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Abstract

The Distributed Computing Column covers the theory of systems that are composed of a
number of interacting computing elements. These include problems of communication and net-
working, databases, distributed shared memory, multiprocessor architectures, operating systems,
verification, internet, and the web.

After some announcements, this issue includes a contribution by Idit Keidar and myself.

Request for Collaborations: Please send me any suggestions for material I should be including
in this column, including news and communications, and suggestions for authors willing to write
a guest column or to review an event related to theory of distributed computing. In particular, I
would welcome open problems with a short description of context and motivation.

Announcements

¢ PODC 2001 will be held August 26—29, 2001 in Newport, Rhode Island. Go to
http://www.podc.org/podc2001/ for up to date announcements. The list of accepted papers
is available at http://www.podc.org/podc2001/accepted.html

e In honor of his sixtieth birthday, PODC 2001 will feature a series of lectures illustrating
and celebrating the vast impact of the work of Leslie Lamport. The following are the
invited speakers in this lecture series: Martin Abadi (InterTrust), Jim Anderson (University
of North Carolina at Chapel Hill), Maurice Herlihy (Brown University), Butler Lampson
(Microsoft), Nancy Lynch (MIT), Amir Pnueli (The Weizmann Institute), Chris Rowley
(Open University, UK and IXTEX3 Project). This lecture series is being organized by Cynthia
Dwork of Compagq.

e The PODC Steering Committee is pleased to announce that the chair of the Program Com-
mitee for PODC 2002 will be Keith Marzullo. Dr. Marzullo is Associate Professor of
Computer Science at the University of California at San Diego. PODC 2002 will be held in
the San Francisco Bay area. The exact location and dates are still to be determined.

e To celebrate twenty years of PODC, the journal Distributed Computing is planning to publish
a special issue, featuring surveys, retrospectives, and personal perspectives. More information
is available at http://www.cs.technion.ac.il/ hagit/podc20/

*Compaq Cambridge Research Laboratory, One Cambridge Center, Cambridge, MA 02142-1612.  Ser-
gio.Rajsbaum@compaq.com, rajsbhaum@math.unam.mx. On leave from Instituto de Mateméaticas, UNAM.
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e The workshop PERSPECTIVES ON ALGORITHMS AND DISTRIBUTED ALGORITHMS
is intended to explore new problems and future trends in algorithms. The workshop is orga-
nized around the lectures of 11 distinguished speakers and extensive discussion sessions. It
will be held at the Centre International de Rencontres Mathematiques in Luminy, France,
May 21 to 24, 2001. http://www.cirm.univ-mrs.fr

On the Cost of Fault-Tolerant Consensus
When There Are No Faults

(Preliminary Version)

Idit Keidar ! and Sergio Rajsbaum?
Abstract

We consider the consensus problem in an asynchronous model enriched with unreliable
failure detectors and in the partial synchrony model. We consider algorithms that solve
consensus and tolerate crash failures and/or message omissions. We prove tight lower
bounds on the number of communication steps performed by such algorithms in failure-
free executions. We present in a unified framework a number of related lower bound
results. Thus, we shed light on the relationships among different known lower and upper
bounds, and at the same time, illustrate a general technique for obtaining simple and
elegant lower bound proofs. We also illustrate matching upper bounds: we algorithms
that achieve the lower bound.

1 Introduction

Consensus is a fundamental problem in distributed computing theory and practice alike. A consen-
sus service allows a collection of processes to agree upon a common value. More specifically, each
process has an input, and each correct process must decide on an output, such that all correct pro-
cesses decide on the same output, and furthermore, this output is the input of one of the processes.
Consensus is an important building block for fault-tolerant distributed systems [22]: to achieve
fault-tolerance data is replicated, and consensus can be used to guarantee replica consistency using
the state machine approach [21, 27].

Consensus is not solvable in pure asynchronous models where even a single process can crash [13].
However, consensus is solvable in models of partial synchrony [11], where the system can be asyn-
chronous for an unbounded but finite period of time, but then eventually becomes synchronous,
as long as less than a majority of the processes can crash. Similarly, consensus is solvable in an
asynchronous model enriched with certain oracle failure detectors [6], including unreliable failure
detectors that can provide arbitrary output for an arbitrary period of time, but eventually provide
some useful semantics. We illustrate this in Section 3. In this paper we are interested in the cost of
consensus algorithms in these models — partial synchrony and asynchronous with unreliable failure
detectors.
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We consider two failure models: crash failures and message omissions, where correct processes
can lose messages. Consensus is not solvable in the omission failure model, even in a synchronous
system, unless some restrictions are placed on possible message loss patterns. In particular, con-
sensus is not solvable even in a single mobile failure model where the environment (the adversary)
can only choose one process in each communication step of the algorithm, and lose some of the
messages sent in this step by this process [25]. We prove this impossibility result in Section 4. The
impossibility result relies on the adversary’s ability to choose any process to lose messages from in
every step. In order to make consensus solvable, the adversary can be restricted in a number of
different ways. For example, if the adversary is restricted so that eventually there is one particular
process it cannot “touch”, that is, messages from this designated process cannot be lost from some
point on, and in addition, messages from less than a majority of the processes can be lost in each
communication step, then consensus is solvable [19]. We illustrate this in Section 3.

Now, let us examine the running time of consensus algorithms. Fault-tolerant consensus algo-
rithms, even for the synchronous model, are bound to have executions in which they take a long
time to terminate. The worst-case running time of a consensus algorithm tolerating crash failures
in a synchronous model grows linearly with the number of failures it can tolerate. Specifically, a
consensus algorithm that can tolerate up to ¢ crash failures will have executions involving a se-
quence of ¢ + 1 communication steps [10, 23]. In other words, if the network latency is bounded
by J, any algorithm will have executions where it takes at least (¢ + 1) time for all processes to
decide.

In the models we focus on here — partial synchrony and asynchronous with unreliable failure
detectors — the situation is even worse. Since the network can be asynchronous for an unbounded
period of time, and the failure detectors can provide arbitrary output for an unbounded period of
time, the worst-case running time of any consensus algorithm in these models is unbounded.

