
Reliable Collaboration Using Unreliable

Storage

ALEXANDER SHRAER

Reliable Collaboration Using Unreliable Storage

Research Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

ALEXANDER SHRAER

Submitted to the Senate of the Technion – Israel Institute of Technology

ELUL 5770 HAIFA September 2010

The Research Was Done Under the Supervision of Prof. Idit Keidar in the

Department of Electrical Engineering, Technion.

THE GENEROUS FINANCIAL HELP OF THE TECHNION — ISRAEL INSTITUTE OF

TECHNOLOGY IS GRATEFULLY ACKNOWLEDGED

Acknowledgments

I would like to express my deepest gratitude to Idit Keidar, my advisor, for introducing me to the

fascinating world of distributed computing and to research in general, sharing her vast knowledge

and experience, and for her valuable guidance, patience, and support throughout my graduate

studies. Idit is the best advisor any graduate student can hope for and I was lucky that I had the

opportunity to learn from her in the beginning of my research career. I’m sure that the tools and

the general approach to research that I have learned from Idit will help me wherever I go next.

During my studies I was fortunate to collaborate with many leading researchers. I’m grateful

to Christian Cachin, who hosted me in IBM Research Zurich, and collaborated with me from the

beginning of my PhD to its completion. I learned a lot from Christian about research in general

and industrial research in particular, and I consider Christian to be my second advisor. Christian’s

deep understanding of both cryptography and distributed computing were truly an inspiration.

I’d like to thank Dahlia Malkhi for hosting me in Microsoft Research Silicon Valley and intro-

ducing me to reconfigurable distributed storage. I learned a lot from Dahlia’s insight, experience

and unique research approach. I would also like to thank Marcos Aguilera and Jean-Philippe Mar-

tin for co-hosting me in MSR and their collaboration on the first part of this thesis.

Special thanks go to Eliezer Dekel and Gregory Chockler from IBM Research Haifa for wel-

coming me to their group, and their collaboration in the initial stages of my PhD. I’d also like to

thank Roie Melamed, Yoav Tock and Roman Vitenberg, with whom I worked in IBM.

I’d like to thank friends and colleagues from the Technion: Edward (Eddie) Bortnikov, Maxim

Gurevich, Liran Katzir, Gabriel (Gabi) Kliot, Sivan Bercovici, Ittay Eyal, Dmitry Perlman, Dmitry

Basin, and all other members of Idit’s research group for their valuable comments and suggestions.

I’d like to thank Asaf Cidon, Yan Michalevsky and Dani Shaket for their collaboration on the Venus

paper.

Many thanks go to Ittai Abraham, Hagit Attiya, Tsahi Birk, Eli Gafni, Rachid Guerraoui, Roy

Friedman, Amir Herzberg, Leslie Lamport, Alessia Milani and Marko Vukolić for many discus-

sions of this work and a special thanks to Yoram Moses who served on all my MSc and PhD

committees and provided valuable input. I thank Abhi Shelat, for introducing me to Untrusted

Storage and for his enthusiastic approach to research.

I’d like to thank the Israeli Ministry of Science for its generous financial support through the

Eshkol fellowship I was granted.

I’d like to dedicate this thesis to my mom, Zoya, without whom I wouldn’t be where I am today.

Last, but certainly not least, I’d like to thank my wonderful wife, Tanya, for her endless support

and encouragement.

Contents

Abstract 1

1 Introduction 3

2 Related Work 6

2.1 Reconfigurable Distributed Storage . 6

2.2 Untrusted Storage . 9

3 Dynamic Atomic Storage Without Consensus 13

3.1 Introduction . 14

3.2 Dynamic Problem Definition . 18

3.3 The Weak Snapshot Abstraction . 21

3.4 DynaStore . 23

3.4.1 DynaStore Basics . 26

3.4.2 Traversing the Graph of Views . 29

3.4.3 Reconfigurations (Liveness) . 31

3.4.4 Sequence of Established Views (Safety) 32

3.5 Analysis of Weak Snapshot Objects . 34

3.6 Analysis Of DynaStore . 36

3.6.1 Traverse . 36

3.6.2 Atomicity . 39

3.6.3 Liveness . 46

4 Untrusted Storage 53

4.1 What Can Go Wrong? . 54

4.2 What Can We Do? . 56

4.3 System Model . 59

5 Consistency Semantics for Untrusted Storage 62

5.1 Traditional Consistency and Liveness Properties 63

5.2 Forking Consistency Conditions . 65

5.3 Byzantine Emulation . 66

5.4 Impossibility of Linearizability and Sequential Consistency with an Untrusted Server 67

5.5 Limited Service Availability with Forking Semantics 68

5.6 Comparing Forking and Causal Consistency Conditions 74

5.7 Weak Fork-Linearizability . 77

6 FAUST: Fail-Aware Untrusted Storage 80

6.1 Introduction . 81

6.2 Fail-Aware Untrusted Services . 83

6.3 A Weak Fork-Linearizable Untrusted Storage Protocol 86

6.4 Fail-Aware Untrusted Storage Protocol . 95

6.5 Analysis of the Weak Fork-Linearizable Untrusted Storage Protocol 101

6.6 Analysis of the Fail-Aware Untrusted Storage Protocol 113

7 Venus: Verification for Untrusted Cloud Storage 120

7.1 Introduction . 120

7.2 System Model . 124

7.3 Venus Interface and Semantics . 126

7.4 Protocol Description . 127

7.4.1 Overview of read and write operations . 128

7.4.2 From timestamps to versions . 129

7.4.3 Operation details . 130

7.4.4 Detecting consistency and failures . 133

7.4.5 Optimizations and garbage collection . 135

7.4.6 Joining the system . 137

7.5 Implementation . 138

7.6 Evaluation . 139

7.6.1 Operation latency . 141

7.6.2 Verifier . 142

8 Conclusions 144

List of Figures

3.1 Operation flow in DynaStore. (a) A reconfig operation from c1 to c2 is concurrent with a

write(v); one of them writes v to c2. (b) The reconfig fails; either the first read completes

in c1, or the write writes v in c2. 25

3.2 Example DAG of views. 31

5.1 Execution α: S is correct. 69

5.2 Execution β: S is correct. 70

5.3 Execution γ: S is faulty. It is indistinguishable from α to C2 and indistinguishable

from β to C1. 70

5.4 Execution α, where S is correct. 72

5.5 Execution β, where S is correct. 73

5.6 Execution γ, where S is faulty and simulates α to C2 and β to C1. 74

5.7 A fork-*-linearizable history that is not causally consistent. 75

5.8 A causally consistent execution that is not fork-*-linearizable. 76

5.9 A weak fork-linearizable history that is not fork-linearizable. 78

6.1 System architecture. Client-to-client communication may use offline message ex-

change. 83

6.2 The stability cut of Alice indicated by the notification stableAlice([10, 8, 3]). The

values of t are the timestamps returned by the operations of Alice. 86

6.3 Architecture of the fail-aware untrusted storage protocol (FAUST). 97

7.1 Venus Architecture. 125

7.2 Operation flow. 129

7.3 Computing the version of an operation. 132

7.4 Consistency checks using client-to-client communication. In (a) the checks pass, which

leads to a response message and consistency notifications. In (b) one of the checks fails

and C2 broadcasts a FAILURE message. 134

7.5 Checking whether o is green. 135

7.6 Speculative write execution. 136

7.7 Flow of a join operation. 138

7.8 Client logs from detecting a simulated “split-brain” attack, where the verifier hides each

client’s operations from the other clients. System parameters were set to tdummy = 5sec.,

tsend = 10sec., and treceive = 5sec. There are two clients in the system, which also form

the core set. After 10 seconds, client #2 does not observe a new version corresponding to

client #1 and contacts it directly. Client #1 receives this email, and finds the version in

the email to be incomparable to its own latest version, as its own version does not reflect

any operations by client #2. The client replies reporting of an error, both clients notify

their applications and halt. 139

7.9 Average latency of a read and write operations, with 95% confidence intervals. The over-

head is negligible when the verifier is the same LAN as the client. The overhead for WAN

is constant. 140

7.10 Average latency for operations with multiple clients to become red and green respectively. . 142

7.11 Average throughput with multiple clients. 143

List of Tables

7.1 Venus timeout parameters. 128

Abstract

This thesis concerns the reliability, security, and consistency of storage in distributed systems.

Distributed storage architectures provide a cheap and scalable alternative to expensive monolithic

disk array systems currently used in enterprise environments. Such distributed architectures make

use of many unreliable servers (or storage devices) and provide reliability through replication.

Another emerging alternative is cloud storage, offered remotely by multiple providers.

The first problem addressed in this thesis is the support of reconfiguration in distributed storage

systems. The large number of fault-prone servers in such systems requires supporting dynamic

changes when faulty servers are removed from the system and new ones are introduced. In order

to maintain reliability when such changes occur, it is essential to ensure proper coordination, e.g.,

when multiple such changes occur simultaneously. Existing solutions are either centralized, or

use strong synchronization algorithms (such as consensus) among the servers to agree on every

change in the system. In fact, it was widely believed that reconfigurations require consensus and

just like consensus cannot be achieved in asynchronous systems. In this work we refute this belief

and present DynaStore, an asynchronous and completely decentralized reconfiguration algorithm

for read/write storage.

Cloud storage is another setting where reliability is a challenge. While cloud storage becomes

increasingly popular, repeated incidents show that clouds fail in a variety of ways. Yet, clients must

currently trust cloud providers to handle their information correctly, and do not have tools to verify

this. Previously proposed solutions that aim to protect clients from faulty cloud storage providers

sacrifice liveness of client operations in the normal case, when the storage is working properly. For

example, if a client crashes in the middle of making an update to a remote object, no other client

can ever read the same object. We prove that this problem is inherent in all theoretical semantics

previously defined for this model. We define new semantics that can be guaranteed to clients even

1

when the storage is faulty without sacrificing liveness, and present FAUST, an algorithm providing

these guarantees. We then present Venus, a practical system based on a variation of FAUST.

Venus guarantees data consistency and integrity to clients that collaborate using commodity cloud

storage, and alerts clients when the storage is faulty or malicious (e.g., as a result of a software

bug, misconfiguration, or a hacker attack). Venus does not require trusted components or changes

to the storage provider. Venus offers simple semantics, which further enhances its usability. We

evaluate Venus with Amazon S3, and show that it is scalable and adds no noticeable overhead to

storage operations.

2

Chapter 1

Introduction

Enterprise storage systems are monolithic disk arrays currently used in many enterprise environ-

ments. These systems are built from expensive customized hardware and provide high reliability

even in the most extreme and unlikely failure scenarios. These systems, however, have several im-

portant shortcomings. First, the organization of company storage in a single (or several) physical

storage racks often causes the I/O ports and controllers of the storage to become a bottleneck. Sec-

ond, the extensibility of such solutions is often limited, and many manufacturers maintain separate

product lines of enterprise storage, suitable for enterprises of different scale (called “entry level”,

“midrange” and “high-end” by IBM and HP). Finally, these systems are very expensive.

Distributed storage architectures provide a cheap and scalable alternative to such enterprise

storage systems. Such distributed architectures make use of many unreliable servers (or storage

devices) and provide reliability through replication. Another popular alternative is cloud storage,

offered remotely by multiple providers. This thesis deals with two problems concerning the reli-

ability of such solutions. First, we study reconfiguration in distributed storage systems: the large

number of fault-prone servers requires supporting dynamic changes when faulty servers are re-

moved from the system and new ones are introduced. The second topic studied in this thesis is

utrusted storage, namely, providing reliability when using remote cloud storage that by itself is

untrusted and can be arbitrarily faulty.

Although distributed replication protocols have been extensively studied in the past, replication

alone provides limited fault-tolerance – in an asynchronous system it is impossible to tolerate the

failure of more than a minority of the replicas [5]. Reconfiguring the system, i.e., changing the

3

set of replicas, increases its fault-tolerance: Suppose that the data is replicated over 5 servers in

an asynchronous system. Initially, only two replica failures can be tolerated. Obviously, if the

data is now copied to new replicas then additional replicas can fail. Note, however, that even by

only removing the faulty replicas we can gain fault-tolerance. If two replicas fail and we remove

them from the system, our system is now composed of 3 replicas and we can tolerate one more

failure, i.e., 3 replica failures overall, breaking the “minority barrier”. Obviously, the failures must

be gradual and additional failures can be allowed only after making sure that a majority of the new

system configuration stores the data.

In order to maintain reliability when such changes occur and to avoid “split-brain” behavior, it

is essential to ensure proper coordination, e.g., when multiple configuration changes occur simul-

taneously. Existing solutions are either centralized, or use strong synchronization algorithms (such

as consensus) among the servers to agree on every change in the system. In fact, it was widely be-

lieved that reconfigurations require consensus and just like consensus cannot be achieved in asyn-

chronous systems. In Chapter 3 we refute this belief and present DynaStore [3], an asynchronous

and completely decentralized reconfiguration algorithm for read/write storage.

Another emerging alternative for enterprise storage systems is cloud storage, which is now

provided by many companies remotely over the Internet. Cloud storage, and other cloud services,

allows users to collaborate with each other and to access shared data from anywhere. Unlike

enterprise storage solutions, cloud services allow users to acquire resources on-demand and pay

only for the resources currently in use. However, as we explain in Chapter 4, concerns about

the trustworthiness of cloud services abound [14]. It is important, for example, to guarantee the

integrity of user data, and to ensure that different collaborating users see their data consistently.

Very little research has previously tackled this subject. Moreover, the industry mostly focuses on

securing the cloud provider, and not on protecting the client from possible cloud malfunctions.

In this work we develop tools and semantics that enable clients using online cloud storage to

monitor the storage, making sure that the cloud behaves as expected. Our work enables a variety

of applications that already use the cloud to benefit from increased security, and, no less important,

it can encourage applications that require verifiable guarantees, and cannot afford to blindly trust

the cloud, to consider taking advantage of what the cloud has to offer.

In Chapter 4 we define the Untrusted Storage model. Chapter 5 shows that traditional strong

consistency semantics cannot be guaranteed with an untrusted remote storage [15] and studies

4

other semantics that can be ensured in this model even when the storage is faulty. We identify

an important limitation with previously proposed solutions: These solutions sacrifice liveness of

client operations in the normal case, when the storage is working properly. For example, if a client

crashes in the middle of making an update to an object, no other client can ever read the same

object. We prove that this problem is inherent in all previously defined theoretical semantics for

this model [13, 12, 15].

In Chapter 6 we present FAUST [12], a service that utilizes techniques from both distributed

computing and cryptography, guaranteeing meaningful semantics to clients even when the cloud

provider is faulty. In the common case, when the storage is working properly, FAUST guarantees

both strong data consistency and strong liveness for client operations.

Still, FAUST and previous work share a second problem that prevents their use with any of

the currently available cloud storage: they require complicated protocols to be run between the

clients and the cloud storage, instead of the currently available simple read/write storage interface.

To solve this problem, we design and implement Venus [71], presented in Chapter 7. Venus is a

verification service for monitoring the integrity and consistency of cloud storage. Venus can be

used with unmodified commodity cloud storage. In addition, Venus offers much simpler semantics

than FAUST and the previous solutions, which further enhances its usability. Venus copes with

failures ranging from simple data corruption to malicious failures of the cloud. We evaluated

Venus with Amazon S3, and showed that it is scalable and adds no noticeable overhead to storage

operations.

5

Chapter 2

Related Work

In Section 2.1 we review previous work on reconfiguration in distributed storage systems. Then,

Section 2.2 focuses on previous work related to interaction with a remote untrusted storage.

2.1 Reconfigurable Distributed Storage

Several existing solutions can be viewed in retrospect as solving a dynamic (reconfigurable) storage

problem. Most closely related are works on reconfigurable R/W storage. RAMBO [52, 31] solves

a similar problem to the one addressed by DynaStore; other works [58, 67, 68] extend this concept

for Byzantine fault tolerance. All of these works have processes agree upon a unique sequence of

configuration changes. Some works use an auxiliary source (such as a single reconfigurer process

or an external consensus algorithm) to determine configuration changes [50, 28, 52, 31, 58, 68, 35],

while others implement fault-tolerant consensus decisions on view changes [17, 67]. In contrast,

our work implements reconfigurable R/W storage without any agreement on view changes.

Since the closest related work is on RAMBO, we further elaborate on the similarities and

differences between RAMBO and DynaStore. In RAMBO, a new configuration can be proposed by

any process, and once it is installed, it becomes the current configuration. In DynaStore, processes

suggest changes and not configurations, and thus, the current configuration is determined by the

set of all changes proposed by complete reconfigurations. For example, if a process suggests to

add p1 and to remove p2, while another process concurrently suggests to add p3, DynaStore will

install a configuration including both p1 and p3 and without p2, whereas in RAMBO there is no

6

guarantee that any future configuration will reflect all three proposed changes, unless some process

explicitly proposes such a configuration. In DynaStore, a quorum of a configuration is any majority

of its members, whereas RAMBO allows for general quorum-systems, specified explicitly for each

configuration by the proposing process. In both algorithms, a non-faulty quorum is required from

the current configuration. A central idea in allowing dynamic changes is that a configuration can

be replaced, after which a quorum of the old configuration can crash. In DynaStore, a majority of

a current configuration C is allowed to crash as soon as C is no longer current. In RAMBO, two

additional conditions are needed: C must be garbage-collected at every non-faulty process p ∈ C,

and all read and write operations that began at p before C was garbage-collected must complete.

Thus, whereas in DynaStore the conditions allowing a quorum of C to fail can be evaluated based

on events visible to the application, in RAMBO these conditions are internal to the algorithm. Note

that if some process p ∈ C might fail, it might be impossible for other processes to learn whether

p garbage-collected C or not. Assuming that all quorums required by RAMBO and DynaStore

are responsive, both algorithms require additional assumptions for liveness. In both, the liveness

of read and write operations is conditioned on the number of reconfigurations being finite. In

addition, in both algorithms, the liveness of reconfigurations does not depend on concurrent read

and write operations. However, whereas reconfigurations in RAMBO rely on additional synchrony

or failure-detection assumptions required for consensus, reconfigurations in DynaStore, just like

its read and write operations, only require the number of reconfigurations to be finite.

View-oriented group communication systems provide a membership service whose task is to

maintain a dynamic view of active members. These systems solve a dynamic problem of main-

taining agreement on a sequence of views, and additionally provide certain services within the

members of a view, such as atomic multicast and others [19]. Maintaining agreement on group

membership in itself is impossible in asynchronous systems [16]. However, perhaps surprisingly,

we show that the dynamic R/W problem is solvable in asynchronous systems. This appears to

contradict the impossibility but it does not: We do not implement group membership because our

processes do not have to agree on and learn a unique sequence of view changes.

The State Machine Replication (SMR) approach [45, 69] provides a fault tolerant emulation

of arbitrary data types by forming agreement on a sequence of operations applied to the data.

Paxos [45] implements SMR, and allows one to dynamically reconfigure the system by keeping

the configuration itself as part of the state stored by the state machine. Another approach for

7

reconfigurable SMR is to utilize an auxiliary configuration-master to determine view changes, and

incorporate directives from the master into the replication protocol. This approach is adopted in

several practical systems, e.g., [47, 53, 75], and is formulated in [46]. Naturally, a reconfigurable

SMR can support our dynamic R/W memory problem. However, our work solves it without using

the full generality of SMR and without reliance on consensus.

An alternative way to break the minority barrier in R/W emulation is by strengthening the

model using a failure detector. Delporte et al. [26] identify the weakest failure detector for solving

R/W memory with arbitrary failure thresholds. Their motivation is similar to ours– solving R/W

memory with increased resilience threshold. Unlike our approach, they tackle more than a minority

of failures right from the outset. They identify the quorums failure detector as the weakest detec-

tor required for strengthening the asynchronous model, in order to break the minority resilience

threshold. Our approach is incomparable to theirs, i.e., our model is neither weaker nor stronger.

On the one hand, we do not require a failure detector, and on the other, we allow the number of

failures to exceed a minority only after certain actions are taken. Moreover, their model does not

allow for additions as ours does. Indeed, our goal differs from [26], namely, our goal is to model

dynamic reconfiguration in which resilience is adaptive to actions by the processes.

Data-centric read/write storage [20], where servers do not communicate with one another (and

clients communicate directly with multiple servers), is considered in many works, e.g., [1, 18, 56,

58]. Most of these, however, assume a static world, where the set of servers is fixed from the

outset. Two exceptions are Ursa Minor [1] and the work of Martin et al. [58] allow dynamicity and

employ a centralized sequencer for configuration changes. Unlike Ursa Minor [1], the protocol

of Martin et al. [58] allows read/write operations to continue during reconfigurations. DynaStore

works in a different model, where a client submits operations to any one of the servers, which in

turn contacts other servers and then replies to the client. DynaStore is completely decentralized

and allows read/write operations to continue while reconfigurations are in progress. In a followup

work [72], we design an implement DynaDisk, a data-centric version of DynaStore, which retains

these properties of DynaStore.

Friedman et al. [30] implement atomic read/write objects in a data-centric dynamic system.

Their solution assumes two abstractions – dynamic quorums and persistent reliable broadcast. Our

work does not assume any high-level abstractions – we design low-level mechanisms that can pre-

serve consistency in face of reconfigurations. In [30], dynamic service liveness is stated in terms

8

of properties that must be preserved by their quorum and broadcast abstractions. In particular,

it is required that typed quorums (e.g., a read and a write quorum) accessed by two consecutive

read/write operations intersect. In contrast, in DynaStore, it is possible for no such intersection to

exist, due to reconfig operations that completely change system membership between two consec-

utive read/write operations. In part, this difference stems from the fact that we explicitly model

reconfig operations, and treat them similarly to reads and writes. DynaStore also uses a broadcast

primitive, however we only assume delivery to processes in the same configuration, and explicitly

make sure that the information propagates to following configurations, which can implement the

persistent broadcast of [30]. As do we, Friedman et al. [30] assume a crash model, where servers

must change their identifiers if they wish to re-join the system. A minor difference is that Fried-

man et al. [30] assume an infinite arrival process with finite concurrency [61], where finitely many

clients take steps during any finite time interval, whereas in DynaStore we allow infinitely many

read/write operations to execute concurrently, as long as the number of concurrent reconfig oper-

ations is finite (this is modeled by assuming a finite number of membership changes proposed in

the execution).

2.2 Untrusted Storage

Data integrity on untrusted storage accessed by a single client with small trusted memory can be

protected by storing the root of a hash tree locally [8]. In cryptographic storage systems with

multiple clients, such “root hashes” are signed; TDB [54], SiRiUS [32], and Plutus [40] are some

representative examples implementing this method. In order to ensure freshness, the root hashes

must be propagated by components that are at least partially trusted, however. Going beyond

ensuring the integrity of data that is actually read from an untrusted service by a single client,

recent work by Juels and Kaliski [39] and by Ateniese et al. [4] introduces protocols for assuring

the client that it can retrieve its data in the future, with high probability. Unlike FAUST and Venus,

this work does not guarantee consistency for multiple clients accessing the data concurrently.

One of the key principles in our solutions is that clients must be able to detect server (i.e., cloud

storage) malfunction, i.e., its inability to provide normal service. This principle is known as fail-

awareness [29] and it has been previously exploited by many systems in the timed asynchronous

model, where nodes are subject to crash failures [23]. Note that unlike in previous work, detecting

9

an inconsistency in our model constitutes evidence that the server has violated its specification,

and that it should no longer be used.

Several recent systems provide integrity using trusted components, which cannot be subverted

by intrusions. In contrast, the solutions presented in this thesis use client signatures on the data, but

no trusted components. The CATS system [78] adds accountability to a storage service. Similar to

our fail-aware approach, CATS makes misbehavior of the storage server detectable by providing

auditing operations. However, it relies on a much stronger assumption in its architecture, namely,

a trusted external publication medium accessible to all clients, like an append-only bulletin board

with immutable write operations. The server periodically publishes a digest of its state there and

the clients rely on it for audits. When the server in our service additionally signs all its responses

to clients using digital signatures, then we obtain the same level of strong accountability as CATS

(i.e., that any misbehavior leaves around cryptographically strong non-repudiable evidence and

that no false accusations are possible).

Exploring a similar direction, attested append-only memory [21] introduces the abstraction of

a small trusted module, implemented in hardware or software, which provides the function of an

immutable log to clients in a distributed system. The A2M-Storage [21] service relying on such a

module for consistency guarantees linearizability, even when the server is faulty. Although FAUST

guarantees weaker consistency when the server is faulty, its liveness guarantee is stronger than that

of A2M-Storage in the common case, when the storage is correct. Specifically, A2M storage has

two variants: an “pessimistic” protocol, where a client first reserves a sequence number for an

operation and then submits the actual operation with that sequence number, and an “optimistic”

protocol, where the client submits an operation right away, optimistically assuming that it knows

the latest sequence number, and then restarts in case its sequence number was in fact outdated.

When the server is correct, the pessimistic version of the protocol may prevent progress from

all clients in case some client fails after reserving a sequence number but before submitting the

actual operation. The optimistic protocol has stronger liveness, and specifically it is lock-free, i.e.,

some client always makes progress (but progress is not guaranteed for every individual client). On

the other hand, FAUST guarantees wait-freedom when the server is correct, i.e., all clients can

complete their operations regardless of failures or concurrent operations executed by other clients.

When using untrusted remote (cloud) storage without the use of external trusted components,

strong consistency semantics, such as linearizability [37] or sequential consistency cannot be guar-

10

anteed [15]. This limitation holds unless clients can communicate with other clients before com-

pleting each operation. In practice, clients should be able to complete operations independently,

i.e., in a wait-free [36] manner. Intuitively, even if the clients sign all their updates, the storage

can always hide client updates and create “split-brain” scenarios where clients believe they ex-

ecute in isolation. In order to provide wait-freedom when linearizability cannot be guaranteed,

numerous real-world systems guarantee eventual consistency, for example, Coda [41], Bayou [74],

Tempest [57], and Dynamo [25]. As in many of these systems, the clients in our model are not si-

multaneously present and may be disconnected temporarily. Thus, eventual consistency is a natural

choice for the semantics of our online storage application.

The pioneering work of Mazières and Shasha [59] introduces untrusted storage protocols and

the notion of fork-linearizability (under the name of fork consistency). To date, this is the strongest

known consistency notion that can be achieved with a possibly Byzantine remote storage server

when the clients do not communicate with one another. SUNDR [48] and later work [15] im-

plement storage systems respecting this notion. The weaker notion of fork-sequential consistency

has been suggested by Oprea and Reiter [64]. Neither fork-linearizability nor fork-sequential con-

sistency can guarantee wait-freedom for client operations in all executions where the server is

correct [15, 13].

Fork-*-linearizability [49] has been introduced recently (under the name of fork-* consistency),

with the goal of allowing wait-free implementations of a service constructed using replication,

when more than a third of the replicas may be faulty. We show that in the single server setting,

just like the other consistency notions mentioned above, fork-* consistency does not allow for

protocols that are always wait-free when the server is correct.

Orthogonal to this work, many storage systems have been proposed that internally use replica-

tion across several nodes to tolerate a fraction of corrupted nodes (e.g., [34] and references therein).

For instance, HAIL [10] is a recent system that relies replicated storage servers internally, of which

at least a majority must be correct at any time. It combines data replication with a method that gives

proofs of retrievability to the clients. But a storage service employing replication within its cloud

infrastructure does not solve the problem addressed by FAUST and Venus — from the perspective

of the client, the cloud service is still a single trust domain.

The idea of monitoring applications to detect consistency violations due to Byzantine behavior

was considered in previous work in peer-to-peer settings, for example in PeerReview [33]. Even-

11

tual consistency has recently been used in the context of Byzantine faults by Zeno [73]; Zeno uses

replication to tolerate server faults and always requires some servers to be correct. Zeno relaxes

linearizable semantics to eventual consistency for gaining liveness, as does FAUST, but provides

a slightly different notion of eventual consistency to clients than FAUST. In particular, Zeno may

temporarily violate linearizability even when all servers are correct, in which case inconsistencies

are reconciled at a later point in time, whereas in FAUST linearizability can only be violated if the

server is Byzantine, however the application might be notified of operation stability (consistency)

after the operation completes (i.e., eventually).

12

Chapter 3

Dynamic Atomic Storage Without

Consensus

This chapter deals with the emulation of atomic read/write (R/W) storage in dynamic asynchronous

message passing systems. In static settings, it is well known that atomic R/W storage can be

implemented in a fault-tolerant manner even if the system is completely asynchronous, whereas

consensus is not solvable. In contrast, all existing emulations of atomic storage in dynamic systems

rely on consensus or stronger primitives, leading to a popular belief that dynamic R/W storage is

unattainable without consensus.

In this chapter, we specify the problem of dynamic atomic read/write storage in terms of the in-

terface available to the users of such storage. We discover that, perhaps surprisingly, dynamic R/W

storage is solvable in a completely asynchronous system: we present DynaStore, an algorithm that

solves this problem. Our result implies that atomic R/W storage is in fact easier than consensus,

even in dynamic systems.

A preliminary version of the work presented in this chapter appears in proceedings of the

28th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC

2009).

13

3.1 Introduction

Distributed systems provide high availability by replicating the service state at multiple processes.

A fault-tolerant distributed system may be designed to tolerate failures of a minority of its pro-

cesses. However, this approach is inadequate for long-lived systems, because over a long period,

the chances of losing more than a minority inevitably increase. Moreover, system administrators

may wish to deploy new machines due to increased workloads, and replace old, slow machines

with new, faster ones. Thus, real-world distributed systems need to be dynamic, i.e., adjust their

membership over time. Such dynamism is realized by providing users with an interface to recon-

figuration operations that add or remove processes.

Dynamism requires some care. First, if one allows arbitrary reconfiguration, one may lose

liveness. For example, say that we build a fault tolerant solution using three processes, p1, p2,

and p3. Normally, the adversary may crash one process at any moment in time, and the up-to-date

system state is stored at a majority of the current configuration. However, if a user initiates the

removal of p1 while p1 and p2 are the ones holding the up-to-date system state, then the adversary

may not be allowed to crash p2, for otherwise the remaining set cannot reconstruct the up-to-

date state. Providing a general characterization of allowable failures under which liveness can be

ensured is a challenging problem.

A second challenge dynamism poses is ensuring safety in the face of concurrent reconfigura-

tions, i.e., when some user invokes a new reconfiguration request while another request (potentially

initiated by another user) is under way. Early work on replication with dynamic membership could

violate safety in such cases [24, 66, 27] (as shown in [77]). Many later works have rectified this

problem by using a centralized sequencer or some variant of consensus to agree on the order of

reconfigurations.

Interestingly, consensus is not essential for implementing replicated storage. The ABD algo-

rithm [5] shows that atomic read/write (R/W) shared memory objects can be implemented in a

fault-tolerant manner even if the system is completely asynchronous. Nevertheless, to the best

of our knowledge, all previous dynamic storage solutions rely on consensus or similar primitives,

leading to a popular belief that dynamic storage is unattainable without consensus.

In this work, we address the two challenges mentioned above, and debunk the myth that con-

sensus is needed for dynamic storage. We first provide a precise specification of a dynamic prob-

14

lem. To be concrete, we focus on atomic R/W storage, though we believe the approach we take

for defining a dynamic problem can be carried to other problems. We then present DynaStore, a

solution to this problem in an asynchronous system where processes may undetectably crash, so

that consensus is not solvable. We note that our solution is given as a possibility proof, rather than

as a blueprint for a new storage system. Given our result that consensus-less solutions are possible,

we expect future work to apply various practical optimizations to our general approach, in order to

build real-world distributed services. We next elaborate on these two contributions.

Dynamic Problem Specification

In Section 3.2, we define the problem of an atomic R/W register in a dynamic system. Simi-

larly to a static R/W register, the dynamic variant exposes a read and write interface to users, and

atomicity[44] is required for all such operations. In addition, users can trigger reconfigurations

by invoking reconfig operations, which return OK when they complete. Exposing reconfig oper-

ations in the model allows us to provide a protocol-independent specification of service liveness

guarantees, as we explain next.

Clearly, the progress of such a service is conditioned on certain failure restrictions in the de-

ployed system. A fault model specifies the conditions under which progress is guaranteed. It is

well understood how to state a liveness condition of the static version of this problem: t-resilient

R/W storage guarantees progress if fewer than t processes crash. For an n-process system, it is

well known that t-resilient R/W storage exists when t < n/2, and does not exist when t ≥ n/2 (see

[5]). A dynamic fault model serves the same purpose, but needs to additionally capture changes

introduced by the user through the reconfig interface. Under reasonable use of reconfig, and some

restricted fault conditions, the system will make progress. For example, an administrative-user can

deploy machines to replace faulty ones, and thereby enhance system longevity. On the other hand,

if used carelessly, reconfiguration might cause the service to halt, for example when servers are

capriciously removed from the system.

Suppose the system initially has four processes {p1, p2, p3, p4} in its configuration (also called

its view). Initially, any one process may crash. Suppose that p1 crashes. Then, additional crashes

would lead to a loss of liveness. Now suppose that the user requests to reconfigure the system to

remove p1. While the request is pending, no additional crashes can happen, because the system

must transfer the up-to-date state from a majority of the previous view to a majority of the new

15

one. However, once the removal is completed, the system can tolerate an additional crash among

the new view {p2, p3, p4}. Overall, two processes may crash during the execution. Viewed as a

simple threshold condition, this exceeds a minority threshold, which contradicts lower bounds.

The liveness condition we formulate is therefore not in the form of a simple threshold; rather, we

require crashes to occur gradually, contingent on reconfigurations.

A dynamic system also needs to support additions. Suppose that the system starts with three

processes {p1, p2, p3}. In order to reconfigure the system to add a new process p4, a majority

of the view {p1, p2, p3} must be alive to effect the change. Additionally, a majority of the view

{p1, p2, p3, p4} must be alive to hold the state stored by the system. Again, the condition here is

more involved than a simple threshold. That is, if a user requests to add p4, then while the request

is pending, a majority of both old and new views need to be alive. Once the reconfiguration is

completed, the requirement weakens to a majority of the new view.

Given these, we state the following requirement for liveness for dynamic R/W storage: At

any moment in the execution, let the current view consist of the initial view with all completed

reconfiguration operations (add/remove) applied to it. We require that the set of crashed processes

and those whose removal is pending be a minority of the current view, and of any pending future

views. Moreover, like previous reconfigurable storage algorithms [52, 31], we require that no new

reconfig operations will be invoked for “sufficiently long” for the started operations to complete.

This is formally captured by assuming that only a finite number of reconfig operations are invoked.

Note that a dynamic problem is harder than the static variant. In particular, a solution to dy-

namic R/W is a fortiori a solution to the static R/W problem. Indeed, the solution must serve read

and write requests, and in addition, implement reconfiguration operations. If deployed in a system

where the user invokes only read and write requests, and never makes use of the reconfiguration

interface, it must solve the R/W problem with precisely the same liveness condition, namely, tol-

erating any minority of failures. Similarly, dynamic consensus is harder than static consensus, and

is therefore a fortiori not solvable in an asynchronous setting with one crash failure allowed. As

noted above, in this thesis, we focus on dynamic R/W storage.

DynaStore: Dynamic Atomic R/W Storage

Our algorithm does not need consensus to implement reconfiguration operations. Intuitively, pre-

vious protocols used consensus, virtual synchrony, or a sequencer, in order to provide processes

16

with an agreed-upon sequence of configurations, so that the membership views of processes do not

diverge. The key observation in our work is that it is sufficient that such a sequence of configura-

tions exists, and there is no need for processes to know precisely which configurations belong to

this sequence, as long as they have some assessment which includes these configurations, possibly

in addition to others that are not in the sequence. In order to enable this property, in Section 3.3 we

introduce weak snapshots, which are easily implementable in an asynchronous system. Roughly

speaking, such objects support update and scan operations accessible by a given set of processes,

such that scan returns a set of updates that, if non-empty, is guaranteed to include the first update

made to the object (but the object cannot identify which update that is).

In DynaStore, which we present in Section 3.4, each view w has a weak snapshot object ws(w),

which stores reconfiguration proposals for what the next view should be. Thus, we can define a

unique global sequence of views, as the sequence that starts with some fixed initial view, and

continues by following the first proposal stored in each view’s ws object. Although it is impossible

for processes to learn what this sequence is, they can learn a DAG of views that includes this

sequence as a path. They do this by creating a vertex for the current view, querying the ws object,

creating an edge to each view in the response, and recursing. Reading and writing from a chain of

views is then done in a manner similar to previous protocols, e.g., [52, 31, 17, 67, 68].

Summary of Contributions

In summary, our work makes two contributions.

• We define a dynamic R/W storage problem that includes a clean and explicit liveness condi-

tion, which does not depend on a particular solution to the problem. The definition captures

a dynamically changing resilience requirement, corresponding to reconfiguration operations

invoked by users. The approach easily carries to other problems, such as consensus. As

such, it gives a clean extension of existing static problems to the dynamic setting.

• We discover that dynamic R/W storage is solvable in a completely asynchronous system

with failures, by presenting a solution to this problem. Along the way we define a new

abstraction of weak snapshots, employed by our solution, which may be useful in its own

right. Our result implies that the dynamic R/W is weaker than the (dynamic) consensus

problem, which is not solvable in this setting. This was known before for static systems, but

17

not for the dynamic version. The result counters the intuition that emanates from all previous

dynamic systems, which used agreement to handle configuration changes.

3.2 Dynamic Problem Definition
We specify a read/write service with atomicity guarantees. The storage service is deployed on a

collection of processes that interact using asynchronous message passing. We assume an unknown,

unbounded and possibly infinite universe of processes Π. Communication links between all pairs

of processes do not create, duplicate, or alter messages. Moreover, the links are reliable. Below

we formally define reliable links in a dynamic setting.

Executions and histories. System components, namely the processes and the communication

links between them, are modeled as I/O Automata [51]. An automaton has a state, which changes

according to transitions that are triggered by actions, which are classified as input, output, and

internal1. A protocol P specifies the behaviors of all processes. An execution of P is a sequence

of alternating states and actions, such that state transitions occur according to the specification of

system components. The occurrence of an action in an execution is called an event.

The application interacts with the service via operations defined by the service interface. As

operations take time2, they are represented by two events – an invocation (input action) and a

response (output action). A process pi interacts with its incoming link from process pj via the

receive(m)i,j input action, and with its outgoing link to pj via the send(m)i,j output action. The

failure of process pi is modeled using the input action crashi, which disables all input actions at pi.

In addition, pi can disable all input actions using the internal action halti.

A history of an execution consists of the sequence of invocations and responses occurring in

the execution. An operation is complete in a history if it has a matching response. An operation o

precedes another operation o′ in a sequence of events σ, whenever o completes before o′ is invoked

in σ. A sequence of events π preserves the real-time order of a history σ if for every two operations

o and o′ in π, if o precedes o′ in σ then o precedes o′ in π. Two operations are concurrent if neither

one of them precedes the other. A sequence of events is sequential if it does not contain concurrent

1A minor difference from I/O Automata as defined in [51], is that in our model input actions can be disabled, as
explained below.

2By slight abuse of terminology, we use the terms operation and operation execution interchangeably.

18

operations.

We assume that executions of our algorithm are well-formed, i.e., the sequence of events at

each client consists of alternating invocations and matching responses, starting with an invocation.

Finally, we assume that every execution is fair, which means, informally, that it does not halt

prematurely when there are still steps to be taken or messages to be delivered (see the standard

literature for a formal definition [51]).

Service interface. We consider a multi-writer/multi-reader (MWMR) service, from which any

process may read or write. The service stores a value v from a domain V and offers an interface for

invoking read and write operations and obtaining their result. Initially, the service holds a special

value ⊥ 6∈ V . When a read operation is invoked at a process pi, the service responds with a value

x, denoted readi() → x. When a write is invoked at pi with a value x ∈ V , denoted writei(x), the

response is OK. We assume that the written values are unique, i.e., no value is written more than

once. This is done so that we are able to link a value to a particular write operation in the analysis,

and can easily be implemented by having write operations augment the value with the identifier of

the writer and a local sequence number.

In addition to read and write operations, the service exposes an interface for invoking recon-

figurations. We define Changes
def
= {Remove, Add}×Π. We informally call any subset of Changes a

set of changes. A view is a set of changes. A reconfig operation takes as parameter a set of changes

c and returns OK. We say that a change ω ∈ Changes is proposed in an execution if a reconfigi(c)

operation is invoked at some process pi s.t. ω ∈ c.

