sponds, on average, top = 0.88).

In general, we see that a longer timeout (a higherp in
the IID analysis), reduces the number of rounds for de-
cision. On the other hand, it is obvious that a higherp,
or a longer timeout, make each individual round longer.
We wish to explore this tradeoff and determine the op-
timal timeout. Of course, the specific optimum would
be different for a different system setting, but the prin-
ciple remains.Figure 1(i) zooms-in on the appropriate
part of Figure 1(h), and demonstrates this tradeoff for
♦LM and♦WLM . For timeouts less than170ms. (on
average, this corresponds top = 0.90 for IID), while
♦WLM ’s required number of rounds is increasing (as
the timeout decreases), the length of each round is de-
creasing. For timeouts more than170ms. (as the time-
out increases) the number of required rounds decreases,
but the cost of each round increases. For example, if
we set our timeout to180ms., although the number of
rounds will be very small (4.5 rounds on average accord-
ing toFigure 1(g)), the actual time until decision will be
800ms., which is about the same as the average time we
would get if we shorten the timeout to160ms. although
the required number of rounds would be higher. This
shows that setting conservative timeouts (improvingp)
will not necessarily improve performance. As we see
from this graph, it might actually make it worse. From
Figure 1(i), we conclude that in our setting, choosing the
timeout to be170ms. is optimal for the♦WLM algo-
rithm and the timeout210ms. is optimal for♦LM . That
these timeouts correspond top = 0.90 andp = 0.96,
meaning for example, that setting the timeout to170ms.

10

causes90% of messages on average to arrive on time in
our setting. Note that we present a methodology rather
than a specific timeout: a system administrator can per-
form measurements and choose the timeout for a specific
system, according to such criteria.

Finally, if we compare the performance of♦WLM
with that of ♦LM with their optimal timeouts, we see
that♦WLM is expected to take730ms., which is only
80ms. more than what♦LM is expected to take at its
best setting. We conclude that it is clearly well worth us-
ing ♦WLM , while gaining the reduction of stable state
message complexity from quadratic to linear.

6 Conclusions

We presented a timing model that requires timeliness
on O(n) links in stable periods and allows unbounded
periods of asynchrony. We introduced a consensus algo-
rithm for this model, which has linear per-round stable
state message complexity, and achieves global decision
in a constant small number of rounds from stabilization.
Since all previously known algorithms that can operate
in this model require linear number of rounds, we com-
pared our algorithm to algorithms that require stronger
models, all of which also have quadratic message com-
plexity.

Even though our algorithm might take more rounds
to decide compared to the others, we have shown that its
easier to satisfy weak stability requirements allow it to
achieve comparable or even superior global consensus
decision time (with very low variance), despite the fact
that it sends much fewer messages in each round. Our
analysis includes measurements in a LAN and a WAN,
as well as mathematical analysis, and thus is valid in a
broad variety of systems.

Acknowledgments

We thank Hagit Attiya and Liran Katzir for many
helpful discussions.

References

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Stable leader election. InDISC, 2001.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing omega with weak reliability
and synchrony assumptions. InPODC, 2003.

[3] T. Anker, D. Dolev, G. Greenman, and I. Shnayderman.
Evaluating total order algorithms in WAN. InInt. Work-
shop on Large-Scale Group Communication, 2003.

[4] O. Bakr and I. Keidar. Evaluating the running time of a
communication round over the Internet. InPODC, 2002.

[5] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Kar-
lin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,
and M. Wawrzoniak. Operating system support for
planetary-scale network services, 2004.

[6] N. Cardwell, S. Savage, and T. Anderson. Modeling the
performance of short tcp connections, 1998.

[7] M. Castro and B. Liskov. Practical byzantine fault toler-
ance. InUSENIX, pages 173–186, Feb. 1999.

[8] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weak-
est failure detector for solving consensus.J. ACM,
43(4):685–722, July 1996.

[9] H. Chernoff. A measure of asymptotic efficiency for
tests of a hypothesis based on a sum of observations.
Ann. Math. Statist., 23:493–507, 1952.