In practice, however, consensus algorithms can reach a decision quickly in common cases. In
practical networks there are extensive periods during which communication is timely, even if there
is no a priori known upper bound on message latency. Thus, many executions are actually syn-
chronous. In such executions, failure detectors based on time-outs can be accurate. Moreover, in
practice, failures are relatively uncommon. It is therefore interesting, from a practical perspective,
to study and improve the running time of consensus algorithms under such benign circumstances.

For this purpose, early-stopping consensus algorithms were designed. In the synchronous crash
failure model, early-stopping consensus algorithms can reach a decision in a time that is linear in
the number of failures that actually happen in an execution. In an execution with f failures, early-
stopping algorithms can have all the processes decide within at most f+1 communication steps [10].
In particular, when there are no failures, these algorithms decide within one communication step.

What can we say about early-stopping consensus algorithms for the partial synchrony and unre-
liable failure detector models? As explained above, even in the absence of failures, such algorithms
are bound to have unbounded running times since the network and failure detectors can behave in
an arbitrary way for an unbounded prefix of an execution. However, we are interested in execu-
tions in which, from the very beginning of the execution, the network is synchronous or the failure
detector is accurate. We will call such executions well-behaved if they are also failure-free. Since
well-behaved executions are common in practice, algorithm performance under such circumstances
is significant. Note, however, that an algorithm cannot know a priori that an execution is going
to be well-behaved, and thus cannot rely upon it. We are therefore interested in how well can
algorithms that do tolerate failures and partial synchrony (or unreliable failure detection) perform
in well-behaved executions.

There are several algorithms for fault-tolerant consensus in partial synchrony and asynchronous
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with unreliable failure detector models that tolerate crash failures and execute only two communica-
tion steps in well-behaved executions (e.g., [26, 16, 24]). In other words, in well-behaved executions
in which the network delivers every message within § time, these algorithms take 2§ time. Dis-
tributed systems folklore suggests that every fault tolerant algorithm in “practical” asynchronous
or partial synchrony models must take at least two communication steps before deciding, even
in well-behaved executions. This is in contrast to consensus algorithms in the synchronous crash
failure model, where algorithms can have all processes decide in one communication step in the
absence of failures [10].

In this paper we formalize this folklore theorem: we show that the bound holds as long as two or
more processes can crash. We show that the need for an additional communication step (over what
is needed in the synchronous model) stems from the fact that in the asynchronous and partially
synchronous models a correct process can be mistaken for a faulty one. This requires consensus
algorithms for these models to avoid disagreement with processes that seem faulty. In contrast,
consensus in the synchronous model requires only that correct processes agree upon the same value,
and allows for disagreement with faulty ones. The uniform consensus problem strengthens consensus
to require that every two processes (correct or not) that decide must decide on the same value.
Interestingly, uniform consensus requires two communication steps in the absence of failures even
in the synchronous model, as long as two or more processes can crash [8]. The two communication
step lower bound for consensus in asynchronous and partial synchrony models stems from the fact
that any algorithm that solves consensus in these models, also solves uniform consensus [15].

Interestingly, if we consider a message omission model where an unbounded number of messages
from a correct process may be lost, then even in the synchronous model, any algorithm for consensus
also solves uniform consensus. Thus, the two communication step bound holds for the synchronous
message omission model, as also observed by Lamport [20].

In this paper we provide the intuition and formalize the lower and upper bounds. We illustrate
a simple technique to derive several lower bounds in the same framework. In Section 2, we present
formal definitions of the models and problems. In Section 3, we illustrate the upper bound; we
describe an algorithm that works in two communication steps in well-behaved executions. In order
to derive the lower bound, we first consider the synchronous model: in Section 4, we discuss lower
bounds for the uniform consensus problem in the synchronous model. Then, in Section 5, we
derive a lower bound for consensus in models of partial synchrony and in the asynchronous model
with unreliable failure detectors. Finally, Section 6 concludes the paper and discusses optimistic
alternatives to consensus.

2 Definitions

2.1 Models

The universe consists of n processes, p1,...,p,. Processes communicate by message-passing. An
execution is a sequence of steps taken by distinct processes. A process can send messages to several
other processes in one step.

We consider two failure models: crash failures and message omission. We do not consider
Byzantine failures.

In the crash failures model, processes fail by permanently crashing. A parameter ¢ bounds
the number of processes that can crash. A process that crashes in an execution is faulty in that
execution, a process that does not crash is correct. In this model, communication among correct
processes is reliable. That is, every message sent from one correct process to another correct process
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eventually reaches its destination. If a process fails during a given step, any subset of the messages
it sent in this step can be lost. Messages it sent in previous communication steps cannot be lost.

In the omission failure model, messages sent by correct processes can be lost in any commu-
nication step. A process is faulty in this model if there is a point in the execution after which
all the messages from this process are lost. If message omission failures are possible, consensus is
impossible even for a very restricted form of omission failures. The single mobile failure model [25]
is a synchronous model where in a step the messages of at most one process can be lost.

We consider three timing models: synchronous, partial synchrony, and asynchronous with un-
reliable failure detectors.

2.1.1 Synchronous

In the synchronous model, processes execute in synchronous steps®. In each step, every processes
can send messages to any number of other processes. Unless a failure occurs, each message reaches
its destination in the following step. We denote by § the time it takes to execute a step. For
simplicity, we assume that § is the network latency, and the local computation time is zero.

2.1.2 Partial synchrony

There are several partial synchrony models in the literature. We consider one of the models defined
in [11], where there is no a priori bound on message latency. However, there is a time, called global
stabilization time (GST) after which there is a bound on message latency, but this bound is not
known to the processes. For simplicity, we assume that local computation time is zero and that
processes can measure time accurately®.

In addition, we assume that there exist a pre-defined constant § that is known to the processes
and reflects the typical message latency in the system. A well-behaved execution in the partial
synchrony model is an execution in which there are no failures and every message reaches its
destination within at most 6 time®. Thus, a well-behaved execution is essentially synchronous.