Intuitively, only processes that are members of the current system configuration should be

allowed to initiate actions. To capture this restriction, we define an output action enable operations;

the read, write and reconfig input actions at a process pi are initially disabled, until an enable

operations event occurs at pi.

Safety specification. The sequential specification of the service indicates its behavior in sequen-

tial executions. It requires that each read operation returns the value written by the most recent

preceding write operation, if there is one, and the initial value ⊥ otherwise.

Atomicity [44], also called linearizability [37], requires that for every execution, there exist a

corresponding sequential execution, which preserves the real-time order, and which satisfies the

19

sequential specification. Formally, let σRW be the sub-sequence of a history σ consisting of all

events corresponding to the read and write operations in σ, without any events corresponding to

reconfig operations. Linearizability is defined as follows:

Definition 1 (linearizability [37]). A history σ is linearizable if σRW can be extended (by append-

ing zero or more response events) to a history σ′, and there exists a sequential permutation π of the

sub-sequence of σ′ consisting only of complete operations such that:

1. π preserves the real-time order of σ; and

2. The operations of π satisfy the sequential specification.

Active processes and reliable links. We assume a non-empty view Init, which is initially known

to every process in the system. We say, by convention, that a reconfig(Init) completes by time 0. A

process pi is active in an execution if pi does not crash, some process invokes a reconfig operation

to add pi, and no process invokes a reconfig operation to remove pi. We do not require all processes

in Π to start taking steps from the beginning of the execution, but instead we assume that if pi is

active then pi takes infinitely many steps (if pi is not active then it may stop taking steps).

A common definition of reliable links states that if processes pi and pj are “correct”, then every

message sent by pi to pj is eventually received by pj . We adapt this definition to a dynamic setting

as follows: for a message sent at time t, pj eventually receives the message if both pi and pj are

active and a reconfig(c) operation was invoked by time t s.t. (Add, j) ∈ c.

Dynamic service liveness. We first give preliminary definitions, required to specify service live-

ness. For a set of changes w, the removal-set of w, denoted w.remove, is the set {i | (Remove, i) ∈
w}. The join set of w, denoted w.join, is the set {i | (Add, i) ∈ w}. Finally, the membership of w,

denoted w.members, is the set w.join\w.remove.

At any time t in the execution, we define V (t) to be the union of all sets c s.t. a reconfig(c)

completes by time t. Thus, V (0) = Init. Note that removals are permanent, that is, a process that

is removed will never again be in members. More precisely, if a reconfiguration removing pi from

the system completes at time t0, then pi is excluded from V (t).members, for every t ≥ t0
3. Let

P (t) be the set of pending changes at time t, i.e., for each element ω ∈ P (t) some process invokes

3In practice, one can add back a process by changing its id.

20

a reconfig(c) operation s.t. ω ∈ c by time t, and no process completes such a reconfig operation by

time t. Denote by F (t) the set of processes that crashed by time t.

Intuitively, any pending future view should have a majority of processes that did not crash and

were not proposed for removal; we specify a simple condition sufficient to ensure this. A dynamic

R/W service guarantees the following liveness properties:

Definition 2. [Dynamic Service Liveness]

If at every time t in the execution, fewer than |V (t).members|/2 processes out of V (t).members ∪
P (t).join are in F (t)∪P (t).remove, and the number of different changes proposed in the execution

is finite, then the following holds:

1. Eventually, the enable operations event occurs at every active process that was added by a

complete reconfig operation.

2. Every operation invoked at an active process eventually completes.

3.3 The Weak Snapshot Abstraction

A weak snapshot object S accessible by a set P of processes supports two operations, updatei(c)

and scani(), for a process pi ∈ P . The updatei(c) operation gets a value c and returns OK, whereas

scani() returns a set C of values. Note that the set P of processes is fixed (i.e., static). We require

the following semantics from scan and update operations:

NV1 Let o be a scani() operation that returns C. Then for each c ∈ C, an update(c) operation is

invoked by some process prior to the completion of o.

NV2 Let o be a scani() operation that is invoked after the completion of an updatej(c) operation,

and that returns C. Then C 6= ∅.

NV3 Let o be a scani() operation that returns C and let o′ be a scanj() operation that returns C ′

and is invoked after the completion of o. Then C ⊆ C ′.

NV4 There exists c such that for every non-empty set C returned by a scan() operation, it holds

that c ∈ C.

21

Algorithm 1 Weak snapshot - code for process pi.
1: operation updatei(c)
2: if collect() = ∅ then
3: Mem[i].Write(c)
4: return OK

5: operation scani()
6: C ← collect()
7: if C = ∅ then return ∅
8: C ← collect()
9: return C

10: procedure collect()
11: C ← ∅;
12: for each pk ∈ P
13: c← Mem[k].Read()
14: if c 6= ⊥ then C ← C ∪ {c}
15: return C

NV5 If some majority M of processes in P keep taking steps then every scani() and updatei(c)

invoked by every process pi∈M eventually completes.

Although these properties bear resemblance to the properties of atomic snapshot objects [2],

NV1-NV5 define a weaker abstraction: we do not require that all updates are ordered as in atomic

snapshot objects, and even in a sequential execution, the set returned by a scan does not have

to include the value of the most recently completed update that precedes it. Intuitively, these

properties only require that the “first” update is seen by all scans that see any updates. As we shall

see below, this allows for a simpler implementation than of a snapshot object.

DynaStore will use multiple weak snapshot objects, one of each view w. The weak snapshot

of view w, denoted ws(w), is accessible by the processes in w.members. To simplify notation, we

denote by updatei(w, c) and scani(w) the update and scan operation, respectively, of process pi of

the weak snapshot object ws(w). Intuitively, DynaStore uses weak snapshots as follows: in order

to propose a set of changes c to the view w, a process pi invokes updatei(w, c); pi can then learn

proposals of other processes by invoking scani(w), which returns a set of sets of changes.

Implementation Our implementation of scan and update is shown in Algorithm 1. It uses an

array Mem of |P | single-writer multi-reader (SWMR) atomic registers, where all registers are

initialized to ⊥. Such registers support Read() and Write(c) operations s.t. only process pi ∈ P
invokes Mem[i].Write(c) and any process pj ∈ P can invoke Mem[i].Read(). The implementation

22

of such registers in message-passing systems is described in the literature [5].

A scani() reads from all registers in Mem by invoking collect, which returns the set C of values

found in all registers. After invoking collect once, scani() checks whether the returned C is empty.

If so, it returns ∅, and otherwise invokes collect one more time. An updatei(c) invokes collect, and

in case ∅ is returned, writes c to Mem[i]. Intuitively, if collect() returns a non-empty set then some

process has already proposed changes to the view, and thus, the weak snapshot does not correspond

to the most up-to-date view in the system and there is no need to propose additional changes to this

view.

Standard emulation protocols for atomic SWMR registers [5] guarantee integrity (property

NV1) and liveness (property NV5). We next explain why Algorithm 1 preserves properties NV2-

NV4; the formal proof of correctness appears in Section 3.5. First, notice that for a given i at most

one Mem[i].Write operation can be invoked in the execution, since after the first Mem[i].Write

operation completes, any collect invoked by pi (the only writer of this register) will return a non-

empty set and pi will never invoke another Write. This together with atomicity of all registers in

Mem implies properties NV2-NV3. Property NV4 stems from the fact that every scan() operation

that returns C 6= ∅ executes collect twice. Observe that such operation o that is the first to complete

one collect. Any other scan() operation o′ begins its second collect only after o completes its first

collect. Atomicity of the registers in Mem along with the fact that each register is written at-most

once, guarantee that any value returned by a Read during the first collect of o will be read during

the second collect of o′.

3.4 DynaStore

This section describes DynaStore, an algorithm for multi-writer multi-reader (MWMR) atomic

storage in a dynamic system, which is presented in Algorithm 2. A key component of our algorithm

is a procedure ContactQ (lines 31-41) for reading and writing from/to a quorum of members in

a given view, used similarly to the communicate procedure in ABD [5]. When there are no

reconfigurations, ContactQ is invoked twice by the read and write operations – once in a read-

phase and once in a write-phase. More specifically, both read and write operations first execute a

read-phase, where they invoke ContactQ to query a quorum of the processes for the latest value and

timestamp, after which both operations execute a write-phase as follows: a read operation invokes

23

ContactQ again to write-back the value and timestamp obtained in the read-phase, whereas a write

operation invokes ContactQ with a higher and unique timestamp and the desired value.

To allow reconfiguration, the members of a view also store information about the current view.

They can change the view by modifying this information at a quorum of the current view. We

allow the reconfiguration to occur concurrently with any read and write operations. Furthermore,

once reconfiguration is done, we allow future reads and writes to use (only) the new view, so that

processes can be expired and removed from the system. Hence, the key challenge is to make sure

that no reads linger behind in the old view while updates are made to the new view. Atomicity is

preserved using the following strategy.

• The read-phase is modified so as to first read information on reconfiguration, and then read

the value and its timestamp. If a new view is discovered, the read-phase repeats with the new

view.

• The write-phase, which works in the last view found by the read-phase, is modified as well.

First, it writes the value and timestamp to a quorum of the view, and then, it reads the

reconfiguration information. If a new view is discovered, the protocol goes back to the read-

phase (the write-phase begins again when the read-phase ends).

• The reconfig operation has a preliminary phase, writing information about the new view

to the quorum of the old one. It then continues by executing the phases described above,

starting in the old view.

The core of a read-phase is procedure ReadInView, which reads the configuration information

(line 67) and then invokes ContactQ to read the value and timestamp from a quorum of the view

(line 68). It returns a non-empty set if a new view was discovered in line 67. Similarly, procedure

WriteInView implements the basic functionality of the write-phase, first writing (or writing-back)

the value and timestamp by invoking ContactQ in line 73, and then reading configuration informa-

tion in line 74 (we shall explain lines 71-72 in Section 3.4.3).

We next give intuition into why the above regime preserves read/write atomicity, by considering

the simple case where only one reconfiguration request is ever invoked, reconfig(c), from c1 to c2

(where c2 = c1 ∪ c); we shall refer to this reconfiguration operation as RC. Figure 3.1(a) depicts

a scenario where RC, invoked by process p1, completes while a second process p2 concurrently

24

reconfig(c)
p1
p2

write(v)

read()→v

(a)

reconfig(c)
p1
p2

read()→⊥p3

write(v)

read()→v

(b)

Figure 3.1: Operation flow in DynaStore. (a) A reconfig operation from c1 to c2 is concurrent with a
write(v); one of them writes v to c2. (b) The reconfig fails; either the first read completes in c1, or the write
writes v in c2.

performs a write(v) operation. In our scenario p2 is not initially aware of the existence of c2, and

hence the write operation performs a write-phase W writing in c1 the value v with timestamp ts.

After the write completes, p1 executes a read operation, which returns v (the only possible return

value according to atomicity). The read operation starts with a read-phase which operates in c2 –

the latest view known to p1. Therefore, for v to be returned by the read, our algorithm must make

sure that v and ts are transferred to c2 by either RC or the write operation.

There are two possible cases with respect to RC. The first case is that RC’s read-phase observes

W , i.e., during the execution of ContactQ in the read-phase of RC, p1 receives v and ts from at

least one process. In this case, RC’s write-phase writes-back v and ts into c2. The second case is

that RC’s read-phase does not observeW . In this case, as was explained above, our algorithm must

not allow the write operation to complete without writing the value and timestamp to a quorum of

the new view c2. We next explain how this is achieved. Since RC’s read-phase does not observeW ,

when RC invokes ContactQ during its read-phase, W ’s execution of ContactQ writing a quorum

of c1 has not completed yet. Thus, W starts to read c1’s configuration information after RC’s

preliminary phase has completed. This preliminary phase writes information about c2 to a majority

of c1. Therefore, W discovers c2 and the write operation continues in c2.

Figure 3.1(b) considers a different scenario, where p1 fails before completing RC. Again, we

assume that p2 is not initially aware of c2, and hence the write operation performs a write-phase

W in c1 writing the value v with timestamp ts. Concurrently with p2’s write, p3 invokes a read

operation in c1. Atomicity of the register allows this read to return either v or ⊥, the initial value

of the register; in the scenario depicted in Figure 3.1(b) ⊥ is returned. After the write operation

completes, p3 invokes a second read operation, which returns v (the only possible value allowed

by atomicity for this read). There are two cases to consider, with respect to the view in which the

first read executes its final phase. The simple case is when this view is c1. Then, the second read

25

starts by executing a read-phase in c1 and hence finds out about v.

The second case is more delicate, and it occurs when the first read completes in c2. Recall that

this read returns ⊥ and thus it does not observe W and the latest value v. Nevertheless, since the

second read starts with a read-phase in c2, the algorithm must ensure that v is stored at a quorum of

c2. This is done by the write operation, as we now explain. Since the first read operation starts in

c1 but completes in c2, it finds c2 when reading the reconfiguration information during a read-phase

R in c1. Since R does not observe W , it must be that W completes its ContactQ writing a majority

of c1 only after R invokes its ContactQ reading from a majority of c1. Since R inspects reconfigu-

ration information before invoking ContactQ while W does so after completing ContactQ, it must

be that W starts inspecting reconfiguration information after R has finished inspecting reconfigu-

ration information. Property NV3 guarantees that W finds all configuration changes observed by

R, and hence finds out about c2. Consequently, the write operation continues in c2 and completes

only after writing v in c2. Here, it is important that the read-phase reads reconfiguration informa-

tion before it performs ContactQ, while the write-phase reads reconfiguration information after it

performs ContactQ. This inverse order is necessary to ensure atomicity in this scenario.

In our examples above, additional measures are needed to preserve atomicity if several pro-

cesses concurrently propose changes to c1. Thus, the rest of our algorithm is dedicated to the

complexity that arises due to multiple contending reconfiguration requests. Our description is

organized as follows: Section 3.4.1 introduces the pseudo-code of DynaStore, and clarifies its no-

tations and atomicity assumptions. Section 3.4.2 presents the DAG of views, and shows how every

operation in DynaStore can be seen as a traversal on that graph. Section 3.4.3 discusses reconfig

operations. Finally, Section 3.4.4 presents the notion of established views, which is central to the

analysis of DynaStore. Proofs are deferred to Section 3.6.

3.4.1 DynaStore Basics

DynaStore uses operations, upon clauses, and procedures. Operations are invoked by the appli-

cation, whereas upon-clauses are triggered by messages received from the network: whenever a

process pi receives a message m from pj (through a receive(m)i,j input action), m is stored in a

buffer (this is not shown in the pseudo-code). The upon-clause is an internal action enabled when

some condition on the message buffer holds. Procedures are called from an operation. Operations

26

and local variables at process pi are denoted with subscript i.

Whereas upon-clauses are atomic, for simplicity of presentation, we do not formulate opera-

tions as atomic actions in the pseudo-code (with slight abuse of the I/O automata terminology),

and operations sometimes block waiting for a response from a majority of processes in a view (in

lines 30, 37, 55, 67 and 74), either explicitly (in lines 30 and 37), or in the underlying implemen-

tation of a SWMR register (e.g., [5]) which is used in the construction of weak snapshots. Note,

however, that it is a trivial exercise to convert the pseudo-code to the I/O automata syntax, as each

operation is atomic until it blocks waiting for a majority and thus the operation can be divided

into multiple atomic actions: initially an action corresponding to the code that precedes the wait

statement executes, and when messages are received from a majority, the upon-clause receiving the

messages uses an additional internal flag to enable the execution of the operation part following

the wait, which forms another atomic action, and to disable code which precedes the wait.

Operations and upon-clauses access different variables for storing the value and timestamp4:

vi and tsi are accessed in upon-clauses, whereas operations (and procedures) manipulate vmaxi

and tsmaxi . Procedure ContactQ sends a write-request including vmaxi and tsmaxi (line 35) when

writing a quorum, and a read-request (line 36) when reading a quorum (msgNumi, a local sequence

number, is also included in such messages). When pi receives a write-request, it updates vi and

tsi if the received timestamp is bigger than tsi, and sends back a REPLY message containing the

sequence number of the request (line 45). When a read-request is received, pi replies with vi, tsi,

and the received sequence number (line 46).

Every process pi executing Algorithm 2 maintains a local estimation of the latest view, curViewi

(line 9), initialized to Init when the process starts. Although pi is able to execute all event-handlers

immediately when it starts, recall that invocations of read, write or reconfig operations at pi are only

allowed once they are enabled for the first time; this occurs in line 11 (for processes in Init.join)

or in line 81 (for processes added later). If pi discovers that it is being removed from the system,

it simply halts (line 53). In this section, we denote changes of the form (Add, i) by (+, i) and

changes of the form (Remove, i) by (−, i).

4This allows for a practical optimization, whereby operations and upon clauses act like separate monitors: an
operation can execute concurrently with an upon-clause, and at most one of each kind can be executed at a time.

27

Algorithm 2 Code for process pi.
1: state
2: vi ∈ V ∪ {⊥}, initially ⊥ // latest value received in a WRITE message
3: tsi ∈ N0 × (Π ∪ {⊥}), initially (0,⊥) // timestamp corresponding to vi (timestamps have selectors num

and pid)
4: vmaxi ∈ V ∪ {⊥}, initially ⊥ // latest value observed in Traverse
5: tsmaxi ∈ N0 × (Π ∪ {⊥}), initially (0,⊥) // timestamp corresponding to vmax

i

6: pickNewTSi ∈ {FALSE, TRUE}, initially FALSE // whether Traverse should pick a new timestamp
7: Mi: set of messages, initially ∅
8: msgNumi ∈ N0, initially 0 // counter for sent messages
9: curViewi ∈ Views, initially Init // latest view

10: initially:
11: if (i ∈ Init.join) then enable operations

12: operation readi():
13: pickNewTSi ← FALSE

14: newView← Traverse(∅,⊥)
15: NotifyQ(newView)
16: return vmaxi

17: operation writei(v):
18: pickNewTSi ← TRUE

19: newView← Traverse(∅, v)
20: NotifyQ(newView)
21: return OK

22: operation reconfigi(cng):
23: pickNewTSi ← FALSE

24: newView← Traverse(cng,⊥)
25: NotifyQ(newView)
26: return OK

27: procedure NotifyQ(w)
28: if did not receive 〈NOTIFY, w〉 then
29: send 〈NOTIFY, w〉 to w.members
30: wait for 〈NOTIFY, w〉

from majority of w.members

31: procedure ContactQ(msgType, D)
32: Mi ← ∅
33: msgNumi ← msgNumi + 1;
34: if msgType = W then
35: send 〈REQ,W,msgNumi,v

max
i ,tsmaxi 〉 to D

36: else send 〈REQ, R,msgNumi〉 to D
37: wait until Mi contains 〈REPLY,msgNumi, · · ·〉

from a majority of D
38: if msgType = R then
39: tm←max{t:〈REPLY,msgNumi,v,t〉∈Mi}
40: vm← value corresponding to tm
41: if tm > tsmaxi then

(vmaxi , tsmaxi)←(vm, tm)

42: upon receiving 〈REQ,msgType,num,v,ts〉
from pj :

43: if msgType = W then
44: if (ts > tsi) then (vi, tsi)← (v, ts)
45: send 〈REPLY, num〉 to pj
46: else send message 〈REPLY, num, vi, tsi〉 to pj

47: procedure Traverse(cng, v)
48: desiredView← curViewi ∪ cng
49: Front← {curViewi}
50: do
51: s← min{|`| : ` ∈ Front}
52: w ← any ` ∈ Front s.t. |`| = s
53: if (i 6∈ w.members) then halti
54: if w 6= desiredView then
55: updatei(w, desiredView\w)
56: ChangeSets← ReadInView(w)
57: if ChangeSets 6= ∅ then
58: Front← Front \ {w}
59: for each c ∈ ChangeSets
60: desiredView← desiredView ∪ c
61: Front← Front ∪ {w ∪ c}
62: else ChangeSets← WriteInView(w, v)
63: while ChangeSets 6= ∅
64: curViewi ← desiredView
65: return desiredView

66: procedure ReadInView(w)
67: ChangeSets← scani(w)
68: ContactQ(R, w.members)
69: return ChangeSets

70: procedure WriteInView(w, v)
71: if pickNewTSi then
72: (pickNewTSi, v

max
i , tsmaxi)←

(FALSE, v, (tsmaxi .num+ 1, i))
73: ContactQ(W, w.members)
74: ChangeSets← scani(w)
75: return ChangeSets

76: upon receiving 〈NOTIFY, w〉 for the first time:
77: send 〈NOTIFY, w〉 to w.members
78: if (curViewi ⊂ w) then
79: pause any ongoing Traverse
80: curViewi ← w
81: if (i ∈ w.join) then enable operations
82: if paused in line 79, restart Traverse from

line 48

83: upon receiving 〈REPLY, · · ·〉:
84: add the message and its sender-id to Mi

28

3.4.2 Traversing the Graph of Views

Weak snapshots organize all views in a given execution into a DAG, where views are the vertices

and there is an edge from a view w to a view w′ whenever an updatej(w, c) has been made in

the execution by some process j ∈ w.members, updating ws(w) to include the change c 6= ∅ s.t.

w′ = w∪c; |c| can be viewed as the weight of the edge – the distance between w′ and w in changes.

Our algorithm maintains the invariant that c ∩ w = ∅, and thus w′ always contains more changes

than w, i.e., w ⊂ w′. Hence, the graph of views is acyclic.

The main logic of Algorithm 2 lies in procedure Traverse, which is invoked by all operations.

This procedure traverses the DAG of views, and transfers the state of the emulated register from

view to view along the way. Traverse starts from the view curViewi. Then, the DAG is traversed in

an effort to find all membership changes in the system; these are collected in the set desiredView.

After finding all changes, desiredView is added to the DAG by updating the appropriate ws object,

so that other processes can find it in future traversals.

The traversal resembles the well-known Dijkstra algorithm for finding shortest paths from a

single source [22], with the important difference that our traversal modifies the graph. A set of

views, Front, contains the vertices reached by the traversal and whose outgoing edges were not yet

inspected. Initially, Front = {curViewi} (line 49). Each iteration processes the vertex w in Front

closest to curViewi (lines 51 and 52).

During an iteration of the loop in lines 50–63, it might be that pi already knows that w does not

contain all proposed membership changes. This is the case when desiredView, the set of changes

found in the traversal, is different from w. In this case, pi installs an edge from w to desiredView

using updatei (line 55). As explained in Section 3.3, in case another update to ws(w) has already

completed, update does not install an additional edge fromw; the only case when multiple outgoing

edges exist is if they were installed concurrently by different processes.

Next, pi invokes ReadInView(w) (line 56), which reads the state and configuration information

in this view, returning all edges outgoing from w found when scanning ws(w) in line 67. By

property NV2, if pi or another process had already installed an edge from w, a non-empty set of

edges is returned from ReadInView. If one or more outgoing edges are found, w is removed from

Front, the next views are added to Front, and the changes are added to desiredView (lines 59–61).

If pi does not find outgoing edges from w, it invokes WriteInView(w) (line 62), which writes the

latest known value to this view and again scans ws(w) in line 74, returning any outgoing edges that

29

are found. If here too no edges are found, the traversal completes.

Notice that desiredView is chosen in line 52 only when there are no other views in Front,

since it contains the union of all views observed during the traversal, and thus any other view in

Front must be of smaller size (i.e., contain fewer changes). Moreover, when w 6= desiredView

is processed, the condition in line 54 evaluates to true, and ReadInView returns a non-empty set

of changes (outgoing edges) by property NV2. Thus, WriteInView(w, ∗) is invoked only when

desiredView is the only view in Front, i.e., w = desiredView (this transfers the state found during

the traversal to desiredView, the latest-known view). For the same reason, when the traversal

completes, Front = {desiredView}. Then, desiredView is assigned to curViewi in line 64 and

returned from Traverse.

To illustrate such traversals, consider the example in Figure 3.2. Process pi invokes Traverse

and let initView be the value of curViewi when Traverse is invoked. Assume that initView.members

includes at least p1 and pi, and that cng = ∅ (this parameter of Traverse will be explained in

Section 3.4.3). Initially, its Front, marked by a rectangle in Figure 3.2, includes only initView,

and desiredView = initView. Then, the condition in line 54 evaluates to false and pi invokes

ReadInView(initView), which returns {{(+, 3)}, {(+, 5)}, {(−, 1), (+, 4)}}. Next, pi removes

initView from Front and adds vertices V1, V2 and V3 to Front as shown in Figure 3.2. For example,

V3 results from adding the changes in {(−, 1), (+, 4)} to initView. At this point, desiredView =

initView∪{(+, 3), (+, 5), (−, 1), (+, 4)}. In the next iteration of the loop in lines 50–63, one of

the smallest views in Front is processed. In our scenario, V1 is chosen. Since V1 6= desiredView,

pi installs an edge from V1 to desiredView. Suppose that no other updates were made to ws(V1)

before pi’s update completes. Then, ReadInView(V1) returns {{(+, 5), (−, 1), (+, 4)}} (properties

NV1 and NV2). Then, V1 is removed from Front and V4 = V1 ∪ {(+, 5), (−, 1), (+, 4)} is added

to Front. In the next iteration, an edge is installed from V2 to V4 and V2 is removed from Front.

Now, the size of V3 is smallest in Front, and suppose that another process pj has already com-

pleted updatej(V3, {(+, 7)}). pi executes update (line 55), however since an outgoing edge already

exists, a new edge is not installed. Then, ReadInView(V3) is invoked and returns {{(+, 7)}}. Next,

V3 is removed from Front, V5 = V3 ∪ {(+, 7)} is added to Front, and (+, 7) is added to desired-

View. Now, Front = {V4, V5}, and we denote the new desiredView by V6. When V4 and V5 are

processed, pi installs edges from V4 and V5 to V6. Suppose that ReadInView of V4 and V5 in line 56

return only the edge installed in the preceding line. Thus, V4 and V5 are removed from Front, and

30

initView

V1

V2

{(+, 3)}

{(+, 5)}

{(-, 1), (+, 4)} {(+, 7)}V3

V6

Initial
Front

Front after
iteration 1

Front after
iteration 4

V4

V5

=initView ∪ {(+, 3), (+, 5),
 (-, 1), (+, 4), (+, 7)}

{(+, 5), (-, 1),
 (+, 4)}

{(+, 3), (-, 1),
 (+, 4)}

{(+, 7)}

{(+, 3),(+, 5)}

Front after
iteration 6

Legend

edge returned
from ReadInView

edge updated by pi

Figure 3.2: Example DAG of views.

V6 is added to Front, resulting in Front = {V6}. During the next iteration ReadInView(V6) and

WriteInView(V6) execute and both return ∅ in our execution. The condition in line 63 terminates

the loop, V6 is assigned to curViewi and Traverse completes returning V6.

3.4.3 Reconfigurations (Liveness)

A reconfig(cng) operation is similar to a read, with the only difference that desiredView initially

contains the changes in cng in addition to those in curViewi (line 48). Since desiredView only

grows during a traversal, this ensures that the view returned from Traverse includes the changes

in cng. As explained earlier, Front = {desiredView} when Traverse completes, which means that

desiredView appears in the DAG of views.

When a process pi completes WriteInView in line 62 of Traverse, the latest state of the register

has been transfered to desiredView, and thus it is no longer necessary for other processes to start

traversals from earlier views. Thus, after Traverse completes returning desiredView, pi invokes

NotifyQ with this view as its parameter (lines 15, 20 and 25), to let other processes know about

the new view. NotifyQ(w) sends a NOTIFY message (line 29) to w.members. A process receiving

such a message for the first time forwards it to all processes in w.members (line 77), and after a

NOTIFY message containing the same view was received from a majority of w.members, NotifyQ

returns. In addition to forwarding the message, a process pj receiving 〈NOTIFY, w〉 checks whether

curViewj ⊂ w (i.e., w is more up-to-date than curViewj), and if so it pauses any ongoing Traverse,

assigns w to curViewj , and restarts Traverse from line 48. As the execution of Traverse between

wait statements is atomic, Traverse executed by pj can be restarted only when it blocks waiting for

31

messages from a majority of some view w′. Restarting Traverse in such case can be necessary if

less than a majority of members in w′ are active. Intuitively, Definition 2 implies that in such case

w′ must be an old view, i.e., some reconfig operation completes proposing new changes to system

membership. We prove in Section 3.6.3 that in this case pj will receive a 〈NOTIFY, w〉message s.t.

curViewj ⊂ w and restart its traversal.

Note that when a process pi restarts Traverse, pi may have an outstanding scani or updatei

operation on a weak snapshot ws(w) for some view w, in which case pi restarts Traverse without

completing the operation. It is possible that pi might be unable to complete such outstanding

operations because w is an old view, i.e., more than a majority of its members were removed.

After Traverse is restarted, it is possible that pi encounters w again in the traversal and needs to

invoke another operation on ws(w), in which case w is not known to be old. We require that in

this case pi first terminates previous outstanding operations on ws(w) before it invokes the new

operation. The mechanism to achieve this is a simple queue, and it is not illustrated in the code.

Note that started snapshot operations on old views do not need to be completed.

Restarts of Traverse introduce an additional potential complication for write operations: sup-

pose that during its execution of write(v), pi sends a WRITE message with v and a timestamp ts. It

is important that if Traverse is restarted, v is not sent with a different timestamp (unless it belongs

to some other write operation). Before the first message with v is sent, we set the pickNewTSi

flag to false (line 72). The condition in line 71 prevents Traverse from re-assigning v to vmaxi or

incorrect tsmaxi , even if a restart occurs.

In Section 3.6.3 we prove that DynaStore preserves Dynamic Service Liveness (Definition 2).

Thus, liveness is conditioned on the number of different changes proposed in the execution being

finite. In reality, only the number of such changes proposed concurrently with every operation has

to be finite. Then, the number of times Traverse can be restarted during that operation is finite and

so is the number of views encountered during the traversal, implying termination.

3.4.4 Sequence of Established Views (Safety)

Our traversal algorithm performs a scan(w) to discover outgoing edges fromw. However, different

processes might invoke update(w) concurrently, and different scans might see different sets of

outgoing edges. In such cases, it is necessary to prevent processes from working with views on

32

different branches of the DAG. Specifically, we would like to ensure an intersection between views

accessed in reads and writes. Fortunately, property NV4 guarantees that all scan(w) operations

that return non-empty sets (i.e., return some outgoing edges from w), have at least one element

(edge) in common. Note that a process cannot distinguish such an edge from others and therefore

traverses all returned edges. This property of the algorithm enables us to define a totally ordered

subset of the views, which we call established, as follows:

Definition 3. [Sequence of Established Views] The unique sequence of established views E is

constructed as follows:

• the first view in E is the initial view Init;

• if w is in E , then the next view after w in E is w′ = w ∪ c, where c is an element chosen

arbitrarily from the intersection of all sets C 6= ∅ returned by some scan(w) operation in the

execution.

Note that each element in the intersection mentioned in Definition 3 is a set of changes, and

that property NV4 guarantees a non-empty intersection. In order to find such a set of changes c in

the intersection, one can take an arbitrary element from the set C returned by the first collect(w)

that returns a non-empty set in the execution. This unique sequence E allows us to define a total

order relation on established views. For two established views w and w′ we write w ≤̇ w′ if w

appears in E no later than w′; if in addition w 6= w′ then w <̇ w′. Notice that for two established

views w and w′, w <̇ w′ if an only if w ⊂ w′.

Notice that the first graph traversal in the system starts from curViewi = Init, which is estab-

lished by definition. When Traverse is invoked with an established view curViewi, every time a

vertex w is removed from Front and its children are added, one of the children is an established

view, by definition. Thus, Front always includes at least one established view, and since it ulti-

mately contains only one view, desiredView, we conclude that desiredView assigned to curViewi in

line 64 and returned from Traverse is also established. Thus, all views sent in NOTIFY messages

or stored in curViewi are established. Note that while a process pi encounters all established views

between curViewi and the returned desiredView in an uninterrupted traversal, it only recognizes a

subset of established views as such (whenever Front contains a single view, that view must be in

E).

33

It is easy to see that each traversal performs a ReadInView on every established view in E be-

tween curViewi and the returned view desiredView. Notice that WriteInView (line 62) is always

performed in an established view. Thus, intuitively, by reading each view encountered in a traver-

sal, we are guaranteed to intersect any write completed on some established view in the traversed

segment of E . Then, performing the scan before ContactQ in ReadInView and after the ContactQ

in WriteInView guarantees that in this intersection, indeed the state is transferred correctly, as ex-

plained in the beginning of this section. A formal correctness proof of our protocol appears in

Section 3.6.

3.5 Analysis of Weak Snapshot Objects

First, note that whenever a process pi performs scani(w) or updatei(w, c), it holds that i ∈ w.members

because of the check in line 53. Thus, it is allowed to perform these operations on w. The follow-

ing lemmas prove correctness of a single weak snapshot object accessible by a set of processes P.

We assume that all registers in Mem are initialized to ⊥ and that no process invokes update(⊥),

which is indeed preserved by DynaStore. The first lemma shows that each register Mem[i] can be

assigned at most one non-initial value.

Lemma 1. For any i ∈ P , the following holds: (a) if Mem[i].Read() is invoked after the completion

of Mem[i].Write(c), and returns c′, then c′ = c; and (b) if two Mem[i].Read() operations return

c 6= ⊥ and c′ 6= ⊥, then c = c′.

Proof. Recall that only pi can write to Mem[i] (by invoking an update operation). We next show

that Mem[i].Write can be invoked at most once in an execution. Suppose by way of contradiction

that Mem[i].Write is invoked twice in the execution, and observe the second invocation. Sec-

tion 3.4.3 mentions our assumption of a mechanism that always completes a previous operation

on a weak snapshot object, if any such operation has been invoked and did not complete (because

of restarts), whenever a new operation is invoked on the same weak snapshot object. Thus, when

Mem[i].Write is invoked for the second time, the first Mem[i].Write has already completed. Before

invoking the Write, pi completes collect, which executes Mem[i].Read. By atomicity of Mem[i],

since the first Write to Mem[i] has already completed writing a non-⊥ value, collect returns a set

containing this value, and the condition in line 2 in Algorithm 1 evaluates to FALSE, contradicting

34

our assumption that a Write was invoked after the collect completes.

(a) follows from atomicity of Mem[i] since Mem[i].Write is invoked at most once in the execu-

tion. In order to prove (b), notice that if c 6= c′, since pi is the only writer of Mem[i], this means

that both Mem[i].Write(c) and Mem[i].Write(c′) are invoked in the execution, which contradicts the

fact that Mem[i].Write is invoked at most once in the execution.

Properties NV1 (integrity) and NV5 (liveness) can be guaranteed by using standard emulation

protocols for atomic SWMR registers [5]. The following lemmas prove that Algorithm 1 preserves

properties NV2-NV4.

Lemma 2. Let o be a scani() operation that is invoked after the completion of an updatej(c) oper-

ation, and returns C. Then C 6= ∅.

Proof. Since updatej(c) completes, either Mem[i].Write(c) completes or collect returns a non-

empty set. In the first case, when o reads from Mem[i] during both first and second collect, the

Read returns c by Lemma 1. The second case is that collect completes returning a non-empty set.

Thus, a read from some register Mem[j] during this collect returns c′ 6= ⊥. By atomicity of Mem[j]

and Lemma 1, since o is invoked after updatej(c) completes, any read from Mem[j] performed

during o returns c′. Thus, in both cases the first and second collect during o return a non-empty set,

which means that C 6= ∅.

Lemma 3. Let o be a scani() operation that returns C and let o′ be a scanj() operation that returns

C ′ and is invoked after the completion of o. Then C ⊆ C ′.

Proof. If C = ∅, the lemma trivially holds. Otherwise, consider any c ∈ C. Notice that c is re-

turned by a Read r from some register Mem[k] during the second collect of o. Atomicity of Mem[k]

and Lemma 1 guarantee that every Read r′ from the same register invoked after the completion of

r returns c. Both times collect is executed during o′, it reads from Mem[k] and since o′ is invoked

after o completes both times a set containing c is returned from collect, i.e, c ∈ C ′.

Lemma 4. There exists c such that for every scan() operation that returns C ′ 6= ∅, it holds that

c ∈ C ′.

Proof. Let o be the first scani() operation during which collect in line 6 returns a non-empty set,

and let C 6= ∅ be this set. Let o′ be any scan() operation that returns C ′ 6= ∅. We next show that

35

C ⊆ C ′, which means that any c ∈ C preserves the requirements of the lemma. Since C ′ 6= ∅, the

first invocation of collect() during o′ returns a non-empty set. By definition of o, the second collect

during o′ starts after the first collect of o completes. For every c ∈ C, there is a Mem[k].Read()

executed by the first collect of o that returns c 6= ⊥. By Lemma 1 and atomicity of Mem[k], a Read

from the same register performed during the second collect of o′ returns c. Thus, C ⊆ C ′.

3.6 Analysis Of DynaStore

3.6.1 Traverse

We use the convention whereby each time Traverse is restarted, a new execution of Traverse begins;

this allows us to define one view from which a traversal starts – this is the value curViewi when the

execution of Traverse begins in line 48.

Lemma 5. At the beginning and end of each iteration of the loop in lines 50-63, it holds that⋃
w∈Front w ⊆ desiredView.

Proof. We prove that if an iteration begins with
⋃
w∈Front w ⊆ desiredView then this invariant holds

also when the iteration ends. The lemma then follows from the fact that at the beginning of the

first iteration Front = {curViewi} (line 49) and desiredView = curViewi ∪ cng (line 48).

Suppose that at the beginning of an iteration
⋃
w∈Front w ⊆ desiredView. If the loop in lines 59-

61 does not execute, then Front and desiredView do not change, and the condition holds at the end

of the iteration. If the loop in lines 59-61 does execute, then w ⊆ desiredView is removed from

Front, w ∪ c is added to Front and c is added to desiredView, thus the condition is again true.

Lemma 6. Whenever updatei(w, c) is executed, c 6= ∅ and c ∩ w = ∅.

Proof. updatei(w, c) is executed only in line 55 when w 6= desiredView and c = desiredView\w,

which means that c∩w = ∅. By Lemma 5, since w 6= desiredView, it holds that w ⊂ desiredView.

Thus, c = desiredView\w 6= ∅.

Lemma 7. Let T be an execution of Traverse that starts from curViewi = initView. For every view

w that appears in Front at some point during the execution of T , it holds that initView ⊆ w.

36

Proof. We prove that if an iteration of the loop in lines 50-63 begins such that each view in Front

contains initView, then this invariant is preserved also when the iteration ends. The lemma then

follows from the fact that at the beginning of the first iteration Front = {curViewi} (line 49).

Suppose that at the beginning of an iteration each view in Front contains initView. Front can

only change during this iteration if the condition in line 57 evaluates to true, i.e., if ChangeSets 6= ∅.
In this case, the loop in lines 59-61 executes at least once, and w ∪ c is added to Front in line 61

for some c. Since w was in Front in the beginning of this iteration, by our assumption it holds that

initView ⊆ w, and therefore w ∪ c also contains initView.

Lemma 8. Let w ∈ Front be a view. During the execution of Traverse, if w is removed from Front

in some iteration of the loop in lines 50-63, then the size of any view w′ added to Front in the same

iteration or a later one, is bigger than |w|.

Proof. Suppose that w is removed from Front during an iteration. Then its size, |w|, is minimal

among the views in Front (lines 51 and 52) at the beginning of this iteration. By line 61, whenever a

view is inserted to Front, it has the form w ∪ c where c ∈ ChangeSets returned by scani in line 67.

By property NV1, some update(w, c) operation is invoked in the execution, and by Lemma 6,

c 6= ⊥ and c ∩ w = ∅. Thus, the view w ∪ c is strictly bigger than w removed from Front in the

same iteration. It follows that any view w′ added to Front in this or in a later iteration has size

bigger than |w|.

Lemma 9. If at some iteration of the loop in lines 50-63 ReadInView returns ChangeSets = ∅, then

w = desiredView and Front = {desiredView}.

Proof. Suppose for the sake of contradiction thatw 6= desiredView. Before ReadInView is invoked,

updatei(w, desiredView \ w) completes, and then by Lemma 2 when ReadInView completes it

returns a non-empty set, a contradiction.