[10] F. Cristian and C. Fetzer. The timed asynchronous dis-
tributed system model. InIEEE TPDS, June 1999.

[11] D. Dobre, M. Majuntke, and N. Suri. CoReFP:
Contention-Resistant Fast Paxos forWANs. Technical
report, TU Darmstadt, Germany, 2006.

[12] P. Dutta and R. Guerraoui. Fast indulgent consensus with
zero degradation. InEDCC, Oct. 2002.

[13] P. Dutta, R. Guerraoui, and I. Keidar. The overhead of
consensus failure recovery. Technical Report 200456,
EPFL, 2004.

[14] P. Dutta, R. Guerraoui, and I. Keidar. The Overhead
of Indulgent Failure Recovery.Distributed Computing,
2006.

[15] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus
in the presence of partial synchrony.J. ACM, 35(2):288–
323, Apr. 1988.

[16] A. Fernandez, E. Jimenez, and M. Raynal. Eventual
leader election with weak assumptions on initial knowl-
edge, communication reliability, and synchrony. InDSN,
2006.

[17] R. Guerraoui. Indulgent algorithms. InPODC, 2000.
[18] R. Guerraoui and M. Raynal. The information structure

of indulgent consensus.IEEE Transactions on Comput-
ers, 53(4):453–466, 2004.

[19] I. Keidar and A. Shraer. Timeliness, failure-detectors,
and consensus performance. InPODC, 2006.

[20] L. Lamport. The implementation of reliable distributed
multiprocess systems.Computer Networks, 2, 1978.

[21] L. Lamport. The part-time parliament.ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[22] M. Larrea, A. Ferńandez, and S. Arévalo. Optimal im-
plementation of the weakest failure detector for solving
consensus. InSRDS, pages 52–59, 2000.

[23] N. Lynch and M. Tuttle. An introduction to Input/Output
Automata.CWI Quarterly, 2(3):219–246, 1989.

[24] D. Malkhi, F. Oprea, and L. Zhou. Omega meets paxos:
Leader election and stability without eventual timely
links. DISC, pages 199–213, sep 2005.

[25] D. Peleg and A. Wool. The availability of quorum sys-
tems.Inf. Comput., 123(2):210–223, 1995.

[26] P. Urban, I. Shnayderman, and A. Schiper. Comparison
of failure detectors and group membership: Performance
study of two atomic broadcast algorithms.DSN, 2003.

11

A Correctness of Algorithm 2

Lemma 1. A process’s timestamp at the start of round
k is less thank.

Proof. We prove the claim by induction on the round
numberk′. Base case:k′ = 1. The claim is correct
since a process’s timestamp is initialized to 0. The in-
duction hypothesis is that the claim holds up to round
k′. Let us inspect the possible actions of processes at the
end of roundk′. A process can decide and in this case its
timestamp does not change and in roundk′+1 it will re-
main less or equal tok′−1, by the induction hypothesis.
Alternatively, a process may commit, and then (on line
28) it will adoptk′ as its new timestamp for roundk′+1,
and the claim holds here as well. Finally, a process may
adopt the timestamp of a roundk′ message it received
in roundk′ (line 29) and again, by induction hypothesis,
the claim is true.

Lemma 2. A process’s timestamp is non-decreasing.

Proof. Observe that when a process decides, its times-
tamp does not change. It does not change in the follow-
ing rounds as well. If a processpi does not decide in
roundk, then it can change its timestamp by adopting
eitherk (when committing on line 28) or the maximum
timestamp (of a roundk message) received in roundk
as its new timestamp (line 29). Sincepi receives its own
message in roundk, the latter is not lower than its cur-
rent timestamp. In case it commits, since according to
Lemma 1, its old timestamp cannot exceedk − 1, by
adoptingk it can only increase.

Lemma 3. If in round k, a processpi commits on es-
timateesti, then no process commits in roundk with a
different estimate, or decides in roundk with a different
estimate using rulesdecide-2,3.

Proof. Observe a processpi that commits in round
k. Then pi evaluates rulecommit to true and com-
mits or decides on the estimate that it receives from
its leader, prevLDi (line 28). By rule commit,
M [k][prevLDi].majApproved = true, meaning that
there is a majority of processes that send a roundk − 1
message withprevLDi as their leader. Let us denote
this majority byM1.