2.1.3 Asynchronous with failure detectors

In the asynchronous model with unreliable failure detectors [6], there is no bound on message latency,
and every process p is equipped with a failure detector oracle. At every step of the algorithm’s
execution, p can query its failure detector for some information. We focus here on failure detectors
that can provide arbitrary outputs during an unbounded period of time, but eventually have to
provide some meaningful semantics. Our lower bound will apply to any failure detector that can
provide arbitrary output during an unbounded time period.

Chandra and Toueg [6] define several classes of failure detectors whose output is a list of suspected
processes. We say that process p suspects process q at a certain point in the execution, if ¢ is
included in p’s failure detector’s output list at this point. To illustrate the upper bound, we focus
on a failure detector of class ¢S, which has been shown to be the weakest failure detector for solving
consensus [5]. A failure detector of this class guarantees two properties:

1. strong completeness: there is a time after which every correct process permanently suspects
every crashed process; and

3Communication steps are sometimes called rounds.

“Consensus can be solved even if these assumptions are weakened, as in the timed asynchronous model [9], where
clock skew is possible but bounded, and likewise, different processing times are possible but their ratio is bounded.

A well-behaved execution is sometimes called stable, e.g., in [9]
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2. eventually weak accuracy: there is a correct process p such that there is a time after which p
is not suspected by any correct process.

A well-behaved execution in this model is an execution in which there are no failures and no
suspicions, that is, all the processes have empty suspicion lists.

A failure detector of class ¢S can be implemented in the partial synchrony model defined above
using time-outs by increasing the time-out value every time a false suspicion occurs (see [6]). We
observe that with this implementation, if the time-out value is initially J, then in any well-behaved
execution of the partial synchrony model, the failure detector generates no suspicions. Therefore,
a well-behaved execution of the partial synchrony model can simulate a well-behaved execution of
the failure detector model. Thus, we can focus on the failure detector model when showing the
upper bound, and on the partial synchrony model when showing the lower bound, and the results
would apply to both models.

Another example of a failure detector class is O [5]. O is a leader election service whose
output is the name of one process, presumed to be the leader. Initially, a failure detector of this
class can be unreliable: it can name a faulty process as the leader, and can name different leaders
at different processes. However, eventually, it must elect a single correct leader, that is, give all the
processes the same output, which must be a correct process. In [5], it is shown that Q€ is equivalent
to 0S. In a well-behaved execution, a {2 failure detector must announce the same correct leader
at all the processes from the beginning of the execution.

2.2 Problem Definitions

We now define several variations of the consensus problem.

In all of these problems, every process p; participating in the algorithm gets an input value v;,
and the algorithm’s output is a decision value dec;. For simplicity, we consider binary consensus,
that is, we assume that the input values are in {0, 1}.

An algorithm solves consensus if it satisfies the following conditions:

o Agreement: If some correct process p; decides dec; and another correct process p; decides
decj, then dec; = dec;. That is, no two correct processes decide on different values.

e Validity: If a correct process p; decides dec;, then there is a process p; so that v; = dec;, that
is, the decision value is the input value of some process.

o Termination: Every correct process eventually decides on some value.

Agreement and validity are safety conditions, and termination is a liveness condition.

The agreement condition requires correct processes to agree on the same value, but does not
require agreement with faulty processes. Uniform consensus strengthens consensus by also requiring
agreement with faulty processes, in case they decide before they fail. An algorithm solves uniform
consensus if it satisfies validity and termination as defined above, along with the following property:

e Uniform agreement: If some process p; decides dec; and another process p; decides dec;, then
dec; = dec;. That is, no two processes decide on different values.

For the sake of the lower bound, we look at a weaker version of consensus, called weak consen-
sus [13]. Weak consensus replaces the validity condition with a weaker one. Namely, an algorithm
solves weak consensus (resp. weak uniform consensus) if it satisfies agreement (resp. uniform agree-
ment) and termination, along with the following property:
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e Weak wvalidity: For every value v € {0,1} there is a failure-free execution in which some
process decides v.

Atomic commit [14] is used in distributed database systems to have multiple database sites
agree whether to commit a transaction or to abort it. The decision 1 represents a commit decision,
and 0 — abort. Likewise, the input value 1 represents a vote in favor of committing the transaction,
the input value 0 represents a vote for aborting it. A commit decision cannot be reached unless
all the processes vote in favor of committing the transaction. The mnon-blocking atomic commit
problem [28, 3] is a special case of weak uniform consensus. An algorithm solves non-blocking
atomic commit if it satisfies uniform agreement and termination, along with the following two
properties:

e Validity: The decision value can only be 1 if all sites voted 1.

e Non- Triviality: If there are no failures and all sites vote 1, then the decision will be 1.

3 The Upper Bound

The literature contains many consensus algorithms for asynchronous models enriched with unreli-
able failure detectors [6, 26, 16] (or a leader election service [19]). By the FLP [13] result, we know
that without enriching the model with such a service, any algorithm satisfying the safety guarantees
of consensus is bound to have an infinite undecided execution in which no failures occur. Since such
an unreliable failure detector can provide arbitrary output for an unbounded period of time, any
algorithm that uses such an unreliable failure detector to circumvent the FLP impossibility result
cannot have a finite bound on its running time.

From a practical point of view, however, reality is not so grave. Failure detectors are imple-
mented using time-outs. In practical networks, time-outs can be fine-tuned to be accurate most
of the time, and thus, failure detectors typically provide their useful semantics from the very be-
ginning of the execution. Moreover, failures are usually not frequent. Therefore, from a practical
perspective, it is interesting to focus on the algorithms’ running times in executions in which the
underlying service is accurate, and in which no failures occur.

We now illustrate that in such cases, many consensus algorithms terminate within two commu-
nication steps. In Section 3.1 we present a simple consensus algorithm that works with ¢S, with
which in well-behaved executions, process decide within two communication steps. As explained
above, ¢S can be implemented in a partial synchrony model in a way that preserves the well-
behaved nature of an execution. Therefore, the upper bound also applies to the partial synchrony
model.

In Section 3.2 we discuss message omission failures and partitions.