Suppose for the sake of contradiction that there exists a view w′ ∈ Front s.t. w′ 6= desiredView.

By Lemma 5, w′ ⊆ desiredView. Since w′ 6= desiredView, we get that w′ ⊂ desiredView and thus

|w′| < |desiredView|, contradicting the fact that w = desiredView, and not w′, is chosen in line 52

in the iteration.

Lemma 10. desiredView returned from Traverse(cng, v) contains cng.

37

Proof. At the beginning of Traverse, desiredView is set to curViewi∪cng in line 48, and during the

execution of Traverse, no element is removed from desiredView. Thus, cng ⊆ desiredView when

Traverse completes.

Lemma 11. curViewi is an established view. Moreover, desiredView in line 64 of Traverse is es-

tablished and whenever WriteInView(w, ∗) is invoked, w is an established view.

Proof. We prove the lemma using the following claim:

Claim 11.1. If curViewi from which a traversal starts is an established view, then Front at the

beginning and end of the loop in lines 50-63 contains an established view, and the view desiredView

assigned to curViewi in line 64 in Traverse is established. Moreover, whenever WriteInView(w, ∗)
is invoked, w is an established view.

Proof. Initially, Front contains curViewi (line 48), which is established by assumption, and there-

fore Front indeed contains an established view when the first iteration of the loop begins. If a view

w is removed from Front in line 58, then ChangeSets 6= ∅. We distinguish between two cases: (1)

if w is not an established view, then Front at the end of the iteration still contains an established

view; (2) if w is an established view, then, by Lemma 4 and the definition of E , since ChangeSets

is a non-empty set returned by scani(w), there exists c ∈ ChangeSets such that w∪c is established.

Since for every c ∈ ChangeSets, w∪c is added to Front in line 61, the established view succeeding

w in the sequence is added to Front, and thus Front at the end of this iteration of the loop in lines

50-63 still contains an established view.

By Lemma 9, when the loop in lines 50-63 completes, as well as when WriteInView(w, ∗)
is invoked, Front = {desiredView}. Since during such iterations, ReadInView returns ∅, Front

does not change from the beginning of the iteration. We have just shown that Front contains

an established view at the beginning of the do-while loop, and thus, desiredView in line 64 is

established, and so is any view w passed to WriteInView.

We next show that the precondition of the claim above holds, i.e., that curViewi is an established

view, by induction on |curViewi|. The base is curViewi = Init, in which case it is established by

definition. Assuming that curViewi is established if its size is less than k, observe such view of

size k > |Init|. Consider how curViewi got its current value – it was assigned either by some

earlier execution of Traverse at pi in line 64, or in line 80 when a NOTIFY message is received,

38

which implies that some process completes a traversal returning this view. In either case, since

curViewi 6= Init, some process pj has desiredView = curViewi in line 64, while starting the traversal

with a smaller view curViewj . Notice that curViewj is established by our induction assumption, and

since curViewi is the value of desiredView in line 64 of a Traverse which started with an established

view, it is also established by Claim 11.1.

Lemma 12. Let T be an execution of Traverse and initView be the value of curViewi when pi starts

this execution, then (a) if T invokes WriteInView(w, ∗) then T completes a ReadInView(w′) which

returns a non-empty set for every established vieww′ s.t. initView ≤̇ w′ <̇ w, and a ReadInView(w)

which returns ∅; and (b) if T reaches line 64 with desiredView = w′′, then it completes WriteInView(w′′, ∗)
which returns ∅.

Proof. When T begins, the established view w′ = initView is the only view in Front. Since

some iteration during T chooses w in lines 51 and 52, which has bigger size than w′, it must

be that w′ is removed from Front. This happens only if some ReadInView(w′) during T returns

ChangeSets 6= ∅. After w′ is removed from Front, for every c ∈ ChangeSets, w′ ∪ c is added to

Front, and thus, the established view succeeding w′ in E is added to Front (by Lemma 4 and the

definition of E). The arguments above hold for every established view w′ s.t. initView ≤̇ w′ <̇ w,

since a bigger view w is chosen from Front during T . During the iteration when WriteInView(w, ∗)
is invoked, ReadInView(w) completes in line 56 and returns ∅, which completes the proof of (a).

Suppose that T reaches line 64 with desiredView = w′′. By Lemma 9,w during the last iteration

of the loop equals to w′′. Observe the condition in line 63, which requires that ChangeSets = ∅ for

the loop to end. Notice that ChangeSets is assigned either in line 56 or line 62. If it was assigned

in line 62, then WriteInView(w, ∗) was executed which completes the proof of (b). Otherwise,

ReadInView(w) returns ChangeSets = ∅ in line 56, which causes line 62 to be executed. Then,

since this is the last iteration, WriteInView(w, ∗) returns ∅.

3.6.2 Atomicity

We say that WriteInView writes a timestamp ts if tsmaxi sent in the REQ message by ContactQ(W,

*) equals ts. Similarly, a ReadInView reads timestamp ts if at the end of ContactQ(R, *) invoked

by the ReadInView, tsmaxi is equal to ts.

39

Lemma 13. Let W be a WriteInView(w, *) that writes timestamp ts and returns C, and R be

a ReadInView(w) that reads timestamp ts′ and returns C ′. Then, either ts′ ≥ ts or C ′ ⊆ C.

Moreover, if R is invoked after W completes, then ts′ ≥ ts.

Proof. Because both operation invoke ContactQ in w, there exists a process p in w.members from

which both W and R get a REPLY message before completing their ContactQ, i.e., p’s answer

counts towards the necessary majority of replies for both W and R. If p receives the 〈REQ,W, · · ·〉
message from W with timestamp ts before the 〈REQ, R, · · ·〉message from R, then by lines 44 and

46 it responds to the message from R with a timestamp at least as big as ts. By lines 39-41, when

R completes ContactQ(R, w.members), tsmaxi is set to be at least as high as ts, and thus ts′ ≥ ts. It

is left to show that if p receives the 〈REQ, R, · · ·〉message fromR before the 〈REQ,W, · · ·〉message

from W , then C ′ ⊆ C.

Suppose that p receives the 〈REQ, R, · · ·〉 message from R first. Then, when this message is

received by p, ContactQ(W, w.members) has not yet completed at W , and thus W has not yet

invoked scan(w) in line 74. On the other hand, since R has started ContactQ(R, w.members), it has

already completed its scan(w) in line 67, which returned C ′. When W completes its ContactQ it

invokes scan(w), which then returns C. By Lemma 3 it holds that C ′ ⊆ C.

Notice that if R is invoked after W completes then it must be the case that p receives the

〈REQ,W, · · ·〉 message from W first, and thus, in this case, ts′ ≥ ts.

Lemma 14. Let T be an execution of Traverse that completes returning w and upon completion its

tsmaxi is equal to ts, and T ′ be an execution of Traverse that reaches line 64 with tsmaxi equal to

ts′ and with its desiredView equal to w′. If w <̇ w′ then ts ≤ ts′.

Proof. Consider the prefix of E up to w′: V0, V1, · · · , Vl s.t. V0 = Init, Vl = w′, and w = Vi

where i ∈ {0, . . . , l − 1}. Moreover, let w′′ be the view from which T ′ starts the traversal (w′′ is

established by Lemma 11).

First, consider the case that w′′ ≤̇ w. By Lemma 12, since T returns w, it completes WriteIn-

View(w, ∗) which returnsC = ∅. Since T ′ starts fromw′′ ≤̇ w and reaches line 64 with desiredView =

w′ s.t. w <̇ w′, by Lemma 12 it completes a ReadInView(w) which returns C ′ 6= ∅ (notice that

ReadInView(w) might be executed in two consecutive iterations of T ′, in which case during the

first iteration ReadInView(w) returns ∅; we then look on the next iteration, where a non-empty set

is necessarily returned). Since C ′ 6⊆ C, by Lemma 13 we have that tsmaxi upon the completion of

40

the ReadInView(w) by T ′ is at least as big as tsmaxi upon the completion of WriteInView(w, ∗) by

T , which equals to ts. Since tsmaxi does not decrease during T ′ and ts′ is the value of tsmaxi when

T ′ reaches line 64, we have that ts′ ≥ ts.

The second case to consider is w <̇ w′′, which implies that w′′ 6= Init. In this case, there

exists a traversal T ′′ which starts from a view w′′′ <̇ w′′ and reaches line 64 before T begins, with

desiredView = w′′ (T ′′ is either an earlier execution of Traverse by the same process that executes

T ′, or by another process, in which case T ′′ completes and sends a NOTIFY message with w′′

which is then received by the process executing T ′ before T ′ starts). Let ts′′ be the tsmaxi when T ′′

reaches line 64. Notice that T ′′ completes WriteInView(w′′, ∗) before T ′ starts ReadInView(w′′),

and by Lemma 13 when ReadInView(w′′) completes at T ′ its tsmaxi is at least ts′′. Since tsmaxi

at T ′ can only increase from that point on, we get that ts′ ≥ ts′′. It is therefore enough to show

that ts′′ ≥ ts in order to complete the proof. In order to do this, we apply the arguments above

recursively, considering T ′′ instead of T ′, w′′ instead of w′ and ts′′ instead of ts′ accordingly

(recall that w <̇ w′′). Notice that since the prefix of E up to w′ is finite, and since w′′′ <̇ w′′,

i.e., the starting point of T ′′ is before that of T ′ in E , the recursion is finite and the starting point

of the traversal we consider gets closer to Init in each recursive step. Therefore, the recursion

will eventually reach a traversal which starts from an established view α and reaches line 64 with

desiredView equal to an established view β s.t. α ≤̇ w and w <̇ β, which is the base case we

consider.

By definition of E , if w is an established view then for every established view w′ in the prefix

of E before w (not including), some scani(w′) returns a non-empty set. However, the definition

only says that such a scani(w′) exists, and not when it occurs. The following lemma shows that

if w is returned by a Traverse T at time t, then some scan on w′ returning a non-empty set must

complete before time t. Notice that this scan might be performed by a different process than the

one executing T .

Lemma 15. Let T be an execution of Traverse that reaches line 64 at time t with desiredView equal

to w s.t. w 6= Init, and consider the prefix of E up to w: V0, V1, · · · , Vl s.t. V0 = Init and Vl = w.

Then for every k = 0, . . . , l − 1, some scan(Vk) returns a non-empty set before time t.

Proof. Since w 6= Init there exists a traversal T ′ that starts from Vi <̇ w and reaches line 64 with

desiredView = w no later than t. Notice that T ′ can be T if T starts from a view different than

41

w, or alternatively T ′ can be a traversal executed earlier by the same process, or finally, a traversal

at another process that completes before T begins. By Lemma 12, a ReadInView(Vj) performed

during T ′ returns a non-empty set for every j = i, . . . , l − 1. If i = 0 we are done. Otherwise,

Vi 6= Init and we continue the same argument recursively, now substituting Vl with Vi. Since the

considered prefix of E is finite and since each time we recurse we consider a sub-sequence starting

at least one place earlier than the previous starting point, the recursion is finite.

Corollary 16. Let T be an execution of Traverse that returns a view w and let T ′ be an execution

of Traverse invoked after the completion of T , returning a view w′. Then w ≤̇ w′.

Proof. First, note that by Lemma 11 both w and w′ are established. Suppose for the purpose of

contradiction that w′ <̇ w. By Lemma 15, some scan(w′) completes returning a non-empty set

before T completes. Since T ′ returns w′, its last iteration performs a scan(w′) that returns an

empty set. This contradicts Lemma 3 since T ′ starts after T completes.

Corollary 17. Let T be an execution of Traverse that returns a view w and let T ′ be an execution

of Traverse invoked after the completion of T . Then T ′ does not invoke WriteInView(w′, ∗) for any

view w′ <̇ w.

Proof. First, by Lemma 11, WriteInView is always invoked with an established view as a param-

eter. Suppose for the sake of contradiction that WriteInView(w′, ∗) is invoked during T ′ for some

view w′ <̇ w. Since T returns w and w′ <̇ w, by Lemma 15 some scan(w′) completes returning

a non-empty set before T completes. Since T ′ invokes WriteInView(w′, ∗), by Lemma 12 a Read-

InView(w′) returned ∅ during T ′. Thus, during the execution of this ReadInView(w′), a scan(w′)

returned ∅ during T ′. This contradicts Lemma 3 since T ′ starts after T completes.

We associate a timestamp with read and write operations as follows:

Definition 4 (Associated Timestamp). Let o be a read or write operation. We define ats(o), the

timestamp associated with o, as follows: if o is a read operation, then ats(o) is tsmaxi upon the

completion of Traverse during o; if o is a write operation, then ats(o) equals to tsmaxi when its

assignment completes in line 72.

Notice that not all operations have associated timestamps. The following lemma shows that all

complete operations as well as writes that are read-from by some complete read operation have an

associated timestamp.

42

Lemma 18. We show three properties of associated timestamps: (a) for every complete operation

o, ats(o) is well-defined; (b) if o is a read operation that returns v 6= ⊥, then there exists an

o′ = write(v) operation such that ats(o′) is well-defined, and it holds that ats(o) = ats(o′); (c)

if o and o′ are write operations with associated timestamps, then ats(o) 6= ats(o′) and both are

greater than (0,⊥).

Proof. There might be several executions of Traverse during a complete operation, but only one of

these executions completes. Therefore, ats(o) is well-defined for every complete read operation

o. If o is a complete write, then notice that pickNewTSi = TRUE until it is set to FALSE in line 72,

and therefore the condition in line 71 is TRUE until such time. Thus, for a write operation, line 72

executes at least once – in WriteInView which completes right before the completion of a Traverse

during o (notice that WriteInView might be executed earlier as well). Once line 72 executes for

the first time, pickNewTSi becomes FALSE. Thus, this line executes at-most once in every write

operation and exactly once during a complete write operation, which completes the proof of (a).

To show (b), notice that vmaxi equals to v upon the completion of o. Moreover, since v 6= ⊥,

v is not the initial value of vmaxi . Observe the first operation o′ that sets vmaxi to v during its

execution, and notice that vmaxi is assigned only in lines 41 and 72. Suppose for the purpose of

contradiction that the process executing o′ receives v in a REPLY message from another process

and sets vmaxi to v in line 41. A process pi sending a REPLY message always includes vi in this

message, and vi is set only to values received by pi in 〈REQ,W, · · ·〉messages. Thus, some process

sends a 〈REQ,W, · · ·〉 message with v before o′ sets its vmaxi to v. Since a 〈REQ,W, · · ·〉 message

contains the vmaxi of the sender, we conclude that some process must have vmaxi = v before o′ sets

its vmaxi to v, contradiction to our choice of o′. Thus, it must be that o′ sets vmaxi to v in line 72.

We conclude that o′ is a write(v) operation which executes line 72. As mentioned above, this line

is not executed more than once during o′ and therefore ats(o′) is well-defined.

Recall our assumption that only one write operation can be invoked with v. Thus, o′ is the

operation that determines the timestamp with which v later appears in the system (any process that

sets vi to v, also sets tsi to the timestamp sent with v by o′, as the timestamp and value are assigned

atomically together in line 44). This timestamp is ats(o′), determined when o′ executes line 72.

When o sets vmaxi to v, it also sets tsmaxi to ats(o′), as the timestamp and value are always assigned

atomically together in line 41. Thus, ats(o) = ats(o′).

Finally, notice that the associated timestamp of a write operation is always of the form (tsmaxi .num+

43

1, i), which is strictly bigger than (0,⊥). Since i is a unique process identifier, if o and o′ are two

write operations executed by different processes, ats(o) 6= ats(o′). If they are executed by the

same process, since tsmaxi pertains its value between operation invocations, increasing the first

component of the timestamp by one makes sure that ats(o) 6= ats(o′), which completes the proof

of (c).

Lemma 19. Let o and o′ be two complete read or write operations such that o completes before o′

is invoked. Then ats(o) ≤ ats(o′) and if o′ is a write operation, then ats(o) < ats(o′).

Proof. Denote the complete execution of Traverse during o by T , and let w be the view returned

by T and ts be the value of tsmaxi when T returns. Note that ats(o) ≤ ts, since tsmaxi only grows

during the execution of o, and if o is a read operation then ats(o) = ts. Notice that there might be

several incomplete traversals during o′ which are restarted, and there is exactly one traversal that

completes.

There are two cases to consider. The first is that o′ executes a ReadInView(w) that returns.

Before this ReadInView(w) is invoked, T completes a WriteInView(w, ∗), writing a value with

timestamp ts. By Lemma 13, after the ReadInView(w) completes during o′, tsmaxi ≥ ts ≥ ats(o)

and thus, when o′ completes tsmaxi ≥ ats(o). If o′ is a read operation then ats(o′) is equal to

this tsmaxi , which proves the lemma. Suppose now that o′ is a write operation. Then during o′,

pickNewTSi = TRUE until it is set to FALSE in line 72. By Corollary 17, no traversal during o′

invokes WriteInView for any established view α <̇ w. Thus, ReadInView(w) completes during o′

before any WriteInView is invoked. By Lemma 18, ats(o′) is well-defined and therefore exactly

one traversal during o′ executes line 72. As explained, since ReadInView(w) has already completed

when line 72 executes, tsmaxi ≥ ats(o) and then, tsmaxi is assigned (tsmaxi .num + 1, i), implying

that ats(o′) > ats(o).

The second case is that no ReadInView(w) completes during o′. Let T ′ be the traversal which

determines ats(o′). Let w′ be the view from which T ′ starts, and notice that since T ′ sets ats(o′),

it completes ReadInView(w′). By Lemma 11, w′ is an established view. We claim that w <̇ w′.

First, if o′ is a read, then T ′ completes and returns some view w′′. By Corollary 16, w ≤̇ w′′ and

by Lemma 12, T ′ performs a ReadInView on all established views between w′ and w′′. Since o′

does not complete ReadInView(w), it must be that w <̇ w′, which shows the claim. Now suppose

that o′ is a write. By Corollary 17, T ′ does not invoke WriteInView(α, ∗) for any view α <̇ w. It is

44

also impossible that T ′ invokes WriteInView(w, ∗) as it does not complete ReadInView(w). Thus,

it must be that T ′ attains ats(o′) when it invokes WriteInView(α, ∗) where w <̇ α. By Lemma 12,

T ′ performs a ReadInView on all established views between w′ and α. Since it does not complete

ReadInView(w), it must be that w <̇ w′, which shows the claim.

Since w <̇ w′, w′ 6= Init. Moreover, since curViewi = w′ when T ′ starts, there exists a

traversal T ′′ which reaches line 64 with desiredView equal to w′ before T ′ begins. Let ts′′ be

the tsmaxi when T ′′ reaches line 64. By Lemma 14, since w <̇ w′, it holds that ts ≤ ts′′ and

thus ats(o) ≤ ts′′. Since T ′′ performs WriteInView(w′, ∗) and after it completes, T ′ invokes and

completes ReadInView(w′), by Lemma 13 we get that tsmaxi when ReadInView(w′) completes is

at least as high as ts′′. If o′ is a read, then ats(o′) equals to tsmaxi when T ′ completes, and since

tsmaxi only grows during the execution of T ′, we have that ats(o′) ≥ ts′′ ≥ ats(o). If o′ is a write,

then ats(o′) is determined when line 72 executes. Since this occurs only after ReadInView(w′)

completes, tsmaxi is already at least as high as ts′′. Then, line 72 sets ats(o′) to be (tsmaxi .num+1, i)

and therefore ats(o′) > ts′′ ≥ ats(o), which completes the proof.

Theorem 20. Every history σ corresponding to an execution of DynaStore is linearizable.

Proof. We create σ′ from σRW by completing operations of the form write(v) where v is returned

by some complete read operation in σRW . By Lemma 18 parts (a) and (b), each operation which

is now complete in σ′ has an associated timestamp. We next construct π by ordering all com-

plete read and write operations in σ′ according to their associated timestamps, such that a write

with some associated timestamp ts appears before all reads with the same associated timestamp,

and reads with the same associated timestamp are ordered by their invocation times. Lemma 18

part (c) implies that all write operations in π can be totally ordered according to their associated

timestamps.

First, we show that π preserves real-time order. Consider two complete operations o and o′

in σ′ s.t. o′ is invoked after o completes. By Lemma 19, ats(o′) ≥ ats(o). If ats(o′) > ats(o)

then o′ appears after o in π by construction. Otherwise ats(o′) = ats(o) and by Lemma 19 this

means that o′ is a read operation. If o is a write operation, then it appears before o′ since we placed

each write before all reads having the same associated timestamp. Finally, if o is a read, then it

45

appears before o′ since we ordered reads having the same associated timestamps according to their

invocation times.

To prove that π preserves the sequential specification of a MWMR register we must show that a

read always returns the value written by the closest write which appears before it in π, or the initial

value of the register if there is no preceding write in π. Let or be a read operation returning a value

v. If v = ⊥ then since vmaxi and tsmaxi are always assigned atomically together in lines 41 and 72,

we have that ats(or) = (0,⊥), in which case or is ordered before any write in π by Lemma 18

part (c). Otherwise, v 6= ⊥ and by part (b) of Lemma 18 there exists a write(v) operation, which

has the same associated timestamp, ats(or). In this case, this write is placed in π before or, by

construction. By part (c) of Lemma 18, other write operations in π have a different associated

timestamp and thus appear in π either before write(v) or after or.

3.6.3 Liveness

Recall that all active processes take infinitely many steps. As explained in Section 2, termination

has to be guaranteed only when certain conditions hold. Thus, in our proof we make the following

assumptions:

A1 At any time t, fewer than |V (t).members|/2 processes out of V (t).members ∪ P (t).join

are in F (t) ∪ P (t).remove.

A2 The number of different changes proposed in the execution is finite.

Lemma 21. Let ω be any change s.t. ω ∈ desiredView at time t. Then a reconfig(c) operation was

invoked before t such that ω ∈ c.

Proof. If ω ∈ Init, the lemma follows from our assumption that a reconfig(Init) completes by time

0. In the remainder of the proof we assume that ω 6∈ Init. Let T ′ be a traversal that adds ω to

its desiredView at time t′ s.t. t′ is the earliest time when ω ∈ desiredView for any traversal in the

execution. Thus, t′ ≤ t. Suppose for the purpose of contradiction that ω is added to desiredView in

line 60 during T ′. Then ω ∈ c, s.t. c is in the set returned by a scan in line 67. By property NV1, an

update completes before this time with c as parameter. By line 55, ω ∈ desiredView at the traversal

that executes the update, which contradicts our choice of T ′ as the first traversal that includes ω in

desiredView. The remaining option is that ω is added to desiredView in line 48 during T ′. Since no

46

traversal includes ω in desiredView before t′, and since ω 6∈ Init, we conclude that ω 6∈ curViewi.

Thus, ω ∈ cng. This means that T ′ is executed during a reconfig(c) operation invoked before time

t, such that ω ∈ c, which is what we needed to show.

Lemma 22. (a) If w is an established view, then for every change ω ∈ w, a reconfig(c) operation

is invoked in the execution s.t. ω ∈ c; (b) If w is a view s.t. w ∈ Front at time t then for every

change ω ∈ w, a reconfig(c) operation is invoked before t such that ω ∈ c.

Proof. We prove the claim by induction on the position of w in E . If w = Init, then the claim holds

by our assumption that a reconfig(Init) completes by time 0. Assume that the claim holds until

some position k ≥ 0 in E . Let w be the k-th view in E and observe w′, the k + 1-th established

view. By definition of E , there exists a set of changes c such that w′ = w∪ c, where c was returned

by some scan(w) operation in the execution. By property NV1, some update(w, c) operation is

invoked. By line 55, c ⊆ desiredView at the traversal that executes the update. (a) then follows

from Lemma 21. (b) follows from Lemma 21 since by Lemma 5 we have that w ⊆ desiredView

and therefore ω ∈ desiredView at time t.

Corollary 23. The sequence of established views E is finite.

Proof. By Lemma 22, established views contain only changes proposed in the execution. Since all

views in E are totally ordered by the “⊂” relation, and by assumption A2, E is finite.

Definition 5. We define tfix to be any time s.t. ∀t ≥ tfix the following conditions hold:

1. V (t) = V (tfix)

2. P (t) = P (tfix)

3. (V (t).join ∪ P (t).join) ∩ F (t) = (V (tfix).join ∪ P (tfix).join) ∩ F (tfix)

(i.e., all processes in the system that crash in the execution have already crashed by tfix).

The next lemma proves that tfix is well-defined.

Lemma 24. There exists tfix as required by Definition 5.

Proof. V (t) contains only changes that were proposed in the execution (for which there is a re-

configuration proposing them that completes). Since no element can leave V (t) once it is in this

47

set, V (t) only grows during the execution, and from assumption A2 there exists a time tv start-

ing from which V (t) does not change. No reconfig operation proposing a change ω 6∈ V (t)

can complete from tv onward, and therefore no element leaves the set P from that time and P

can only grow. From assumption A2 there exists a time tp starting from which P (t) does not

change. Thus, from time tvp = max(tv, tp) onward, V and P do not change. By assumption A2,

V (tvp).join∪ P (tvp).join is a finite set of processes. Thus, we can take tfix to be any time after tvp

s.t. all processes from this set that crash in the execution have already crashed by tfix.

Recall that an active process is one that did not fail in the execution, whose Add was proposed

and whose Remove was never proposed.

Lemma 25. If w is a view in Front s.t. V (tfix) ⊆ w, then at least a majority of w.members are

active.

Proof. By Lemma 22, all changes in w were proposed in the execution. Since all changes pro-

posed in the execution are proposed by time tfix, w ⊆ V (tfix)∪P (tfix). Denote the set of changes

w\V (tfix) byAC. Notice thatAC ⊆ P (tfix). Each element inAC either adds or removes one pro-

cess. Observe the set of members inw, and let us build this set starting withM = V (tfix).members

and see how this set changes as we add elements from AC. First, consider changes of the form

(+, j) in AC. Each change of this form adds a member to M , unless j ∈ V (tfix).remove, in

which case it has no effect on M . A change of the form (−, k) removes pk from M . According

to this, we can write w.members as follows: w.members = (V (tfix).members ∪ Jw) \ Rw, where

Jw ⊆ P (tfix).join \ V (tfix).remove and Rw ⊆ P (tfix).remove. We denote V (tfix).members ∪ Jw
by L and we will show that a majority of L is active. Since Rw contains only processes that are not

active, when removing them from L (in order to get w.members), it is still the case that a majority

of the remaining processes are active, which proves the lemma.

We next prove that a majority of L are active. By definition of tfix, all processes proposed for

removal in the execution have been proposed by time tfix. Notice that no process in V (tfix).members∪
Jw is also in V (tfix).remove by definition of this set, and thus, if the removal of a process in L was

proposed by time tfix, this process is in P (tfix).remove. Since L ⊆ V (tfix).join ∪ P (tfix).join,

by definition of tfix every process in L that crashes in the execution does so by time tfix. Thus,

F (tfix) ∪ P (tfix).remove includes all processes in L that are not active. Assumption A1 says that

fewer than |V (tfix).members|/2 out of V (tfix).members∪P (tfix).join are inF (tfix)∪P (tfix).remove.

48

Thus, fewer than |V (tfix).members|/2 out of V (tfix).members ∪ Jw, which equals to L, are in

F (tfix) ∪ P (tfix).remove. This means that a majority of the processes in L are active.

Lemma 26. Let pi be an active process and w be an established view s.t. i ∈ w.members. Then

i ∈ w′.members for every established view w′ s.t. w ≤̇ w′.

Proof. Since w ⊆ w′ and i ∈ w.members, we have that (+, i) ∈ w′. Since pi is active, no

reconfig(c) is invoked s.t. (−, i) ∈ c, and by Lemma 22 we have that (−, i) 6∈ w′. Thus, i ∈
w’.members.

Lemma 27. If pi and pj are active processes and pi sends a message to pj during the execution of

DynaStore, then pj eventually receives this message.

Proof. Recall that the link between pi and pj is reliable. Since pi and pj are active, it remains to

show that if the message is sent at time t then j ∈ V (t).join∪P (t).join. Note that pi sends messages

only to processes inw.members, wherew is a view in Front during Traverse, and therefore (+, j) ∈
w at time t. By Lemma 22, a reconfig(c) was invoked before time t s.t. (+, j) ∈ c. If such operation

completes by time t, then j ∈ V (t).join, and otherwise j ∈ P (t).join.

Lemma 28. If a reconfig operation o completes in which Traverse returns the view w, then every

active process pj s.t. j ∈ w.members eventually receives a message 〈NOTIFY, w̃〉 where w ≤̇ w̃.

Proof. Since o completes, there is at least one complete reconfig operation in the execution. Let

wmax be a view returned by a Traverse during some complete reconfig operation, such that no

reconfig operation completes in the execution during which Traverse returns a view w′ where

wmax <̇ w′. wmax is well defined since every view returned from Traverse is established (Lemma 11),

and E is finite by Corollary 23. Notice that w ≤̇ wmax. We next prove that V (tfix) ⊆ wmax.

Suppose for the purpose of contradiction that there exists a change ω ∈ V (tfix) \ wmax. Since

ω ∈ V (tfix), a reconfig(c) operation completes where ω ∈ c. By Lemma 10, Traverse during

this operation returns a view w′ containing ω. By Lemma 11 w′ is established, and recall that all

established views are totally ordered by the “⊂” relation. Since ω ∈ w′ \ wmax it must be that

wmax <̇ w′. This contradicts the definition of wmax. We have shown that V (tfix) ⊆ wmax, which

implies that a majority of wmax are active, by Lemma 25.

Since a reconfig operation completes where Traverse returns wmax, a 〈NOTIFY, wmax〉message

is sent in line 29, and it is received by a majority of wmax.members. Each process receiving

49

this message forwards it in line 77. Since a majority of wmax are active, and every two majority

sets intersect, one of the processes that forwards this message is active. By Lemma 26, since

w ≤̇ wmax, every active process pj s.t. j ∈ w.members is also in wmax.members. By Lemma 27,

every such pj eventually receives this message.

Lemma 29. Consider an operation executed by an active process pi that invokes Traverse at time

t0 starting from curViewi = initView. If no 〈NOTIFY, newV iew〉 messages are received by pi

from time t0 onward s.t. initView ⊂ newView then Traverse eventually returns and the operation

completes.

Proof. Since operations are enabled at pi only once i ∈ curViewi.join (lines 11 and 81) and

curViewi only grows during the execution, i ∈ initView.join. By Lemma 7, for every view w

which appears in Front during the traversal it holds that initView ⊆ w and therefore i ∈ w.join.

Since pi is active, no reconfig(c) is invoked such that (−, i) ∈ c. By Lemma 22 we have that

(−, i) 6∈ w and therefore i ∈ w.members. This means that pi does not halt in line 53, and by

Lemma 27 pi receives every message sent to it by active processes in w.

Let w be any view that appears in Front during the execution of Traverse. Notice that w is

not necessarily established, however we show that V (tfix) ⊆ w. Suppose for the purpose of

contradiction that there exists ω ∈ V (tfix) \w. Since initView ⊆ w, ω ∈ V (tfix) \ initView. Since

ω ∈ V (tfix), a reconfig(c) operation completes where ω ∈ c, and by Lemma 10 this operation

returns a view w′ s.t. ω ∈ w′. By Lemma 11 both initView and w′ are established, and since

ω ∈ w′ \ initView, we get that initView <̇ w′. Since i ∈ initView.members and pi is active, by

Lemma 26 we have that i ∈ w’.members. By Lemma 28, a 〈NOTIFY, w′′〉message where w′ ≤̇ w′′

is eventually received by pi. Since initView <̇ w′′, this contradicts the assumption of our lemma.

We have shown that V (tfix) ⊆ w, and from Lemma 25 there exists an active majority Q

of w.members. By Lemma 27, all messages sent by pi to w.members are eventually received by

every process in Q, and every message sent to pi by a process in Q is eventually received by pi.

Thus all invocations of ContactQ(∗,w.members), which involves communicating with a majority

of w.members, eventually complete, and so do invocations of scani and updatei by property NV5.

Given that all such procedures complete during a Traverse and it is not restarted (this follows from

the statement of the lemma since no NOTIFY messages that can restart Traverse are received at

pi starting from t0), it is left to prove that the termination condition in line 63 eventually holds.

50

After Traverse completes, NotifyQ(w) is invoked where w is a view returned from Traverse. By

Lemma 9, Front = {w} when Traverse returns, and therefore NotifyQ(w) completes as well since

there is an active majority in w.members, as explained above.

By assumption A2 and Lemma 22, the number of different views added to Front in the ex-

ecution is finite. Suppose for the purpose of contradiction that Traverse does not terminate and

consider iteration k of the loop starting from which views are not added to Front unless they have

been already added before the k-th iteration (notice that by Lemma 8, when a view is removed

from Front, it can never be added again to Front; thus, from iteration k onward views can only

be removed from Front and the additions have no affect in the sense that they can add views that

are already present in Front but not new views or views that have been removed from Front). We

first show that in some iteration k′ ≥ k, |Front| = 1. Consider any iteration where |Front| > 1,

and let w be the view chosen from Front in line 52 in this iteration. By Lemma 5, in this case

w 6= desiredView, as desiredView contains the changes of all views in Front, and |Front| > 1

means that there is at least one view in Front which contains changes that are not in w. Then,

line 55 executes, and by Lemma 2, ReadInView returns a non-empty set. Next, the condition in

line 57 evaluates to true and w is removed from Front in line 58. Since no new additions are made

to Front starting with the k-th iteration (i.e., only a view that is already in Front can be added

in line 61), the number of views in Front decreases by 1 in this iteration. Thus, there exists an

iteration k′ ≥ k where only a single view remains in Front.

Observe iteration k′, where |Front| = 1, and let w be the view chosen from Front in line 52 in

this iteration. Suppose for the purpose of contradiction that the condition on line 57 evaluates to

true. Then, w is removed from Front, and the loop on lines 59–61 executes at least once, adding

views to Front. By Lemma 8, the size of these views is bigger thanw, and therefore every such view

is different than w, contradicting the fact that starting from iteration k only views that are already

in Front can be added to Front (recall that k′ ≥ k). Thus, starting from iteration k′ the condition

on line 57 evaluates to false, and WriteInView is invoked in iteration k′. Assume for the sake of

contradiction that WriteInView does not return ∅. In this case, the loop would continue and w (the

only view in Front) is chosen again from Front in iteration k′ + 1. Then, ReadInView(w) returns a

non-empty set by Lemma 3 and the condition in line 57 evaluates to true, which cannot happen, as

explained above. Thus, in iteration k′, the condition in line 57 evaluates to false, WriteInView(w, ∗)
returns ∅, and the loop terminates.

51

Theorem 30. DynaStore preserves Dynamic Service Liveness (Definition 2). Specifically, (a) Even-

tually, the enable operations event occurs at every active process that was added by a complete re-

config operation, and (b) Every operation o invoked by an active process pi eventually completes.

Proof. (a) Let pi be an active process that is added to the system by a complete reconfig operation.

If i ∈ Init.join then the operations at pi are enabled from the time it starts taking steps (line 11).

Otherwise, a reconfig adding pi completes, and let w be the view returned by Traverse during this

operation. By Lemma 10, (+, i) ∈ w. Since pi is active, no reconfig(c) operation is invoked s.t.

(−, i) ∈ c. By Lemma 22 we get that (−, i) 6∈ w, which means that i ∈ w.members. By Lemma 28,

pi eventually receives a 〈NOTIFY, w′〉 message such that w ≤̇ w′. By Lemma 26, (+, i) ∈ w′, i.e.,

i ∈ w′.join. This causes operations at pi to be enabled in line 81 (if they were not already enabled

by that time).

(b) Every operation o invokes Traverse and during its execution, whenever a 〈NOTIFY, newView〉
message is received by pi s.t. curViewi ⊂ newView, curViewi becomes newView in line 80, and

Traverse is restarted. By Corollary 23, E is finite. By Lemma 11, only established views are sent in

NOTIFY messages. Thus, the number of times a Traverse can be restarted is finite and at some point

in the execution, no more 〈NOTIFY, newView〉 messages can be received s.t. curViewi ⊂ newView.

By Lemma 29, Traverse eventually returns and the operation completes.

52

Chapter 4

Untrusted Storage

Many providers now offer a wide variety of flexible online data storage services, ranging from

passive ones, such as online archiving, to active ones, such as collaboration and social networking.

They have become known as computing and storage “clouds.” Such clouds allow users to abandon

local storage and use online alternatives, such as Amazon S3, Nirvanix CloudNAS, or Microsoft

SkyDrive. Some cloud providers utilize the fact that online storage can be accessed from any lo-

cation connected to the Internet, and offer additional functionality; for example, Apple MobileMe

allows users to synchronize common applications that run on multiples devices. Clouds also offer

computation resources, such as Amazon EC2, which can significantly reduce the cost of maintain-

ing such resources locally. Finally, online collaboration tools, such as Google Apps or versioning

repositories for source code, make it easy to collaborate with colleagues across organizations and

countries.

The remainder of this thesis deals with tools and semantics enabling clients that use online

cloud services to monitor or audit them, making sure that the cloud behaves as expected. In this

chapter we motivate this study of untrusted storage and define a system model used in the following

chapters. Sections 4.1 and 4.2 are based on a paper published in the ACM SIGACT News [14].

A preliminary version of the material in Section 4.3 appeared in 2009 IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN) [12].

53

4.1 What Can Go Wrong?

Although the advantages of using clouds are unarguable, there are many risks involved with re-

leasing control over your data. One concern that many users are aware of is loss of privacy. Never-

theless, the popularity of social networks and online data sharing repositories suggests that many

users are willing to forfeit privacy, at least to some extent. Setting privacy aside, we now briefly

survey what else “can go wrong” when your data is stored in a cloud.

Availability is a major concern with any online service, as such services are bound to have some

downtime. This was recently the case with Google Mail1, Hotmail2, Amazon S33 and MobileMe4.

Users must also understand their service contract with the storage provider. For example, what

happens if your payment for the storage is late? Can the storage provider decide that one of your

documents violates its policy and terminate your service, denying you access to the data? Even

the worst scenarios sometimes come true — a cloud storage-provider named LinkUp (MediaMax)

went out of business last year after losing 45% of stored client data due to an error of a system

administrator5. This incident also revealed that it is sometimes very costly for storage providers to

keep storing old client data, and they look for ways to offload this responsibility to a third party.

Can a client make sure that his data is safe and available?

No less important is guaranteeing the integrity of remotely stored data. One risk is that data

can be damaged while in transit to or from the storage provider. Additionally, cloud storage, like

any remote service, is exposed to malicious attacks from both outside and inside the provider’s

organization. For example, the servers of the Red Hat Linux distribution were recently attacked

and the intruder managed to introduce a vulnerability and even sign some packages of the Linux

operating-system distribution6. In its Security Advisory about the incident, Red Hat stated:

. . . we remain highly confident that our systems and processes prevented the intrusion

from compromising RHN or the content distributed via RHN and accordingly believe

that customers who keep their systems updated using Red Hat Network are not at risk.

1http://googleblog.blogspot.com/2009/02/current-gmail-outage.html
2http://www.datacenterknowledge.com/archives/2009/03/12/downtime-for-hotmail
3http://status.aws.amazon.com/s3-20080720.html
4http://blogs.zdnet.com/projectfailures/?p=908
5http://blogs.zdnet.com/projectfailures/?p=999
6https://rhn.redhat.com/errata/RHSA-2008-0855.html

54

Unauthorized access to user data can occur even when no hackers are involved, e.g., resulting

from a software malfunction at the provider. Such data breach occurred in Google Docs7 during

March 2009 and led the Electronic Privacy Information Center to petition8 with the Federal Trade

Commission asking to “open an investigation into Google’s Cloud Computing Services, to de-

termine the adequacy of the privacy and security safeguards. . . ”. Another example, where data

integrity was compromised as a result of provider malfunctions, is a recent incident with Ama-

zon S3, where users experienced silent data corruption9. Later Amazon stated in response to user

complaints10:

We’ve isolated this issue to a single load balancer that was brought into service at

10:55pm PDT on Friday, 6/20. It was taken out of service at 11am PDT Sunday,

6/22. While it was in service it handled a small fraction of Amazon S3’s total re-

quests in the US. Intermittently, under load, it was corrupting single bytes in the byte

stream . . . Based on our investigation with both internal and external customers, the

small amount of traffic received by this particular load balancer, and the intermittent

nature of the above issue on this one load balancer, this appears to have impacted a

very small portion of PUTs during this time frame.