Suppose that a processpj commits in roundk with
estimateestj . By the same reason as above, there is a
majority of processes that send a roundk − 1 message
with prevLDj as their leader. Let us denote this major-
ity by M2. SinceM1 andM2 intersect, as two majori-
ties, prevLDi = prevLDj . Sincepj commits on the
estimateestj sent byprevLDj , we get thatestj = esti.

If a processpj decides using rulesdecide-2,3in
round k with estimateestj , then by ruledecide-3,
M [k][j].majApproved = true, meaning thatpj was
believed to be the leader in the previous roundk − 1
by a majority of processes. Let us denote this majority
by M2. SinceM1 andM2 intersect, as two majorities,
prevLDi = j. Sincepj decides on its own estimate
estj , we get thatestj = esti.

Lemma 4. If some process sends aPREPAREor COM-
MIT message with timestampts > 0 and estimatex
then some process commits in roundts with estimatex.

Proof. We prove the claim by induction on the round
numberk′, starting from a roundk0 in which a message
with the timestampts was first sent with some estimate
x′, by some processpj .

Base Case.k‘ = k0. From the definition ofk0, pj could
not receive a message withts from another process in
an earlier round. Thus,pj commits with timestampts
and estimatex′ in roundk0 −1, and from the algorithm,
k0 − 1 = ts.

Induction Hypothesis. If any process sends aPRE-
PARE or COMMIT message in roundk1, such that
k0 ≤ k1 ≤ k′, with timestampts and some estimatex′′,
then some process commits in roundts with estimate
x′′.

Induction Step.We need to show that if, in roundk′ +1,
a process sends aPREPAREor COMMIT message with
timestampts and some estimatex′′ then some process
commits in roundts with estimatex′′. Observe, that
if a COMMIT message is sent, it would have a times-
tamp equal to the previous round numberk′, and since
ts = k0 − 1 < k′ (by the base case), this case is not
possible. Observe that if aPREPAREmessage is sent in
round k′ + 1 with timestampts and estimatex′′, the
sending process must have adopted the timestamp to-
gether with the estimate from somePREPAREor COM-
MIT message sent in roundk′. By the induction hypoth-
esis, we get that some process commits in roundts and
estimatex′′.

Please note that the claim inLemma 4does not hold
for DECIDE messages, since a process decides adopting
only the estimate and not the associated timestamp from
anotherDECIDE message.

Lemma 5 (Uniform Agreement). No two processes de-
cide differently.

Proof. Let k be the lowest numbered round in which
some process decides. Supposepi decidesx in roundk.

12

Since no process decides in an earlier round,pi decides
by rulesdecide-2,3. Therefore,pi receives a majority of
COMMIT messages in roundk, including from itself, and
it decides onx - the estimate of one of theCOMMIT mes-
sages (the one from itself). FromLemma 3, all COM-
MIT messages include the same estimate -x. Hence, a
majority of processes commits in roundk − 1 with esti-
matex. Let us denote this majority of processes bySx.
Note thatk− 1 ≥ 1 since according to the pseudo-code,
the first round of the algorithm is round number 1. We
claim that if any process commits or decides in round
k′ ≥ k − 1 then it commits or decidesx. The proof is
by induction on round numberk′.

Base Case.k′ = k − 1. As processes inSx commitx in
roundk−1, fromLemma 3, no process commits with an
estimate different fromx in roundk − 1. By definition
of k, no process decides in roundk − 1.

Induction Hypothesis.If any process commits or decides
in any roundk1 such thatk − 1 ≤ k1 ≤ k′, then it
commits with estimatex or decidesx.

Induction Step.If some processp decides in roundk′ +
1, then in that round either some other process sends a
DECIDE message with decision valuey (rule decide-
1) or p sends aCOMMIT message with estimatey (rule
decide-2). In both cases, by the induction hypothesis,
y = x.