3.1 Consensus with S

Several (S-based algorithms that terminate within two communication steps have been suggested [26,
16, 24]. These algorithms tolerate failures as long as a majority of the processes are correct. They
use the rotating coordinator approach [7, 11]. With this approach, the algorithm iterates through
a sequence of rounds, at each round, a different coordinator leads the consensus algorithm in order
to try and reach a decision. In these algorithms, each process is identified by a unique number
from 1 to m, and in round %, the coordinator is process number (i mod n) + 1. The iterations
through multiple rounds is needed in order to account for possible coordinator failures. However,
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once there is a round in which the coordinator is correct and also not suspected by any process, all
the processes decide, and the algorithm terminates.

Function Consensus(v;)
cobegin
(1) task T1: r;  0; ests; < vi; ovi # L %
(2) while true do
(3) ¢4 (ri mod n) + 1; est_from_c; < L; r;i < r; +1; % round r; %
(4) case (i = ¢) then est_from_c; + est;
(5) (i # ¢) then wait until ( (EST(r;,v) is received from p.) V (c € suspected;) );
(6) if (EST(r;,v) has been received) then est_from_c; < v endif
(7) endcase; % est_from_c; = estc or L %
(8) Vj do send EST(r;, est_from_c;) to p; enddo;
(9) wait until (EST(r;, est_from_c) has been received from [(n + 1)/2] processes);
(10) let rec; = {est_from_c such that EST(r;, est_from_c) has been received at line 5 or 9};
% est_from_c = 1 or v with v = est, %
% rec; = {L}or {v}or {v,1} %
(11) case (rec; = {1}) then skip
(12) (reci = {v}) then Vj # i do send DECIDE(v) to p; enddo; return(v)
(13) (rec; = {v, L}) then est; « v
(14) endcase
(15) enddo
(16) task T'2: upon reception of DECIDE(v): Vj # ¢ do send DECIDE(v) to p; enddo; return(v)
coend

Figure 1: A ¢S-based Consensus Algorithm

For illustration, we present the algorithm of [24] in Figure 1. In this algorithm, each process
p; keeps track of the round number in a variable r;, initially zero, and of the estimated consensus
value in a variable est;, initially the process’ input value. A round of this algorithm is conducted
as follows: the coordinator sends its own estimate to the other processes. Every other process
waits until it either receives the estimate from the coordinator, or suspects the current coordinator.
Next, all the processes send messages to each other: if a process received the estimate from the
coordinator sends this estimate, otherwise, it sends a null value. Finally, each process waits to
receive messages from a majority of the processes and then acts as follows:

1. A process that receives only null values proceeds directly to the next round.

2. A process that receives the same non-null value (the coordinator’s estimate) from a majority,
broadcasts a DECIDE message with this value to all, and decides on this value. That is, the
process returns this value.

3. A process that receives some null values and some non-null values sets its estimate est; to the
received non-null value, and proceeds to the next round.

In addition, once a process receives a DECIDE message, it forwards the DECIDE message to all
(to account for the case that the coordinator who sent it failed after sending it), and then decides
on the value in the DECIDE message.

We informally now argue that the algorithm is correct. For a rigorous proof, see [24]. Validity
is ensured because the first coordinator suggests its own initial value, and every other coordinator
either suggests its own value or a value that was previously sent by another coordinator. Thus, by
induction, only processes’ initial values are possible decision values.
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To see that agreement is ensured, notice that if some process decides v in round r, then a
majority of processes must have sent v in round r. Since every process waits to hear from a
majority before proceeding to the next round, every process receives at least one message with v in
round 7. Thus, every process that proceeds to round r + 1 sets its own estimate to v beforehand.
Clearly, from round r 4+ 1 onward, v is the only possible decision value.

A decision is made once there is a round in which the coordinator does not fail and is also not
suspected by any process. The properties of the ¢S failure detector, together with the fact that
the algorithm continuously iterates over all possible coordinators until some process decides, ensure
that eventually there is such a round. In addition, once some process decides, every process that
decides broadcasts a DECIDE message to all the other processes. This guarantees that if a correct
process stops participating in the iterations, all correct processes get its DECIDE message and also
decide.

Now, let us consider a well-behaved execution. If the first coordinator does not fail and is also not
suspected by any process, then every correct process receives the coordinator’s estimate and sends
it to the other processes. Moreover, no process sends a null value. Thus, all the processes decide
after receiving messages from a majority in the first round, that is, after exactly two communication
steps.

3.2 Consensus with Messages Omissions

Consensus is not always solvable in the message omission model. However, if there is a time after
which there is a process p so that p’s messages to correct processes are not lost, and moreover, there
is a majority of correct processes that can communicate reliably with p, then consensus is solvable.

Lamport’s Paxos algorithm [19] solves consensus in the asynchronous message omission model,
with the above restriction on message loss patterns. Paxos uses a leader election service. In essence,
this leader election service is a failure detector of class 0€2. In executions in which there are no
failures, and the leader election service elects a single leader at all the processes from the beginning
of the execution, Paxos, as originally presented in [19], requires five communication steps before
all processes decide. The first two steps are needed for recovery from past failures, and they do
not involve sending actual consensus values. When a sequence of Paxos consensus algorithms are
ran, these two steps have to occur only at the beginning or when the leader changes. In a given
instance of consensus that is invoked after this phase, only three communication steps are executed.
These three steps work in a manner very similar to a round of the ¢S-based consensus algorithm
presented above.

In the first of these steps, the leader sends its own initial value to all the processes. In the
second, all the processes that receive this value record it and send acknowledgments to the leader.
Once a majority of the processes has recorded a value, the value is locked and no other decision
value is possible. Upon receiving acknowledgments from a majority, the leader decides. In the third
step, the leader sends the decision value to all the processes and they decide.

A simple variation on Paxos can merge these two steps, by having all the processes send ac-
knowledgments to each other, and every process that receives acknowledgments from a majority
decides directly. (This approach was taken in [18]). However, this requires strengthening the re-
striction on message loss patterns, to require that a majority of processes all communicate reliably
with each other, not just with the leader.
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4 Synchronous Lower Bounds: Consensus and Uniform Consen-
sus

Consider a synchronous system where at most ¢ processes can crash, and let f be the actual number
of failures in an execution. In this section we show a consensus impossibility for the omission model
with a single mobile failure. We then show lower bounds for consensus and uniform consensus in
the crash failure model.