A further complication arises when multiple users collaborate using cloud storage (or simply

when one user synchronizes multiple devices). Here, consistency under concurrent access must be

guaranteed. A possible solution that comes to mind is using a Byzantine fault-tolerant replication

protocol within the cloud (e.g., [34]); indeed this solution can provide perfect consistency and at the

same time prevent data corruption caused by some threshold of faulty components within the cloud.

However, since it is reasonable to assume that most of the servers belonging to a particular cloud

provider run the same system installation and are most likely to be physically located in the same

place (or even run on the same machine), such protocols might be inappropriate. Moreover, cloud-

storage providers might have other reasons to avoid Byzantine fault-tolerant consensus protocols,

as explained by Birman et al. [7]. Finally, even if this solves the problem from the perspective

of the storage provider, in this thesis we are more interested in the users’ perspective. A user
7http://blogs.wsj.com/digits/2009/03/08/1214/
8http://cloudstoragestrategy.com/2009/03/trusting-the-cloud-the-ftc-and-google.

html
9http://blogs.sun.com/gbrunett/entry/amazon_s3_silent_data_corruption

10http://developer.amazonwebservices.com/connect/thread.jspa?threadID=22709

55

perceives the cloud as a single trust domain and puts trust in it, whatever the precautions taken by

the provider internally might be; in this sense, the cloud is not different from a single remote server.

Note that when multiple clouds from different providers are used, running Byzantine-fault-tolerant

protocols across several clouds might be appropriate.

4.2 What Can We Do?

Users can locally maintain a small amount of trusted memory and use well-known cryptographic

methods in order to significantly reduce the need for trust in the storage cloud. A user can verify the

integrity of his remotely stored data by keeping a short hash in local memory and authenticating

server responses by re-calculating the hash of the received data and comparing it to the locally

stored value. When the volume of data is large, this method is usually implemented using a hash

tree [60], where the leaves are hashes of data blocks, and internal nodes are hashes of their children

in the tree. A user is then able to verify any data block by storing only the root hash of the

tree corresponding to his data [8]. This method requires a logarithmic number of cryptographic

operations in the number of blocks, as only one branch of the tree from the root to the hash of an

actual data block needs to be checked. Hash trees have been employed in many storage-system

prototypes (TDB [54] and SiRiUS [32] are just two examples) and are used commercially in the

Solaris ZFS filesystem11. Research on efficient cryptographic methods for authenticating data

stored on servers is an active area [63, 65].

Although these methods permit a user to verify the integrity of data returned by a server, they

do not allow a user to ascertain that the server is able to answer a query correctly without actually

issuing that particular query. In other words, they do not assure the user that all the data is “still

there”. As the amount of data stored by the cloud for a client can be enormous, it is impractical

(and might also be very costly) to retrieve all the data, if one’s purpose is just to make sure that it is

stored correctly. In recent work, Juels and Kaliski [39] and Ateniese et al. [4] introduced protocols

for assuring a client that his data is retrievable with high probability, under the name of Proofs of

Retrievability (PORs) and Proofs of Data Possession (PDP), respectively. They incur only a small,

nearly constant overhead in communication complexity and some computational overhead by the

server. The basic idea in such protocols is that additional information is encoded in the data prior to

11http://blogs.sun.com/bonwick/entry/zfs_end_to_end_data

56

storing it. To make sure that the server really stores the data, a user submits challenges for a small

sample of data blocks, and verifies server responses using the additional information encoded in

the data. Recently, some improved schemes have been proposed and prototype systems have been

implemented [70, 9, 10].

The above tools allow a single user to verify the integrity and availability of his own data. But

when multiple users access the same data, they cannot guarantee integrity between a writer and

multiple readers. Digital signatures may be used by a client to verify integrity of data created by

others. Using this method, each client needs to sign all his data, as well as to store an authenticated

public key of the others or the root certificate of a public-key infrastructure in trusted memory. This

method, however, does not rule out all attacks by a faulty or malicious storage service. Even if all

data is signed during write operations, the server might omit the latest update when responding to

a reader, and even worse, it might “split its brain,” hiding updates of different clients from each

other. Some solutions use trusted components in the system [21, 78] which allow clients to audit

the server, guaranteeing atomicity even if the server is faulty. In Section 5.4 we show that without

additional trust assumptions, the atomicity of all operations in the sense of linearizability [37]

cannot be guaranteed; in fact, we show that even weaker consistency notions, such as sequential

consistency [43], are not possible either. Though a user may become suspicious when he does not

see any updates from a collaborator, the user can only be certain that the server is not holding back

information by communicating with the collaborator directly; such user-to-user communication is

indeed employed in some systems for this purpose.

If not atomicity, then what consistency can be guaranteed to clients? The first to address this

problem were Mazières and Shasha [59], who defined a so-called forking consistency condition.

This condition ensures that if certain clients’ perception of the execution becomes different, for

example if the server hides a recent value of a completed write from a reader, then these two clients

will never again see each other’s later operations, or else the server will be exposed as faulty. This

prevents a situation where one user sees part of the updates issued by another user, and the server

can choose which ones. Moreover, fork-consistency prevents Alice from seeing new updates by

Bob and by Carol, while Bob sees only Alice’s updates, where Alice and Bob might think they are

mutually consistent, though they actually see different states. Essentially, with fork consistency,

each client has a linearizable view of a sub-sequence of the execution, and client views can only

become disjoint once they diverge from a common prefix; a simple definition can be found in

57

Section 5.2. The first protocol of this kind, realizing fork-consistent storage, was implemented in

the SUNDR system [48].

To save cost and to improve performance, several weaker consistency conditions have been

proposed. The notion of fork-sequential-consistency, introduced by Oprea and Reiter [64], allows

client views to violate real-time order of the execution. The fork-* consistency condition due to

Li and Mazières [49] allows the views of clients to include one more operation without detecting

an attack after their views have diverged. This condition was used to provide meaningful service

in a Byzantine-fault-tolerant replicated system, even when more than a third of the replicas are

faulty [49].

Although consistency in the face of failures is crucial, it is no less important that the service

is unaffected in the common case by the precautions taken to defend against a faulty server. In

Section 5.5 we show that for all previously existing forking consistency conditions, and thus in

the protocols that implement them with a single remote server, concurrent operations by different

clients may block each other even if the provider is correct. More formally, these consistency

conditions do not allow for protocols that are wait-free [36] when the storage provider is correct.

In Section 5.7 we introduce a new consistency notion, called weak fork-linearizability, that does

not suffer from this limitation, and yet provides meaningful semantics to clients.

One disadvantage of forking consistency conditions is that they are not as intuitive to under-

stand as atomicity, for example. Aiming to provide simpler guarantees, we introduce the notion of a

Fail-Aware Untrusted Service in Chapter 6. Its basic idea is that each user should know which of his

operations are seen consistently by each of the other users, and in addition, find out whenever the

server violates atomicity. When all goes well, each operation of a user eventually becomes “stable”

with respect to every other correct user, in the sense that they have a common view of the execution

up to this operation. Thus, in all cases, users get either positive notifications indicating operation

stability, or negative notifications when the server violates atomicity. Our Fail-Aware Untrusted

Services rely on the well-established notions of eventual consistency [74] and fail-awareness [29],

and adapt them to this setting. The FAUST protocol [12], presented in Chapter 6, implements this

notion for a storage service, using an underlying weak fork-linearizable storage protocol. Intu-

itively, FAUST indicates stability as soon as additional information is gathered, either through the

storage protocol, or whenever the clients communicate directly. However, all complete operations,

even those not yet known to be stable, preserve causality [38]. Moreover, when the storage server

58

is correct, FAUST guarantees strong safety (linearizability) and liveness (wait-freedom).

Although FAUST is an important step towards providing tools and semantics for secure inter-

action with untrusted cloud storage, several aspects in FAUST limit its usability in practice. The

stability notion in FAUST is not transitive and requires users to explicitly track the other clients in

the system and to assess their relation to the data accessed by the operation. FAUST is therefore

not easily amenable to dynamic changes in the set of clients. Furthermore, global consistency in

FAUST (among all clients) is guaranteed only if no client ever crashes. FAUST does not work

with commodity storage – like other proposals it integrates storage operations with the consistency

mechanism and moreover it does not allow multiple clients to modify the same object, which is

the usual semantics of commodity storage services.

These shortcomings led to the development of Venus [71], a system presented in Chapter 7. In

Venus, stability indications simply specify the last operation of the client that has been verified to

be globally consistent, which is easy to integrate with an application. Venus eliminates the need for

clients to track one another, and enables dynamic client changes. Unlike the previous protocols,

Venus allows all clients to modify the same shared object. Most importantly, the design of Venus is

modular, so that it can be deployed with a commodity storage service. We deployed and evaluated

Venus with the Amazon S3 cloud storage service, demonstrating its usefulness in practice.

4.3 System Model

This section formally defines the system model we use in the following chapters to represent un-

trusted storage remotely accessed by clients.

We consider an asynchronous distributed system consisting of n clients C1, . . . , Cn and a

server S. Every client is connected to S through an asynchronous reliable channel that delivers

messages in first-in/first-out (FIFO) order. Clients do not communicate with each other (we relax

this restriction in later chapters to allow infrequent offline communication among clients). The

clients and the server are collectively called parties. System components are modeled as deter-

ministic I/O Automata [51]. An automaton has a state, which changes according to transitions

that are triggered by actions. A protocol P specifies the behaviors of all parties. An execution of

P is a sequence of alternating states and actions, such that state transitions occur according to the

specification of system components. The occurrence of an action in an execution is called an event.

59

All clients follow the protocol, and any number of clients can fail by crashing. The server

might be faulty and deviate arbitrarily from the protocol. A party that does not fail in an execution

is correct.

Operations and histories. Our goal is to emulate a shared functionality F , i.e., a shared object,

to the clients. Clients interact with F via operations provided by F . As operations take time, they

are represented by two events occurring at the client, an invocation and a response. A history of

an execution σ consists of the sequence of invocations and responses of F occurring in σ. An

operation is complete in a history if it has a matching response. For a sequence of events σ,

complete(σ) is the maximal sub-sequence of σ consisting only of complete operations.

An operation o precedes another operation o′ in a sequence of events σ, denoted o <σ o′,

whenever o completes before o′ is invoked in σ. A sequence of events π preserves the real-time

order of a history σ if for every two operations o and o′ in π, if o <σ o
′ then o <π o

′. Two operations

are concurrent if neither one of them precedes the other. A sequence of events is sequential if

it does not contain concurrent operations. For a sequence of events σ, the sub-sequence of σ

consisting only of events occurring at client Ci is denoted by σ|Ci
. For some operation o, the prefix

of σ that ends with the last event of o is denoted by σ|o.

An operation o is said to be contained in a sequence of events σ, denoted o ∈ σ, whenever at

least one event of o is in σ. Thus, every sequential sequence of events corresponds naturally to

a sequence of operations. Analogously, every sequence of operations corresponds naturally to a

sequential sequence of events.

An execution is well-formed if the sequence of events at each client consists of alternating

invocations and matching responses, starting with an invocation. An execution is fair, informally,

if it does not halt prematurely when there are still steps to be taken or messages to be delivered

(see the standard literature for a formal definition [51]).

Read/write registers. A functionality F is defined via a sequential specification, which indicates

the behavior of F in sequential executions.

The functionality considered in this thesis is a storage service composed of registers. Each

register X stores a value x from a domain X and offers read and write operations. Initially, a

register holds a special value ⊥ 6∈ X . When a client Ci invokes a read operation, the register

60

responds with a value x, denoted readi(X)→ x; when Ci invokes a write operation with value x,

denoted writei(X, x), the response of X is OK. By convention, an operation with subscript i

is executed by Ci. The sequential specification requires that each read operation returns the value

written by the most recent preceding write operation, if there is one, and the initial value otherwise.

We assume that all values that are ever written to a register in the system are unique, i.e., no value

is written more than once. This can easily be implemented by including the identity of the writer

and a sequence number together with the stored value.

Specifically, the functionality F considered in Chapter 6 is composed of n single-writer/multi-

reader (SWMR) registers X1, . . . , Xn, where every client may read from every register, but only

client Ci can write to register Xi for i = 1, . . . , n. The registers are accessed independently of

each other. In other words, the operations provided by F to Ci are writei(Xi, x) and readi(Xj)

for j = 1, . . . , n. In Chapter 7 we consider a single multi-writer/multi-reader (MWMR) register,

which all clients can read and write.

Cryptographic primitives. The protocols in this thesis use hash functions and digital signatures

from cryptography. Because the focus of this work is on concurrency and correctness and not on

cryptography, we model both as ideal functionalities implemented by a trusted entity.

A hash function maps a bit string of arbitrary length to a short, unique representation. The

functionality provides only a single operation H; its invocation takes a bit string x as parameter

and returns an integer h with the response. The implementation maintains a list L of all x that have

been queried so far. When the invocation contains x ∈ L, then H responds with the index of x in

L; otherwise, H adds x to L at the end and returns its index. This ideal implementation models

only collision resistance but no other properties of real hash functions. The server may also invoke

H .

The functionality of the digital signature scheme provides two operations, sign and verify. The

invocation of sign takes an index i ∈ {1, . . . , n} and a string m ∈ {0, 1}∗ as parameters and

returns a signature s ∈ {0, 1}∗ with the response. The verify operation takes the index i of a client,

a putative signature s, and a string m ∈ {0, 1}∗ as parameters and returns a Boolean value b ∈
{FALSE, TRUE} with the response. Its implementation satisfies that verify(i, s,m) → TRUE for

all i ∈ {1, . . . , n} and m ∈ {0, 1}∗ if and only if Ci has executed sign(i,m) → s before, and

verify(i, s,m) → FALSE otherwise. Only Ci may invoke sign(i, ·) and S cannot invoke sign.

Every party may invoke verify.

61

Chapter 5

Consistency Semantics for Untrusted

Storage

This chapter defines consistency semantics for the untrusted storage model, and studies their prop-

erties. We start by re-stating in Section 5.1 some well-known consistency and liveness properties

used to characterize distributed shared memory. Section 5.2 surveys known “forking” consis-

tency conditions. Even though these conditions were previously defined by others, we consider

the formal statement of these semantics to be a contribution of this work. Section 5.3 introduces

the notion of Byzantine emulation, i.e., the emulation of shared memory using untrusted storage.

Section 5.4 motivates the need for forking semantics showing that traditional semantics cannot

be guaranteed when the server is faulty. Section 5.5 shows a limitation inherent in all previously

known forking consistency conditions, namely that they hamper service availability in the common

case, when the storage provider is correct. This motivates the need to weaken forking conditions

even further. Section 5.6 compares forking conditions with causal consistency, showing that some

variations of forking consistency are too weak, in the sense that they may violate causality. Finally,

in Section 5.7 we introduce a new notion of weak fork-linearizability which on the one hand does

not affect availability when the provider is correct, and on the other hand it is strong enough and

in particular implies causality. This notion underlies our algorithms presented in the following

chapters. Parts of this chapter appeared in [12], [13] and [15].

62

5.1 Traditional Consistency and Liveness Properties

Our definitions rely on the notion of a possible view of a client, defined as follows.

Definition 6 (View). A sequence of events π is called a view of a history σ at a client Ci w.r.t. a

functionality F if σ can be extended (by appending zero or more responses) to a history σ′ such

that:

1. π is a sequential permutation of some sub-sequence of complete(σ′);

2. π|Ci
= complete(σ′)|Ci

; and

3. π satisfies the sequential specification of F .

Intuitively, a view π of σ at Ci contains at least all those operations that either occur at Ci or are

apparent from Ci’s interaction with F . Note there are usually multiple views possible at a client.

If two clients Ci and Cj do not have a common view of a history σ w.r.t. a functionality F , we say

that their views of σ are inconsistent with each other, w.r.t. F .

One of the most important consistency conditions for concurrent access is sequential consis-

tency [43].

Definition 7 (Sequential consistency [43]). A history σ is sequentially consistent w.r.t. a function-

ality F if there exists a sequence of events π that is a view of σ w.r.t. F at all clients.

Intuitively, sequential consistency requires that every operation takes effect at some point and

occurs somewhere in the permutation π. This guarantees that every write operation is eventually

seen by all clients. In other words, if an operation writes v to a register X , there cannot be an

infinite number of subsequent read operations from register X that return a value written to X

prior to v.

A stronger consistency condition is linearizability [37]. Whereas sequential consistency pre-

serves the real-time order only for operations by the same client, linearizability guarantees that

real-time order is preserved for all operations.

Definition 8 (Linearizability [37]). A history σ is linearizable w.r.t. a functionality F if there

exists a sequence of events π such that:

1. π is a view of σ at all clients w.r.t. F ; and

63

2. π preserves the real-time order of σ.

The notion of causal consistency for shared memory [38] weakens linearizability and allows

clients to observe different orders of those write operations that do not influence each other. It

is based on the notion of potential causality [42]. Recall that F consists of registers. For two

operations o and o′ in a history σ, we say that o causally precedes o′, denoted o →σ o
′, whenever

one of the following conditions holds:

1. Operations o and o′ are both invoked by the same client and o <σ o
′;

2. Operation o is a write operation of a value x to some register X and o′ is a read operation

from X returning x; or

3. There exists an operation o′′ ∈ σ such that o→σ o
′′ and o′′ →σ o

′.

In the literature, there are several variants of causal consistency. Here, we formalize the intu-

itive definition of causal consistency by Hutto and Ahamad [38].

Definition 9 (Causal consistency). A history σ is causally consistent w.r.t. a functionality F if for

each client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;

2. For each operation o ∈ πi, all write operations that causally precede o in σ are also in πi; and

3. For all operations o, o′ ∈ πi such that o→σ o
′, it holds that o <πi

o′.

Finally, a shared functionality needs to ensure liveness. A desirable requirement is that clients

should be able to make progress independently of the actions or failures of other clients. A notion

that formally captures this idea is wait-freedom [36].

Definition 10 (Wait-freedom). A history is wait-free if every operation by a correct client is com-

plete.

By slight abuse of terminology, we say that an execution satisfies a notion such as linearizabil-

ity, causal consistency, wait-freedom, etc., if its history satisfies the respective condition.

64

5.2 Forking Consistency Conditions

The notion of fork-linearizability [59] (originally called fork consistency) requires that when an

operation is observed by multiple clients, the history of events occurring before the operation is

the same. For instance, when a client reads a value written by another client, the reader is assured

to be consistent with the writer up to the write operation.

Definition 11 (Fork-linearizability). A history σ is fork-linearizable w.r.t. a functionality F if for

each client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;

2. πi preserves the real-time order of σ;

3. (No-join) For every client Cj and every operation o ∈ πi ∩ πj , it holds that πi|o = πj|o.

Oprea and Reiter [64] define fork-sequential-consistency by replacing the real-time order con-

dition of fork-linearizability with:

2. (local-real-time-order) For every client Cj , the sequence πi|Cj
preserves the real-time order

of σ.

Because preservation of real-time order is required only for a subset of every view, fork-sequential-

consistency is weaker than fork-linearizability. Note that the local-real-time-order condition is

weaker than the third condition of causal consistency, since all operations of each client are causally

ordered. Oprea and Reiter [64] do not give an emulation protocol for this condition, and indeed,

we show (in Section 5.5) that no such protocol is wait-free.

Li and Mazières [49] relax the notion for fork-linearizability differently, and define fork-*-

linearizability (under the name of fork-* consistency) by replacing the no-join condition of fork-

linearizability with:

4. (At-most-one-join) For every client Cj and every two operations o, o′ ∈ πi ∩ πj by the same

client such that o precedes o′, it holds that πi|o = πj|o.

The at-most-one-join condition of fork-*-linearizability guarantees to a client Ci that its view

is identical to the view of any other client Cj up to the penultimate operation of Cj that is also

in the view of Ci. Hence, if a client reads values written by two operations of another client, the

reader is assured to be consistent with the writer up to the first of these writes.

65

Oddly, fork-*-linearizability still requires that the real-time order of all operations in the view

is preserved, including the last operation of every other client. Furthermore, fork-*-linearizability

does not preserve linearizability when the server is correct and permits wait-free client operations

at the same time, as we show in Section 5.5.

5.3 Byzantine Emulation

We are now ready to define the requirements on our service. When the server is correct, it should

guarantee the standard notion of linearizability. Otherwise, one of the three forking consistency

conditions mentioned above must hold. In the following, let Γ be one of fork, fork-*, or weak fork

(defined later in this chapter).

Definition 12 (Γ-linearizable Byzantine emulation). A protocol P emulates a functionality F on

a Byzantine server S with Γ-linearizability whenever the following conditions hold:

1. If S is correct, the history of every fair and well-formed execution of P is linearizable w.r.t.

F ; and

2. The history of every fair and well-formed execution of P is Γ-linearizable w.r.t. F .

Similarly, we define a fork-sequentially-consistent Byzantine emulation. It should guarantee

sequential consistency when the server is correct, and fork sequential consistency otherwise.

Definition 13 (fork-sequentially-consistent Byzantine emulation). A protocol P emulates a func-

tionality F on a Byzantine server S with fork-sequential-consistency whenever the following con-

ditions hold:

1. If S is correct, the history of every fair and well-formed execution of P is sequentially

consistent w.r.t. F ; and

2. The history of every fair and well-formed execution of P is fork-sequentially-consistent w.r.t.

F .

Furthermore, we say that such an emulation is wait-free when every fair and well-formed exe-

cution of the protocol with a correct server is wait-free.

66

5.4 Impossibility of Linearizability and Sequential Consistency

with an Untrusted Server

This section explains why neither linearizability nor sequential consistency can be guaranteed to

clients when F is implemented on a Byzantine server (at least not for functionalities F where

some operations do not commute), which motivates the need for considering weaker (e.g., forking)

semantics. To see why linearizability is impossible suppose that Ci was the last client to execute an

operation on F ; no matter what protocol the clients use to interact with the server, a faulty server

might roll back its internal memory to the point in time before executing the operation on behalf

of Ci, and pretend to a client Cj that Ci’s operation did not occur. As long as Cj and Ci do not

communicate with each other, neither party can detect this violation and thus linearizability cannot

be satisfied.

The example above does not rule out that S may emulate a sequentially consistent register. Se-

quential consistency does not have to preserve the real-time order of operations, thus not showing

Ci’s last update to Cj does not violate sequential consistency. It would be acceptable for a correct

server to return old register values, as long as it preserves the relative order in which it shows them

to every client. However, we show in the following theorem that a faulty server may also violate

sequential consistency when it emulates more than one register:

Theorem 31. There is no protocol that emulates n > 1 SWMR registers on a Byzantine server with

sequential consistency.

Proof. For any protocol P which emulates two SWMR registers X1 and X2, we demonstrate an

execution λ involving a faulty server S which violates sequential consistency.

The execution consists of four operations by the clients C1 and C2. Client C1 executes

write1(X1, v)→ OK and read1(X2) → ⊥. The server interacts with C1 as if it was the only client

executing any operation. Concurrently, C2 executes write2(X2, v)→ OK and read2(X1)→ ⊥ and

S also pretends to C2 that it is the only client executing any operation. Such “split-brain” behavior

is obviously possible when S is faulty: it can act as if the write operations to X1 and X2 have

completed, as far as the writing client is concerned, but still return the old values of X1 and X2 in

the read operations. Since the only interaction of the clients is with S, neither client can distinguish

execution λ from a sequentially consistent execution where it executes alone.

67

Notice that λ is not sequentially consistent: There is no permutation of the operations in λ in

which the sequential specification of both X1 and X2 is preserved and, at the same time, the order

of operations occurring at each client is the same as their real-time order in λ. Specifically, in any

possible permutation of λ, the operation read1(X2)→ ⊥ cannot be positioned after write2(X2, v),

since the read would have to return v 6= ⊥ according to the sequential specification of X2. How-

ever, read1(X2)→ ⊥ cannot occur before write2(X2, v) as we now argue. Since the local order of

operations has to be the same as in λ in this case, write1(X1, u) must occur before read1(X2)→ ⊥
and hence also before write2(X2, v). But since the latter operation precedes read2(X1) → ⊥
in the local order seen by C2, we conclude that write1(X1, u) precedes read2(X1) → ⊥, which

contradicts the sequential specification of X1. Thus, λ is not sequentially consistent.

Note that execution λ constructed in the proof above is fork-linearizable but not sequentially

consistent. On the other hand, execution γ exhibited in the proof of Theorem 33 below and shown

in Figure 5.3 is sequentially consistent but not fork-linearizable. Hence, we obtain the following

result.

Corollary 32. Fork-linearizability is neither stronger nor weaker than sequential consistency.

5.5 Limited Service Availability with Forking Semantics

We have shown that it is impossible to guarantee traditional strong semantics such as linearizability

and sequential consistency with an untrusted server. In contrast, emulations of shared memory

with forking semantics are possible. Such semantics provide well-defined guarantees to clients

even when the server is faulty. However, we show in this section that many of these semantics

have an inherent limitation – they hamper service availability in the common case, i.e., when the

server is correct.

We start by proving that fork-*-linearizable Byzantine emulations cannot be wait-free in all

executions where the server is correct. We then continue to prove that fork sequential consistency

suffers from the same limitation. Both results separately imply the corresponding impossibility for

fork-linearizable Byzantine emulations, which appeared [15].

Theorem 33. There is no protocol that emulates the functionality of n ≥ 1 SWMR registers on a

Byzantine server S with fork-*-linearizability that is wait-free in every execution with a correct S.

68

Proof. Towards a contradiction, assume that there exists such an emulation protocol P . Then in

any fair and well-formed execution of P with a correct server, every operation of a correct client

completes. We next construct three executions of P , called α, β, and γ, with two clients,C1 andC2,

accessing a single SWMR register X1. All executions considered here are fair and well-formed, as

can easily be verified. The clients are always correct.

We note that protocol P describes the asynchronous interaction of the clients with S. This

interaction is depicted in the figures only when necessary.

w1(X1,u)
C1

C2
r2

1(X1)→⊥ r2
2

... r2
z(X1)→u

S
...

t0

r2
3 r2

z-1

Figure 5.1: Execution α: S is correct.

Execution α. We construct an execution α, shown in Figure 5.1, in which S is correct. Client

C1 executes a write operation write1(X1, u) and C2 executes multiple read operations from X1,

denoted ri2 for i = 1, . . . , z, as explained next.

The execution begins with C2 invoking the first read operation r1
2. Since S and C2 are correct

and we assume that P is wait-free in all executions when the server is correct, r1
2 completes. Since

C1 did not yet invoke any operations, it must return the initial value ⊥.

Next, C1 invokes w1 = write1(X1, u). This is the only operation invoked by C1 in α. Every

time a message is sent from C1 to S during w1, if a non-⊥ value was not yet read by C2 from X1,

then the following things happen in order: (a) the message from C1 is delayed by the asynchronous

network; (b) C2 executes operation ri2 reading from X1, which completes by our wait-freedom

assumption; (c) the message from C1 to S is delivered. The operation w1 eventually completes

(and returns OK) by our wait-freedom assumption. After that point in time, C2 invokes one more

read operation from X1 if and only if all its previous read operations returned ⊥. According to the

first property of fork-*-linearizable Byzantine emulations, since S is correct, this last read must

69

return u 6= ⊥ because it was invoked after w1 completed. We denote the first read in α that returns

a non-⊥ value by rz2 (note that z ≥ 2 since r1
2 necessarily returns ⊥ as explained above). By

construction, rz2 is the last operation of C2 in α. We note that if messages are sent from C1 to S

after the completion of rz2, they are not delayed.

We denote by t0 the invocation point of rz−1
2 in α. This point is marked by a vertical dashed

line in Figures 5.1-5.3.

w1(X1,u)C1
C2 ...

t0

r2
1(X1)→⊥ r2

2 r2
z-2

Figure 5.2: Execution β: S is correct.

Execution β. We next define execution β, in which S is also correct. The execution is shown in

Figure 5.2. It is identical to α until the end of rz−2
2 , i.e., until just before point t0 (as defined in α

and marked by the dashed vertical line). In other words, execution β results from α by removing

the last two read operations. If z = 2, this means that there are no reads in β, and otherwise rz−2
2 is

the last operation of C2 in β. Operation w1 is invoked in β like in α; if β does not include r1
2, then

w1 begins at the start of β, and otherwise, it begins after the completion of r1
2. Since the server and

C1 are correct, by our wait-freedom assumption w1 completes.

w1(X1,u)C1
C2 ...

t0

r2
1(X1)→⊥ r2

2 r2
z-2 r2

z(X1)→ur2
z-1

Figure 5.3: Execution γ: S is faulty. It is indistinguishable from α to C2 and indistinguishable
from β to C1.

Execution γ. Our final execution is γ, shown in Figure 5.3, in which S is faulty. Execution γ

begins just like the common prefix of α and β until immediately before point t0, and w1 begins in

70

the same way as it does in β. In γ, the server simulates β to C1 by hiding all operations of C2,

starting with rz−1
2 . Since C1 cannot distinguish these two executions, w1 completes in γ just like in

β. After w1 completes, the server simulates α for the two remaining reads rz−1
2 and rz2 by C2. We

next explain how this is done. Notice that in α, the server receives at most one message from C1

between t0 and the completion of rz2, and this message is sent before time t0 by our construction

of α. In γ, which is identical to α until just before t0, the same message (if any) is sent by C1 and

therefore the server has all needed information in order to simulate α for C2 until the end of rz2.

Hence, the output of rz−1
2 and rz2 is the same as in α since it depends only on the state of C2 before

these operations and on the messages received from the server during their execution.

Thus, γ is indistinguishable from α to C2 and indistinguishable from β to C1. However, we

next show that γ is not fork-*-linearizable. Observe the sequential permutation π2 required by

the definition of fork-*-linearizability (i.e., the view of C2). As the sequential specification of X1

must be preserved in π2, and since rz2 returns u, we conclude that w1 must appear in π2. Since

the real-time order must be preserved as well, the write appears before rz−1
2 in the view. However,

this violates the sequential specification of X1, since rz−1
2 returns ⊥ and not the most recently

written value u 6= ⊥. This contradicts the definition of P as a protocol that guarantees fork-*-

linearizability in all executions.

The next theorem shows that fork-sequential-consistency has the same inherent limitation as

fork-*-linearizability and fork-linearizability.

Theorem 34. There is no wait-free fork-sequentially-consistent Byzantine emulation of n ≥ 2

SWMR registers on a Byzantine server S.

Proof. Towards a contradiction assume that there exists such a protocol P . Then in any admissi-

ble execution of P with a correct server, every operation of a correct client completes. We next

construct three executions α, β, and γ of P , shown in Figures 5.4–5.6. All three executions are

admissible, since clients issue operations sequentially, and every message sent between two cor-

rect parties is eventually delivered. There are two clients C1 and C2, which are always correct, and

access two SWMR registers X1 and X2. Protocol P describes the asynchronous interaction of the

clients with S; this interaction is depicted in the figures only when necessary.

71

Execution α. In execution α, the server is correct. The execution is shown in Figure 5.4 and

begins with four operations by C2: first C2 executes a write operation with value v1 to register X2,

denoted w1
2, then an operation reading register X1, denoted r1

2, then an operation writing v2 to X2,

denoted w2
2, and finally again a read operation of X1, denoted r2

2. Since S and C2 are correct and

P is wait-free with a correct server, all operations of C2 eventually complete.

write1(X1,u)

w2
1

C2
r2

1 r2
z-1

w2
3

r2
3

w2
z-1

...

w2
2

r2
2

w2
4

r2
4 read2

z(X1)→u

w2
z

S
...

t0

C1

Figure 5.4: Execution α, where S is correct.

Execution α continues as follows. C1 starts to execute a single write operation with value u to

X1, denoted w1. Every time a message is sent from C1 to S during this operation, and as long as

no read operation by C2 from X1 returns a value different from⊥, the following steps are repeated

in order, for i = 3, 4, . . . :

(a) The message from C1 is delayed by the asynchronous network;

(b) C2 executes an operation writing vi to X2, denoted wi2;

(c) C2 executes an operation reading X1, denoted ri2; and

(d) the delayed message from C1 is delivered to S.

Note that wi2 and ri2 complete by the assumptions that P is wait-free and that S is correct. For the

same reason, operation w1 eventually completes. After w1 completes, and while C2 does not read

any non-⊥ value from X1, C2 continues to execute alternating operations wi2 and ri2, writing vi to

X2 and reading X1, respectively. This continues until some read returns a non-⊥ value. Because

S is correct, eventually some read of X1 is guaranteed to return u 6= ⊥ by sequential consistency

of the execution. We denote the first such read by rz2. This is the last operation of C2 in α. If

messages are sent from C1 to S after the completion of rz2, they are not delayed.

72

Note that the prefix of α up to the completion of r3
2 is indistinguishable to C2 and S from an

execution in which no client writes to X1, and therefore r1
2, r2

2, and r3
2 return the initial value ⊥.

Hence, z ≥ 4.

We denote the point of invocation of wz−1
2 in α by t0. It is marked by a dotted line. Executions

β and γ constructed below are identical to α before t0, but differ from α starting at t0.

write1(X1,u)C1

w2
1

C2
r2

1 r2
2

w2
2

...

w2
z-2

r2
z-2

read1(X2)→vz-2

r2
3

w2
3

t0

Figure 5.5: Execution β, where S is correct.

Execution β. We next define execution β, shown in Figure 5.5, in which the server is also correct.

Execution β is identical to α up to the end of rz−2
2 (before t0), but then C2 halts. In other words,

the last two write-read pairs of C2 in α are missing in β. Operation w1 is invoked in β like in α and

begins after the completion of r2
2 (notice that r2

2 is in β since z ≥ 4). Because the protocol is wait-

free with the correct server, operation w1 completes. Afterwards, C1 invokes a read of X2, denoted

by r1, which also eventually completes. Since the server is correct, β is sequentially consistent.

Observe a sequential permutation π guaranteed by sequential consistency. Since rz−2
2 returns ⊥,

w1 appears in π after rz−2
2 . Since π preserves the order of C1’s operations in β, r1 appears after w1

in π, and since the order of C2’s operations is also preserved, this means that r1 appears after wz−2
2

in π, and therefore returns vz−2.

Execution γ. The third execution γ is shown in Figure 5.6; here, the server is faulty. Execution γ

proceeds just like the common prefix of α and β before t0, and client C1 invokes w1 in the same

way as in α and in β. From t0 onward, the server simulates β to C1. This is easy because S simply

hides from C1 all operations of C2 starting with wz−1
2 . The server also simulates α to C2. We

next explain how this is done. Notice that in α, the server receives at most one message from C1

between t0 and the completion of rz2, and C1 sends this message before t0 by construction of α. If

73

such a message exists in α, it also exists in γ because γ is identical to α before t0. Therefore, the

server has all of the information needed to simulate α to C2 and rz2 returns u.

write1(X1,u)C1

w2
1

C2
r2

1 r2
2

w2
2

...

w2
z-2

r2
z-2r2

3

w2
3

read2
z(X1)→u

w2
zw2

z-1

r2
z-1

t0

read1(X2)→vz-2

Figure 5.6: Execution γ, where S is faulty and simulates α to C2 and β to C1.

Thus, γ is indistinguishable from α toC2 and indistinguishable from β toC1. However, we next

show that γ is not fork-sequentially-consistent. Consider the sequential permutation π2 required

by the definition of fork sequential consistency, i.e., the view of C2. As the real-time order of C2’s

operations and the sequential specification of the registers must be preserved in π2, and since r1
2,

..., rz−1
2 return ⊥ but rz2 returns u, we conclude that w1 must appear in π2 and is located after rz−1

2

but before rz2. Because w1 is one of C1’s operations, it also appears in π1. By the no-join property,

the sequence of operations preceding w1 in π2 must be the same as the sequence preceding w1

in π1. In particular, wz−1
2 and wz−2

2 appear in π1 before w1, and wz−2
2 precedes wz−1

2 . Since the

real-time order of C1’s operations must be preserved in π1, operation w1 and, hence, also wz−1
2 ,

appears in π1 before r1. But since wz−1
2 writes vz−1 to X2 and r1 reads vz−2 from X2, this violates

the sequential specification of X2 (vz−2 is written only by wz−2
2). This contradicts the assumption

that P guarantees fork sequential consistency in all executions.

5.6 Comparing Forking and Causal Consistency Conditions

The purpose of this section is to explore the relation between causal consistency and the forking

consistency notions. First, we show that fork-linearizability implies causal consistency.

Theorem 35. Every fork-linearizable history w.r.t. a functionality F composed of registers is also

causally consistent w.r.t. F .

Proof. Consider a fork-linearizable execution σ. We will show that the views of the clients satisfy-

ing the definition of fork-linearizability also preserve the requirement of causal consistency, which

74

is that for each operation in every client’s view, all write operations that causally precede it appear

in the view before the particular operation. More formally, let πi be some view of σ at a client Ci

according to fork-linearizability and let o be an operation in πi. We need to prove that any write

operation o′ that causally precedes o appears in πi before o. According to the definition of causal

order, this can be proved by repeatedly applying the following two arguments.

First, assume that both o and o′ are operations by the same client Cj and consider a view πj at

Cj . Since πj includes all operations by Cj , also o and o′ appear in πj . Since o′ precedes o and since

πj preserves the real-time order of σ according to fork-linearizability, operation o′ also precedes o

in πj . By the no-join condition, we have that πi|o = πj|o and, therefore, o′ also appears before o in

πi.

Second, assume that o′ is of the form writej(X, v) and o is of the form readk(X) → v. In this

case, operation o′ is contained in πi and precedes o because πi is a view of σ at Ci; in particular, the

third property of a view guarantees that πi satisfies the sequential specification of a register.

The next two theorems establish that causal-consistency and fork-*-linearizability are incom-

parable to each other, in the sense that neither notion implies the other one. We consider a storage

service functionality with multiple SWMR registers.

The next theorem shows that a fork-*-linearizable history may not be causally consistent with

respect to functionalities with two registers.

w1(X1,u)
C1

C2
r2(X1)→u w2(X2, v)

C3
r3(X2)→v r3(X1)→⊥

Figure 5.7: A fork-*-linearizable history that is not causally consistent.

Theorem 36. There exist histories that are fork-*-linearizable but not causally consistent w.r.t. a

functionality containing two or more registers.

Proof. Consider the following execution, shown in Figure 5.7: Client C1 executes write1(X1, u),

then clientC2 executes read2(X1)→ u, write2(X2, v), and finally, clientC3 executes read3(X2)→

75

v, read3(X1)→ ⊥. Define the client views according to the definition of fork-*-linearizability as

π1 : write1(X1, u).

π2 : write1(X1, u), read2(X1)→ u, write2(X2, v).

π3 : write2(X2, v), read3(X2)→ v, read3(X1)→ ⊥.

It is easy to see that π1, π2, and π3 satisfy the conditions of fork-*-linearizability. In particular, since

no two operations of any client appear in two views, the at-most-one-joint condition holds trivially.

But clearly, α is not causally consistent: write1(X1, u) causally precedes write2(X2, v) which itself

causally precedes read3(X1) → ⊥; thus, returning ⊥ violates the sequential specification of a

read/write register.

Conversely, we now show that a causally consistent history may not be fork-*-linearizable with

respect to even one register.

w1(X1,u)C1

C2
r2(X1)→u r2(X1)→v r2(X1)→w

w1(X1,v) w1(X1,w)

Figure 5.8: A causally consistent execution that is not fork-*-linearizable.

Theorem 37. There exist histories that are causally consistent but not fork-*-linearizable with

respect to a functionality with one register.

Proof. Consider the following execution, shown in Figure 5.8: Client C1 executes three write

operations, write1(X1, u), write1(X1, v), and write1(X1, w). After the last one completes, client

C2 executes three read operations, read2(X1) → u, read2(X1) → v, and read2(X1) → w. We

claim that this execution is causally consistent. Intuitively, the causally dependent write operations

are seen in the same order by both clients. More formally, the view ofC1 according to the definition

of causal consistency contains only operations of C1, and the view of C2 contains all operations,

with the write and read operations interleaved so that they satisfy the sequential specification; this

is consistent with the causal order of the execution.