Suppose by contradiction that some processpj com-
mits in roundk′ + 1 with estimatez 6= x. First, sincepi

decides by rulesdecide-2,3in roundk, by Lemma 3we
have thatk′ + 1 6= k. Since we know by the induction
hypothesis thatk′ ≥ k − 1 we now get thatk′ > k − 1.
Sincek′ > k − 1 ≥ 1 we also get thatk′ > 1. Since
pj commits, it hasn’t received anyDECIDE message in
roundk′ + 1. Since rulecommitevaluated to true for
pj , a messagem = 〈type (6= DECIDE), z, tsz, ∗,
true〉 was received bypj in roundk′+1 from the leader
ld. Notice thattsz might be different thanmaxTSi of
roundk′ + 1.

Observe themajApproved = true field of the mes-
sagem. This indicates that the leader received a mes-
sage from a majority of processes in roundk′, and
therefore it must have heard from at least one process
pa ∈ Sx. Recall that every process inSx commits in
roundk − 1 with estimatex. Thuspa has timestamp
k − 1 at the end of roundk − 1. FromLemma 2, since
k′ > k − 1, pa’s timestamp is at leastk − 1.

If type =COMMIT, this means thattsz = k′ (line 28).
As was explained,k′ > 1, and byLemma 4we get that
some process commits in roundk′ with estimatez 6=
x. This is a contradiction to the induction hypothesis.

If type = PREPARE, it means thattsz is the maximum
timestamp the leader received in any message of round
k′ (line 29). Because it received a message frompa and
because, according toLemma 1, the highest timestamp
that can be received in roundk′ + 1 is k′, we get that
k − 1 ≤ tsz ≤ k′, and since (byLemma 4) there must
be a process that commits in roundtsz with estimate
z 6= x (recall thatk − 1 > 0), this is a contradiction to
the induction hypothesis.

Auxiliary Notation: we definekleader ≥ GSR to be
the first round starting from which all correct processes
indicate in their messages the same correctΩ leader pro-
cess as their leader.

Lemma 6. Starting from roundkleader, (a) the correct
Ω leader receives a message from a majority of pro-
cesses. (b) every correct process receives the message
of the correctΩ leader.

Proof. By the definition of♦WLM , starting at round
GSR the leader receives a message from a majority of
processes, and every correct process receives a message
from the leader. This is provided that these messages
are actually sent by the processes (this follows from the
definition of timely link). Sincekleader ≥ GSR, it is
left to prove that processes will send these messages.

In each round of Algorithm2, every process sends a
message to its leader, and the leader sends a message to
all processes. It follows from the definition ofkleader,
that in the computation of roundkleader − 1, every cor-
rect process gets the identity of the same correct leader
from its oracle. Therefore, every correct process sends
a message to this unique leader at roundkleader. By the
guarantees of♦WLM , the leader receives a message
from majority of processes. This proves (a).

(b) is correct, since the leader also trust itself start-
ing from the computation of roundkleader − 1, and
will therefore send a message to every process in round
kleader. By the the guarantees of♦WLM this mes-
sage of the leader will be delivered to every correct pro-
cess.

Lemma 7. In every roundk ≥ kleader +1, theΩ leader
sendsmajApproved = true in its roundk message,
and every correct processp that does not decide before
roundk, either commits or decides in roundk.

Proof. In our model, every correct process executes an
infinite number of rounds, and in particular, executes
roundk. If p decides by ruledecide-1or rulesdecide-2,3
we are done. Otherwise, in order to prove the lemma, we
need to show that rulecommitis satisfied.

Starting from roundkleader all processes indicate the
same correct processleader in their messages. Since,

13

by Lemma 6, leader receives a message from a major-
ity of processes in roundkleader onward, and these pro-
cesses indicate it as leader in roundk − 1 ≥ kleader, it
will send majApproved = true in its roundk mes-
sage. Since, again byLemma 6, starting from round
kleader every process receives a message from the cor-
rectΩ leader,p receives a message fromleader in round
k (p hasprevLD = leader in roundk), and evaluates
rulecommitto true.

Lemma 8. All correct processes decide by round
kleader + 3.