For the sake of proving the bounds, it will suffice to assume the weak validity property, that is,
the bounds will apply to weak consensus and weak uniform consensus.

4.1 Bibliographical Notes

It has been shown that f + 1 steps are necessary and sufficient for consensus [10], and f + 2 for
uniform consensus, when f <t—1. If f =¢—1 or f =t then both consensus and uniform consensus
require t+1 steps (see [8]). Dwork and Skeen [12] showed a similar result for atomic commit, which
is an instance of weak uniform consensus. Their complexity analysis used a different measure than
the one we use here: they modeled the sending of k messages in a single communication step as
costing O(k). Clearly, the time bounds obtained this way are higher. However, the two steps bound
implicitly appears in this paper.

In the omission model with a single mobile failure no solution at all exists [25]. However,
if the adversary is restricted so that eventually there is a majority of the processes that do not
experience message omission, consensus is solvable [19]. Moreover, if t > 1, then consensus requires
two failure-free steps [20].

We describe a technique due to Moses and Rajsbaum [23], and use it to prove all four lower
bounds. This technique was shown in [23] to apply to asynchronous message passing and shared
memory models, as well as for the synchronous and mobile models we describe here. We show here
how to use it also for uniform consensus. Bar-Joseph and Ben-Or [2] use a similar technique for
randomized synchronous consensus, and Aguilera and Toueg [1] use it for the synchronous crash
failure model.

4.2 Mobile Failures

Proving lower bound and impossibility results can often be thought of as showing that, for any
given algorithm, an adversary always has a strategy that can guarantee a desired bad behavior.
In the case of the synchronous model, an adversary can choose which processes fail in a round,
and what subset of their messages are delivered. We say that such a decision is an action of
the environment. Assume a (deterministic) consensus algorithm is given. For any initial state of
the system the environment actions completely define a execution: the environment defines the
messages a process receives in each step, and the protocol of the process defines its new local state
and the messages it send next. Formally, an ezecution R is defined in terms of two sequences, r of
global states, and a of environment actions, that are interleaved to obtain a computation. Given
an execution R (possibly consisting of just one state), let us denote by R ® € the execution that
results from extending R by having the environment perform the action e. Thus, every execution
of can be represented in the Form
TOEEOEO---

where z is an initial state for the consensus problem, Cong, and ¢; is an environment action, for
every integer 7 > 0. An initial state for consensus is determined by the inputs of the processes.
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Thus, for each combination of 0’s and 1’s there is An initial state in Cony.

To obtain an impossibility result, it is often sufficient to consider only a subset of all possible
executions of the model. Thus we define a system S to be a set of executions. A layering is a set of
environment actions used to generate a system®. If the set of layers is chosen appropriately, these
executions can have structural properties that will simplify their analysis. For the omission failure
model, the following layering works. We use [k] to denote the set {1,...,k}, with [0] denoting the
empty set. The layering consists of nondeterministically choosing a process i € {1,...,n} and a
set [k] and performing the action (i, [k]), meaning that the messages from 7 to members of [k] will
be lost (and only these will be lost). More precisely, the layering is:

L={G,[k]):1<i<mnand 0 <k <n}

The impossibility will be obtained by considering the system S of all executions obtained by re-
peatedly executing layers from L starting in an initial state. This system has the following critical
properties:

1. In § any process ¢ can crash from any state z on in an execution; simply execute the layer
(2, [n]) repeatedly after z.

2. At most one process can crash in S, since in any infinite sequence of layers from L at most
one process is silenced for an infinite number of steps.

3. Given any state z of an execution of S, there is an execution extending x where no processes
crash. For the crash failure model this property is that the only processes that crash are the
ones that have already crashed at z (in the mobile failure model, there is no such process).

Since the original asynchronous consensus impossibility [13] it was realized that a crucial role
is played by the decision values that are possible in the future of a given global state. This is
captured by the notion of the potential valence or potence for short of a state with respect to a set
of executions.

Definition 4.1 A state x is w-potent with respect to system S if x is a state of a execution R € S
in which at least one nonfaulty process decides w. The state x is bipotent if it is both 0-potent
and 1-potent.

As we shall see, bipotent states play an important role in precluding consensus in the mobile failure
model. Our goal will be to show that every consensus algorithm must have an execution whose
states are all bipotent. We are interested in bipotent states because an algorithm cannot have
terminated in such a state. In the mobile failure model at most one process can crash, but we state
the following lemma in a slightly more general way, for ¢ crashes, to use it also in the t-resilient
crash model.

Lemma 4.1 Assume no more than t, t < n processes can fail in an execution. If x is a bipotent
state of S then at least n — t non-failed processes at x have not decided by x.

Proof: Since z is bipotent, there is an execution R? containing z in which at least one nonfaulty
process decides 0. The set Py of nonfaulty processes in R® consists of at least n — t processes,

In asynchronous models a layering consists of sequences of environment actions, and various layerings can be
defined to show that consensus is impossible even in executions with very little asynchrony[23]
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they are all non-failed at z, and by the agreement property none of them has decided 1 by z. By
symmetry of 0 and 1, we obtain the existence of a set P; of at least n — ¢ non-failed processes at x
that have not decided 0 by z. There is an execution R containing  in which the only processes that
fail are the ones that are already failed at  (in the mobile failure model, none, since it is always
possible to extend a state with a crash-free execution). All processes in Py U P; are nonfaulty in R.
By the agreement property, there is at most one value w € {0,1} on which nonfaulty processes
decide in R. If nonfaulty processes do not decide 0 in R, then no process in Py has decided by z,
and if they do not decide 1 in R, then no process in P; has decided by z. In either case, the claim
holds. [ |

The following notion of connectivity can be used to show the existence of bipotent states. With
respect to a system S states x and y are similar, denoted by z ~; v, if there is a process j such
that (a) the states z and y are identical except perhaps in the local state of one process j (and
it is possible for j to crash), and (b) there exists ¢ # j that is non-failed in both z and y. A set
of states X is similarity connected if the graph (X, ~;) induced by ~4 on X is connected. The
following simple lemma, is the basis for the impossibility proof.