However, the execution is not fork-*-linearizable, as we explain next. The view π2 of C2, as

76

required by the definition of fork-*-linearizability, must be the sequence:

write1(X1, u), read2(X1)→ u, write1(X1, v), read2(X1)→ v, write1(X1, w), read2(X1)→ w.

But the operations read2(X1) → u and write1(X1, v) violate the real-time order requirement of

fork-*-linearizability.

5.7 Weak Fork-Linearizability

We introduce a new consistency notion, called weak fork-linearizability, which does not suffer

from the availability problem inherent in all previously defined forking semantics, namely it per-

mits wait-free protocols, and on the other hand it is not “too weak”, and in fact, unlike fork-

*-linearizability, weak fork-linearizability implies causal consistency. Our new notion of weak

fork-linearizability is used in Chapters 6 and 7 as a building-block for providing higher-level and

more intuitive semantics.

It is based on the notion of weak real-time order that removes the anomaly in fork-*-linearizability

and allows the last operation of every client to violate real-time order. Let π be a sequence of events

and let lastops(π) be a function of π returning the set containing the last operation from every client

in π (if it exists), that is,

lastops(π) ,
⋃

i=1,...,n

{
o ∈ π|Ci

∣∣ there is no operation o′ ∈ π|Ci
such that o precedes o′ in π

}
.

We say that π preserves the weak real-time order of a sequence of operations σ whenever π

excluding all events belonging to operations in lastops(π) preserves the real-time order of σ. With

these notions, we are now ready to state weak fork-linearizability.

Definition 14 (Weak fork-linearizability). A history σ is weakly fork-linearizable w.r.t. a func-

tionality F if for each client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;

2. πi preserves the weak real-time order of σ;

3. For every operation o ∈ πi and every write operation o′ ∈ σ such that o′ →σ o, it holds that

o′ ∈ πi and that o′ <πi
o; and

77

4. (At-most-one-join) For every client Cj and every two operations o, o′ ∈ πi ∩ πj by the same

client such that o precedes o′, it holds that πi|o = πj|o.

Compared to fork-linearizability, weak fork-linearizability only preserves the weak real-time

order in the second condition. The third condition in Definition 14 explicitly requires causal con-

sistency; this is implied by fork-linearizability, as shown in Section 5.6. The fourth condition

allows again an inconsistency for the last operation of every client in a view, through the at-most-

one-join property from fork-*-linearizability. Hence, every fork-linearizable history is also weakly

fork-linearizable.

w1(X1,u)C1

C2
r2(X1)→ur2(X1)→⊥

Figure 5.9: A weak fork-linearizable history that is not fork-linearizable.

Consider the following history, shown in Figure 5.9: Initially, X1 contains ⊥. Client C1 ex-

ecutes write1(X1, u), then client C2 executes read2(X1) → ⊥ and read2(X1) → u. During the

execution of the first read operation of C2, the server pretends that the write operation of C1 did

not occur. This history is weak fork-linearizable. The sequences:

π1 : write1(X1, u)

π2 : read2(X1)→ ⊥, write1(X1, u), read2(X1)→ u

are a view of the history at C1 and C2, respectively. They preserve the weak real-time order of

the history because the write operation in π2 is exempt from the requirement. However, there is

no way to construct a view of the execution at C2 that preserves the real-time order of the history,

as required by fork-linearizability. Intuitively, every protocol that guarantees fork-linearizability

prevents this example because the server is supposed to reply to C2 in a read operation with evi-

dence for the completion of a concurrent or preceding write operation to the same register. But this

implies that a reader should wait for a concurrent write operation to finish.

Weak fork-linearizability and fork-*-linearizability are not comparable in the sense that neither

notion implies the other one. This is illustrated in Section 5.5 and follows, intuitively, because

the real-time order condition of weak fork-linearizability is less restrictive than the corresponding

78

condition of fork-*-linearizability. On the other hand, however, weak fork-linearizability requires

causal consistency, whereas fork-*-linearizability does not.

79

Chapter 6

FAUST: Fail-Aware Untrusted Storage

In diesem Sinne kannst du’s wagen.

Verbinde dich; du sollst, in diesen Tagen,

Mit Freuden meine Künste sehn,

Ich gebe dir was noch kein Mensch gesehn.1

— Mephistopheles in Faust I, by J. W. Goethe

In this chapter we introduce the abstraction of a fail-aware untrusted service, with meaningful

semantics even when the storage provider is faulty. In the common case, when the provider is

correct, such a service guarantees consistency (linearizability) and liveness (wait-freedom) of all

operations. In addition, the service always provides accurate and complete consistency and failure

detection.

We illustrate our new abstraction by presenting a Fail-Aware Untrusted STorage service (FAUST).

Existing storage protocols in this model guarantee so-called forking semantics. We observe, how-

ever, that none of the previously suggested protocols suffice for implementing fail-aware untrusted

storage with the desired liveness and consistency properties (at least wait-freedom and linearizabil-

ity when the server is correct). We present a new storage protocol, which does not suffer from this

limitation, and implements a new consistency notion, called weak fork-linearizability. We show

how to extend this protocol to provide eventual consistency and failure awareness in FAUST. A

preliminary version of this work was published in 2009 IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN) [12].

1In this mood you can dare to go my ways. / Commit yourself; you shall in these next days / Behold my arts and
with great pleasure too. / What no man yet has seen, I’ll give to you.

80

6.1 Introduction

In this chapter, we tackle the challenge of providing meaningful service semantics with an un-

trusted (possibly Byzantine) service provider and define a class of fail-aware untrusted services.

We also present FAUST, a Fail-Aware Untrusted STorage service, which demonstrates our new

notion for online storage. We do this by reinterpreting in our model, with an untrusted provider,

two established notions: eventual consistency and fail-awareness.

Eventual consistency [74] allows an operation to complete before it is consistent in the sense

of linearizability, and later notifies the client when linearizability is established and the operation

becomes stable. Upon completion, only a weaker notion holds, which should include at least causal

consistency [38], a basic condition that has proven to be important in various applications [6, 76].

Whereas the client invokes operations synchronously, stability notifications occur asynchronously;

the client can invoke more operations while waiting for a notification on a previous operation.

Fail-awareness [29] additionally introduces a notification to the clients in case the service

cannot provide its specified semantics. This gives the clients a chance to take appropriate recovery

actions. Fail-awareness has previously been used with respect to timing failures; here we extend

this concept to alert clients of Byzantine server faults whenever the execution is not consistent.

Our new abstraction of a fail-aware untrusted service, introduced in Section 6.2, models a data

storage functionality. It requires the service to be linearizable and wait-free when the provider

is correct, and to be always causally consistent, even when the provider is faulty. Furthermore,

the service provides accurate consistency information in the sense that every stable operation is

guaranteed to be consistent at all clients and that when the provider is accused of being faulty,

it has actually violated its specification. Furthermore, the stability and failure notifications are

complete in the sense that every operation eventually either becomes stable or the service alerts the

clients that the provider has failed. For expressing the stability of operations, the service assigns a

timestamp to every operation.

The main building block we use to implement our fail-aware untrusted storage service is an

untrusted storage protocol. Such protocols guarantee linearizability when the server is correct, and

weaker, so-called forking consistency semantics when the server is faulty [59, 48, 15]. Forking

semantics ensures that if certain clients’ perception of the execution is not consistent, and the

server causes their views to diverge by mounting a forking attack, they eventually cease to see

81

each other’s updates or expose the server as faulty. The first protocol of this kind, realizing fork-

linearizable storage, was implemented by SUNDR [59, 48].

Although we are the first to define a fail-aware service, the existing untrusted storage proto-

cols come close to supporting fail-awareness, and it has been implied that they can be extended to

provide such a storage service [48, 49]. However, none of the existing forking consistency seman-

tics allow for wait-free implementations; in previous protocols [48, 15] concurrent operations by

different clients may block each other, even if the provider is correct. In fact, as we have shown

in Section 5.5, this is not merely a shortcoming of a specific implementation, but rather inherent

in the semantics. Specifically, no fork-linearizable storage protocol can be wait-free in all execu-

tions where the server is correct. Moreover, this limitation is inherent also in the other previously

defined forking semantics, namely fork-*-linearizability (when adapted to our model with only

one server) and fork-sequential-consistency. Fork-*-linearizability also permits a faulty server to

violate causal consistency, as we show in Section 5.6. Thus, a new definition of the untrusted stor-

age building block was needed, which will be strong enough to be useful for building fail-aware

untrusted storage, and yet weak enough to allow for wait-free implementations.

In Section 5.7, we defined a new consistency notion, called weak fork-linearizability, which

circumvents the above impossibility and has all necessary features for building a fail-aware un-

trusted storage service. We present a weak fork-linearizable storage protocol in Section 6.3 and

show that it never causes clients to block, even if some clients crash. The protocol is efficient,

requiring a single round of message exchange between a client and the server for every operation,

and a communication overhead of O(n) bits per request, where n is the number of clients.

Starting from the weak fork-linearizable storage protocol, we introduce our fail-aware un-

trusted storage service (FAUST) in Section 6.4. FAUST adds mechanisms for consistency and

failure detection, issues eventual stability notifications whenever the views of correct clients are

consistent with each other, and detects all violations of consistency caused by a faulty server.

In addition to the client-server communication channels, the FAUST protocol assumes a low-

bandwidth communication channel among every pair of clients, which is reliable and FIFO-ordered.

We call this an offline communication method because it stands for a method that exchanges mes-

sages reliably even if the clients are not simultaneously connected. The system is illustrated in

Figure 6.1.

Although this chapter focuses on fail-aware untrusted services that provide a data storage func-

82

 Untrusted
Server

C
1

Client-to-Client
Communication

(offline)

Clients

Client-Server
Channels

C
2

C
n

Figure 6.1: System architecture. Client-to-client communication may use offline message ex-
change.

tionality, we believe that the notion can be generalized to a variety of additional functionalities.

6.2 Fail-Aware Untrusted Services

Consider a shared functionality F that allows clients to invoke operations and returns a response

for each invocation. Our goal is to implement F with the help of server S, which may be faulty.

We define a fail-aware untrusted service OF from F as follows. When S is correct, then it

should emulate F and ensure linearizability and wait-freedom. When S is faulty, then the ser-

vice should always ensure causal consistency and eventually provide either consistency or failure

notifications. For defining these properties, we extend F in two ways.

First, we include with the response of every operation of F an additional parameter t, called

the timestamp of the operation. We say that an operation of OF returns a timestamp t when

the operation completes and its response contains timestamp t. The timestamps returned by the

operations of a client increase monotonically. Timestamps are used as local operation identifiers, so

that additional information can be provided to the application by the service regarding a particular

operation, after that operation has already completed (using the stable notifications as defined

below).

Second, we add two new output actions at client Ci, called stablei and faili, which occur asyn-

chronously. (Note that the subscript i denotes an action at client Ci.) The action stablei includes

a vector of timestamps W as a parameter and informs Ci about the stability of its operations with

83

respect to the other clients.

Definition 15 (Operation stability). Let o be a complete operation ofCi that returns a timestamp t.

We say that o is stable w.r.t. a client Cj , for j = 1, . . . , n, after some event stablei(W) has occurred

at Ci with W [j] ≥ t. An operation o of Ci is stable w.r.t. a set of clients C, where C includes Ci,

when o is stable w.r.t. all Cj ∈ C. Operations that are stable w.r.t. all clients are simply called

stable.

Informally, stablei defines a stability cut among the operations of Ci with respect to the other

clients, in the sense that if an operation o of client Ci is stable w.r.t. Cj , then Ci and Cj are

guaranteed to have the same view of the execution up to o. If o is stable, then the prefix of the

execution up to o is linearizable. The service should guarantee that every operation eventually

becomes stable, but this may only be possible if S is correct. Otherwise, the service should notify

the users about the failure.

Failure detection should be accurate in the sense that it should never output false suspicions.

When the action faili occurs, it indicates that the server is demonstrably faulty, has violated its

specification, and has caused inconsistent views among the clients. According to the stability

guarantees, the client application does not have to worry about stable operations, but might invoke

a recovery procedure for other operations.

When considering an execution σ of OF , we sometimes focus only on the actions correspond-

ing to F , without the added timestamps, and without the stable and fail actions. We refer to this

as the restriction of σ to F and denote it by σ|F (similar notation is also used for restricting a

sequence of events to those occurring at a particular client).

Definition 16 (Fail-aware untrusted service). A shared functionalityOF is a fail-aware untrusted

service with functionality F , if OF implements the invocations and responses of F and extends it

with timestamps in responses and with stable and fail output actions, and where the history σ of

every fair execution such that σ|F is well-formed satisfies the following conditions:

1. (Linearizability with correct server) If S is correct, then σ|F is linearizable w.r.t. F ;

2. (Wait-freedom with correct server) If S is correct, then σ|F is wait-free;

3. (Causality) σ|F is causally consistent w.r.t. F ;

4. (Integrity) When an operation o of Ci returns a timestamp t, then t is bigger than any time-

stamp returned by an operation of Ci that precedes o;

84

5. (Failure-detection accuracy) If faili occurs, then S is faulty;

6. (Stability-detection accuracy) If o is an operation of Ci that is stable w.r.t. some set of

clients C then there exists a sequence of events π that includes o and a prefix τ of σ|F such

that π is a view of τ at all clients in C w.r.t. F . If C includes all clients, then τ is linearizable

w.r.t. F ;

7. (Detection completeness) For every two correct clients Ci and Cj and for every timestamp

t returned by an operation of Ci, eventually either fail occurs at all correct clients, or sta-

blei(W) occurs at Ci with W [j] ≥ t.

We now illustrate how a fail-aware service can be used by clients who collaborate from across

the world by editing a file. Suppose that the server S is correct and three correct clients access

it: Alice and Bob from Europe, and Carlos from America. Since S is correct, linearizability is

preserved. However, the clients do not know this, and rely on stable notifications for detecting

consistency. Suppose that it is daytime in Europe, Alice and Bob use the service, and they see the

effects of each other’s updates. However, they do not observe any operations of Carlos because he

is asleep.

Suppose that Alice completes an operation that returns timestamp 10, and subsequently re-

ceives a notification stableAlice([10, 8, 3]), indicating that she is consistent with Bob up to her oper-

ation with timestamp 8, consistent with Carlos up to her operation with timestamp 3, and trivially

consistent with herself up to her last operation (see Figure 6.2). At this point, it is unclear to Al-

ice (and to Bob) whether Carlos is only temporarily disconnected and has a consistent state, or if

the server is faulty and hides operations of Carlos from Alice (and from Bob). If Alice and Bob

continue to execute operations while Carlos is offline, Alice will continue to see vectors with in-

creasing timestamps in the entries corresponding to Alice and Bob. When Carlos goes back online,

since the server is correct, all operations issued by Alice, Bob, and Carlos will eventually become

stable at all clients.

In order to implement a fail-aware untrusted service, we proceed in two steps. The first step

consists of defining and implementing a weak fork-linearizable Byzantine emulation of a storage

service. This notion is formulated in the next section and implemented in Section 6.3. The second

step consists of extending the Byzantine emulation to a fail-aware storage protocol, as presented

in Section 6.4.

85

Alice
Bob

Carlos

1 2 3 8 9 10t =

Figure 6.2: The stability cut of Alice indicated by the notification stableAlice([10, 8, 3]). The values
of t are the timestamps returned by the operations of Alice.

6.3 A Weak Fork-Linearizable Untrusted Storage Protocol

We present a wait-free weak fork-linearizable emulation of n SWMR registers X1, . . . , Xn, where

client Ci writes to register Xi.

At a high level, our untrusted storage protocol (USTOR) works as follows. When a client in-

vokes a read or write operation, it sends a SUBMIT message to the server S. The server processes

arriving SUBMIT messages in FIFO order; when the server receives multiple messages concur-

rently, it processes each message atomically. The client waits for a REPLY message from S. When

this message arrives, Ci verifies its content and halts if it detects any inconsistency. Otherwise, Ci

sends a COMMIT message to the server and returns without waiting for a response, returning OK

for a write and the register value for a read. Sending a COMMIT message is simply an optimization

to expedite garbage collection at S; this message can be eliminated by piggybacking its contents

on the SUBMIT message of the next operation. The bulk of the protocol logic is devoted to dealing

with a faulty server.

The USTOR protocol for clients is presented in Algorithm 3, and the USTOR protocol for

the server appears in Algorithm 4. The notation uses operations, upon-clauses, and procedures.

Operations correspond to the invocation events of the corresponding operations in the functionality,

upon-clauses denote a condition and are actions that may be triggered whenever their condition is

satisfied, and procedures are subroutines called from an operation or from an upon-condition. In

the face of concurrency, operations and upon-conditions act like monitors: only one thread of

control can execute any of them at a time. By invoking a wait for condition, the thread releases

control until condition is satisfied. The statement return args at the end of an operation means that

it executes output response(args), which triggers the response event of the operation (denoted by

response with parameters args).

86

We augment the protocol so that Ci may output an asynchronous event faili, in addition to

the responses of the storage functionality. It signals that the client has detected an inconsistency

caused by S; the signal will be picked up by a higher-layer protocol.

We describe the protocol logic in two steps: first in terms of its data structures and then by the

flow of an operation.

Data structures. The variables representing the state of clientCi are denoted with the subscript i.

Every client locally maintains a timestamp t that it increments during every operation (lines 113

and 126). Client Ci also stores a hash x̄i of the value most recently written to Xi (line 107).

A SUBMIT message sent by Ci includes t and a DATA-signature δ by Ci on t and x̄i; for write

operations, the message also contains the new register value x. The timestamp of an operation o is

the value t contained in the SUBMIT message of o.

The operation is represented by an invocation tuple of the form (i, oc, j, σ), where oc is either

READ or WRITE, j is the index of the register being read or written, and σ is a SUBMIT-signature

by Ci on oc, j, and t. In summary, the SUBMIT message is

〈SUBMIT, t, (i, oc, j, σ), x, δ〉.

Client Ci holds a timestamp vector Vi, so that when Ci completes an operation o, entry Vi[j]

holds the timestamp of the last operation by Cj scheduled before o and Vi[i] = t. In order for Ci

to maintain Vi, the server includes in the REPLY message of o information about the operations

that precede o in the schedule. Although this prefix could be represented succinctly as a vector of

timestamps, clients cannot rely on such a vector maintained by S. Instead, clients rely on digitally

signed timestamp vectors sent by other clients. To this end, Ci signs Vi and includes Vi and the

signature ϕ in the COMMIT message. The COMMIT message has the form

〈COMMIT, Vi,Mi, ϕ, ψ〉,

where Mi and ψ are introduced later.

The server stores the register value, the timestamp, and the DATA-signature most recently re-

ceived in a SUBMIT message from every client in an array MEM (line 202), and stores the time-

stamp vector and the signature of the last COMMIT message received from every client in an ar-

87

ray SVER (line 204).

At the point when S sends the REPLY message of operation o, however, the COMMIT messages

of some operations that precede o in the schedule may not yet have arrived at S. Hence, S includes

explicit information in the REPLY message about the invocations of such submitted and not yet

completed operations. Consider the schedule at the point when S receives the SUBMIT message

of o, and let o∗ be the most recent operation in the schedule for which S has received a COMMIT

message. The schedule ends with a sequence o∗, o1, . . . , o`, o for ` ≥ 0. We call the operations

o1, . . . , o` concurrent to o; the server stores the corresponding sequence of invocation tuples in L

(line 205). Furthermore, S stores the index of the client that executed o∗ in c (lines 203 and 219).

The REPLY message from S to Ci contains c, L, and the timestamp vector V c from the COMMIT

message of o∗ together with a signature ϕc by Cc. We use client index c as superscript to denote

data in a message constructed by S, such that if S is correct, the data was sent by the indicated

client Cc. Hence, the REPLY message for a write operation consists of

〈REPLY, c, (V c,M c, ϕc), L, P 〉,

whereM c and P are introduced later; the REPLY message for a read operation additionally contains

the value to be returned.

We now define the view history VH(o) of an operation o to be a sequence of operations, as

will be explained shortly. Client Ci executing o receives a REPLY message from S that contains

a timestamp vector V c, which is either 0n or accompanied by a COMMIT-signature ϕc by Cc,

corresponding to some operation oc of Cc. The REPLY message also contains the list of invocation

tuples L, representing a sequence of operations ω1, . . . , ωm. Then we set

VH(o) ,

ω
1, . . . , ωm, o if V c = 0n

VH(oc), ω
1, . . . , ωm, o otherwise,

where the commas stand for appending operations to sequences of operations. Note that if S is

correct, it holds that oc = o∗ and o1, . . . , o` = ω1, . . . , ωm. View histories will be important in the

protocol analysis.

After receiving the REPLY message (lines 117 and 129), Ci updates its vector of timestamps to

88

reflect the position of o according to the view history. It does that by starting from V c (line 138),

incrementing one entry in the vector for every operation represented in L (line 143), and finally

incrementing its own entry (line 147).

During this computation, the client also derives its own estimate of the view history of all

concurrent operations represented in L. For representing these estimates compactly, we introduce

the notion of a digest of a sequence of operations ω1, . . . , ωm. In our context, it is sufficient to

represent every operation ωµ in the sequence by the index iµ of the client that executes it. The

digest D(ω1, . . . , ωm) of a sequence of operations is defined recursively using a hash function H

as

D(ω1, . . . , ωm) ,

⊥ if m = 0

H
(
D(ω1, . . . , ωm−1)‖im

)
otherwise.

The collision resistance of the hash function implies that the digest can serve a unique represen-

tation for a sequence of operations in the sense that no two distinct sequences that occur in an

execution have the same digest.

Client Ci maintains a vector of digests Mi together with Vi, computed as follows during the

execution of o. For every operation ok by a client Ck corresponding to an invocation tuple in L, the

client computes the digest d of VH(o)|ok , i.e., the digest of Ci’s expectation of Ck’s view history

of ok, and stores d in Mi[k] (lines 139, 146, and 148).

The pair (Vi,Mi) is called a version; client Ci includes its version in the COMMIT message,

together with a so-called COMMIT-signature on the version. We say that an operation o or a

client Ci commits a version (Vi,Mi) when Ci sends a COMMIT message containing (Vi,Mi) during

the execution of o.

Definition 17 (Order on versions). We say that a version (Vi,Mi) is smaller than or equal to a

version (Vj,Mj), denoted (Vi,Mi) ≤̇ (Vj,Mj), whenever the following conditions hold:

1. Vi ≤ Vj , i.e., for every k = 1, . . . , n, it holds that Vi[k] ≤ Vj[k]; and

2. For every k such that Vi[k] = Vj[k], it holds that Mi[k] = Mj[k].

Furthermore, we say that (Vi,Mi) is smaller than (Vj,Mj), and denote it by (Vi,Mi) <̇ (Vj,Mj),

whenever (Vi,Mi) ≤̇ (Vj,Mj) and (Vi,Mi) 6= (Vj,Mj). We say that two versions are comparable

when one of them is smaller than or equal to the other.

89

Suppose that an operation oi of client Ci commits (Vi,Mi) and an operation oj of client Cj

commits (Vj,Mj) and consider their order. The first condition orders the operations according to

their timestamp vectors. The second condition checks the consistency of the view histories of Ci

and Cj for operations that may not yet have committed. The precondition Vi[k] = Vj[k] means that

some operation ok of Ck is the last operation of Ck in the view histories of oi and of oj . In this case,

the prefixes of the two view histories up to ok should be equal, i.e., VH(oi)|ok = VH(oj)|ok ; since

Mi[k] and Mj[k] represent these prefixes in the form of their digests, the condition Mi[k] = Mj[k]

verifies this. Clearly, if S is correct, then the version committed by an operation is bigger than the

versions committed by all operations that were scheduled before. In the analysis, we show that this

order is transitive, and that for all versions committed by the protocol, (Vi,Mi) ≤̇ (Vj,Mj) if and

only if VH(oi) is a prefix of VH(oj).

The COMMIT message from the client also includes a PROOF-signature ψ by Ci on Mi[i] that

will be used by other clients. The server stores the PROOF-signatures in an array P (line 206) and

includes P in every REPLY message.

Algorithm flow. In order to support its extension to FAUST in Section 6.4, protocol USTOR not

only implements read and write operations, but also provides extended read and write operations.

They serve exactly the same function as standard counterparts, but additionally return the relevant

version(s) from the operation.

Client Ci starts executing an operation by incrementing the timestamp and sending the SUBMIT

message (lines 116 and 128). When S receives this message, it updates the timestamp and the

DATA-signature in MEM[i] with the received values for every operation, but updates the register

value in MEM[i] only for a write operation (lines 209–210 and 213). Subsequently, S retrieves

c, the index of the client that committed the last operation in the schedule, and sends a REPLY

message containing c and SVER[c] = (V c,M c, ϕc). For a read operation from Xj , the reply also

includes MEM[j] and SVER[j], representing the register value and the largest version committed

by Cj , respectively. Finally, the server appends the invocation tuple to L (line 215).

After receiving the REPLY message, Ci invokes a procedure updateVersion. It first verifies the

COMMIT-signature ϕc on the version (V c,M c) (line 136). Then it checks that (V c,M c) is at least

as large as its own version (Vi,Mi), and that V c[i] has not changed compared to its own version

(line 137). These conditions always hold when S is correct, since the channels are reliable with

90

Algorithm 3 Untrusted storage protocol (USTOR). Code for client Ci, part 1.
101: notation
102: Strings = {0, 1}∗ ∪ {⊥}
103: Clients = {1, . . . , n}
104: Opcodes = {READ,WRITE,⊥}
105: Invocations = Clients× Opcodes× Clients× Strings

106: state
107: x̄i ∈ Strings, initially ⊥ // hash of most recently written value
108: (Vi,Mi) ∈ Nn

0 × Stringsn, initially (0n,⊥n) // last version committed by Ci

109: operation writei(x) // write x to register Xi

110: (· · ·)← writexi(x)
111: return OK

112: operation writexi(x) // extended write x to register Xi

113: t← Vi[i] + 1 // timestamp of the operation
114: x̄i ← H(x)
115: τ ← sign(i, SUBMIT‖WRITE‖i‖t); δ ← sign(i, DATA‖t‖x̄i)
116: send message 〈SUBMIT, t, (i,WRITE, i, τ), x, δ〉 to S
117: wait for receiving a message 〈REPLY, c, (V c,M c, ϕc), L, P 〉 from S
118: updateVersion(i, (c, V c,M c, ϕc), L, P)
119: ϕ← sign(i, COMMIT‖Vi‖Mi); ψ ← sign(i, PROOF‖Mi[i])
120: send message 〈COMMIT, Vi,Mi, ϕ, ψ〉 to S
121: return (Vi,Mi)

122: operation readi(Xj) // read from register Xj

123: (xj , · · ·)← readxi(Xj)
124: return xj

125: operation readxi(Xj) // extended read from register Xj

126: t← Vi[i] + 1 // timestamp of the operation
127: τ ← sign(i, SUBMIT‖READ‖j‖t); δ ← sign(i, DATA‖t‖x̄i))
128: send message 〈SUBMIT, t, (i, READ, j, τ),⊥, δ〉 to S
129: wait for a message 〈REPLY, c, (V c,M c, ϕc), (V j ,M j , ϕj), (tj , xj , δj), L, P 〉 from S
130: updateVersion(j, (c, V c,M c, ϕc), L, P)
131: checkData(c, (V c,M c, ϕc), j, (V j ,M j , ϕj), (tj , xj , δj))
132: ϕ← sign(i, COMMIT‖Vi‖Mi); ψ ← sign(i, PROOF‖Mi[i])
133: send message 〈COMMIT, Vi,Mi, ϕ, ψ〉 to S
134: return (xj , Vi,Mi, V

j ,M j)

FIFO order and therefore, S receives and processes the COMMIT message of an operation before

the SUBMIT message of the next operation by the same client.

Next, Ci starts to update its version (Vi,Mi) according to the concurrent operations represented

in L. It starts from (V c,M c). For every invocation tuple in L, representing an operation by Ck, it

91

Algorithm 3 (cont.) Untrusted storage protocol (USTOR). Code for client Ci, part 2.

135: procedure updateVersion(j, (c, V c,M c, ϕc), L, P)
136: if not

(
(V c,M c) = (0n,⊥n) or verify(c, ϕc, COMMIT‖V c‖M c)

)
then output faili; halt

137: if not
(
(Vi,Mi) ≤̇ (V c,M c) and V c[i] = Vi[i]

)
then output faili; halt

138: (Vi,Mi)← (V c,M c)
139: d←M c[c]
140: for q = 1, . . . , |L| do
141: (k, oc, l, τ)← L[q]
142: if not

(
Mi[k] = ⊥ or verify(k, P [k], PROOF‖Mi[k])

)
then output faili; halt

143: Vi[k]← Vi[k] + 1
144: if k = i or not verify(k, τ, SUBMIT‖oc‖l‖Vi[k]) then output faili; halt
145: d← H(d‖k)
146: Mi[k]← d
147: Vi[i] = Vi[i] + 1
148: Mi[i]← H(d‖i)

149: procedure checkData(c, (V c,M c, ϕc), j, (V j ,M j , ϕj), (tj , xj , δj))
150: if not

(
(V j ,M j) = (0n,⊥n) or verify(j, ϕj , COMMIT‖V j‖M j)

)
then output faili; halt

151: if not
(
tj = 0 or verify(j, δj , DATA‖tj‖H(xj))

)
then output faili; halt

152: if not
(
(V j ,M j) ≤̇ (V c,M c) and tj = Vi[j]

)
then output faili; halt

153: if not
(
V j [j] = tj or V j [j] = tj − 1

)
then output faili; halt

checks the following (lines 140–146): first, that S received the COMMIT message of Ck’s previous

operation and included the corresponding PROOF-signature in P [k] (line 142); second, that k 6= i,

i.e., that Ci has no concurrent operation with itself (line 144); and third, after incrementing Vi[k],

that the SUBMIT-signature of the operation is valid and contains the expected timestamp Vi[k]

(line 144). Again, these conditions always hold when S is correct. During this computation, Ci

also incrementally updates the digest d and assigns d to Mi[k] for every operation. As the last step

of updateVersion, Ci increments its own timestamp Vi[i], computes the new digest, and assigns it

to Mi[i] (lines 147–148). If any of the checks fail, then updateVersion outputs faili and halts.

For read operations, Ci also invokes a procedure checkData. It first verifies the COMMIT-signa-

ture ϕj by the writerCj on the version (V j,M j) (line 150). If S is correct, this is the largest version

committed by Cj and received by S before it replied to Ci’s read request. The client also checks

the integrity of the returned value xj by verifying the DATA-signature δj on tj and on the hash of xj

(line 151). Furthermore, it checks that the version (V j,M j) is smaller than or equal to (V c,M c)

(line 152). Although Ci cannot know if S returned data from the most recently submitted operation

of Cj , it can check that Cj issued the DATA-signature during the most recent operation oj of Cj

92

Algorithm 4 Untrusted storage protocol (USTOR). Code for server.
201: state
202: MEM[i] ∈ N0 ×X × Strings, // last timestamp, value, and DATA-sig. received from Ci

initially (0,⊥,⊥), for i = 1, . . . , n
203: c ∈ Clients, initially 1 // client who committed last operation in schedule
204: SVER[i] ∈ Nn

0 × Stringsn × Strings, // last version and COMMIT-signature received from Ci
initially (0n,⊥n,⊥), for i = 1, . . . , n

205: L ∈ Invocations∗, initially empty // invocation tuples of concurrent operations
206: P ∈ Stringsn, initially ⊥n // PROOF-signatures

207: upon receiving a message 〈SUBMIT, t, (i, oc, j, τ), x, δ〉 from Ci:
208: if oc = READ then
209: (t′, x′, δ′)← MEM[i]
210: MEM[i]← (t, x′, δ)
211: send message 〈REPLY, c, SVER[c], SVER[j],MEM[j], L, P 〉 to Ci
212: else
213: MEM[i]← (t, x, δ)
214: send message 〈REPLY, c, SVER[c], L, P 〉 to Ci
215: append (i, oc, j, τ) to L

216: upon receiving a message 〈COMMIT, Vi,Mi, ϕ, ψ〉 from Ci:
217: (V c,M c, ϕc)← SVER[c]
218: if Vi > V c then
219: c← i
220: remove the last tuple of the form (i, · · ·) and all preceding tuples from L
221: SVER[i]← (Vi,Mi, ϕ)
222: P [i]← ψ

represented in the version of Ci by checking that tj = Vi[j] (line 152). If S is correct and has

already received the COMMIT message of oj , then it must be V j[j] = tj , and if S has not received

this message, it must be V j[j] = tj − 1 (line 153).

Finally, Ci sends a COMMIT message containing its version (Vi,Mi), a COMMIT-signature ϕ

on the version, and a PROOF-signature ψ on Mi[i] (lines 120 and 133).

When the server receives the COMMIT message from Ci containing a version (Vi,Mi), it stores

the version and the PROOF-signature in SVER[i] and stores the COMMIT-signature in P [i] (lines 221

and 222). Last but not least, the server checks if this operation is now the last committed operation

in the schedule by testing Vi > V c; if this is the case, the server stores i in c and removes from L

the tuples representing this operation and all operations scheduled before. Note that L has at most

n elements because at any time there is at most one operation per client that has not committed.

The following result summarizes the main properties of the protocol. As responding with a

93

faili event is not foreseen by the specification of registers, we ignore those outputs in the theorem.

Theorem 38. Protocol USTOR in Algorithms 3 and 4 emulates n SWMR registers on a Byzantine

server with weak fork-linearizability; furthermore, the emulation is wait-free in all executions

where the server is correct.

Proof overview. A formal proof of the theorem appears in Section 6.5. Here we explain in-

tuitively why the protocol is wait-free, how the views of the weak fork-linearizable Byzantine

emulation are constructed, and why the at-most-one-join property is preserved.

To see why the protocol is wait-free when the server is correct, recall that the server processes

the arriving SUBMIT messages atomically and in FIFO order. The order in which SUBMIT mes-

sages are received therefore defines the schedule of the corresponding operations, which is the

linearization order when S is correct. Since communication channels are reliable and the event

handler for SUBMIT messages sends a REPLY message to the client, the protocol is wait-free in

executions where S is correct.

We now explain the construction of views as required by weak fork-linearizability. It is easy to

see that whenever an inconsistency occurs, there are two operations oi and oj by clients Ci and Cj

respectively, such that neither one of VH(oi) and VH(oj) is a prefix of the other. This means that

if oi and oj commit versions (Vi,Mi) and (Vj,Mj), respectively, these versions are incomparable.

By Lemma 49 in Section 6.5, it is not possible then that any operation commits a version greater

than both (Vi,Mi) and (Vj,Mj). Yet the protocol does not ensure that all operations appear in

the view of a client ordered according to the versions that they commit. Specifically, a client may

execute a read operation or and return a value that is written by a concurrent operation ow; in this

case, the reader compares its version only to the version committed by the operation of the writer

that precedes ow (line 152). Hence, ow may commit a version incomparable to the one committed

by or, although ow must appear before or in the view of the reader.

In the analysis, we construct the view πi of client Ci as follows. Let oi be the last complete

operation of Ci and suppose it commits version (Vi,Mi). We construct πi in two steps. First,

we consider all operations that commit a version smaller than or equal to (Vi,Mi), and order

them by their versions. As explained above, these versions are totally ordered since they are

smaller than (Vi,Mi). We denote this sequence of operations by ρi. Second, we extend ρi to πi as

follows: for every operation or = readj(Xk)→ v in ρi such that the corresponding write operation

94

ow = writek(Xk, v) is not in ρi, we add ow immediately before the first read operation in ρi that

returns v. We will show that if a write operation of client Ck is added at this stage, no subsequent

operation of Ck appears in πi. Thus, if two operations o and o′ of Ck are both contained in two

different views πi and πj and o precedes o′, then o ∈ ρi and o ∈ ρj . Because the order on versions

is transitive and because the versions of the operations in ρi and ρj are totally ordered, we have

that ρi|o = ρj|o. This sequence consists of all operations that commit a version smaller than the

version committed by o. It is now easy to verify that also πi|o = πj|o by construction of πi and πj .

This establishes the at-most-one-join property.

Complexity. Each operation entails sending exactly three protocol messages (SUBMIT, REPLY,

and COMMIT). Every message includes a constant number of components of the following types:

timestamps, indices, register values, hash values, digital signatures, and versions. Additionally,

the COMMIT message contains a list L of invocation tuples and a vector P of digital signatures.

Although in theory, timestamps, hash values, and digital signatures may grow without bound, they

grow very slowly. In practice, they are typically implemented by constant-size fields, e.g., 64 bits

for a timestamp or 256 bits for a hash value. Let κ denote the maximal number of bits needed to

represent a timestamp, hash value, or digital signature. For the sake of the analysis, we will assume

that the number of steps taken by all parties of the protocol together is bounded by 2κ. Register

values in X require at most log |X | bits. Indices are represented using O(κ) bits. Versions consist

of n timestamps and n hash values, and thus require O(nκ) bits. For each client, at most one

invocation tuple appears in L and at most one PROOF-signature in P . Hence, the sizes of L and P

are also O(nκ) bits. All in all, the bit complexity associated with an operation is O(log |X |+ nκ).

Note that if S is faulty and sends longer messages, then some check by a client fails. Therefore, in

all cases, each completed operation incurs at most O(log |X |+ nκ) communication complexity.

6.4 Fail-Aware Untrusted Storage Protocol

In this section, we extend the USTOR protocol of the previous section to a fail-aware untrusted

storage protocol (FAUST). The new component at the client side calls the USTOR protocol and

uses the offline client-to-client communication channels; its purpose is to detect the stability of

operations and server failures. For both goals, FAUST needs access to the version of every oper-

95

ation, as maintained by the USTOR protocol; FAUST therefore calls the extended read and write

operations of USTOR.

For stability detection, the protocol performs extra dummy operations periodically, for confirm-

ing the consistency of the preceding operations with respect to other clients. A client maintains the

maximal version committed by the operations of every other client. When the client determines

that a version received from another client is consistent with the version committed by an opera-

tion of its own, then it notifies the application that the operation has become stable w.r.t. the other

client.

Our approach to failure detection takes up the intuition used for detecting forking attacks in

previous fork-linearizable storage systems [59, 48, 15]. When a client ceases to obtain new ver-

sions from another client via the server, it contacts the other client directly with a PROBE message

via offline communication and asks for the maximal version that it knows. The other client replies

with this information in a VERSION message, and the first client verifies that all versions are con-

sistent. If any check fails, the client reports the failure and notifies the other clients about this

with a FAILURE message. The maximal version received from another client may also cause some

operations to become stable; this combination of stability detection and failure detection is a novel

feature of FAUST.

Figure 6.3 illustrates the architecture of the FAUST protocol. Below we describe at a high level

how FAUST achieves its goals, and refer to Algorithm 5 for the details. For FAUST, we extend

our pseudo-code by two elements. The notation periodically is an abbreviation for upon TRUE.

The condition completion of o with return value args in an upon-clause stands for receiving the

response of some operation o with parameters args.

Protocol overview. For every invocation of a read or write operation, the FAUST protocol at

client Ci directly invokes the corresponding extended operation of the USTOR protocol. For every

response received from the USTOR protocol that belongs to such an operation, FAUST adds the

timestamp of the operation to the response and then outputs the modified response. FAUST retains

the version committed by every operation of the USTOR protocol and takes the timestamp from

the i-th entry in the timestamp vector (lines 316 and 325). More precisely, client Ci stores an

array VERi containing the maximal version that it has received from every other client. It sets

VERi[i] to the version committed by the most recent operation of its own and updates the value of

96

Application

USTOR Protocol
(Client Side)

Client-to-Client Comm.

re
a
d

i(X
j)

v
a
l,
 t fail

i

PROBE VERSION

FAUST Protocol

stable
i
([t

1
,t

2
, ..., t

n
])

Client-Server Channel

SUBMIT REPLY

FAILURE

w
r i

te
i(v

a
l)

O
K

,
t

re
a
d
x

i(X
j)

v
a
l,
 V

i,M
i ,

V
j,M

j

w
r i

te
x

i(v
a
l)

V
i,M

i

COMMIT

fa
i l i

Figure 6.3: Architecture of the fail-aware untrusted storage protocol (FAUST).

VERi[j] when a readxi(Xj) operation of the USTOR protocol returns a version (Vj,Mj) committed

by Cj . Let maxi denote the index of the maximum of all versions in VERi.