Proof. Observe that in our model every correct process
executes an infinite number of rounds, and in particu-
lar, executes roundkleader + 3. We prove the lemma by
contradiction. Assume that some correct processpj does
not decide by roundkleader + 3. Then it did not receive
any DECIDE messages in roundkleader + 3, and in par-
ticular, since byLemma 6it receives a message from its
leader, the leader did not decide in the previous round,
namely roundkleader + 2. This means that in round
kleader + 2, the leader evaluated at least one ofdecide-2
or decide-3to false. But according toLemma 6rule
decide-3must evaluate to true for the leader. So the
problem was with ruledecide-2. Since byLemma 6the
leader received a message from a majority of processes
in roundkleader+2, one of the messages must have been
with type 6= COMMIT. According toLemma 7, all non-
commit messages must beDECIDE messages. But then
the leader should decide in roundkleader + 2 by rule
decide-1- a contradiction.

Lemma 9. (a) all correct processes decide by round
GSR + 4; and (b) if the eventual requirements of the
Ω leader are satisfied from roundGSR − 1 (instead of
from GSR), then all correct processes decide by round
GSR + 3.

Proof. (a) According to the definition of♦WLM , start-
ing from roundGSR all (correct) processes get the same
leader indication from theirΩ oracle (and this indica-
tion does not change in further rounds). Therefore,
starting from roundGSR + 1 all processes indicate the
same correctΩ leader in their messages, and we get that
kleader = GSR + 1. FromLemma 8every correct pro-
cess decides by roundkleader + 3 = GSR + 4.

(b) if the eventual requirements of theΩ leader
are satisfied from roundGSR − 1 (instead of from
GSR), then all correct processes indicate the same
correct leader process in their messages starting from
round GSR onward, we get thatkleader = GSR,
from Lemma 8, all correct processes decide by round
kleader + 3 = GSR + 3.

Theorem 10. (a) the algorithm solves consensus by
roundGSR + 4; and (b) if the eventual requirements of
theΩ leader are satisfied starting from roundGSR − 1
(instead of starting fromGSR as required by the model),
then all correct processes decide by roundGSR + 3.

Proof. FromLemma 9, every correct process decides by
roundGSR + 4, or GSR + 3 if the condition of (b) is
satisfied. Validity holds, since the decision can only be
one of the initial estimates of the processes. Uniform
agreement is proven inLemma 5.

B A Simulation of ♦LM in ♦WLM

As was explained in [19], simulating a GIRAF model
M2 means invoking theinitializeA() and computeA()
functions of some algorithmA that works inM2, while
satisfying the properties ofM2. In particular, if M1

andM2 are both GIRAF models, then a reduction al-
gorithm TM1→M2

instantiates theinitialize() andcom-
pute() functions, denotedinitializeT () andcomputeT (),
and invokesinitializeA() andcomputeA() in modelM1

(while satisfying the properties ofM2).
Algorithm 3 presents a simulation, of the♦LM

model introduced in [19], in the ♦WLM model pre-
sented in this paper. Therefore, we show an implemen-
tation of initialize♦WLM () andcompute♦WLM () func-
tions that work in♦WLM model. We denote by
initialize♦LM () andcompute♦LM () the functions of an
algorithm designed for♦LM .

In odd roundski, every processpi just forwards the
messages it collected in roundki as an array. Thejth

entry of the array is6= ⊥ only if pi received a message
from pj in the current round. In even roundski, each
messageMi[ki][l] thatpi receives frompl is in fact an
array, as explained above. In order to find out what mes-
sagepj sent in the previous round,pi looks for this mes-
sage in one of the arrays it received. Thus, if there is a
processpl that sentpj ’s message (has thejth entry of
the array it sent6= ⊥), pi saves this message in a local
message buffer,Mfixed

i , in the entryMfixed
i [k/2][j]. It

then callscompute♦LM with this local message buffer,
and local round numberk/2. This function is called ev-
ery other round, hence thek/2. Thus, we simulate one
round of♦LM in every two rounds of♦WLM .

Lemma 11. GSR♦LM ≤ GSR♦WLM + 2

Proof. Recall that all eventual properties of♦WLM are
satisfied starting from roundGSR♦WLM , and that both
♦WLM and♦LM do not have any perpetual proper-
ties.