Lemma 4.2 Let X be a similarity connected set of states of S where one crash is possible. If X
contains both 0-potent and 1-potent states, then there is a bipotent state in X.

Proof: Let X° be the subset of X consisting of O-potent states, while X! is the subset of 1-potent
states. By assumption, both subsets are nonempty. It thus follows that there must be an edge
20 ~, 2! with 2% € X0 and 2! € X!. The states 2° and 2! are identical except perhaps in the local
state of one process j (and it is possible for j to crash), and there exists i # j that is non-failed
in both states. Thus, if j crashes the other processes cannot distinguish between both states, and
they all (at least there is one, i) decide the same value. That is, the states ° and z' have a shared
potence. If their shared potence is 0 then z! is bipotent, while if the shared potence is 1 then z°
is bipotent. In either case there is a bipotent state in X, as desired. [ |

We can show that the consensus initial states Cong are connected in this sense.
Lemma 4.3 Cong is similarity connected with respect to S.

Proof: Given a state z we denote by z; the local state of process j in the state z. First, notice
that Cong is a subset of the states of S. Let z,y € Cong, and for every 0 < m < n define 2™ by
setting z7* = y; for all j < m, and 27" = z; for all j > m. Clearly, 2™ € Cong, and it is easy to
check that 2z° = z and 2" = y. Moreover, for every 0 < [ < n we have that ™! and 2™ differ
exactly in the local state of process m. Hence, they are similar, and we have that 2™ ! ~; z™.
It follows by transitivity that z and y are similarity connected and we are done. [ |

We can use Lemma 4.2 and 4.3 to obtain a bipotent initial state z°.
Lemma 4.4 The set Cong contains a bipotent state.
Proof: Let z° € Cong be a 0-potent initial state, and let z! be a 1-potent initial state. These
exist by the weak validity consensus requirement, and there is an execution starting in z° (resp. ')

where the nonfaulty processes decide 0 (resp. 1). By Lemma 4.3 Cong is similarity connected and
thus by Lemma 4.2 we obtain that there is a bipotent state in Cong. [ |
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It remains to show that the set L(x) of successors of a state z that can be obtained by applying
a layer from L is similarity connected.

Lemma 4.5 For every state x of S the set L(z) is similarity connected.

Proof: For every pair of processes j, ' we have that z - (4,[0]) = z - (5, [0]) because in both cases
no messages are lost in the round following z. It follows that z - (4,[0]) ~s z - (5, [0]). Moreover,
for every k < m we have that z - (4, [k]) ~s = - (4, [k + 1]), because the two states differ only in the
state of process k + 1. It follows that L(z) is similarity connected for all z. ]

A bipotent execution is an execution where every state is bipotent.
Lemma 4.6 There is a bipotent execution in S.

Proof: By Lemma 4.4, there is a bipotent state, say °. We will construct a sequence of bipotent
states 2, z2,..., 2% ... and a corresponding sequence of layers L1, Ly, ..., Ly, . . . such that z*t1 =

zt- Ljq for all i > 0. The desired execution will be
R=2"0L10OL® - OLp®---

It remains to define the two sequences. We will define the layers L; and the states 2* by induction
on i. For the basis, 2° is bipotent. Let k& > 0, and assume that we have constructed sequences
Li,Lo,...,L; and z',22,. ..,z with the desired properties. In particular, z¥ is a bipotent state.
By Lemma 4.5, we have that L(z*) is similarity connected. Since z* is bipotent, L(z*) contains
both 0-potent and 1-potent states (one process can crash). It follows from Lemma 4.2 that there
is a bipotent state y € L(z*). Since y € L(z*) we have by the definition of L(z*) that y = z* - L for
some layer L € L. Set Ly, = L and zFt! = y. [

We conclude the impossibility results as follows. By Lemma, 4.6 there is a bipotent execution R €
L. This execution has an infinite number of bipotent states. By Lemma 4.1 no process has decided
in a bipotent state (since in this model there are no crashes, and hence there are no failed processes
at z). But then no process would ever decide in the execution R contradicting the assumption that
the algorithm satisfies the decision property.

Theorem 4.7 There is no 1-resilient consensus algorithm in the mobile failures model.

4.3 Synchronous crash failures

The same ideas can be used to show that consensus cannot be reached in a i¢-resilient synchronous
crash failure model before ¢ + 1 rounds. However, the existence of a bipotent state can be shown
to exist only in the first £ — 1 rounds, yielding a ¢ rounds lower bound. The true lower bound of
t 4+ 1 is obtained by showing that two more rounds are still necessary after a bipotent state, by
arguing that there is a pair of states x,y, £ ~; y, with different potence. In fact, the same layering
works, except that care must be taken to not crash more than ¢ processes in an execution. That
is, the action (7, [k]) is applicable to a state x only if fewer than ¢ processes are failed at z, and
process j is not failed at z. Hence, it will be convenient to have a name for the action where
no process fails: clean. This environment action, applicable at all states, involves no new process
failure. Messages of failed processes are not delivered, while all messages of non-failed processes
are delivered. We denote the layering consisting of all actions of these types by L’. Notice that the
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number of processes that fail in an execution of S|+ is at most ¢, since once t processes are failed
at a state, all later layers will be clean.

Similar to Lemma 4.5, we have the following. The only difference is that if in z there are already
t crashes, then S|+ (x) contains just one state, and hence is trivially similarity connected. The proof
of part (ii) is using Lemma 4.2, and hence it is needed that no more than ¢ — 2 processes are failed
at z, because then in L*(z) at most ¢t — 1 are failed. Meaning that one process can still fail in states
of L*(z), and the lemma can be used: to obtain a bipotent state, the possibility of a new crash
must exist. Thus we have:

Lemma 4.8 In the synchronous t-resilient model with crash failures for every state x of Syt the
set L(z) is similarity connected. Moreover, if no more than t — 2 processes are failed at a bipotent
state x, then L*(x) contains a bipotent state.