To implement stability detection, Ci periodically issues a dummy read operation for the reg-

ister of every client in a round-robin fashion (lines 331-332). In order to preserve a well-formed

interaction with the USTOR protocol, FAUST ensures that it invokes at most one operation of

USTOR at a time, either a read or a write operation from the application or a dummy read. We

assume that the application invokes read and write operations in a well-formed manner and that

these operations are queued such that they are executed only if no dummy read executes concur-

rently (this is omitted from the presentation for simplicity). The flags execopi and execdummyi

indicate whether an application-triggered operation or a dummy operation is currently executing

at USTOR, respectively. The protocol invokes a dummy read only if execxi and dummyexeci are

FALSE.

However, dummy read operations alone do not guarantee stability-detection completeness ac-

cording to Definition 16 because a faulty server, even when it only crashes, may not respond to the

97

client messages in protocol USTOR. This prevents two clients that are consistent with each other

from ever discovering that. To solve this problem, the clients communicate directly with each other

and exchange their versions, as explained next.

For every entry VERi[j], the protocol stores in Ti[j] the time when the entry was most recently

updated. If a periodic check of these times reveals that more than δ time units have passed without

an update from Cj , then Ci sends a PROBE message with no parameters directly to Cj (lines 329–

330). Upon receiving a PROBE message, Cj replies with a message 〈VERSION, (V,M)〉, where

(V,M) = VERj[maxj] is the maximal version that Cj knows. Client Ci also updates the value

of VERi[j] when it receives a bigger version from Cj in a VERSION message. In this way, the

stability detection mechanism eventually propagates the maximal version to all clients. Note that

a VERSION message sent by Ci does not necessarily contain a version committed by an operation

of Ci.

Whenever Ci receives a version (V,M) from Cj , either in a response of the USTOR protocol or

in a VERSION message, it calls a procedure update that checks (V,M) for consistency with the ver-

sions that it already knows. It suffices to verify that (V,M) is comparable to VERi[maxi] (line 336).

Furthermore, when VERi[j] ≤̇ (V,M), then Ci updates VERi[j] to the bigger version (V,M).

The vector Wi in stablei(Wi) notifications contains the i-th entries of the timestamp vectors

in VERi, i.e., Wi[j] = Vj[i], where (Vj,Mj) = VERi[j] for j = 1, . . . , n. Hence, whenever the

i-th entry in a timestamp vector in VERi[j] is larger than Wi[j] after an update to VERi[j], then Ci

updates Wi[j] accordingly and issues a notification stablei(Wi). This means that all operations of

FAUST at Ci that returned a timestamp t ≤ W [j] are stable w.r.t. Cj .

Note that Ci may receive a new maximal version from Cj by reading from Xj or by receiving

a VERSION message directly from Cj . Although using client-to-client communication has been

suggested before to detect server failures [59, 48], FAUST is the first algorithm in the context of

untrusted storage to employ offline communication explicitly for detecting stability and for aiding

progress when no inconsistency occurs.

The client detects server failures in one of three ways: first, the USTOR protocol may output

USTOR.faili if it detects any inconsistency in the messages from the server; second, procedure up-

date checks that all versions received from other clients are comparable to the maximum of the

versions in VERi; and last, another client that has detected a server failure sends a FAILURE mes-

sage via offline communication. When one of these conditions occurs, the client enters procedure

98

Algorithm 5 Fail-aware untrusted storage protocol (FAUST). Code for client Ci.
301: state
302: ki ∈ Clients, initially 0
303: VERi[j] ∈ Nn

0 × Stringsn, initially (0n,⊥n), for j = 1, . . . , n // biggest received from Cj
304: maxi ∈ Clients, initially 1 // index of client with maximal version
305: Wi ∈ Nn

0 , initially 0n // maximal timestamps of Ci’s operations observed by different clients
306: wchangei ∈ {FALSE, TRUE}, initially TRUE // indicates that Wi changed since last stablei(Wi)
307: execopi ∈ {FALSE, TRUE}, initially FALSE // indicates that a non-dummy operation is executing
308: execdummyi ∈ {FALSE, TRUE}, initially FALSE // indicates that a dummy operation is executing
309: Ti ∈ Nn, initially 0n // time when last updated version was received from Cj

310: operation writei(x):
311: execopi ← TRUE

312: invoke USTOR.writexi(x)

313: upon completion of USTOR.writexi
with return value (Vi,Mi):

314: execopi ← FALSE

315: update(i, (Vi,Mi))
316: output (OK, Vi[i])

317: operation readi(Xj):
318: execopi ← TRUE

319: invoke USTOR.readxi(Xj)

320: upon completion of USTOR.readxi
with return value (x, Vi,Mi, Vj ,Mj):

321: update(i, (Vi,Mi))
322: update(j, (Vj ,Mj))
323: if execopi then
324: execopi ← FALSE

325: output (x, Vi[i])
326: else
327: execdummyi ← FALSE

328: periodically:
329: D ← {Cj | time()− Ti[j] > δ}
330: send message 〈PROBE〉 to all Cj ∈ D
331: if not execopi and not execdummyi then
332: ki ← ki mod n+ 1
333: execdummyi ← TRUE

334: invoke USTOR.readxi(ki)

335: procedure update(j, (V,M)):
336: if not

(
(V,M) ≤̇ VERi[maxi] or
VERi[maxi] ≤̇ (V,M)

)
then

337: fail()
338: if VERi[j] <̇ (V,M) then
339: VERi[j]← (V,M)
340: Ti[j]← time()
341: if VERi[maxi] <̇ (V,M) then
342: maxi ← j
343: if Wi[j] < V [i] then
344: Wi[j]← V [i]
345: wchangei ← TRUE

346: upon wchangei:
347: wchangei ← FALSE

348: output stablei(Wi)

349: upon receiving msg. 〈PROBE〉 from Cj :
350: send message 〈VERSION, VERi[i]〉 to Cj

351: upon receiving msg. 〈VERSION,(V,M)〉 from
Cj :

352: update(j, (V,M))

353: procedure fail():
354: send message 〈FAILURE〉 to all clients
355: output faili
356: halt

357: upon receiving USTOR.faili or
receiving a message 〈FAILURE〉 from Cj :

358: fail()

fail, sends a FAILURE message to alert all other clients, outputs faili, and halts.

The following result summarizes the properties of the FAUST protocol.

99

Theorem 39. Protocol FAUST in Algorithm 5 implements a fail-aware untrusted storage service

consisting of n SWMR registers.

Proof overview. A proof of the theorem appears in Section 6.6; here we sketch its main ideas.

Note that properties 1, 2, and 3 of Definition 16 immediately follow from the properties of the

USTOR protocol: it is linearizable and wait-free whenever the server is correct, and weak fork-

linearizable at all times. Property 4 (integrity) holds because subsequent operations of a client

always commit versions with monotonically increasing timestamp vectors. Furthermore, the US-

TOR protocol never detects a failure when the server is correct, even when the server is arbitrarily

slow, and the versions committed by its operations are monotonically increasing; this ensures prop-

erty 5 (failure-detection accuracy).

We next explain why FAUST ensures property 6 of a fail-aware untrusted service (stability-

detection accuracy). It is easy to see that any version returned by an extended operation of USTOR

at Ci which is subsequently stored in VERi[i] is comparable to all other versions stored in VERi.

Additionally, we show (Lemma 55 in Section 6.6) that every complete operation of the USTOR

protocol at a client Cj that does not cause FAUST to output failj , commits a version that is com-

parable to VERi[j].

When combined, these two properties imply that when Ci receives a version from Cj that is

larger than the version (Vi,Mi) committed by some operation oi of Ci, then all versions committed

by operations of Cj that do not fail are comparable to (Vi,Mi). Hence, when (Vi,Mi) <̇ VERi[j]

and oi becomes stable w.r.t. Cj , then Cj has promised, intuitively, to Ci that they have a common

view of the execution up to oi.

For property 7 (detection completeness), we show that every complete operation of FAUST

at Ci eventually becomes stable with respect to every correct client Cj , unless a server failure is

detected. Suppose that Ci and Cj are correct and that some operation oi of Ci returned timestamp t.

Under good conditions, when the server is correct and the network delivers messages in a timely

manner, the FAUST protocol eventually causes Cj to read from Xi. Every subsequent operation of

Cj then commits a version (Vj,Mj) such that Vj[i] ≥ t. Since Ci also periodically reads all values,

Ci eventually reads from Xj and receives such a version committed by Cj , and this causes oi to

become stable w.r.t. Cj .

However, it is possible that Ci does not receive a suitable version committed by Cj , which

100

makes oi stable w.r.t. Cj . This may be caused by network delays, which are indistinguishable to

the clients from a server crash. At some point, Ci simply stops to receive new versions from Cj

and, conversely, Cj receives no new versions from Ci. But at most δ time units later, Cj sends a

PROBE message to Ci and eventually receives a VERSION message from Ci with a version (Vi,Mi)

such that Vi[i] ≥ t. Analogously, Ci eventually sends a PROBE message to Cj and receives a

VERSION message containing some (Vj,Mj) from Cj with Vj[i] ≥ t. This means that oi becomes

stable w.r.t. Cj .

6.5 Analysis of the Weak Fork-Linearizable Untrusted Storage

Protocol

This section is devoted to the proof of Theorem 38. We start with some lemmas that explain how

the versions committed by clients should monotonically increase during the protocol execution.

Lemma 40 (Transitivity of order on versions). Consider three versions (Vi,Mi), (Vj,Mj), and

(Vk,Mk). If (Vi,Mi) ≤̇ (Vj,Mj) and (Vj,Mj) ≤̇ (Vk,Mk), then (Vi,Mi) ≤̇ (Vk,Mk).

Proof. First, Vi ≤ Vj and Vj ≤ Vk implies Vi ≤ Vk because the order on timestamp vectors is

transitive. Second, let c be any index such that Vi[c] = Vk[c]. Since Vi[c] ≤ Vj[c] and Vj[c] ≤ Vk[c],

but Vi[c] = Vk[c], we have Vj[c] = Vk[c]. From (Vi,Mi) ≤̇ (Vj,Mj) it follows that Mi[c] =

Mj[c]. Analogously, it follows that Mj[c] = Mk[c], and hence Mi[c] = Mk[c]. This means that

(Vi,Mi) ≤̇ (Vk,Mk).

Lemma 41. Let oi be an operation ofCi that commits a version (Vi,Mi) and suppose that during its

execution,Ci receives a REPLY message containing a version (V c,M c). Then (V c,M c) <̇ (Vi,Mi).

Proof. We first prove that (V c,M c) ≤̇ (Vi,Mi). According to the order on versions, we have to

show that for all k = 1, . . . , n, we have either V c[k] < Vi[k] or V c[k] = Vi[k] and M c[k] =

Mi[k]. Note how the computation of (Vi,Mi) starts from (Vi,Mi) = (V c,M c) (line 138); later,

an entry Vi[k] is either incremented (lines 143 and 147), hence V c[k] < Vi[k], or not modified,

and then M c[k] = Mi[k]. Moreover, Vi[i] is incremented exactly once, and therefore (V c,M c) 6=
(Vi,Mi)

101

Lemma 42. Let o′i and oi be two operations of Ci that commit versions (V ′i ,M
′
i) and (Vi,Mi),

respectively, such that o′i precedes oi. Then:

1. o′i and oi are consecutive operations of Ci if and only if V ′i [i] + 1 = Vi[i]; and

2. (V ′i ,M
′
i) <̇ (Vi,Mi).

Proof. At the start of oi, client Ci remembers the most recent version (V ′i ,M
′
i) that it committed.

During the execution of o′i, Ci receives from S a version (V c,M c) and verifies that V ′i [i] = V c[i]

(line 137) and sets Vi = V ′i . Afterwards, Ci increments Vi[i] (line 147) exactly once (as guarded

by the check on line 144). This establishes the first claim of the lemma. The second claim follows

from the check (V ′i ,M
′
i) ≤̇ (V c,M c) (line 137) and from Lemma 41 by transitivity of the order on

versions.

The next lemma addresses the situation where a client executes a read operation that returns a

value written by a preceding operation or a concurrent operation.

Lemma 43. Suppose oi is a read operation of Ci that reads a value x from register Xj and com-

mits version (Vi,Mi). Then the version (V j
0 ,M

j
0) that Ci receives with x in the REPLY message

satisfies (V j
0 ,M

j
0) <̇ (Vi,Mi). Moreover, suppose oj is the operation of Cj that writes x. Then all

operations of Cj that precede oj commit a version smaller than (Vi,Mi).

Proof. Let (V c,M c) be the version that Ci receives during oi in the REPLY message, together with

(V j
0 ,M

j
0), which was committed by an operation oj0 of Cj (line 150). In procedure checkData, Ci

verifies that (V j
0 ,M

j
0) ≤̇ (V c,M c); Lemma 41 shows that (V c,M c) <̇ (Vi,Mi); hence, we have

that (V j
0 ,M

j
0) <̇ (Vi,Mi) from the transitivity of the order on versions. Because the timestamp

tj that was signed together with x under the DATA-signature (line 151) is equal to V j
0 [j] or to

V j
0 [j] + 1 (line 153), it follows from Lemma 42 that either oj precedes oj0, or oj is equal to oj0, or

oj0 immediately precedes oj . In either case, the claim follows.

We now establish the connection between the view history of an operation and the digest vector

in the version committed by that operation.

Lemma 44. Let oi be an operation invoked by Ci that commits version (Vi,Mi). Furthermore,

if Vi[j] > 0, let ω denote the operation of Cj with timestamp Vi[j]; otherwise, let ω denote an

102

imaginary initial operation o⊥. Then Mi[j] is equal to the digest of the prefix of VH(oi) up to ω,

i.e.,

Mi[j] = D
(
VH(oi)|ω

)
.

Proof. We prove the lemma by induction on the construction of the view history of oi. Consider

operation oi executed by Ci and the REPLY message from S that Ci receives, which contains a

version (V c,M c). The base case of the induction is when (V c,M c) = (0n,⊥n). The induction

step is the case when (V c,M c) was committed by some operation oc of client Cc.

For the base case, note that for any j, it holds M c[j] = ⊥, and this is equal to the digest of

an empty sequence. During the execution of oi in updateVersion, the version (Vi,Mi) is first set

to (V c,M c) (line 138) and the digest d is set to M c[c]. Let us investigate how Vi and Mi change

subsequently.

If j 6= i, then Vi[j] and Mi[j] change only when an operation by Cj is represented in L. If there

is such an operation, Ci computes d = D
(
VH(oi)|ω

)
and sets Mi[j] to d by the end of the loop

(lines 140–146). In other words, the loop starts at the same position and cycles through the same

sequence of operations ω1, . . . ωm as the one used to define the view history. This establishes the

claim when ω is the operation of Cj with timestamp Vi[j].

If i = j, then the test in line 144 ensures that there is no operation by Cj represented in L. After

the execution of the loop, Vi[i] is incremented (line 147), the invocation tuple of oi is included into

the digest at the position corresponding to the definition of the view history, and the result stored

in Mi[i]. Hence, Mi[i] = D
(
VH(oi)

)
and the claim follows also for ω = oi.

For the induction step, note that M c[c] = D
(
VH(oc)

)
by the induction assumption. For any

j such that V c[j] = Vi[j], the claim holds trivially from the induction assumption. During the

execution of oi in updateVersion, the reasoning for the base case above applies analogously. Hence,

the claim holds also for the induction step, and the lemma follows.

Lemma 45. Let oi be an operation that commits version (Vi,Mi) such that Vi[j] > 0 for some

j ∈ {1, . . . , n}. Then the operation of Cj with timestamp Vi[j] is contained in VH(oi).

Proof. Consider the first operation õ ∈ VH(oi) that committed a version (Ṽ , M̃) such that Ṽ [j] =

Vi[j]. According to the test on line 144, the operation of Cj with timestamp Vi[j] is concurrent to

õ and therefore is contained in VH(oi) by construction.

103

Lemma 46. Consider two operations oi and oj that commit versions (Vi,Mi) and (Vj,Mj), re-

spectively, such that Vi[k] = Vj[k] > 0 for some k ∈ {1, . . . , n}, and let ok be the operation of Ck

with timestamp Vi[k]. Then Mi[k] = Mj[k] if and only if VH(oi)|ok = VH(oj)|ok .

Proof. By Lemma 45, ok is contained in the view histories of oi and oj . Applying Lemma 44 to

both sides of the equation Mi[k] = Mj[k] gives

D
(
VH(oi)|ok

)
= Mi[k] = Mj[k] = D

(
VH(oj)|ok

)
.

Because of the collision resistance of the hash function in the digest function, two outputs of D are

only equal if the respective inputs are equal. The claim follows.

We introduce another data structure for the analysis. The commit history CH(o) of an oper-

ation o is a sequence of operations, defined as follows. Client Ci executing o receives a REPLY

message from S that contains a timestamp vector V c, which is either equal to 0n or comes together

with a COMMIT-signature ϕc by Cc, corresponding to some operation oc of Cc. Then we set

CH(o) ,

o if V c = 0n

CH(oc), o otherwise.

Clearly, CH(o) is a sub-sequence of VH(o); the latter also includes all concurrent operations.

Lemma 47. Consider two consecutive operations oµ and oµ+1 in a commit history and the versions

(V µ,Mµ) and (V µ+1,Mµ+1) committed by oµ and oµ+1, respectively. For k = 1, . . . , n, it holds

V µ+1[k] ≤ V µ[k] + 1.

Proof. The lemma follows easily from the definition of a commit history and from the statements in

procedure updateVersion during the execution of oµ+1, because V µ+1 is initially set to V µ (line 138)

and V µ+1[k] is incremented (line 143) at most once for every k.

The purpose of the versions in the protocol is to order the operations if the server is faulty.

When a client executes an operation, the view history of the operation represents the impression

of the past operations that the server provided to the client. But if an operation oj that com-

mitted (Vj,Mj) is contained in VH(oi), where oi committed (Vi,Mi), this does not mean that

104

(Vj,Mj) ≤̇ (Vi,Mi). Such a relation holds only when VH(oj) is also a prefix of VH(oi), as the

next lemma shows.

Lemma 48. Let oi and oj be two operations that commit versions (Vi,Mi) and (Vj,Mj), respec-

tively. Then (Vj,Mj) ≤̇ (Vi,Mi) if and only if VH(oj) is a prefix of VH(oi).

Proof. To show the forward direction, suppose that (Vj,Mj) ≤̇ (Vi,Mi). Clearly, Vj[j] > 0 be-

cause Cj completed oj and Vj[j] ≤ Vi[j] according to the order on versions. In the case that

Vj[j] = Vi[j], the assumption of the lemma implies that Mj[j] = Mi[j] by the order on versions.

The claim now follows directly from Lemma 46.

It is left to show the case Vj[j] < Vi[j]. Let om be the first operation in CH(oi) that commits a

version (Vm,Mm) such that Vm[j] > Vj[j]; let oc be the operation that precedes om in its commit

history and suppose oc commits (V c,M c). Note that V c[j] ≤ Vj[j]. According to Lemma 47, we

have V c[j] = Vj[j] = Vm[j]− 1.

Let o′j be the operation of Cj with timestamp Vj[j] + 1. Note that oj and o′j are two consecutive

operations of Cj according to Lemma 42. There are two possibilities for the relation between o′j
and om:

Case 1: If o′j = om, then we observe from the definitions of view histories and commit histories

that VH(o′j) is a prefix of VH(oi). We only have to prove that VH(oj) is a prefix of VH(o′j).

According to the protocol, Cj verifies that V c[j] = Vj[j] > 0 and that (Vj,Mj) ≤̇ (V c,M c)

(line 137). By the definition of the order on versions, we getM c[j] = Mj[j]. Lemma 46 now

implies that VH(oj) is a prefix of VH(oc), which, in turn, is a prefix of VH(o′j) according to

the definition of view histories, and the claim follows.

Case 2: If o′j was a concurrent operation to om, then the invocation tuple of o′j was contained in L

received by the client executing om, and the client verified the PROOF-signature byCj in P [j]

from operation oj on M c[j]. If the verification succeeds, we know that M c[j] = D
(
VH(oj)

)
according to Lemma 44. According to the verification of the SUBMIT-signature from Cj

on V c[j], we have Vj[j] = V c[j] > 0 (line 144); hence, Lemma 46 implies that VH(oj)

is a prefix of VH(oc) and the claim follows because VH(oc) is a prefix of VH(oi) by the

definition of view histories.

105

To prove the backward direction, suppose that (Vj,Mj) ˙6≤ (Vi,Mi). There are two possibilities

for this comparison to fail: there exists a k such that either Vj[k] > Vi[k] or that Vi[k] = Vj[k] and

Mi[k] 6= Mj[k].

In the first case, Lemma 45 shows that there exists an operation ok by client Ck in VH(oj) that

is not contained in VH(oi). Thus, VH(oj) is not a prefix of VH(oi).

In the second case, Lemma 46 implies that VH(oi)|ok is different from VH(oj)|ok , and, again,

VH(oj) is not a prefix of VH(oi). This concludes the proof.

This result connects the versions committed by two operations to their view histories and shows

that the order relation on committed versions is isomorphic to the prefix relation on the correspond-

ing view histories. The next lemma contains a useful formulation of this property.

Lemma 49 (No-join). Let oi and oj be two operations that commit versions (Vi,Mi) and (Vj,Mj),

respectively. Suppose that (Vi,Mi) and (Vj,Mj) are incomparable, i.e., (Vi,Mi) ˙6≤ (Vj,Mj) and

(Vj,Mj) ˙6≤ (Vi,Mi). Then there is no operation ok that commits a version (Vk,Mk) that satisfies

(Vi,Mi) ≤̇ (Vk,Mk) and (Vj,Mj) ≤̇ (Vk,Mk).

Proof. Suppose for the purpose of reaching a contradiction that there exists such an operation ok.

From Lemma 48, we know that VH(oi) and VH(oj) are not prefixes of each other. But the same

lemma also implies that VH(oi) is a prefix of VH(ok) and that VH(oj) is a prefix of VH(ok).

This is only possible if one of VH(oi) and VH(oj) is a prefix of the other, and this contradicts the

previous statement.

We are now ready to prove that our algorithm emulates a storage service of n SWMR registers

on an untrusted server with weak fork linearizability. We do this in two steps. The first theorem

below shows that the protocol execution with a correct server is linearizable and wait-free. The

second theorem below shows that the protocol preserves weak fork-linearizability even with a

faulty server. Together they imply Theorem 38.

Theorem 50. In every fair and well-formed execution with a correct server:

1. Every operation of a correct client is complete; and

2. The history is linearizable w.r.t. n SWMR registers.

106

Proof. Consider a fair and well-formed execution σ of protocol USTOR where S is correct. We

first show that every operation of a correct client is complete. According to the protocol for S,

every client that sends a SUBMIT message eventually receives a REPLY message from S. This fol-

lows because the parties use reliable FIFO channels to communicate, the server processes arriving

messages atomically and in FIFO order, and at the end of processing a SUBMIT message, the server

sends a REPLY message to the client.

It remains to show that a correct client does not halt upon receiving the REPLY message and

therefore satisfies the specification of the functionality. We now examine all checks by Ci in

Algorithm 3 and explain why they succeed when S is correct.

The COMMIT-signature on the version (V c,M c) received from S is valid because S sends it

together with the version that it received from the signer (line 136). For the same reason, also the

COMMIT-signature on (V j,M j) (line 150) and the DATA-signature on tj and H(xj) (line 151) are

valid.

Suppose Ci executes operation oi. In order to see that (Vi,Mi) ≤̇ (V c,M c) and Vi[i] = V c[i]

(line 137), consider the schedule constructed by S: The schedule at the point in time when S

receives the SUBMIT message corresponding to oi is equal to the view history of oi. Moreover, the

version committed by any operation scheduled before oi is smaller than the version committed by

oi.

According to Algorithm 4, S keeps track of the last operation in the schedule for which it has

received a COMMIT message and stores the index of the client who executed this operation in c

(line 203). Note that SVER[c] holds the version (M c, V c) committed by this operation. Therefore,

when Ci receives a REPLY message from S containing (M c, V c), the check (Vi,Mi) ≤̇ (V c,M c)

succeeds since the preceding operation ofCi already committed (Vi,Mi). This preceding operation

is in VH(oi) by Lemma 45; moreover, it is the last operation of Ci in the schedule, and therefore,

Vi[i] = V c[i].

Next, we examine the verifications in the loop that runs through the concurrent operations

represented in L (lines 140–146). Suppose Ci is verifying an invocation tuple representing an

operation ok of Ck. It is easy to see that the PROOF-signature of Ck in P [k] was created during

the most recent operation o′k of Ck that precedes ok, because Ck and S communicate using a

reliable FIFO channel and, therefore, the COMMIT message of o′k has been processed by S before

the SUBMIT message of ok. It remains to show that the value Mi[k], on which the signature is

107

verified (line 142), is equal to M ′
k[k], where (M ′

k, V
′
k) is the version committed by o′k. Since o′k is

the last operation by Ck in the schedule before oc, it holds V ′k [k] = V c[k]. Furthermore, it holds

(V ′k ,M
′
k) ≤̇ (V c,M c) and this means that M ′

k[k] = M c[k] by the order on versions. Since Mi is

set to M c before the loop (line 138), we have that Mi[k] = M c[k] = M ′
k[k] and the verification of

the PROOF-signature succeeds.

Extending this argument, since V c[k] holds the timestamp of o′k, the timestamp of ok is V c[k]+

1, and thus the SUBMIT-signature of ok is valid (line 144). Since no operation of Ci that precedes

oi occurs in the schedule after oc, and since L includes only operations that occur in the schedule

after oc (according to line 220), no operation by Ci is represented in L. Therefore, the check that

k 6= i succeeds (line 144).

For a read operation from Xj , client Ci receives the timestamp tj and the value xj , together

with a version (V j,M j) committed some operation oj of Cj . Consider the operation ow of Cj that

writes xj . It may be that ow = oj if S has received its COMMIT message before the read operation.

But since Cj sends the timestamp and the value with the SUBMIT message to S, it may also be that

oj precedes ow. Ci first verifies that (V j,M j) ≤̇ (V c,M c), and this holds because (V c,M c) was

committed by the last operation in the schedule (line 152). Furthermore, Ci checks that tj = Vi[j]

(line 152); because both values correspond to the timestamp of the last operation by Cj scheduled

before oi, the check succeeds. Finally, Ci verifies that (V j,M j) is consistent with tj: if ow = oj ,

then V j[j] = tj; otherwise, ow is the subsequent operation of Cj after oj , and V j[j] = tj − 1

(line 153).

For the proof of the second claim, we have to show that the schedule constructed by S satisfies

the two conditions of linearizability. First, the schedule preserves the real-time order of σ because

any operation o that precedes some operation o′ is also scheduled before o′, according to the in-

structions for S. Second, every read operation from Xj returns the value written either by the most

recent completed write operation of Cj or by a concurrent write operation of Cj .

Let σ be the history of a fair and well-formed execution of the protocol. The definition of weak

fork-linearizability postulates the existence of sequences of events πi for i = 1, . . . , n such that πi

is a view of σ at client Ci. We construct πi in three steps:

1. Let oi be the last complete operation of Ci in σ and suppose it committed version (Vi,Mi).

Define αi to be the set of all operations in σ that committed a version smaller than or equal

108

to (Vi,Mi).

2. Define βi to be the set of all operations oj of the form writej(Xj, x) from σ \ αi for any x

such that αi contains a read operation returning x. (Recall that written values are unique.)

3. Construct a sequence ρi from αi by ordering all operations in αi according to the versions

that these operations commit, in ascending order. This works because all versions are smaller

than (Vi,Mi) by construction of αi, and, hence, totally ordered by Lemma 49. Next, we

extend ρi to πi by adding the operations in βi as follows. For every oj ∈ βi, let x be the value

that it writes; insert oj into πi immediately before the first read operation that returns x.

Theorem 51. The history of every fair and well-formed execution of the protocol is weakly fork-

linearizable w.r.t. n SWMR registers.

Proof. We use αi, βi, ρi, and πi as defined above.

Claim 51.1. Consider some πi and let oj, o′j ∈ σ be two operations of client Cj such that o′j ∈ πi.
Then oj <σ o

′
j if and only if oj ∈ αi and oj <πi

o′j .

Proof. To show the forward direction, we distinguish two cases. If o′j ∈ βi, then it must be a write

operation and there is a read operation ok in αi that returns the value written by o′j . According to

Lemma 43, any other operation of Cj that precedes o′j commits a version smaller than the version

committed by ok. In particular, this applies to oj . Since ok ∈ αi, we also have oj ∈ αi by

construction and oj <πi
ok since πi contains the operations of αi ordered by the versions that they

commit. Moreover, because o′j appears in πi immediately before ok, it follows that oj <πi
o′j .

If o′j 6∈ βi, on the other hand, then o′j ∈ αi, and Lemma 42 shows that oj commits a version that

is smaller than the version committed by o′j . Hence, by construction of αi, we have that oj ∈ αi
and oj <πi

o′j .

To establish the reverse implication, we distinguish the same two cases as above. If o′j ∈ βi,
then then it must be a write operation and there is a subsequent read operation ok ∈ αi that returns

the value written by o′j . Since oj ∈ αi by assumption and oj <πi
ok, it must be that the version

committed by oj is smaller than the version committed by ok because the operations of ρi are

ordered according to the versions that they commit. Hence, oj <σ o
′
j by Lemma 42.

If o′j 6∈ βi, on the other hand, then o′j ∈ αi. Since the operations of ρi are ordered according to

the versions that they commit, the version committed by oj is smaller than the version committed

by o′j . Lemma 42 now implies that oj <σ o
′
j .

109

Recall the function lastops(πi) from the definition of weak real-time order, denoting the last

operations of all clients in πi.

Claim 51.2. For any πi, we have that βi ⊆ lastops(πi).

Proof. We have to show that operation oj ∈ βi invoked by Cj is the last operation of Cj in πi.

Towards a contradiction, suppose there is another operation o∗j of Cj that appears in πi after oj .

Because the execution is well-formed, operations oj and o∗j are not concurrent. If oj <σ o
∗
j , then

Claim 51.1 implies that oj ∈ αi, contradicting the assumption oj ∈ βi. On the other hand, if

o∗j <σ oj , then Claim 51.1 implies that o∗j <πi
oj . Since each operation appears at most once in πi,

this contradicts the assumption on o∗j .

The next claim is only needed for the proof of Theorem 39 in Section 6.6.

Claim 51.3. Let o′i be a complete operation of Ci, let ok be any operation in πi|o
′
i , let (V ′i ,M

′
i) be

the version committed by o′i, and let oj be an operation that commits version (Vj,Mj) such that

(V ′i ,M
′
i) ≤̇ (Vj,Mj). Then ok is invoked before oj completes.

Proof. Suppose ok commits version (Vk,Mk). If ok ∈ αi, then (Vk,Mk) ≤̇ (V ′i ,M
′
i) by con-

struction of αi, and in particular V ′i [k] ≥ Vk[k]. If ok ∈ βi, then there exists some read op-

eration or ∈ αi that commits (Vr,Mr) ≤̇ (V ′i ,M
′
i) and returns the value written by ok. Thus,

V ′i [k] ≥ Vr[k] ≥ Vk[k]. In both cases, we have that V ′i [k] ≥ Vk[k]. Since Vj ≥ V ′i , we conclude

that Vj[k] ≥ Vk[k] > 0. According to the protocol logic, this means that ok is invoked before oj ,

and in particular before oj completes.

Claim 51.4. πi is a view of σ at Ci w.r.t. n SWMR registers.

Proof. The first requirement of a view holds by construction of πi.

We next show the second requirement of a view, namely that all complete operations in σ|Ci

are contained in πi. Because the oi is the last complete operation of Ci, and all other operations of

Ci commit smaller versions by Lemma 42, the statement follows immediately from Lemma 48.

Finally, we show that the operations of πi satisfy the sequential specification of n SWMR

registers. The specification requires for every read operation or ∈ πi, which returns a value x

written by an operation ow of Cw, that ow appears in πi before or, and there must not be any other

write operation by Cw in πi between ow and or.

110

Suppose or is executed by Cr and commits version (Vr,Mr); note that Cr in checkData makes

sure that Vr[w] is equal to the timestamp t that Cr receives together with the data (according to

the verification of the DATA-signature in line 151 and the check in line 152). Since βi contains

only write operations, we conclude that or ∈ αi. Let o′w be the operation of Cw with timestamp t.

According to the protocol, o′w is either equal to ow or the last one in a sequence of read operations

executed by Cw immediately after ow.

We distinguish between two cases with respect to o′w. The first case is o′w ∈ βi. Then o′w = ow

and o′w appears in πi immediately before the first read operation that returns x, and o′w is the last

operation of Cw in πi as shown by Claim 51.2. Therefore, no further write operation of Cw appears

in πi and the sequential specification of the register holds.

The second case is o′w ∈ αi; suppose o′w commits version (V ′w,M
′
w), where V ′w[w] = t by def-

inition. Lemma 45 shows that o′w ∈ VH(or). Because or and o′w are in αi, versions (Vr,Mr)

and (V ′w,M
′
w) are ordered and we conclude from Lemma 48 that this is only possible when

(V ′w,M
′
w) <̇ (Vr,Mr). Therefore, o′w appears in πi before or by construction.

We conclude the argument for the second case by showing that there is no further write opera-

tion by Cw between o′w and or in πi. Towards a contradiction, suppose there is such an operation õw

of Cw. Suppose õw has timestamp t̃ and note that V ′w[w] < t̃ follows from Lemma 42.

We distinguish two further cases. First, suppose õw ∈ αi. Since o′w precedes õw and since

o′w ∈ αi, it follows from Lemma 42 that Vr[w] = V ′w[w] < t̃. This contradicts the assumption that

õw appears before or in πi because the operations in πi restricted to αi are ordered by the versions

they commit.

Second, suppose õw ∈ βi. By construction õw appears in πi immediately before some read

operation õr ∈ αi that commits (Ṽr, M̃r). Note that õr precedes or and that t̃ = Ṽr[w] according to

the verification in checkData. Hence, Vr[w] = V ′w[w] < t̃ = Ṽr, and this contradicts the assumption

that õr appears before or in πi because the operations in πi restricted to αi are ordered according

to the versions they commit.

Claim 51.5. πi preserves the weak real-time order of σ. Moreover, let π−i be the sequence of

operations obtained from πi by removing all operations of βi that complete in σ; then π−i preserves

the real-time order of σ.

Proof. We first show that ρi preserves the real-time order of σ. Let oj and ok be two operations in

ρi that commit versions (Vj,Mj) and (Vk,Mk), respectively, such that oj executed by Cj precedes

111

ok executed by Ck in σ. Since ok is invoked only after oj completes, Cj does not find in L any

operation by Ck with a valid SUBMIT-signature on a timestamp equal to or greater than Vk[k].

Hence Vj[k] < Vk[k], and, thus, (Vj,Mj) <̇ (Vk,Mk). Since oj and ok are ordered in ρi according

to their versions by construction, we conclude that oj appears before ok also in ρi. The extension

to the weak real-time order and the operations in πi follows immediately from Claim 51.2.

For the second part, note that we have already shown that every pair of operations from π−i ∩αi
preserves the real-time order of σ. Moreover, the claim also holds vacuously for every pair of

operations from π−i \ αi because neither operation completes before the other one. It remains to

show that every two operations oj ∈ π−i \ αi ⊆ βi and ok ∈ αi preserve the real-time order of σ.

Suppose oj is the operation of Cj with timestamp t. Since oj does not complete, not preserving

real-time order means that ok <σ oj and oj <πi
ok. Suppose for the purpose of a contradiction that

this is the case. Since oj ∈ βi, it appears in πi immediately before some read operation or ∈ αi that

commits a version (Vr,Mr). From the check in line 152 in Algorithm 3 we know that Vr[j] ≥ t.

Since oj has not been invoked by the time when ok completes, ok must be different from or and

it follows or <ρi
ok by assumption. Hence, the version (Vk,Mk) committed by ok is larger than

(Vr,Mr), and this implies Vk[j] ≥ t. But this contradicts the fact that oj has not yet been invoked

when ok completes, because according to the protocol logic, when an operation commits a version

(Vl,Ml) with Vl[j] > 0, then the operation of Cj with timestamp Vi[j] must have been invoked

before.

Claim 51.6. For every operation o ∈ πi and every write operation o′ ∈ σ, if o′ →σ o then o′ ∈ πi
and o′ <πi

o.

Proof. Recalling the definition of causal precedence, there are three ways in which o′ →σ o might

arise:

1. Suppose o and o′ are operations executed by the same client Cj and o′ <σ o. Since o ∈ πi,
Claim 51.1 shows that o′ ∈ πi and o′ <πi

o.

2. If o is a read operation that returns x and o′ is the operation that writes x, then the fact that

πi is a view of σ at Ci, as established by Claim 51.4, implies that o′ ∈ πi and precedes o in

πi.

3. If there is another operation o′′ such that o′ →σ o
′′ and o′′ →σ o, then, using induction, o′′

is contained in πi and precedes o, and o′ is contained in πi and precedes o′′, and, hence, o′

112

precedes o in πi.

Claim 51.7. For every clientCj , consider an operation ok of clientCk, such that either ok ∈ αi∩αj
or for which there exists an operation o′k of Ck such that ok precedes o′k. Then πi|ok = πj|ok .

Proof. In the first case that ok ∈ αi ∩ αj , then by construction of ρi and ρj , and by the transitive

order on versions, ρi|ok and ρj|ok contain exactly those operations that commit a version smaller

than the version committed by ok. Hence, ρi|ok = ρj|ok . Any operation ow ∈ βi that appears in

πi|ok is present in βi only because of some read operation or ∈ ρi|ok . Since or also appears in ρj|o

as shown above, ow is also included in βj and appears in πj immediately before or and at the same

position as in πi. Hence, πi|ok = πj|ok .

In the second case, the existence of o′k implies that ok is not the last operation of Ck in πi and,

hence, ok ∈ αi and ok ∈ αj . The statement then follows from the first case.

Claims 51.4–51.7 establish that the protocol is weak fork-linearizable w.r.t. n SWMR registers.

6.6 Analysis of the Fail-Aware Untrusted Storage Protocol

We prove Theorem 39, i.e., that protocol FAUST in Algorithm 5 satisfies Definition 16. The

functionality F is n SWMR registers; this is omitted when clear from the context.

The FAUST protocol relies on protocol USTOR for untrusted storage. We refer to the oper-

ations of these two protocols as fail-aware-level operations and storage-level operations, respec-

tively. In the analysis, we have to rely on certain properties of the low-level untrusted storage

protocol, which are formulated in terms of the storage operations read and write. But we face

the complication that here, the high-level FAUST protocol provides read and write operations, and

these, in turn, access the extended read and write operations of protocol USTOR, denoted by writex

and readx.

In this section, we denote storage-level operations by oi, oj, . . . as before. It is clear from

inspection of Algorithm 3 that all of its properties for read and write operations also hold for its

extended read and write operations with minimal syntactic changes. We denote all fail-aware-level

operations in this section by õi, õj, . . . , in order to distinguish them from the operations at the

storage level.

113

The FAUST protocol invokes exactly one storage-level operation for every one of its operations

and also invokes dummy read operations. Therefore, the fail-aware-level operations executed by

FAUST correspond directly to a subset of the storage-level operations executed by USTOR.

We say we sieve a sequence of storage-level events σ to obtain a sequence of fail-aware-level

events σ̃ by removing all storage-level events that are part of dummy read operations and by map-

ping every one of the remaining storage-level events to its corresponding fail-aware-level event.

Note that read operations can be removed from a sequence of events without affecting whether

the sequence satisfies the sequential specification of read/write registers. More precisely, when

we remove the events of a set of read operations Q from a sequence of events π that satisfies the

sequential specification, the resulting sequence π̃ also satisfies the sequential specification, as is

easy to verify. This implies that if π is a view of a history σ, then π̃ is a view of σ̃, where σ̃ is

obtained from σ by removing the events of all operations in Q. Analogously, if σ is linearizable

or causally consistent, then σ̃ is linearizable or causally consistent, respectively. We rely on this

property in the analysis.