By definition of Ω, there exists a correct process
pl that is indicated as leader by all oracles of correct

14

Algorithm 3 simulation of♦LM in ♦WLM . Code for processpi.
1: Additional state

Mfixed
i [N][Π] ∈Messages∪{⊥}, initially ∀k ∈ N∀pj ∈ Π : Mfixed

i [k][j] = ⊥

2: procedure initialize♦WLM (leaderi)
3: return〈initialize♦LM (leaderi), Π〉

4: procedurecompute♦WLM (ki, M[*][*], leaderi)
5: if (ki is odd)then
6: return〈{M [ki][∗], Π〉
7: /*ki is even*/
8: forall j ∈ N
9: if (∃l ∈ N , s.t.M [k][l][j] 6= ⊥) then

10: Mfixed
i [k/2][j] = M [k][l][j]

11: return〈compute♦LM (ki/2, Mfixed
i , leaderi), Π〉

processes starting from roundGSR♦WLM . Sincepl

is passed tocompute♦LM (and initialize♦LM ()), the
leader indication that these functions see will be con-
stantlypl starting from the first roundk ≥ GSR♦WLM

in which any of these functions are called. Notice that
k ≤ GSR♦WLM + 1 since if GSR♦WLM is even,
compute♦LM will be called inGSR♦WLM , andk =
GSR♦WLM . If GSR♦WLM is odd, thencompute♦LM

will be called in the next round, i.e.k = GSR♦WLM +
1.

In ♦WLM , starting from roundGSR♦WLM , the
leaderpl is assured to receive a message from a ma-
jority of processes. By the simulation code, in every
odd round, the leader forwards all received messages
to every other process. IfGSR♦WLM is odd, in round
GSR♦WLM +1 every process will hear from the leader
and thecompute♦LM function will be called, where it
will see messages from a majority sent in the previous
round and received in this one from the leader. Simi-
larly, every further invocation ofcompute♦LM will see
majority of messages from every correct process that
were actually passed through the leader in♦WLM . If
GSR♦WLM is even,compute♦LM will still be called,
but it is not assured to see messages from a major-
ity, since the leader forwards what it saw in previous
round, which was before roundGSR♦WLM , and there-
fore the guarantees of the model were not assured to
hold in that round. The nextcompute♦LM is in round
GSR♦WLM + 2, and only there it is assured to see a
message from a majority sent in previous round and for-
warded by the leader in this one. Thus, in the worst case,
the timeliness guarantees of♦LM will hold starting at
roundGSR♦WLM + 2.

We conclude that the round starting from which both
timeliness and failure detector guarantees hold, is at
most two rounds afterGSR♦WLM . Thus,GSR♦LM ≤
GSR♦WLM + 2.

Recall the α-reducibility notion defined in [19]:
Model M2 is α-reducible (α : N → N) to modelM1,

denotedM1 ≥α M2, if there exists a reduction algo-
rithm TM1→M2

s.t. for every runr and every
l ∈ N, roundGSRM2

(r)+l of modelM2 occurs at most
in roundGSRM1

(r) + α(l) of modelM1.

Lemma 12. ♦WLM ≥α ♦LM , whereα(l) = 2l + 2.

Proof. By Lemma 11, round GSR♦LM occurs at
most at roundGSR♦WLM + 2. From that round,
compute♦LM () is called in every even execution of
compute♦WLM (). Thus, roundGSR♦LM +1 of model
♦LM occurs at most at roundGSR♦WLM +4 of model
♦WLM , roundGSR♦LM + 2 of model♦LM at most
at roundGSR♦WLM + 6 of model ♦WLM , etc. In
general, roundGSR♦LM + l of model♦LM occurs at
most in roundGSR♦WLM + 2l + 2 of model♦WLM .
We getα(l) = 2l + 2, and♦WLM ≥α ♦LM .