Since Lemma 4.4 guarantees the existence of a bipotent initial state 20 with 0 failed processes
(the proof of that lemma works for any model where at least one process can be silenced), we can
use Lemma 4.8 to show the existence of an execution with bipotent states z°, ', ..., z/, with one
crash per step, for any f < t. By Lemma 4.1, this gives us a t-step lower bound for consensus. The
true (¢ + 1)-round lower bound is obtained by showing that two rounds are still necessary after a
bipotent state if t < n — 2:

Lemma 4.9 Assume thatt <n —2. If £ is a bipotent state in a layer of Sit, then there is a state
y € LY(Z) in which at least one non-failed process has not decided.

Proof: Notice that a state = with ¢ failed processes cannot be bipotent, since there is a unique
extension starting at z. Hence, to be bipotent, the state £ can have no more than f = ¢ — 1 failed
processes. By Lemma 4.8(i), we have that L*(Z) is similarity connected. Since & is bipotent, there
are states y*,y! € L¥(2) such that y° is 0-potent and y' is 1-potent. The similarity connectivity
of L*(%) implies the existence of states 2%,z € L*(%) (not necessarily distinct) satisfying 20 ~ 2!
that are 0- and 1-potent, respectively. Recall that all states of S|+ have at most ¢ faulty processes.
Since t < n—2 and 2 and 2! agree modulo j for some j, it follows that there is at least one process
i # j such that ¢ is not failed in both states and 2 = z!. Assume by way of contradiction that
every non failed process is decided in both z° and z!. In particular, i is decided, say with value v.
Agreement implies that in both states, every non-failed process decides v. It follows that both 2°
and z! are v-potent, and neither of them is (1 — v)-potent, contradicting the assumption that one
of them is O-potent and the other is 1-potent. [ |

We can now put the two results together and obtain the desired lower bound:

Theorem 4.10 Let t < n — 2. Every t-resilient algorithm for consensus in the synchronous model
has an execution in which decision requires at least t + 1 rounds. Moreover, for every f <t —1,
such an algorithm has an execution with f failures in which decision requires f + 1 rounds.

Proof: Case f <t — 1: Since Lemma 4.4 guarantees the existence of a bipotent initial state z°
with 0 failed processes (the proof of that lemma works for any model where at least one process
can be silenced), we can use Lemma 4.8 to show the existence of an execution with bipotent states
20, 2!, ..., zf, with one crash per step, for any f failures, f < ¢t — 1. Lemma 4.1 implies that not
all processes have decided in z7.

Case f = t: Now we have the execution with bipotent states °,z!,...,z/~!, and we have to
use Lemma 4.1, which says that there is a state in the next step, z/ Where not all processes have

decided in z/. u
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Taking f = 0 in the previous theorem we get that if one failure is possible and there are at least
three processes, one step is necessary to solve consensus:

Corollary 4.11 Any t-resilient consensus algorithm must perform one communication step before
deciding if 1 >t <mn— 2.

4.4 TUniform Consensus

Now consider a uniform consensus algorithm. We show that one more step is needed in failure-free
executions (a special case of the [8] result):

Theorem 4.12 For t > 1, every t-resilient uniform consensus algorithm must perform two com-
munication steps in some failure-free execution before all the processes can decide.

Proof: Consider an algorithm A solving weak uniform consensus. By the weak validity condition,
there is at least one initial state from which the failure-free execution of A decides 0, and another
initial state from which the failure-free execution of A decides 1. Therefore, there are two initial
states Z, 7 that differ in exactly the input of one process, j, from which failure-free executions of A
decide different values. Assume that in Z the failure-free execution decides 0, and in g — 1.

Assume for the sake of contradiction that all the processes decide after one communication step
in all failure-free executions. Consider the state Z - (4,[0]) (where nobody fails). In this state, all
processes must decide 0.

Process n has exactly the same state in £ - (4,[0]) and Z - (j,[n — 1]). Thus, n decides 0 in
Z - (j,[n — 1]). By a symmetric argument for ¢, n decides 1 in § - (j,[n — 1]). By the uniform
agreement requirement, every extension of £ - (j,[n —1]) (and - (4, [n — 1])) has to decide 0 (decide
1), even if process i crashes. That is, niether Z - (j,[n — 1]) nor ¢ - (j,[n — 1]) are bipotent. But
n is the only one hearing from j: in & - (j,[n — 1]) - (n,[n]) and g - (4,[n — 1]) - (n,[n]) all correct
processes have the same state. So at least one of these states is bipotent, a contradicion. [ |

5 Deriving Lower Bounds for Non-Synchronous Models

We now use the results of the previous section to derive the lower bounds for consensus in the of
partial synchrony and asynchronous with unreliable failure detectors. We do this in two steps: first,
in Section 5.1 we derive a lower bound for uniform consensus in these models; next, in Section 5.2
we show that any algorithm that solves uniform consensus in these models also solves consensus.
The lower bound for consensus follows.

5.1 A lower bound for uniform consensus

In the previous section, we considered a synchronous model where up to ¢ processes may fail. In that
model, we have shown that any uniform consensus algorithm for the synchronous model where at
least two processes can fail must perform two communication steps in some failure-free executions
before all the processes can decide. This lower bound also applies to well-behaved executions in
the partial synchrony model and in the asynchronous model with failure detectors as we show in
the two lemmas below.

Lemma 5.1 For every algorithm that solves uniform consensus in the partial synchrony model
where at least two processes can crash, there is a well-behaved execution in which the algorithm
performs at least two communication steps before all the processes decide.
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Proof: Assume the proposition is false, then there exists a uniform consensus algorithm that
tolerates two crashes and decides after at most one communication step in every well-behaved
execution, that is, in every failure-free synchronous execution. Clearly, this algorithm solves uniform
consensus in the synchronous model, and decides within one communication step in every failure-
free execution. A contradiction. [

Lemma 5.2 For every algorithm that solves uniform consensus in the asynchronous model enriched
with failure detector QS or OS2, where at least two processes can crash, there is a well-behaved
execution in which the algorithm performs at least two communication steps before all the processes
decide.

Proof: It suffices to show that we can implement (S and {2 failure detectors in the synchronous
model, so that their execution is well-behaved in failure-free executions of the synchronous model.