Analogously, removing all events of a set of read operations from a sequence π and from a

history σ does not affect whether π is a view of σ. Hence, sieving does not affect whether a history

linearizable and whether some sequence is a view of a history. Furthermore, according to the algo-

rithm, an invocation (in σ̃) of a fail-aware-level operation triggers immediately an invocation (in σ)

at the storage level, and, analogously, a response at the fail-aware level (in σ̃) occurs immediately

after a corresponding response (in σ) at the storage level. Thus, sieving preserves also whether a

history wait-free. We refer to these three properties as the invariant of sieving below.

Lemma 52 (Integrity). When an operation õi of Ci returns a timestamp t, then t is bigger than

any timestamp returned by an operation of Ci that precedes õi.

Proof. Note that t = Vi[i], where (Vi,Mi) is the version committed by the corresponding storage-

level operation (lines 316 and 325). By Lemma 42, Vi[i] is larger than the timestamp of any

preceding operation of Ci.

Lemma 53 (Failure-detection accuracy). If Algorithm 5 outputs faili, then S is faulty.

Proof. According to the protocol, client Ci outputs faili only if one of three conditions are met:

(1) the untrusted storage protocol outputs USTOR.faili; (2) in update, the version (V,M) received

114

from a client Cj during a read operation or in a VERSION message is incomparable to VERi[maxi];

or (3) Ci receives a FAILURE message from another client.

For the first condition, Theorem 38 guarantees that Algorithm 3 does not output USTOR.faili
when S is correct. The second condition does not occur since the view history of every operation is

a prefix of the schedule produced by the correct server, and all versions are therefore comparable,

according to Lemma 48 in the analysis of the untrusted storage protocol. And the third condition

cannot be met unless at least one client sends a FAILURE message after detecting condition (1)

or (2). Since no client deviates from the protocol, this does not occur.

The next lemma establishes requirements 1–3 of Definition 16. The causal consistency property

follows because weak fork-linearizability implies causal consistency.

Lemma 54 (Linearizability and wait-freedom with correct server, causality). Let σ̃ be a fair

execution of Algorithm 5 such that σ̃|F is well-formed. If S is correct, then σ̃|F is linearizable

w.r.t. F and wait-free. Moreover, σ̃|F is weak fork-linearizable w.r.t. F .

Proof. As shown in the preceding lemma, a correct the server does not cause any client to output

fail. Since S is correct, the corresponding execution σ of the untrusted storage protocol is lineariz-

able and wait-free by Theorem 38. According to the invariant of sieving, also σ̃|F is linearizable

and wait-free.

In case S is faulty, the execution σ at the storage level is weak fork-linearizable w.r.t. F ac-

cording to Theorem 51. Note that in case a client detects incomparable versions, its last operation

in σ does not complete in σ̃|F . But omitting a response from σ does not change the fact that it is

weak fork-linearizable because it can be added again by Definition 14. The invariant of sieving

then implies that σ̃|F is also weak fork-linearizable w.r.t. F .

Lemma 55. Let õj be a complete fail-aware-level operation of Cj and suppose the corresponding

storage-level operation oj commits version (Vj,Mj). Then the value of VERi[j] at Ci at any time

of the execution is comparable to (Vj,Mj).

Proof. Let (V ∗,M∗) = VERi[j] at any time of the execution. If Ci has assigned this value to

VERi[j] during a read operation from Xj , then an operation of Cj committed (V ∗,M∗) and the

claim is immediate from Lemma 42. Otherwise, Ci has assigned (V ∗,M∗) to VERi[j] after receiv-

ing a VERSION message containing (V ∗,M∗) from Cj .

115

Notice that when Cj sends this message, it includes its maximal version at that time, in

other words, (V ∗,M∗) = VERj[maxj]. Consider the point in the execution when VERj[maxj] =

(V ∗,M∗) for the first time. If oj completes before this point in time, then (Vj,Mj) ≤̇ VERj[maxj] =

(V ∗,M∗) by the maintenance of the maximal version (line 342) and by the transitivity of versions.

On the other hand, consider the case that oj completes after this point in time. Since õj completes

in σ̃|F , the check on line 336 has been successful, and thus (Vj,Mj) ≤̇ (V ◦,M◦), where (V ◦,M◦)

is the value of VERj[maxj] at the time when õj completes. Because (V ◦,M◦) is also greater than

or equal to (V ∗,M∗) by the maintenance of the maximal version (line 342), Lemma 49 (no-join)

implies that (Vj,Mj) and (V ∗,M∗) are comparable.

Lemma 56. Suppose a fail-aware-level operation õi of Ci is stable w.r.t. Cj and suppose the corre-

sponding storage-level operation oi commits version (Vi,Mi). Let õj be any complete fail-aware-

level operation of Cj and suppose the corresponding storage-level operation oj commits version

(Vj,Mj). Then (Vi,Mi) and (Vj,Mj) are comparable.

Proof. Let (V ∗,M∗) = VERi[j] at the time when õi becomes stable w.r.t. Cj , and denote the

operation that commits (V ∗,M∗) by o∗.

It is obvious from the transitivity of versions and from the maintenance of the maximal version

(line 342) that (Vi,Mi) ≤̇ VERi[maxi]. For the same reasons, we have (V ∗,M∗) ≤̇ VERi[maxi].

Hence, Lemma 49 (no-join) shows that (Vi,Mi) and (V ∗,M∗) are comparable.

We now show that (Vi,Mi) ≤̇ (V ∗,M∗). Note that when stablei(Wi) occurs atCi, thenWi[j] ≥
Vi[i]. According to lines 343–345 in Algorithm 5, we have that V ∗[i] = Wi[j] ≥ Vi[i]. Then

Lemma 45 implies that oi appears in VH(o∗). By Lemma 48, since (Vi,Mi) is comparable

to (V ∗,M∗), either Hv(oi) is a prefix of Hv(o∗) or Hv(o∗) is a prefix of Hv(oi). But since

oi ∈ VH(o∗), it must be that Hv(oi) is a prefix of Hv(o∗). From Lemma 48, it follows that

(Vi,Mi) ≤̇ (V ∗,M∗).

Considering the relation of (V ∗,M∗) to (Vj,Mj), it must be that either (Vj,Mj) ≤̇ (V ∗,M∗) or

(V ∗,M∗) ≤̇ (Vj,Mj) according to Lemma 55. In the first case, the lemma follows from Lemma 49

(no-join), and in the second case, the lemma follows by the transitivity of versions.

Lemma 57 (Stability-detection accuracy). If õi is a fail-aware-level operation of Ci that is stable

w.r.t. some set of clients C, then there exists a sequence of events π̃ that includes õi and a prefix

116

τ̃ of σ̃|F such that π̃ is a view of τ̃ at all clients in C w.r.t. F . If C includes all clients, then τ̃ is

linearizable w.r.t. F .

Proof. Let oi be the storage-level operation corresponding to õi, and let (Vi,Mi) be the version

committed by oi. Let σ be any history of the execution of protocol USTOR induced by σ̃. Let αi,

βi, ρi, and πi be sets and sequences of events, respectively, defined from σ according to the text

before Theorem 51. We sieve πi|oi to obtain a sequence of fail-aware-level operations π̃ and let τ̃

be the shortest prefix of σ̃|F that includes the invocations of all operations in π̃.

We next show that π̃ is a view of τ̃ at Cj w.r.t. F for any Cj ∈ C. According to the definition

of a view, we create a sequence of events τ̃ ′ from τ̃ by adding a response for every operation in π̃

that is incomplete in σ̃|F ; we add these responses to the end of τ̃ (there is at most one incomplete

operation for each client).

In order to prove that π̃ is a view of τ̃ at Cj w.r.t. F , we show (1) that π̃ is a sequential

permutation of a sub-sequence of complete(τ̃ ′); (2) that π̃|Cj
= complete(τ̃ ′)|Cj

; and (3) that π̃

satisfies the sequential specification of F . Property (1) follows from the fact that π̃ is sequential

and includes only operations that are invoked in τ̃ and by construction of complete(τ̃ ′) from τ̃ .

Property (3) holds because πi is a view of σ at Ci w.r.t. F according to Claim 51.4, and because

the sieving process that constructs π̃ from π|oi preserves the sequential specification of F .

Finally, we explain why property (2) holds. We start by showing that the set of operations in

π̃|Cj
and complete(τ̃ ′)|Cj

is the same. For any operation õj ∈ π̃|Cj
, property (1) already establishes

that õj ∈ complete(τ̃ ′). It remains to show that any õj ∈ complete(τ̃ ′) also satisfies õj ∈ π̃|Cj
.

The assumption that õj is in complete(τ̃ ′) means that either õj ∈ π̃ or that õj is complete

already in τ̃ . In the former case, the implication holds trivially. In the latter case, because the

corresponding storage-level operation oj ∈ πi|oi is complete and commits (Vj,Mj), Lemma 56

implies that (Vj,Mj) and (Vi,Mi) are comparable. If (Vj,Mj) ≤̇ (Vi,Mi), then oj ∈ πi|oi by

construction of πi, and furthermore, õj ∈ π̃|Cj
by construction of πi. Otherwise, it may be that

(Vi,Mi) <̇ (Vj,Mj), but we show next that this is not possible.

If (Vi,Mi) <̇ (Vj,Mj), then by definition of τ̃ , the invocation of some operation õk ∈ π̃ appears

in σ̃|F after the response of õj . By construction of π̃, the corresponding storage-level operation

ok is contained in πi|oi . According to the protocol, operations and upon clauses are executed

atomically, and therefore the invocation of ok appears in σ after the response of oj . At the same

time, Claim 51.3 implies that ok is invoked before oj completes, a contradiction.

117

To complete the proof of property (2), it is left to show that the order of the operations in π̃|Cj

and in complete(τ̃ ′)|Cj
is the same. By Claim 51.1, πi preserves the real-time order of σ among the

operations of Cj . Therefore, π̃ also preserves the real-time order of σ̃|F among the operations of

Cj . On the other hand, since τ̃ is a prefix of σ̃|F and since τ̃ ′ is created from τ̃ by adding responses

at the end, it easy to see that the operations of Cj in τ̃ ′ are in the same order as in σ̃|F .

For the last part of the lemma, it suffices to show that when C includes all clients, and, hence,

π̃ is a view of τ̃ at all clients, then π̃ preserves the real-time order of τ̃ . By Lemma 56, every

complete operation in σ̃|F corresponds to a complete storage-level operation that commits a version

comparable to (Vi,Mi). Therefore, all operations of πi|oi that correspond to a complete fail-aware-

level operation are in πi|oi ∩ αi. There may be incomplete fail-aware-level operations as well,

and the above argument shows that the corresponding storage-level operations are contained in

πi|oi ∩ βi. We create a sequence of events σ′ from σ|oi by removing the responses of all operations

in πi|oi ∩ βi. Claim 51.5 implies that πi|oi preserves the real-time order of σ′. Notice that sieving

σ′ also yields σ̃|F . Therefore, π̃ preserves the real-time order of σ̃|F and since τ̃ is a prefix of σ̃|F ,

we conclude that π̃ also preserves the real-time order of τ̃ .

Lemma 58 (Detection completeness). For every two correct clients Ci and Cj and for every time-

stamp t returned by some operation õi of Ci, eventually either fail occurs at all correct clients or

stablei(W) occurs at Ci with W [j] ≥ t.

Proof. Notice that whenever fail occurs at a correct client, the client also sends a FAILURE mes-

sage to all other clients. Since the offline communication method is reliable, all correct clients

eventually receive this message, output fail, and halt. Thus, for the remainder of this proof we as-

sume that Ci and Cj do not output fail and do not halt. We show that stablei(W) occurs eventually

at Ci such that W [j] ≥ t. Let oi be the storage-level operation corresponding to õi. Note that oi

completes and suppose it commits version (Vi,Mi). Thus, Vi[i] = t.

We establish the lemma in two steps: First, we show that VERj[maxj] eventually contains a

version that is greater than or equal to (Vi,Mi). Second, we show that also VERi[j] eventually

contains a version that is greater than or equal to (Vi,Mi).

For the first step, note that every VERSION message that Ci sends to Cj after completing õi con-

tains a version that is greater than or equal to (Vi,Mi), by the maintenance of the maximal version

(line 342) and by the transitivity of versions. Since the offline communication method is reliable

118

and both Ci and Cj are correct, Cj eventually receives this message and updates VERj[maxj] to

this version that is greater than or equal to (Vi,Mi).

Suppose that Ci does not send any VERSION message to Cj after completing õi. This means

that Ci never receives a PROBE message from Cj and hence, Ci 6∈ D at Cj . This is only pos-

sible if Cj updates Tj[i] periodically, at the latest every δ time units, when receiving a version

from Ci during a read operation from Xi. Therefore, one of these read operations eventually re-

turns a version (V ′i ,M
′
i) committed by an operation o′i of Ci, where o′i = oi or oi precedes o′i.

Thus, (Vi,Mi) ≤̇ (V ′i ,M
′
i) and by the maintenance of the maximal version at Cj (line 342) and

by the transitivity of versions, we conclude that (Vi,Mi) ≤̇ VERj[maxj] when the read operation

completes. This concludes the first step of the proof.

We now address the the second step. Note when Cj sends to Ci a VERSION message at a time

when (Vi,Mi) ≤̇ VERj[maxj] holds, the message includes a version that is also greater than or

equal to (Vi,Mi). When Cj receives this message, it stores this version in VERi[j].

Suppose that after the first time when (Vi,Mi) ≤̇ VERj[maxj] holds, Cj does not send any

VERSION message to Ci. Using the same argument as above with the roles of Ci and Cj reversed,

we conclude thatCi periodically executes a read operation fromXj and stores the received versions

in VERi[j]. Eventually some read operation o′i commits a version (V ′i ,M
′
i) and returns a version

(Vj,Mj) committed by an operation of Cj that was invoked after oi completed. Lemma 43 shows

that (Vj,Mj) ≤̇ (V ′i ,M
′
i), and since oi and o′i are both operations of Ci and oi precedes o′i, it

follows (Vi,Mi) ≤̇ (V ′i ,M
′
i) from Lemma 42. Then Lemma 49 (no-join) implies that (Vi,Mi) is

comparable to (Vj,Mj), and it must be that (Vi,Mi) ≤̇ (Vj,Mj) since oi precedes oj . Thus, after

completing o′i, we observe that VERi[j] is greater than or equal to (Vi,Mi).

To conclude the argument, note that when VERi[j] contains a version greater than or equal to

(Vi,Mi) for the first time, then wchangei = TRUE and this triggers a stablei(W) notification with

W [j] ≥ t.

119

Chapter 7

Venus: Verification for Untrusted Cloud

Storage

This chapter presents Venus, a service for securing user interaction with untrusted cloud storage.

Specifically, Venus guarantees integrity and consistency for applications accessing a key-based ob-

ject store service, without requiring trusted components or changes to the storage provider. Venus

completes all operations optimistically, guaranteeing data integrity. It then verifies operation con-

sistency and notifies the application. Whenever either integrity or consistency is violated, Venus

alerts the application. We implemented Venus and evaluated it with Amazon S3 commodity stor-

age service. The evaluation shows that it adds no noticeable overhead to storage operations. A

preliminary version of this work was published in the ACM Cloud Computing Security Workshop

(CCSW) 2010 [71].

7.1 Introduction

In this chapter we present Venus, short for VErificatioN for Untrusted Storage. With Venus, a

group of clients accessing a remote storage provider benefits from two guarantees: integrity and

consistency. Integrity means that a data object read by any client has previously been written by

some client; it protects against simple data modifications by the provider, whether inadvertent or

caused by malicious attack. Note that a malicious provider might also try a “replay attack” and

answer to a read operation with properly authenticated data from an older version of the object,

120

which has been superseded by a newer version. Venus restricts such behavior and guarantees that

either the returned data is from the latest write operation to the object, ensuring that clients see

atomic operations, or that the provider misbehavior is exposed. This is the consistency property of

Venus, which allows multiple clients to access the stored data concurrently in a consistent fashion.

Venus notifies the clients whenever it detects a violation of integrity or consistency. Applica-

tions may handle this error in a variety of ways, such as switching to another service provider.

Venus works transparently with simple object-based cloud storage interfaces, such that clients may

continue to work with a commodity storage service of their choice without changing their applica-

tions.

During normal operation, clients of cloud storage should not have to communicate with each

other. If clients did communicate, they could simply exchange the root value of a hash tree on the

stored objects to obtain consistency. This, however, would introduce a prohibitive coordination

overhead — clients should be able to execute operations in isolation, when the other clients are

disconnected. But without client-to-client communication for every operation, a malicious service

could simply ignore write operations by some clients and respond to other clients with outdated

data, as we have demonstrated in Section 5.4. Previous solutions dealt with the problem using so-

called “forking” semantics (in SUNDR [59, 48], and other proposals [15, 55, 11]). These solutions

guarantee integrity, and by adding some extra out-of-band communication among the clients can

also be used to achieve a related notion of consistency. However, they also incur a major drawback

that hampers system availability. Specifically, even when the service functions correctly, all these

protocols may sometimes block a client during an operation, requiring the client to wait for another

client to finish, and do not guarantee that every client operation successfully completes. We have

shown in Section 5.5 that this limitation is inherent.

Venus eliminates this problem by letting operations finish optimistically and establishing con-

sistency later. When the service is correct, all client operations therefore terminate immediately

and the service is “wait-free.” When an operation returns optimistically, it is called red, and Venus

guarantees integrity, but not yet consistency. If the storage service is indeed correct, Venus notifies

the application later when a red operation is known to be consistent and thereby becomes green; in

this sense, Venus is eventually consistent. Venus guarantees that the green operations of all clients

are consistent, i.e., that they can be ordered in a single sequence of atomic operations. If some

red operations are irreconcilable and so may never become green, Venus ensures that every client

121

eventually receives a failure notification.

Venus does not require any additional trusted components and relies only on the clients that

are authorized to access the data. Venus allows a dynamic set of potentially disconnected clients.

A subset of clients that are frequently online is designated as a core set; these clients manage the

group membership and help to establish consistency. Venus assumes that clients are correct or

may crash silently, but otherwise follow their specification, and that a majority of the clients in

the core set is correct. The storage service usually functions properly, but may become subject

to attacks or behave arbitrarily. Venus is asynchronous and never violates consistency or integrity

due to timeouts, but relies on some synchrony assumptions for liveness. Clients may occasionally

communicate with each other by email. Since this is conducted in the background, independently

of storage operations, and only if a client suspects that the storage service is faulty, it does not

affect the performance of Venus.

Venus implementation is comprised of a client-side library and a verifier. The client-side li-

brary overrides the interface of the storage service, extending it with eventual consistency and

failure notifications. The verifier brokers consistency information and can be added to the storage

service in a modular way; typically it will also run in the cloud, hosted by the same untrusted

service that provides the storage. Internally, the verifier and the storage service might be replicated

for fault tolerance and high availability. Note that using replication within the cloud does not solve

the problem addressed by Venus, since from the client’s perspective, the entire cloud is a single

trust domain. We stress that Venus does not trust the verifier any more than the storage service —

the two entities may collude arbitrarily against the clients, and separating them simply supports

a layered implementation with commodity providers. Of course, the verifier could be run by a

trusted third party, but it would be a much stronger assumption and existing protocols suffice for

integrity and consistency in this model [8].

We have implemented Venus and deployed it using the commodity Amazon S3 cloud storage

service1. Venus requires an additional message exchange between client and verifier for each op-

eration, in addition to accessing the raw storage. We report on experiments using Venus connected

to S3 and with a verifier deployed either on a remote server or on the same LAN as the clients.

We compare the performance of storage access using Venus to that of the raw S3 service. Both the

latency and the throughput of Venus closely match the performance of the raw S3 service. Specif-

1http://aws.amazon.com/s3/

122

ically, when the verifier is deployed on the local LAN, Venus’ performance is identical to that of

S3. When the verifier is deployed remotely, Venus adds a small overhead to latency compared to

S3 (corresponding to one round of additional communication with the verifier) and achieves the

same throughput. We have also tested Venus’ capability to detect service misbehavior and present

logs from such an experiment, where the clients communicate with each other and detect that the

cloud storage provider has violated consistency (as simulated).

Contributions Our results demonstrate that data integrity and consistency for remote storage

accessed by multiple clients can be obtained with insignificant overhead, no additional trusted

components, and without interrupting normal operations. Specifically, Venus is the first practical

decentralized algorithm that

• verifies cryptographic integrity and consistency of remotely stored data accessed by multiple

clients without introducing trusted components,

• does not involve client-to-client coordination or introduce extra communication on the criti-

cal path of normal operations,

• provides simple semantics to clients, lets operations execute optimistically, but guarantees

that either all operations eventually become consistent, or that every client is informed about

the service failure, and

• is practically implemented on top of a commodity cloud storage service.

Venus may secure a variety of applications that currently use cloud storage, such as online collab-

oration, Internet backup, and document archiving. No less important is that Venus can encourage

applications that require verifiable guarantees, and cannot afford to blindly trust services in the

cloud, to consider taking advantage of what the cloud has to offer.

Comparison to FAUST. FAUST [12] (presented in Chapter 6) is an algorithm that implements

the notion of weak fork-linearizability, which allows client operations to complete optimistically,

as in Venus. It also provides notifications to clients, but they are different and less intuitive —

FAUST issues stability notifications, where each notification includes a vector indicating the level

of synchronization that a client has with every other client. This stability notion is not transitive

and requires users to explicitly track the other clients in the system and to assess their relation to the

data accessed by the operation. FAUST is therefore not easily amenable to dynamic changes in the

123

set of clients. Furthermore, global consistency in FAUST (among all clients) is guaranteed only

if no client ever crashes. FAUST does not work with commodity storage – like other proposals

it integrates storage operations with the consistency mechanism and moreover it does not allow

multiple clients to modify the same object, which is the usual semantics of commodity storage

services.

In contrast, indications in Venus simply specify the last operation of the client that has been

verified to be globally consistent, which is easy to integrate with an application. Venus eliminates

the need for clients to track one another, and enables dynamic client changes. Unlike the previous

protocols [12, 15, 55], Venus allows all clients to modify the same shared object. Most importantly,

the design of Venus is modular, so that it can be deployed with a commodity storage service.

Organization The remainder of the chapter is organized as follows: Section 7.2 presents the

design of Venus, and Section 7.3 defines its semantics. The protocol for clients and the verifier is

given in Section 7.4. Section 7.5 describes our implementation of Venus, and finally, Section 7.6

presents its evaluation.

7.2 System Model

Figure 7.1 depicts our system model, which includes a storage service, a generic commodity online

service for storing and retrieving objects of arbitrary size, a verifier, which implements our consis-

tency and verification functions and multiple clients. The storage service is used as is, without any

modification. Usually the storage service and the verifier are hosted in the same cloud and will be

correct; but they may become faulty or corrupted by an adversary, and they may collude together

against the clients.

There are an arbitrary number of clients, which are subject to crash failures. Clients may be

connected intermittently and are frequently offline. The core set of clients is a publicly known

subset of the clients with a special role. These clients help detect consistency and failures (Sec-

tion 7.4.4) and manage client membership (Section 7.4.6); to this end, clients occasionally com-

municate directly with clients from the core set. A quorum of the core set of clients must not crash

(but may also be offline temporarily). Note that clients of cloud services, and especially users

of cloud storage, do not operate continuously. Hence, clients should not depend on other clients

124

Verifier

Commodity Storage ServiceCommodity Storage Service

client client

client client

clientclient

client client

core set

clientclient

Figure 7.1: Venus Architecture.

for liveness of their operations. Indeed, every operation executed by a client in Venus proceeds

independently of other clients and promptly completes, even if all other clients are offline.

Clients in Venus are honest and do not deviate from their specification (except for crashing).

Note that tolerating malicious clients does not make a lot of sense, because every client may write

to the shared storage. From the perspective of the correct clients, the worst potential damage by an-

other client is to simply overwrite the storage with bogus information. Venus, just like commodity

cloud storage, cannot perform application-specific validation of written data.

Venus clients are admitted by a member of the core set, as determined by the same access-

control policy as the one used at the commodity storage interface. Clients are identified by a

signature public key and an email address, bound together with a self-signed certificate. Every

client knows initially at least the public keys of all clients in the core set.

Messages between clients and the verifier or the storage service are sent over reliable point-

to-point channels. Client-to-client communication is conducted using digitally signed email mes-

sages; this allows clients to go temporarily offline or to operate behind firewalls and NATs. Clients

rarely communicate directly with each other.

The storage service is assumed to have an interface for writing and reading data objects. The

125

write operation takes the identifier obj of the object and some data x as parameters and returns an

acknowledgment. The read operation expects an object identifier obj and returns the data stored

in the object. After a new object is successfully stored, clients are able to read it within a bounded

period of time, though perhaps not immediately. We assume that this bound is known; in practice,

it can be obtained dynamically2. The assumption that such time threshold exists reflects clients’

expectation from any usable storage service. Inability to meet this expectation (e.g., due to an in-

ternal partition) can be perceived as a failure of the storage provider as far as clients are concerned.

Venus makes several attempts to read the object, until this time bound is exceeded, at which time

a failure notification is issued to clients.

7.3 Venus Interface and Semantics

Venus overrides the write(obj, x) and read(obj) operations for accessing an object identified by

obj in the interface of the storage service. Venus does not allow partial updates of an object, the

value x overwrites the value stored previously. If the object does not exist yet, it is created. For

simplicity of presentation, we assume that each client executes operations sequentially.

Venus extends the return values of write and read operations by a local timestamp t, which

increasing monotonically with the sequence of operations executed by the client. An operation o

always completes optimistically, without waiting for other clients to complete their operations; at

this point, we say that o is red, which means that the integrity of the operation has been checked,

but its consistency is yet unverified.

A weak form of consistency is nevertheless guaranteed for all operations that become red.

Namely, they ensure causal consistency [38], which means intuitively that all operations are con-

sistent with respect to potential causality [42]. For example, a client never reads two causally

related updates in the wrong order. In addition, it guarantees that a read operation never returns

an outdated value, if the reader was already influenced by a more recent update. Causality has

proven to be important in various applications, such as various collaborative tools and Web 2.0

applications [62, 76]. Although usually necessary for applications, causality is often insufficient.

For example, it does not rule out replay attacks or prevent two clients from reading two different

2Amazon guarantees that S3 objects can be read immediately after they are created: http://aws.typepad.
com/aws/2009/12/aws-importexport-goes-global.html

126

versions of an object.

Venus provides an asynchronous callback interface to a client, which issues periodic consis-

tency and failure notifications. A consistency notification specifies a timestamp t that denotes the

most recent green operation of the client, using the timestamp returned by operations. All oper-

ations of the client up to this operations have been verified to be consistent and are also green.

Intuitively, all clients observe the green operations in the same order. More precisely, Venus en-

sures that there exists a global sequence of operations, including at least the green operations of all

clients, in which the green operations appear according to their order of execution. Moreover, this

sequence is legal, in the sense that every read operation returns the value written by the last write

that precedes the read in the sequence, or an empty value if no such write exists. Note that the

sequence might include some red operations, in addition to the green ones. This may happen, for

instance, when a client starts to write and crashes during the operation, and a green read operation

returns the written value.

Failure notifications indicate that the storage service or the verifier has violated its specifica-

tion. Venus guarantees that every complete operation eventually becomes green, unless the client

executing it crashes, or a failure is detected.

7.4 Protocol Description

Section 7.4.1 describes the interaction of Venus clients with the storage service. Section 7.4.2

describes versions, used by Venus to check consistency of operations. Section 7.4.3 presents the

protocol between the clients and the verifier. Section 7.4.4 describes how clients collect informa-

tion from other clients (either through the verifier or using client-to-client communication), and

use it for eventual consistency and failure detection. Section 7.4.5 describes optimizations.

For simplicity, we first describe the protocol for a fixed set of clients C1, . . . , Cn, and relax

this assumption later in Section 7.4.6. The algorithm uses several timeout parameters, which are

introduced in Table 7.1. We have formally proven that Venus provides the properties defined in

Section 7.3.

In what follows, we distinguish between objects provided by Venus and which can be read or

written by applications, and objects which Venus creates on storage. The former are simply called

objects, while the latter are called low-level objects. Every update made by the application to an

127

object obj managed with Venus creates a new low-level object at the storage service with a unique

identifier, denoted px in the description below, and the verifier maintains a pointer to the last such

update for every object managed by Venus. Clients periodically garbage-collect such low-level

objects (see also Section 7.4.5).

R Number of times an operation is retried on the storage service.
tdummy Frequency of dummy-read operations.
tsend Time since last version observed from another client, before that client is contacted directly.
treceive Frequency of checking for new messages from other clients.

Table 7.1: Venus timeout parameters.

7.4.1 Overview of read and write operations

The protocol treats all objects in the same way; we therefore omit the object identifier in the sequel.

The general flow of read and write operations is presented in Figure 7.2. When a write(x)

operation is invoked at a client Ci to update the object, the client calculates hx, a cryptographic

hash of x, and writes x to the storage service, creating a new low-level object with a unique path

px, chosen by the client-side library. Using px as a handle, the written data can later be retrieved

from storage. Notice that px identifies the low-level object created for this update, and it is different

from the object identifier exported by Venus, which is not sent to storage. After the low-level write

completes, Ci sends a SUBMIT message to the verifier including px and hx, informing it about

the write operation. Ci must wait before sending the SUBMIT message, since if Ci crashes before

x is successfully stored, px would not be a valid handle and read operations receiving px from

the verifier would fail when trying to retrieve x from the storage service. The verifier orders all

SUBMIT messages, creating a global sequenceH of operations.

When a read operation is invoked, the client first sends a SUBMIT message to the verifier, in

order to retrieve a handle corresponding to the latest update written to the object. The verifier

responds with a REPLY message including px and hx from the latest update. The reader then

contacts the storage service and reads the low-level object identified by px. In most cases, the

data will be returned by the storage service. The reader then checks the integrity of the data by

computing its hash and comparing it to hx; if they are equal, it returns the data to the application.

If the storage provider responds that no low-level object corresponds to px, the client re-executes

128

verifier client storage
write(p

x , x)

ack

SUBMIT

REPLY

write operation read operation

verifier client storage

read(p
x)

ack, x

SUBMIT

REPLY

Figure 7.2: Operation flow.

the read. If the correct data can still not be read after R repetitions, the client announces a failure.

Similarly, failure is announced if hashing the returned data does not result in hx. Updates follow

the same pattern: if the storage does not successfully complete the operation after R attempts, then

the client considers it faulty.

Since the verifier might be faulty, a client must verify the integrity of all information sent by

the verifier in REPLY messages. To this end, clients sign all information they send in SUBMIT

messages. A more challenging problem, which we address in the next section, is verifying that

px and hx returned by the verifier correspond to the latest write operation, and in general, that the

verifier orders the operations correctly.

7.4.2 From timestamps to versions

In order to check that the verifier constructs a correct sequence H of operations, our protocol

requires the verifier to supply the context of each operation in the REPLY. The context of an

operation o is the prefix ofH up to o, as determined by the client that executes o. This information

can be compactly represented using versions as follows.

Every operation executed by a client Ci has a local timestamp, returned to the application

when the operation completes. The timestamp of the first operation is 1 and it is incremented

for each subsequent operation. We denote the timestamp of an operation o by ts(o). Before Ci

completes o, it determines a vector-clock value vc(o) representing the context of o; the j-th entry

in vc(o) contains the timestamp of the latest operation executed by client Cj in o’s context.

In order to verify that operations are consistent with respect to each other, more information

129

about the context of each operation is needed. Specifically, the context is compactly represented

by a version, as in previous works [59, 15, 12]. A version(o) is a pair composed of the vector-clock

version(o).vc, which is identical to vc(o), and a second vector, version(o).vh, where the i-th entry

contains a cryptographic hash of the prefix ofH up to o. This hash is computed by iteratively hash-

ing all operations in the sequence with a cryptographic collision-resistant hash function. Suppose

that oj is the last operation of Cj in Ci’s context, i.e., version(o).vc[j] = ts(oj). Then, the j-th

entry in version(o).vh contains a representation (in the form of a hash value) of the prefix of H
up to oj . Client Ci calculates version(o).vh during the execution of o according to the informa-

tion provided by the verifier in the REPLY message. Thus, if the verifier follows its protocol, then

version(o).vh[j] is equal to version(oj).vh[j].

For simplicity, we sometimes write vc(o) and vh(o) for version(o).vc and version(o).vh, re-

spectively. We define the following order (similarly to [59, 15, 12]), which determines whether o

could have appeared before another operation o′ in the same legal sequence of operations:

Order on versions: version(o) ≤ version(o′) whenever both of the following conditions hold:

1. vc(o) ≤ vc(o′), i.e., for every k, vc(o)[k] ≤ vc(o′)[k].

2. For every k such that vc(o)[k] = vc(o′)[k], it holds that vh(o)[k] = vh(o′)[k].

The first condition checks that the context of o′ includes at least all operations that appear in

the context of o. Suppose that ok is the last operation of Ck appearing both in the context of o and

in that of o′. In this case, the second condition verifies that the prefix of H up to ok is the same

in the contexts of o and o′. We say that two versions are comparable when one of them is smaller

than or equal to the other. The existence of incomparable versions indicates a fault of the verifier.

7.4.3 Operation details

Each client maintains a version corresponding to its most recently completed operation oprev.

Moreover, if oprev is a read operation, the client keeps pprev and hprev retrieved by oprev from

the verifier. Note that client Ci does not know context and version of its current operation when

it sends the SUBMIT message, as it only computes them after receiving the REPLY. Therefore, it

sends the version of oprev with the SUBMIT message its next operation to the verifier.

When sending the SUBMIT message for a READ operation o, Ci encloses a representation of o

(including the timestamp ts(o)), the version oprev of its previous operation as well as a signature on

130

vh(oprev)[i]. Such a signature is called a proof and authenticates the prefix of Ci’s context of oprev.

If o is a write operation, the message also includes the tuple (px, hx, ts(o)), where px is the handle

and hx is the hash of the data already written to the storage provider. Otherwise, if o is a read

operation, and oprev was also a read, the message includes (pprev, hprev, ts(oprev)). All information

in the SUBMIT message is signed (except for the proof, which is a signature by itself).

Recall that the verifier constructs the global sequence H of operations. It maintains an array

Ver, in which the j-th entry holds the last version received from client Cj . Moreover, the verifier

keeps the index of the client from which the maximal version was received in a variable c; in

other words, Ver[c] is the maximal version in Ver. We denote the operation with version Ver[c]

by oc. The verifier also maintains a list Pending, containing the operations that follow oc in H.

Hence, operations appear in Pending according to the order in which the verifier received them

from clients (in SUBMIT messages). Furthermore, a variable Proofs contains an array of proofs

from SUBMIT messages. Using this array, clients will be able to verify their consistency with Cj

up to Cj’s previous operation, before they agree to include Cj’s next operation in their context.

Finally, the verifier stores an array Paths containing the tuple (px, hx, ts(o)) received most

recently from every client. Notice that if the last operation of a client Cj is a write, then this tuple

is included in the SUBMIT message and the verifier updates Paths[j] when it receives the SUBMIT.

On the other hand, the SUBMIT message of a read operation does not contain the handle and the

hash; the verifier updates Paths[j] only when it receives the next SUBMIT message from Cj . The

verifier processes every SUBMIT message atomically, updating all state variables together, before

processing the next SUBMIT message.

After processing a SUBMIT message, the verifier sends a REPLY message that includes c,

version(oc), Pending, Proofs (only those entries in Proofs which correspond to clients executing

operations in Pending), and for a read operation also a tuple (px, hx, tx) with a handle, hash, and

timestamp as follows. If there are write operations in Pending, then the verifier takes (px, hx, tx)

from the entry in Paths corresponding to the client executing the last write in Pending. Otherwise,

if there are no writes in Pending, then it uses the tuple (px, hx, tx) stored in Paths[c].

When Ci receives the REPLY message for its operation o, it verifies the signatures on all infor-

mation in the message, and then performs the following checks:

1. The maximal version sent by the verifier, version(oc), is at least as big as the version corre-

sponding to Ci’s previous operation, version(oprev).

131

1: function compute-version-and-check-pending(o)
2: (vc, vh)← version(oc)
3: histHash← vh[c]
4: for q = 1, . . . , |Pending| : // traverse pending ops
5: let Cj be the client executing Pending[q]
6: vc[j]← vc[j] + 1
7: histHash← hash(histHash‖Pending[q])
8: vh[j]← histHash
9: perform checks 4, 5, and 6 (see text below)

10: version(o) = (vc, vh)
11: return version(o)

Figure 7.3: Computing the version of an operation.

2. The timestamp ts(oprev) of Ci’s previous operation is equal to vc(oc)[i], as oprev should be

the last operation that appears in the context of oc.

3. If o is a read operation, then (px, hx, tx) indeed corresponds to the last write operation in

Pending, or to oc if there are no write operations in Pending. This can be checked by com-

paring tx to the timestamp of the appropriate operation in Pending or to ts(oc), respectively.

Next, Ci computes version(o), by invoking the function shown in Figure 7.3, to represent

o’s context based on the prefix of the history up to oc (represented by version(oc)), and on the

sequence of operators in Pending. The following additional checks require traversing Pending, and

are therefore performed during the computation of version(o), which iterates over all operations in

Pending:

4. There is at most one operation of every client in Pending, and no operation of Ci, that is, the

verifier does not inlcude too many operations in Pending.

5. For every operation o by client Cj in Pending, the timestamp ts(o) is equal to vc(oc)[j] + 1,

that is, o is indeed the next operation executed by Cj after the one appearing in the context

of oc.

6. For every client Cj that has an operation in Pending, Proofs[j] is a valid signature by Cj on

vh(oc)[j]. That is, the context of oc includes and properly extends the context of the previous

operation of Cj , as represented by the hash vh(oc)[j] and the signature Proofs[j].

If one of the checks fails, the application is notified and a failure message is sent to the core set

clients, as described in Section 7.4.4.

132

7.4.4 Detecting consistency and failures

An application of Venus registers for two types of callback notifications: consistency notifications,

which indicate that some operations have become green and are known to be consistent, and failure

notifications, issued when a failure of the storage service or the verifier has been detected. Below

we describe the additional mechanisms employed by the clients for issuing such notifications,

including client-to-client communication.

Each client Ci maintains an array CVer. For every client Cj in the core set, CVer[j] holds the

biggest version of Cj known to Ci. The entries in CVer might be outdated, for instance, when Ci

has been offline for a while, and more importantly, CVer[j] might not correspond to an operation

actually executed by Cj , as we explain next. Together with each entry of CVer, the client keeps the

local time of its last update to the entry.

Every time a client Ci completes an operation o, it calculates version(o) and stores it in CVer[i].

To decide whether its own operations are globally consistent, Ci must also collect versions from

other clients. More precisely, it needs to obtain the versions from a majority quorum of clients

in the core set. Usually, these versions arrive via the verifier, but they can also be obtained using

direct client-to-client communication.

To obtain another client’s version via the verifier,Ci piggybacks a VERSION-REQUEST message

with every SUBMIT message that it sends. The VERSION-REQUEST message includes the identifier

k of some client in the core set. In response, the verifier includes Version[k] with the REPLY

message. When Ci receives the REPLY message, it updates CVer[k] if the received version is

bigger than the old one (of course, the signature on the received version must be verified first).

Whenever Ci executes an operation, it requests the version of another client from the core set

in the VERSION-REQUEST message, going in round-robin over all clients in the core set. When

no application-invoked operations are in progress, the client also periodically (every tdummy time

units) issues a dummy-read operation, to which it also attaches VERSION-REQUEST messages.

The dummy-read operations are identical to application-invoked reads, except that they do not

access the storage service after processing the REPLY message. A dummy-read operation invoked

by Ci causes an update to Version[i] at the verifier, even though no operation is invoked by the

application at Ci. Thus, clients that repeatedly request the version of Ci from the verifier see an

increasing sequence of versions of Ci.