An optimal consensus algorithm for♦LM was pre-
sented in [19]. This algorithm reaches global decision
by roundGSR♦LM + 2, i.e. in 3 ♦LM rounds. By
Lemma12, there exists a simulation algorithm of♦LM
in ♦WLM (Algorithm 3), s.t. roundGSR♦LM + 2
occurs at most at roundGSR♦LM + 2 ∗ 2 + 2 =
GSR♦LM+6, i.e., global decision is reached in 7 rounds
of ♦WLM .

In Section 3andAppendix Awe analyzed the perfor-
mance of the direct algorithm for♦WLM , Algorithm3,
in the common case when the leader is stable and the
properties of the oracle are satisfied in roundGSR − 1,
i.e., one round earlier. If we use the simulation-based
algorithm for♦WLM presented in this section, no im-
provement in performance will be achieved, and the al-
gorithm will still take at most 7 rounds, since the worst
case is when the timeliness (and not the oracle) proper-
ties are satisfied only starting at roundGSR + 2 (see
proof of Lemma 11). Thus by making the oracle prop-
erties hold a round earlier we do not eliminate the worst
case discussed in this Lemma.

Note that the requirements of♦WLM are satisfied
in ♦LM , and therefore a simulation of♦WLM in

15

♦LM is trivial. Both models are therefore equivalent
by the “classical” notion of CHT [8]. Nevertheless,
♦LM inherently requires aΩ(n2) message complex-
ity (since each process receives a message from a ma-
jority), whereas♦WLM requires only linear message
complexity as we have shown in this paper. We therefore
think that the “classical” notion of model reducibility
and equivalence could be refined to take message com-
plexity into account, similarly to the notion ofk-round
reducibility [19] that took time (round) complexity of
the reduction into account.

C Asymptotic Behavior of E(D)

ES. For any fixedp < 1, limn→∞ E(DES) = ∞,
sincelimn→∞ p3n2

= 0.

LM. For any fixed p < 1, its clear that
limn→∞ E(D♦LM) = ∞, sincelimn→∞ p3n = 0, and
Pr(M |L) ≤ 1.

WLM. Similarly to ♦LM , for any fixedp < 1, both
the expression in Equation (7) and the one in Equation
(8) go to∞, however Equation (8) grows faster, since
the exponent ofp is bigger.

AFM. In the following lemma we show that, asymp-
totically, E(D♦AFM) approaches the constant value of
5 rounds, asn, the number of processes, goes to infinity.

Lemma 13. For a fixedp > 1
2 , limn→∞ E(D♦AFM)=

5

Proof. To bound the probability thatA has a major-
ity of 1’s in a row, we use a Chernoff bound [9]: Let
X1,X2, ...,Xn andX be as defined above, and denote
µ = E(X) = np. By the Chernoff bound, for any
0 < ǫ < 1:

P (X ≤ (1 − ǫ)µ) < e−µǫ2/2

We would like to bound the probabilityP (X ≤ n
2) and

therefore takeǫ = (1 − 1
2p). Thus, forp > 1/2, we get:

P (X ≤
n

2
) ≤ e−(1− 1

2p
)2np/2

and
P (X >

n

2
) > 1 − e−(1− 1

2p
)2np/2

This is a bound on the probability that any given row in
A has a majority of1’s. For n (independent) rows, we
get that the probability exceeds(1 − e−(1− 1

2p
)2np/2)n.

As was already explained, if we takep as the lower

bound for the probability that given a majority of ones in
each row, any given entry in A is 1, we have to raise this
expression to the power of 2. Additionally, this needs to
hold for 5 consecutive rounds, and thus:

E(D♦AFM) ≤
1

(1 − e−(1− 1

2p
)2np/2)10n

+ 4

For a fixedp < 1, the first expression in the sum above
approaches 1 asn → ∞, and thereforeE(D♦AFM) →
5.

16

	Introduction
	Model and Problem Definitions
	Time and Message Efficient Algorithm in WLM
	Probabilistic Comparison of Decision Time in Different Models
	Mathematical Analysis
	Numerical results

	Measurements
	Implementation
	LAN
	WAN

	Conclusions
	Correctness of Algorithm 2
	A Simulation of LM in WLM
	Asymptotic Behavior of E(D)