We construct a ¢S failure detector using the following algorithm: The algorithm is conducted
in synchronous communication steps. In every step, every process sends a message to every other
process, and waits ¢ time until the next step. Initially, every process p has an empty suspect list.
At every subsequent communication step, p suspects processes from which it did not get messages
in this step. Clearly, in the synchronous model, this failure detector suspects a process if and
only if the process has crashed; this is the perfect failure detector defined in [6]. In particular,
it is also a failure detector of class ¢S. Moreover, in failure-free executions, this failure detector
does not suspect any process. Thus, a failure-free execution of the synchronous model simulates a
well-behaved execution of the asynchronous model with a QS failure detector.

To implement a (< failure detector, we modify the above algorithm to have each process output
the process with the lowest identifier among the processes it does not suspect. Since the failure
detector suspects a process if and only if the process has crashed, the failure detector at each
process outputs the first non-crashed process (in lexicographical order). Thus, after the last failure
occurs, all the processes elect the same correct leader. In failure-free executions, the leader is always
process 1, from the beginning of the execution. Thus, this is a well-behaved execution of ¢0€2. =

5.2 From consensus to uniform consensus

Guerraoui [15] proves that any algorithm that solves consensus in an asynchronous model enriched
with certain classes of failure detectors, including ¢S, also solves uniform consensus. Below, we
paraphrase Guerraoui’s proof, applying it to the models we consider in this paper, namely, the
partial synchrony model, and the asynchronous model enriched with any failure detector that can
give arbitrary output for an arbitrary prefix of the execution.

Lemma 5.3 In a partial synchrony model or in an asynchronous model with o failure detector
that can give arbitrary output for an arbitrary prefix of the execution, any algorithm that solves
consensus also solves uniform consensus.

Proof: Assume that there is an algorithm that solves consensus but not uniform consensus in one
of the aforementioned models. Then, the algorithm has an execution e in which two processes p;
and p; decide on different values, and at least one of them fails after deciding. Assume, without loss
of generality, that p; decides before p;. Let ¢; be the point in the execution e at which p; decides,
and t;, the point at which p; decides. Note that until point #;, neither p; nor p; fails, and until ¢;,
p; does not fail.

We now construct an execution e’ in which both p; and p; are correct, as follows: until point
ti, e is identical to €. Between ¢; and ¢;, p; may send in e’ messages that it does not send in e
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(because it may be crashed during part of this time in e and not in €’). We delay the receipt of
such messages by any process until after point ¢; in the execution’. In addition, we have the failure
detector oracles at all the processes give the same outputs in the prefix of ¢’ until ¢; as in in the
prefix of e until ¢;. After time ¢;, we have the failure detector satisfy the required semantics. Since
the failure detector can give arbitrary output for an arbitrary prefix of the execution, we can delay
this prefix until time ¢;.

Observe that ¢’ is indistinguishable from e for process p; in the prefix until #;, because e and
e’ are identical until that point. Therefore, p; decides in €' at time ¢; the same value that it does
in e. Observe also that for every process other than p;, € is indistinguishable from e until time ;.
Therefore, p; decides in €' at time ¢; the same value that it does in e. Thus p; and p; decide upon
different values in €', although both are correct. A contradiction. [

We conclude with the following theorem:

Theorem 5.4 Consider a model of partial synchrony or an asynchronous model enriched with a
QS or O failure detector, where at least two processes can crash. For every algorithm that solves
consensus in these models, there is a well-behaved execution in which the algorithm performs at
least two communication steps before all the processes decide.

6 Conclusions, on an Optimistic Note

We have seen that in practical models where messages may be occasionally lost or delayed, fault-
tolerant consensus algorithms require two communication steps even in well-behaved executions
with synchronous communication and no failures or false failure suspicions. This is in contrast
to algorithms for consensus in the synchronous crash failure model, which can decide in one com-
munication step in failure-free executions. The additional communication step is required in such
practical models due to the fact that, in these models, correct processes may be mistaken for faulty
ones. We observe that the additional communication step is needed in order to avoid disagreement
with processes that are incorrectly suspected to have failed. This observation can give insight to
the possible gains of using an optimistic approach in lieu of consensus, as we explain below.

The agreement condition of consensus is conservative: it requires that two correct processes
never decide on distinct values. Thus, when used for state machine replication [21, 27], consen-
sus never introduces inconsistencies among correct replica. In other words, consensus guarantees
serializability, that is, in every execution, all the replica exhibit the same sequence of states. In
contrast, an optimistic approach allows replica to temporarily diverge, as long as conflicts can later
be detected and reconciled. Optimistic approaches can be used if the application can live with
temporary conflicts,. These approaches are generally cost-effective if conflicts are rare.

Group communication systems, e.g., Isis [4] and Amoeba [17], implement optimistic algorithms
for consensus, or state machine replication. These algorithms operate in a single communication
step, using leader election. In these algorithms, the leader sends its own proposed value to all
the processes, and decides upon this value. All the recipients of the leader’s message immediately
decide upon the suggested value. As long as the leader is not suspected by any of the processes,
consistency is preserved. When the leader is suspected, a new leader is elected, and the new leader
attempts to learn the decision value from the processes it can communicate with. As long as there
are no false suspicions, consistency is ensured. However, if the leader is correct but suspected to

"Recall that in asynchronous or partial synchrony models, the environment can delay messages arbitrarily long
for an arbitrary prefix of the execution, that is, the global stabilization time (GST) can occur after t;.
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have crashed, the other processes can decide upon a different value than the leader. Isis resolves
such inconsistencies by forcing the suspected leader to fail and re-incarnate itself as a new process,
whereby it adopts the state of the state of the other replica.

In general, conflicts are inevitable when a single-communication step algorithm is used in prac-
tical models. This is due to the lower bound proven in this paper. On the other hand, conflicts can
be detected immediately when processes that at some point suspected each other re-establish the
communication between them. Thus, conflicts can be reconciled quickly. The cost-effectiveness of
optimism depends on the rate of conflicts. Recall the observation that the role of the extra commu-
nication step in practical models is to avoid potential conflicts with processes that are incorrectly
suspected to have failed. This suggests that the frequency of conflicts occurring with the optimistic
approach depends on the frequency of false suspicions. Thus, the rate of false suspicions in a given
system can be a guideline for deciding when to use optimism, and when a conservative approach
(like consensus) would be preferable.
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