It is possible, however, that Ck goes offline or crashes, in which case Ci will not see a new

133

version from Ck and will not update CVer[k]. Moreover, a faulty verifier could be hiding Ck’s new

versions from Ci. To client Ci these two situations look the same. In order to make progress faced

with this dilemma, Ci contacts Ck directly whenever CVer[k] does not change for a predefined

time period tsend. More precisely, Ci sends the maximal version in CVer to Ck, asking Ck to

respond with a similar message. When Ck is online, it checks for new messages from other clients

every treceive time units, and thus, if Ck has not permanently crashed, it will eventually receive this

message and check that the version is comparable to the maximum version in its array CVer. If

no errors are found, Ck responds to Ci with the maximal version from CVer, as demonstrated in

Figure 7.4(a). Notice that this maximal version does not necessarily correspond to an operation

executed by Ci. All client-to-client messages use email and are digitally signed to prevent attacks

from the network.

client C1 client C2 client C1 client C2client C1 client C2 client C1 client C2

i t

consistency
notification

failure
notification

consistency
notification

()

failure
notification

(b)(a) (b)

Figure 7.4: Consistency checks using client-to-client communication. In (a) the checks pass, which leads
to a response message and consistency notifications. In (b) one of the checks fails and C2 broadcasts a
FAILURE message.

When a client Ci receives a version directly from Ck, it makes sure the received version is

comparable with the maximal version in its array CVer. If the received version is bigger than

CVer[k], then Ci updates the entry.

Whenever an entry in CVer is updated, Ci checks whether additional operations become green,

which can be determined from CVer as explained next. If this is the case, Venus notifies the

application and outputs the timestamp of the latest green operation. To check if an operation o

becomes green, Ci invokes the function in Figure 7.5, which computes a consistency set C(o) of

o. If C(o) contains a majority quorum of the clients in the core set, the function returns green,

indicating that o is now known to be consistent.

134

1: function check-consistency(o)
2: C(o)← ∅
3: for each client Ck in the core set:
4: if CVer[k].vc[i] ≥ ts(o) then
5: add k to C(o)
6: if C(o) contains a quorum of the core set then
7: return green
8: else
9: return red

Figure 7.5: Checking whether o is green.

Ci starts with the latest application-invoked (non-dummy) red operation o, going over its red

operations in reverse order of their execution, until the first application-invoked red operation o is

encountered that becomes green. If such an operation o is found, Ci notifies the application that all

operations with timestamps smaller than or equal to ts(o) are now green.

If at any point a check made by the client fails, it broadcasts a failure message to all core set

clients; when receiving such message for the first time, a core set client forwards this message to

all other core set clients. When detecting a failure or receiving a failure message, a client notifies

its application and ceases to execute application-invoked and dummy operations. After becoming

aware of a failure, a core set client responds with a failure message to any received version message,

as demonstrated in Figure 7.4(b).

7.4.5 Optimizations and garbage collection

Access to the storage service consumes the bulk of execution time for every operation. Since this

time cannot be reduced by our application, we focus on overlapping as much of the computation

as possible with the access to storage.

For a read operation, as soon as a REPLY message is received, the client immediately starts

reading from the storage service, and concurrently makes all checks required to complete its current

operation. In addition, the client prepares (and signs) the information about the current operation

that will be submitted with its next operation (notice that this information does not depend on the

data returned by the storage service).

A write operation is more difficult to parallelize, since a SUBMIT message cannot be sent to

the verifier before the write to the storage service completes. This is due to the possibility that a

SUBMIT message reaches the verifier but the writer crashes before the data is successfully written

135

to the storage service, creating a dangling pointer at the verifier. If this happens, no later read

operation will be able to complete successfully.

We avoid this problem by proceeding with the write optimistically, without changing the state

of the client or verifier. Specifically, while the client awaits the completion of its write to the stor-

age, it sends a DUMMY-SUBMIT message to the verifier, as shown in Figure 7.6. Unlike a normal

SUBMIT, this message is empty and thus cannot be misused by the verifier, e.g., by presenting

it to a reader as in the scenario described above. When receiving a DUMMY-SUBMIT message,

the verifier responds with a REPLY message identical to the one it would send for a real SUBMIT

message (notice that a REPLY message for a write operation does not depend on the contents of

the SUBMIT message). The writer then optimistically makes all necessary checks, calculations and

signatures. When storing the data is complete, the client sends a SUBMIT message to the verifier.

If the REPLY message has not changed, pre-computed information can be used, and otherwise, the

client re-executes the checks and computations for the newly received information.

verifier client storage

write(p
x , x)

ack

SUBMIT

REPLY

DUMMY-SUBMIT

REPLY

consistency
checks

Figure 7.6: Speculative write execution.

Venus creates a new low-level object at the storage provider for every write operation of the

application. In fact, this is exactly how updates are implemented by most cloud storage providers,

which do not distinguish between overwriting an existing object and creating a new one. This

creates the need for garbage collection. We have observed, however, that with Amazon S3 the

cost of storing multiple low-level objects for a long period of time is typically much smaller than

136

the cost of actually uploading them (which is anyway necessary for updates), thus eager garbage

collection will not significantly reduce storage costs. In Venus, each client periodically garbage-

collects low-level objects on storage corresponding to its outdated updates.

7.4.6 Joining the system

We have described Venus for a static set of clients so far, but in fact, Venus supports dynamic

client joins. In order to allow for client joins, clients must have globally unique identifiers. In our

implementation these are their unique email addresses. All arrays maintained by the clients and

by the verifier, including the vector clock and the vector of hashes in versions, are now associative

arrays, mapping a client identifier to the corresponding value. Clients may also leave Venus silently

but the system keeps their entries in versions.

The verifier must not accept requests from clients for which it does not have a public key signed

by some client in the core set. As mentioned in Section 7.2, every client wishing to join the system

knows the core set of clients and their public keys. To join the system, a new client Ci sends a

JOIN message, including its public key, to some client in the core set; if the client does not get a

response it periodically repeats the process until it gets a successful response. When receiving a

JOIN request from Ci, a client Cj in the core set checks whether Ci can be permitted access to the

service using the externally defined access policy, which permits a client to access Venus if and

only if the client may also access the object at the storage service. If access to Ci is granted, Cj

still needs to verify that Ci controls the public key in the JOIN message. To this end, Cj asks the

joining client to sign a nonce under the supplied public key, as shown in Figure 7.7.

If the signature returned by Cj is valid, then Cj signs Ci’s public key and sends it to the verifier.

After the verifier has acknowledged its receipt, Cj sends a final acknowledgment to Ci, and from

this time on, Ci may invoke read and write operations in Venus.

The verifier informs a client Ci about clients that are yet unknown to Ci, by including their

signed public keys in REPLY messages to Ci. In order to conclude what information Ci is missing,

the verifier inspects version(oprev) received from Ci in the SUBMIT message, where it can see

which client identifiers correspond to values in the associative arrays. A client receiving a REPLY

message extracts all public keys from the message and verifies that the signature on each key was

made by a client from the core set. Then, it processes the REPLY message as usual. If at any time

137

joining client client in core-set verifier

nonce

JOIN, public key

signed nonce
signed public key

ack

ack

Figure 7.7: Flow of a join operation.

some information is received from the verifier, but a public key needed to verify this information

is missing, then Ci concludes that the verifier is faulty and notifies its application and the other

clients accordingly.

7.5 Implementation

We implemented Venus in Python 2.6.3, with Amazon S3 as the storage service. Clients communi-

cate with S3 using HTTP. Communication with the verifier uses direct TCP connections or HTTP

connections; the latter allow for simpler traversal of firewalls.

Client-to-client communication is implemented by automated emails. This allows our system

to handle offline clients, as well as clients behind firewalls or NATs. Clients communicate with

their email provider using SMTP and IMAP for sending and receiving emails, respectively. Clients

are identified by their email addresses.

For signatures we used GnuPG. Specifically, we used 1024-bit DSA signatures. Each client

has a local key-ring where it stores the public keys corresponding to clients in our system. Initially

the key-ring stores only the keys of the clients in the core set, and additional keys are added as they

are received from the verifier, signed by some client in the core set. We use SHA-1 for hashing.

Venus does not access the versioning support of Amazon S3, which was announced only re-

cently, and relies on the basic key-value store functionality.

138

Dummy read – each 5 seconds, check emails – each 5 seconds

Log of Client #1: venusclient1@gmail.com

09:26:38: initializing client venusclient1@gmail.com
09:26:43: executing dummy-read with <REQUEST-VERSION, venusclient2@gmail.com>
-----"----: no update to CVersions[venusclient2@gmail.com]
09:26:45: received email from client venusclient2@gmail.com. Signature OK
-----"----: failure detected: venusclient2@gmail.com sent an incomparable version
-----"----: notifying other clients and shutting down...

Log of Client #2: venusclient2@gmail.com

09:26:30: initializing client venusclient2@gmail.com
09:26:35: executing dummy-read with <REQUEST-VERSION, venusclient1@gmail.com>
-----"----: no update to CVersions[venusclient1@gmail.com]
09:26:40: executing dummy-read with <REQUEST-VERSION, venusclient1@gmail.com>
-----"----: no update to CVersions[venusclient1@gmail.com]
-----"----: sending version to client venusclient1@gmail.com, requesting response
09:26:45: executing dummy-read with <REQUEST-VERSION, venusclient1@gmail.com>
-----"----: no update to CVersions[venusclient1@gmail.com]
09:26:49: received email from client venusclient1@gmail.com. Signature OK
-----"----: failure reported by client venusclient1@gmail.com
-----"----: notifying other clients and shutting down...

Dummy read – each 5 seconds, check emails – each 5 seconds

Log of Client #1: venusclient1@gmail.com

09:26:38: initializing client venusclient1@gmail.com
09:26:43: executing dummy-read with <REQUEST-VERSION, venusclient2@gmail.com>
-----"----: no update to CVersions[venusclient2@gmail.com]
09:26:45: received email from client venusclient2@gmail.com. Signature OK
-----"----: failure detected: venusclient2@gmail.com sent an incomparable version
-----"----: notifying other clients and shutting down...

Log of Client #2: venusclient2@gmail.com

09:26:30: initializing client venusclient2@gmail.com
09:26:35: executing dummy-read with <REQUEST-VERSION, venusclient1@gmail.com>
-----"----: no update to CVersions[venusclient1@gmail.com]
09:26:40: executing dummy-read with <REQUEST-VERSION, venusclient1@gmail.com>
-----"----: no update to CVersions[venusclient1@gmail.com]
-----"----: sending version to client venusclient1@gmail.com, requesting response
09:26:45: executing dummy-read with <REQUEST-VERSION, venusclient1@gmail.com>
-----"----: no update to CVersions[venusclient1@gmail.com]
09:26:49: received email from client venusclient1@gmail.com. Signature OK
-----"----: failure reported by client venusclient1@gmail.com
-----"----: notifying other clients and shutting down...

Figure 7.8: Client logs from detecting a simulated “split-brain” attack, where the verifier hides each client’s
operations from the other clients. System parameters were set to tdummy = 5sec., tsend = 10sec., and
treceive = 5sec. There are two clients in the system, which also form the core set. After 10 seconds, client
#2 does not observe a new version corresponding to client #1 and contacts it directly. Client #1 receives
this email, and finds the version in the email to be incomparable to its own latest version, as its own version
does not reflect any operations by client #2. The client replies reporting of an error, both clients notify their
applications and halt.

To evaluate how Venus detects service violations of the storage service and the verifier, we

simulated some attacks. Here we demonstrate one such scenario, where we simulate a “split-brain”

attack by the verifier, in a system with two clients. Specifically, the verifier conceals operations of

each client from the other one. Figure 7.8 shows the logs of both clients as generated by the Venus

client-side library. We observe that one email exchange suffices to detect the inconsistency.

7.6 Evaluation

We report on measurements obtained with Venus for clients deployed at the Technion (Haifa,

Israel), Amazon S3 with the US Standard Region as the storage service, and with the verifier

139

3

4

5

6

7

8
ad

 la
te

nc
y

(s
ec

)

(a) read
raw S3
Venus (verifier in LAN)
Venus (remote verifier)

0

1

2

3

4

5

6

7

8

1 10 100 1000

av
g.

 re
ad

 la
te

nc
y

(s
ec

)

data size (KB)

(a) read
raw S3
Venus (verifier in LAN)
Venus (remote verifier)

2

3

4

5

6

7

rit
e

la
te

nc
y

(s
ec

)

(b) write
raw S3
Venus (verifier in LAN)
Venus (remote verifier)

0

1

2

3

4

5

6

7

1 10 100 1000

av
g.

 w
rit

e
la

te
nc

y
(s

ec
)

data size (KB)

(b) write
raw S3
Venus (verifier in LAN)
Venus (remote verifier)

Figure 7.9: Average latency of a read and write operations, with 95% confidence intervals. The overhead
is negligible when the verifier is the same LAN as the client. The overhead for WAN is constant.

deployed at MIT (Cambridge, USA) and locally at the Technion.

The clients in our experiments run on two IBM 8677 Blade Center chassis, each with 14 JS20

PPC64 blades. We dedicate 25 blades to the clients, each blade having 2 PPC970FX cores (2.2

GHz), 4GB of RAM and 2 BroadCom BCM5704S NICs. When deployed locally, the verifier runs

140

on a separate HS21 XM blade, Intel QuadCore Xeon E5420 with 2.5GHz, 16GB of RAM and two

BroadCom NetXtreme II BCM5708S NICs. In this setting the verifier is connected to the clients

by a 1Gb Ethernet.

When run remotely at MIT, the verifier is hosted on a shared Intel Xeon CPU 2.40GHz machine

with 2GB RAM. In this case, clients contact the verifier using HTTP, for tunneling through a

firewall, and the requests reach the Venus verifier redirected by a CGI script on a web server.

All machines run the Linux 2.6 operating system.

7.6.1 Operation latency

We examine the overhead Venus introduces for a client executing operations, compared to direct,

unverified access to S3, which we denote here by “raw S3.”

Figure 7.9 shows the average operation latency for a single client executing operations (since

there is a single client in this experiment, operations become green immediately upon completing).

The latencies are shown for raw S3, with the verifier in the same LAN as the client at the Technion,

and with the remote verifier at MIT. Each measurement is an average of the latencies of 300 op-

erations, with the 95% confidence intervals shown. We measure the average latency for different

sizes of the data being read or written, namely 1KB, 10KB, 100KB and 1000KB.

Figure 7.9 shows that the latency for accessing raw S3 is very high, in the orders of seconds.

Many users have previously reported similar measurements3,4. The large confidence intervals for

1000KB stem from a high variance in the latency (also previously reported by S3 users) of ac-

cessing big objects on S3. The variance did not decrease when an average of 1000 operations was

taken.

The graphs show that the overhead of using Venus compared to using Amazon S3 directly

depends on the location of the verifier. When the verifier is local, the overhead is negligible.

When it is located far from the clients, the overhead is constant (450-550 ms.) for all measured

data sizes. It stems from one two-way message exchange between the client and verifier, which

takes two round-trip times in practice, one for establishing a TCP connection and another one

for the message itself. Although we designed the verifier and the clients to support persistent

HTTP connections, we found that the connection remained open only between each client and a

3http://bob.pythonmac.org/archives/2006/12/06/cachefly-vs-amazon-s3/
4http://developer.amazonwebservices.com/connect/message.jspa?messageID=93072

141

3
4
5
6
7
8
9

10
g.

 la
te

nc
y

(s
ec

.)

red and green latency
operation completes (red)
consistency (green) notification, t_dummy= 3
consistency (green) notification, t_dummy= 5

0
1
2
3
4
5
6
7
8
9

10

0 2 4 6 8 10 12

av
g.

 la
te

nc
y

(s
ec

.)

time between application-invoked operations (sec.)

red and green latency
operation completes (red)
consistency (green) notification, t_dummy= 3
consistency (green) notification, t_dummy= 5

Figure 7.10: Average latency for operations with multiple clients to become red and green respectively.

local proxy, and was closed and re-opened between intermediate nodes in the message route. We

suspect the redirecting web server does not support keeping HTTP connections open.

We next measure the operation latency with multiple clients and a local verifier. Specifically,

we run 10 clients, 3 of which are the core set. Half of the clients perform read operations, and half

of them perform writes; each client executes 50 operations. The size of the data in this experiment

is 4KB. Figure 7.10 shows the average time for an operation to complete, i.e., to become red, as

well as the time until it becomes green, with tdummy set to 3 sec., or to 5 sec. Client-to-client

communication was disabled for these experiments.

One can observe that as the time between user-invoked operations increases, the average latency

of green notifications initially grows as well, because versions advance at a slower rate, until the

dummy-read mechanism kicks in and ensures steady progress. Of course the time it takes for an

operation to complete, i.e., to become red, is not affected by the frequency of invocations.

7.6.2 Verifier

Knowing that the overhead of our algorithm at the client-side is small, we proceed to test the

verifier’s scalability and throughput. Since our goal here is to test the verifier under high load,

we perform this stress test with a synthetic multi-client program, which simulates many clients to

the server. The simulated clients only do as much as is needed to flood the verifier with plausible

142

10
15
20
25
30
35
40
45

op
er

at
io

ns
 /

se
c.

throughput

raw S3
Venus (verifier in LAN)

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

op
er

at
io

ns
 /

se
c.

number of clients

throughput

raw S3
Venus (verifier in LAN)

Figure 7.11: Average throughput with multiple clients.

requests.

Amazon S3 does not support pipelining HTTP operation requests, and thus, an operation of a

client on S3 has to end before that client can invoke another operation. Consequently, the through-

put for clients accessing raw S3 can be expected to be the number of client threads divided by the

average operation latency. In order to avoid side effects caused by contention for processing and

I/O resources, we do not run more than 2 client threads per each of our 25 dual-core machines, and

therefore measure throughput with up to 50 client threads. As Venus clients access Amazon S3

for each application-invoked operation, our throughput cannot exceed that of raw S3, for a given

number of clients. Our measurements show that the throughput of Venus is almost identical to that

of raw S3, as can be seen in Figure 7.11.

143

Chapter 8

Conclusions

This thesis dealt with providing consistency, integrity and availability for clients collaborating

through unreliable storage servers or devices. We tackled two areas where such problems arise –

distributed storage and cloud storage.

For distributed storage, we defined a dynamic R/W storage problem, including an explicit

liveness condition stated in terms of user interface and independent of a particular solution. The

definition captures a dynamically changing resilience requirement, corresponding to reconfigura-

tion operations invoked by users. Our approach easily carries to other problems, and allows for

cleanly extending static problems to the dynamic setting. We presented DynaStore, which is the

first algorithm we are aware of to solve the atomic R/W storage problem in a dynamic setting

without consensus or stronger primitives. In fact, we assumed a completely asynchronous model

where fault-tolerant consensus is impossible even if no reconfigurations occur. This implies that

atomic R/W storage is weaker than consensus, not only in static settings as was previously known,

but also in dynamic ones. Our result thus refutes a common belief, manifested in the design of all

previous dynamic storage systems, which used agreement to handle configuration changes. Our

main goal in DynaStore was to prove feasibility; in a recent follow-up work [72] we studied the

performance tradeoffs between consensus-based solutions and consensus-free ones.

In the second part of this thesis we tackled the problem of providing meaningful semantics

for a service implemented by an untrusted provider. As clients increasingly use online services

provided by third parties in computing clouds, the importance of addressing this problem becomes

more prominent. We studied previously defined consistency conditions, and proved that tradi-

144

tional strong semantics cannot be guaranteed with an untrusted remote server. We then showed

that all previously defined weaker, so called “forking”, semantics inherently rule out wait-free im-

plementations, i.e., although they protect the client when the server is faulty they hamper service

availability in the common case, when the server is correct. We then presented a new forking

consistency condition called weak fork-linearizability, which does not suffer from this limitation.

We developed an efficient wait-free protocol that provides weak fork-linearizable semantics with

untrusted storage.

We then presented a higher-level abstraction of a fail-aware untrusted service. This notion

generalizes the concepts of eventual consistency and fail-awareness to account for Byzantine faults.

We realized this new abstraction in the context of an online storage service. We designed FAUST,

a fail-aware untrusted storage protocol using our weak fork-linearizable protocol as an underlying

layer. FAUST guarantees linearizability and wait-freedom when the server is correct, provides

accurate and complete consistency and failure notifications, and ensures causality at all times.

Finally, we presented Venus, a practical service that guarantees integrity and consistency to

users of untrusted cloud storage. Venus can be deployed transparently with commodity online

storage and does not require any additional trusted components. Unlike previous solutions, Venus

offers simple semantics and never aborts or blocks client operations when the storage is correct.

We implemented Venus and evaluated it with Amazon S3. The evaluation demonstrates that Venus

has insignificant overhead and can therefore be used by applications that require cryptographic

integrity and consistency guarantees while using online cloud storage.

145

Bibliography

[1] M. Abd-El-Malek. et al. ursa minor: versatile cluster-based storage. In FAST, 2005.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared

memory. J. ACM, 40(4):873–890, 1993.

[3] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without con-

sensus. In PODC, pages 17–25, 2009.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Prov-

able data possession at untrusted stores. In Proc. ACM CCS, pages 598–609, 2007.

[5] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems.

J. ACM, 42(1):124–142, 1995.

[6] R. Baldoni, A. Milani, and S. T. Piergiovanni. Optimal propagation-based protocols imple-

menting causal memories. Distributed Computing, 18(6):461–474, 2006.

[7] K. Birman, G. Chockler, and R. van Renesse. Towards a cloud computing research agenda.

SIGACT News, 40(2), June 2009.

[8] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of

memories. Algorithmica, 12:225–244, 1994.

[9] K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: Theory and implementation.

Cryptology ePrint Archive, Report 2008/175, 2008. http://eprint.iacr.org/.

[10] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A high-availability and integrity layer for cloud

storage. In CCS, pages 187–198, 2009.

146

[11] C. Cachin and M. Geisler. Integrity protection for revision control. In ACNS, pages 382–399,

2009.

[12] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted storage. In DSN, pages 494–503,

2009.

[13] C. Cachin, I. Keidar, and A. Shraer. Fork sequential consistency is blocking. Inf. Process.

Lett., 109(7):360–364, 2009.

[14] C. Cachin, I. Keidar, and A. Shraer. Trusting the cloud. SIGACT News, 40(2):81–86, 2009.

[15] C. Cachin, A. Shelat, and A. Shraer. Efficient fork-linearizable access to untrusted shared

memory. In PODC, pages 129–138, 2007.

[16] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group

membership. In Proceedings of the 15th Annual ACM Symposium on Principles of Dis-

tributed Computing (PODC’96), pages 322–330, 1996.

[17] G. Chockler, S. Gilbert, V. C. Gramoli, P. M. . Musial, and A. A. Shvartsman. Reconfigurable

distributed storage for dynamic networks. In 9th International Conference on Principles of

Distributed Systems (OPODIS), 2005.

[18] G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic. Reliable distributed storage. IEEE

Computer, 42(4):60–67, 2009.

[19] G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A compre-

hensive study. ACM Computing Surveys, 33(4):1–43, 2001.

[20] G. Chockler, D. Malkhi, and D. Dolev. A data-centric approach for scalable state machine

replication. In FuDiCo, LNCS Volume 2584, 2002.

[21] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-only memory:

Making adversaries stick to their word. In Proc. SOSP, pages 189–204, 2007.

[22] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press,

Cambridge, MA, USA, 1990.

147

[23] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE Transac-

tions on Parallel and Distributed Systems, 10(6):642–657, 1999.

[24] D. Davcev and W. Burkhard. Consistency and recovery control for replicated files. In 10th

ACM SIGOPS Symposium on Operating Systems Principles (SOSP), pages 87–96, 1985.

[25] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-

ramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store.

In SOSP, pages 205–220, 2007.

[26] C. Delporte, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toueg. The

weakest failure detectors to solve certain fundamental problems in distributed computing. In

Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC 2004),

pages 338–346, 2004.

[27] A. El Abbadi and S. Dani. A dynamic accessibility protocol for replicated databases. Data

and Knowledge Engineering, 6:319–332, 1991.

[28] B. Englert and A. A. Shvartsman. Graceful quorum reconfiguration in a robust emulation

of shared memory. In ICDCS ’00: Proceedings of the The 20th International Conference

on Distributed Computing Systems (ICDCS 2000), page 454, Washington, DC, USA, 2000.

IEEE Computer Society.

[29] C. Fetzer and F. Cristian. Fail-awareness in timed asynchronous systems. In Proc. 18th ACM

Symposium on Principles of Distributed Computing (PODC), pages 314–321, 1996.

[30] R. Friedman, M. Raynal, and C. Travers. Two abstractions for implementing atomic objects

in dynamic systems. In OPODIS, pages 73–87, 2005.

[31] S. Gilbert, N. Lynch, and A. Shvartsman. Rambo ii: Rapidly reconfigurable atomic memory

for dynamic networks. In Proceedings of the 17th Intl. Symp. on Distributed Computing

(DISC), pages 259–268, June 2003.

[32] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing remote untrusted

storage. In NDSS, 2003.

148

[33] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical accountability for

distributed systems. In SOSP, pages 175–188, 2007.

[34] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-tolerant storage.

In SOSP, pages 73–86, 2007.

[35] M. Herlihy. A quorum-consensus replication method for abstract data types. ACM Trans.

Comput. Syst., 4(1):32–53, 1986.

[36] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and

Systems, 11(1):124–149, Jan. 1991.

[37] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[38] P. W. Hutto and M. Ahamad. Slow memory: Weakening consistency to enchance concurrency

in distributed shared memories. In ICDCS, pages 302–309, 1990.

[39] A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for large files. In CCS, pages

584–597, 2007.

[40] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable secure file

sharing on untrusted storage. In FAST, 2003.

[41] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM

Transactions on Computer Systems, 10(1):3–25, 1992.

[42] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,

21(7):558–565, 1978.

[43] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Transactions on Computers, 28(9):690–691, 1979.

[44] L. Lamport. On interprocess communication – part ii: Algorithms. Distributed Computing,

1(2):86–101, 1986.

[45] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–

169, May 1998.

149

[46] L. Lamport, D. Malkhi, and L. Zhou. Brief announcement: Vertical paxos and primary-

backup replication. In 28th ACM Symposium on Principles of Distributed Computing

(PODC), August 2009. Full version appears as Microsoft Technical Report MSR-TR-2009-

63, May 2009.

[47] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proceedings of the Seventh

International Conference on Architectural Support for Programming Languages and Oper-

ating Systems, pages 84–92, Cambridge, MA, 1996.

[48] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted data repository (SUNDR). In

OSDI, pages 121–136, 2004.

[49] J. Li and D. Mazières. Beyond one-third faulty replicas in Byzantine fault tolerant systems.

In NSDI, 2007.

[50] N. Lynch and A. Shvartsman. Robust emulation of shared memory using dynamic quorum-

acknowledged broadcasts. In In Symposium on Fault-Tolerant Computing, pages 272–281.

IEEE, 1997.

[51] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.

[52] N. A. Lynch and A. A. Shvartsman. RAMBO: A reconfigurable atomic memory service for

dynamic networks. In DISC, 2002.

[53] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou. Boxwood: Abstrac-

tions as the foundation for storage infrastructure. In OSDI, pages 105–120, 2004.

[54] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database system on

untrusted storage. In Proc. OSDI, 2000.

[55] M. Majuntke, D. Dobre, M. Serafini, and N. Suri. Abortable fork-linearizable storage. In

OPODIS, pages 255–269, 2009.

[56] D. Malkhi and M. Reiter. Byzantine quorum systems. In STOC, pages 569–578, 1997.

[57] T. Marian, M. Balakrishnan, K. Birman, and R. van Renesse. Tempest: Soft state replication

in the service tier. In DSN, pages 227–236, 2008.

150

[58] J.-P. Martin and L. Alvisi. A framework for dynamic byzantine storage. In Proceedings of

the International Conference on Dependable Systems and Networks, 2004.

[59] D. Mazières and D. Shasha. Building secure file systems out of Byzantine storage. In PODC,

pages 108–117, 2002.

[60] R. C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security and

Privacy, pages 122–134, 1980.

[61] M. Merritt and G. Taubenfeld. Computing with infinitely many processes. In DISC, pages

164–178, 2000.

[62] A. Milani. Causal consistency in static and dynamic distributed systems. PhD Thesis, “La

Sapienza” Università di Roma, 2006.

[63] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced

databases. Trans. Storage, 2(2):107–138, 2006.

[64] A. Oprea and M. K. Reiter. On consistency of encrypted files. In S. Dolev, editor, DISC,

volume 4167 of Lecture Notes in Computer Science, pages 254–268, 2006.

[65] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables. In Proc.

ACM CCS, pages 437–448, 2008.

[66] J. Paris and D. Long. Efficient dynamic voting algorithms. In 13th International Conference

on Very Large Data Bases (VLDB), pages 268–275, 1988.

[67] R. Rodrigues and B. Liskov. Rosebud: A scalable byzantine-fault-tolerant storage architec-

ture. Technical Report TR/932, MIT LCS, 2003.

[68] R. Rodrigues and B. Liskov. Reconfigurable byzantine-fault-tolerant atomic memory. In

Twenty-Third Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-

puting (PODC), St. John’s, Newfoundland, Canada, July 2004. Brief Announcement.

[69] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: a

tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

151

[70] H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk, editor, Proceed-

ings of Asiacrypt 2008, volume 5350 of LNCS, pages 90–107. Springer-Verlag, Dec. 2008.

[71] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D. Shaket. Venus: Verification

for untrusted cloud storage. In the ACM Cloud Computing Security Workshop (CCSW), 2010.

[72] A. Shraer, J.-P. Martin, D. Malkhi, and I. Keidar. Data-centric reconfiguration with network-

attached disks. In the 4th ACM SIGOPS/SIGACT Workshop on Large Scale Distributed Sys-

tems and Middleware (LADIS), July 2010.

[73] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, , and P. Maniatis. Zeno: Eventually

consistent Byzantine fault tolerance. In NSDI, 2009.

[74] D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer, and C. Hauser. Managing

update conflicts in Bayou, a weakly connected replicated storage system. In SOSP, pages

172–182, 1995.

[75] R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput and

availability. In Sixth Symposium on Operating Systems Design and Implementation (OSDI

04), December 2004.

[76] J. Yang, H. Wang, N. Gu, Y. Liu, C. Wang, and Q. Zhang. Lock-free consistency control for

Web 2.0 applications. In WWW, pages 725–734, 2008.

[77] E. Yeger Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primary components.

In 16th ACM Symp. on Principles of Distributed Computing (PODC-16), pages 63–71, Au-

gust 1997.

[78] A. R. Yumerefendi and J. S. Chase. Strong accountability for network storage. ACM Trans-

actions on Storage, 3(3), 2007.

152

ושלא יכולים לבטוח בענן באופן מזו הניתנת על ידי הענן עצמו נוספים הדורשים רמת אבטחה חזקה יותר
 .הנות מהיתרונות שנובעים משימוש בענןילשקול להתחיל ל, עיוור

אנו מוכיחים שבלתי אפשרי להבטיח 5בפרק . את מודל האחסון הלא אמיןאנו מגדירים 4בפרק
וחוקרים סמנטיקות חלשות יותר שכן , של מידע הנשמר על שרת לא אמין סטנטיות חזקהללקוחות קונסי

אנו מזהים מגבלה חשובה בכל הפתרונות]. 18[גם כאשר השרת תקול , ניתן להבטיח במצבים כאלה
אם לקוח , למשל. כאשר שרת האחסון תקין, הם מקריבים את זמינות המערכת במצב הרגיל: הקודמים

אנו מוכיחים . אף לקוח לא יכול יותר לקרוא את המידע, ן שהוא מעדכן מידע שמוראחד נופל בזמ
]. 18, 15, 14[שבעיה זו אינהרנטית לכל הבטחות הקונסיסטנטיות שהוגדרו למודל זה

שירות שעושה שימוש בטכניקות ממערכות מבוזרות ,]FAUST]14אנו מציגים את 6בפרק
כאשר , במצב הרגיל. ללקוחות גם כאשר ספק האחסון תקול ברורהיקה ומקריפטוגרפיה ומבטיח סמנט

 . רבית של המידעיגם קונסיסטנטיות חזקה וגם זמינות מללקוח מבטיח FAUST, שרת האחסון תקין
: עבודות קודמות לא ניתנות לשימוש עם שירותי אחסון ענן קיימיםו FAUST, למרות כל זאת

 האחסוןבין הלקוחות לשירות האחסון ואילו שירותי מורכביםלים הרצת פרוטוקו ותדורש מערכות אלו
תחנו יפ, כדי לפתור בעיה זו. המוצעים כיום כוללים בדרך כלל ממשק פשוט לקריאה וכתיבה של המידע

הוא שירות הבודק את השלמות והקונסיסטנטיות של Venus. 7המוצג בפרק ,]Venus]78וממשנו את
ואינו מצריך שינויים כלשהם , ניתן לשימוש עם שירותי אחסון ענן קיימים Venus. מידע המאוחסן בענן

 FAUST-מציע ללקוח סמנטיקה פשוטה בהרבה מ Venus, וחשוב לא פחות בנוסף. בשירותים אלה
יכול להתמודד עם תקלות רבות החל Venus. מה שמוסיף עוד יותר לשימושיותו, ומהפתרונות הקודמים

אחסון הענן שירות עם Venus-בהשתמשנו . ע וכלה בתקלות ביזאנטיות בענןמשיבוש פשוט של המיד
Amazon S3 ואנו מראים ש-Venus הינוscalable ולא מוסיף תקורה רבה.

 תקציר תזה

מונוליתיים והן כיום בשימוש ") ארונות אחסון"כלומר (מערכות אחסון ארגוניות הינן מערכי דיסקים
מערכות אלה מורכבות מחומרה ייעודית יקרה ומספקות אמינות גבוהה גם . נרחב בסביבות ארגוניות

, קודם כל. רכות כאלהמספר חסרונות חשובים למע םישנ, למרות זאת. במצבים קיצוניים ובלתי סבירים
גורם לעיתים קרובות) או מספר קטן של ארונות כאלה(ריכוז כל נתוני החברה בארון אחסון בודד

מוגבלות עניין נוסף הוא . פלט והבקרים של מערכת האחסון/רי בקבוק בפורטי הקלטואליצירת צו
ות אחסון נפרדים לגמרי רונכות אחסון מציעים פתויצרנים רבים של מער, ההרחבה של ארונות האחסון

, "entry level"מציעים מערכות HP-ו IBMלמשל (עבור גדלים שונים של הארגון הלקוח
“midrange” ו-“high-end” .(יקרות מאד ומערכות אל, בנוסף לכך.

ארכיטקטורות אחסון מבוזרות מציעות אלטרנטיבה זולה למערכות אחסון ארגוניות והן ניתנות
האמינות לא אמינים ו) תקני אחסוןהאו (מערכות מבוזרות אלה מורכבות מהרבה שרתים . קלותלהרחבה ב

המוצע ,)cloud" (ענן"-נוספת הינה אחסון ב תאלטרנטיבה פופולארי. שיכפול המידע על ידי מסופקת
הבעיה הראשונה . אלותזה זו עוסקת בשתי בעיות אמינות בפתרונות . גופים רבים על ידיבאינטרנט

מספרם הרב של השרתים הבלתי אמינים דורש : קשורה לשינויי קונפיגורציה במערכות אחסון מבוזרות
. תמיכה בשינויים דינאמיים כלומר בהוצאת שרתים תקולים מהמערכת והכנסת שרתים חדשים למערכת

לספק קיים צורךכלומר , ")ענן"למשל אחסון (אחסון מרוחק שירותיחוסר אמינות ב הבעיה השנייה היא
 . להיות תקול באופן כלשהו אף עלולאינו אמין ואשר ענן המשתמש באחסון ללקוח אמינות

שכפול לבדו מספק , למרות שאלגוריתמי שכפול במערכות מבוזרות נלמדו באופן נרחב בעבר
נפילות של להתמודד עם אין אפשרותבמערכת אסינכרונית –עמידות לנפילות שהינה מוגבלת מטבעה

כלומר שינוי אוסף , שינוי קונפיגורציה]. 6[משתתפים השומרים עותק של המידע ר ממיעוטיות
 5-נניח שהמידע משוכפל ב: מגביר את עמידות המערכת לנפילות, המחשבים השומרים עותק של המידע

הוספת על ידיברור ש. בהתחלה נוכל לעמוד בנפילת שני שרתים בלבד. שרתים במערכת אסינכרונית
של שרתים בלבד הוצאה על ידיאך מעניין לשים לב שגם . למערכת נוכל לעמוד בנפילות נוספות שרתים

אם שני שרתים קורסים ואנו מוציאים : לדוגמא. מהמערכת נוכל להגביר את עמידות המערכת לנפילות
, יכול לקרוס) כלומר מיעוט(מהם אחד. המערכת שלנו כוללת כעת שלושה שרתים, אותם מהמערכת

ברור שהנפילות צריכות ". מחסום המיעוט"ונעקוף את לומר נוכל לעמוד בשלוש נפילות בסך הכוכל
עותק של יםשומרהשרתים במערכת החדשה שרוב לקרות בהדרגה וניתן להתיר נפילות נוספות רק לאחר

 .המידע
של למ(המערכת" פיצול"קורים ולהימנע משמור על אמינות כאשר שינויים כדוגמת אלו כדי ל

למשל כאשר , של השינויים תיאוםהכרחי להבטיח ,)שרתים שונה אוסףמצב בו לקוחות שונים יעבדו עם
הינם ריכוזיים או משתמשים כיום קיימיםהפתרונות ה. קונפיגורציה קורים במקביל מספר שינויי

כל שינוי בין השרתים כדי להסכים על) קונצנזוס -הסכמה מבוזרת למשל (באלגוריתמי סנכרון חזקים
כמו (האמונה הרווחת הייתה ששינויי קונפיגורציה דורשים שימוש בקונצנזוס ולכן , למעשה. במערכת
אנו מפריכים אמונה זו ומציגים את 3בפרק . אינם ניתנים לביצוע במערכות אסינכרוניות) קונצנזוס

DynaStore]3[,ר לחלוטין המאפשר שינויי קונפיגורציה בנוסף אלגוריתם אחסון אסינכרוני מבוז
 .לקריאה וכתיבה של המידע השמור

חברות על ידי והיא מוצעת כיום" ענן"-היא אחסון באלטרנטיבה נוספת למערכות אחסון ארגוני
נוספים מאפשרים למשתמשים לשתף פעולה ולגשת למידע אחסון בענן ושירותי ענן. רבות באינטרנט

 אלושירותי ענן מאפשרים ללקוחות לקנות משאבים כאשר , ה ממערכות אחסון ארגוניבשונ. מכל מקום
בכל הלקוח משלם, כלומר. ולא לשלם מראש כמו במערכות אחסון ארגוניות,) on demand(נדרשים

אמינות , 4כפי שאנו מסבירים בפרק , למרות זאת. רגע נתון רק עבור המשאבים שבשימוש ברגע זה
 למשל להבטיח את שלמות המידע שנשמר חשוב]. 17[אצל המשתמשים וררת דאגה רבהשירותי ענן מע

מעט מאד מחקרים נעשו . ולוודא שלקוחות המשתפים מידע יראו תמונה קונסיסטנטית של המידע בענן
ולא בהגנת הלקוח , כלומר הענן, התעשייה מתמקדת באבטחת הספק, בנוסף. בעבר על סוגיות אלו
 .ל הענןמתקלות אפשריות ש

בעבודה זו אנו מפתחים כלים וסמנטיקה המאפשרים ללקוחות המשתמשים בשירותי אחסון בענן
עבודה זו מאפשרת למגוון . ולוודא שהענן מתנהג כצפוי, לעקוב אחר שירות האחסון אותו הם מקבלים

 ד יישומיםהיא יכולה לעוד, חשוב לא פחות .הנות מאבטחה מוגברתיכבר משתמשים בענן ליישומים אשר

טכניון – חשמל הנדסתפקולטה לב עידית קידר 'פרופ המחקר נעשה בהנחיית

 על התמיכה הכספית הנדיבה בהשתלמותי מכון טכנולוגי לישראל –טכניון אני מודה ל

שיתוף נתונים אמין בעזרת שרתי

 אחסון לא אמינים

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת התואר

 דוקטור לפילוסופיה

 אלכסנדר שרייר

מכון טכנולוגי לישראל –טכניון הוגש לסנט ה

2010 ספטמבר חיפה ע"תש אלול

שיתוף נתונים אמין בעזרת שרתי

 אחסון לא אמינים

 אלכסנדר שרייר

	main
	hebrew-reverse
	hebrew-part_Part8
	hebrew-part_Part7
	hebrew-part_Part6
	hebrew-part_Part5
	hebrew-part_Part4
	hebrew-part_Part3
	hebrew-part_Part2
	hebrew-part_Part1

