Reliable Collaboration Using Unreliable
Storage

ALEXANDER SHRAER

Reliable Collaboration Using Unreliable Storage

Research Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

ALEXANDER SHRAER

Submitted to the Senate of the Technion — Israel Institute of Technology
ELUL 5770 HAIFA September 2010

The Research Was Done Under the Supervision of Prof. Idit Keidar in the

Department of Electrical Engineering, Technion.

THE GENEROUS FINANCIAL HELP OF THE TECHNION — ISRAEL INSTITUTE OF
TECHNOLOGY IS GRATEFULLY ACKNOWLEDGED

Acknowledgments

I would like to express my deepest gratitude to Idit Keidar, my advisor, for introducing me to the
fascinating world of distributed computing and to research in general, sharing her vast knowledge
and experience, and for her valuable guidance, patience, and support throughout my graduate
studies. Idit is the best advisor any graduate student can hope for and I was lucky that I had the
opportunity to learn from her in the beginning of my research career. I’'m sure that the tools and

the general approach to research that I have learned from Idit will help me wherever I go next.

During my studies I was fortunate to collaborate with many leading researchers. I’'m grateful
to Christian Cachin, who hosted me in IBM Research Zurich, and collaborated with me from the
beginning of my PhD to its completion. I learned a lot from Christian about research in general
and industrial research in particular, and I consider Christian to be my second advisor. Christian’s

deep understanding of both cryptography and distributed computing were truly an inspiration.

I’d like to thank Dahlia Malkhi for hosting me in Microsoft Research Silicon Valley and intro-
ducing me to reconfigurable distributed storage. I learned a lot from Dahlia’s insight, experience
and unique research approach. I would also like to thank Marcos Aguilera and Jean-Philippe Mar-

tin for co-hosting me in MSR and their collaboration on the first part of this thesis.

Special thanks go to Eliezer Dekel and Gregory Chockler from IBM Research Haifa for wel-
coming me to their group, and their collaboration in the initial stages of my PhD. I’d also like to
thank Roie Melamed, Yoav Tock and Roman Vitenberg, with whom I worked in IBM.

I’d like to thank friends and colleagues from the Technion: Edward (Eddie) Bortnikov, Maxim
Gurevich, Liran Katzir, Gabriel (Gabi) Kliot, Sivan Bercovici, Ittay Eyal, Dmitry Perlman, Dmitry
Basin, and all other members of Idit’s research group for their valuable comments and suggestions.

I’d like to thank Asaf Cidon, Yan Michalevsky and Dani Shaket for their collaboration on the Venus

paper.

Many thanks go to Ittai Abraham, Hagit Attiya, Tsahi Birk, Eli Gafni, Rachid Guerraoui, Roy
Friedman, Amir Herzberg, Leslie Lamport, Alessia Milani and Marko Vukoli¢ for many discus-
sions of this work and a special thanks to Yoram Moses who served on all my MSc and PhD
committees and provided valuable input. I thank Abhi Shelat, for introducing me to Untrusted
Storage and for his enthusiastic approach to research.

I’d like to thank the Israeli Ministry of Science for its generous financial support through the
Eshkol fellowship I was granted.

I’d like to dedicate this thesis to my mom, Zoya, without whom I wouldn’t be where I am today.
Last, but certainly not least, I’d like to thank my wonderful wife, Tanya, for her endless support

and encouragement.

Contents

Abstract
Introduction

Related Work
2.1 Reconfigurable Distributed Storage

2.2 Untrusted Storage e

Dynamic Atomic Storage Without Consensus

3.1 Introduction
3.2 Dynamic Problem Definition Lo oo
3.3 The Weak Snapshot Abstraction,
34 DynaStore L e
34.1 DynaStore Basics L L
3.4.2 Traversing the Graphof Views
3.4.3 Reconfigurations (Liveness)
3.4.4 Sequence of Established Views (Safety)
3.5 Analysis of Weak Snapshot Objects
3.6 AnalysisOf DynaStore
3.6.1 Traverse e e
3.6.2 AtOMICIty e e
3.6.3 Liveness

4 Untrusted Storage 53

4.1 What Can Go Wrong? e e 54
42 WhatCan We Do? 56
43 SystemModel 59
5 Consistency Semantics for Untrusted Storage 62
5.1 Traditional Consistency and Liveness Properties 63
5.2 Forking Consistency Conditions 65
5.3 Byzantine Emulation o o 66

5.4 Impossibility of Linearizability and Sequential Consistency with an Untrusted Server 67

5.5 Limited Service Availability with Forking Semantics 68

5.6 Comparing Forking and Causal Consistency Conditions 74

5.7 Weak Fork-Linearizability 77

6 FAUST: Fail-Aware Untrusted Storage 80
6.1 Introduction 81

6.2 Fail-Aware Untrusted Services 83

6.3 A Weak Fork-Linearizable Untrusted Storage Protocol 86

6.4 Fail-Aware Untrusted Storage Protocol 95

6.5 Analysis of the Weak Fork-Linearizable Untrusted Storage Protocol 101

6.6 Analysis of the Fail-Aware Untrusted Storage Protocol 113

7 Venus: Verification for Untrusted Cloud Storage 120
7.1 Introduction L e 120

7.2 SystemModel e 124

7.3 Venus Interface and Semantics Lo 126
7.4 Protocol Description e e 127
7.4.1 Overview of read and write operations 128

7.4.2 From timestamps to VErsionsot 129

74.3 Operationdetails L 130

7.4.4 Detecting consistency and failures 133

7.4.5 Optimizations and garbage collection 135

7.4.6 Joiningthesystem 137

7.5 Implementation 138
7.6 Evaluation 139
7.6.1 Operationlatency e 141
7.6.2 Verifier 142

8 Conclusions 144

List of Figures

3.1

3.2

5.1
5.2
5.3

54
5.5
5.6
5.7
5.8
59

6.1

6.2

6.3

7.1
7.2
7.3

Operation flow in DynaStore. (a) A reconfig operation from c; to ¢ is concurrent with a
write(v); one of them writes v to co. (b) The reconfig fails; either the first read completes
incy,orthe write WriteS UV IN €. . . v v v v v v v e e e e e e e e e e e e e e e e e

Example DAGof views. e e

Execution a: S'iscorrect.
Execution 3: SiScCOrrect. e
Execution : S is faulty. It is indistinguishable from « to Cy and indistinguishable

from GtoCl. e e e e
Execution o, where Siscorrect. e
Execution 3, where Siscorrect.
Execution 7, where S is faulty and simulates a to Cy and Sto Cy.
A fork-*-linearizable history that is not causally consistent.
A causally consistent execution that is not fork-*-linearizable.

A weak fork-linearizable history that is not fork-linearizable.

System architecture. Client-to-client communication may use offline message ex-
change. L
The stability cut of Alice indicated by the notification stabley.([10,8,3]). The
values of ¢ are the timestamps returned by the operations of Alice.

Architecture of the fail-aware untrusted storage protocol (FAUST).

Venus Architecture. o e e e e e e e e e e e e e e e
Operation flow. L L e e e e

Computing the version of an operation.

78

7.4

7.5
7.6
7.7
7.8

7.9

7.10 Average latency for operations with multiple clients to become red and green respectively. .

7.11 Average throughput with multiple clients.

Consistency checks using client-to-client communication. In (a) the checks pass, which

leads to a response message and consistency notifications. In (b) one of the checks fails

and C5 broadcasts a FAILURE MESSAZE. .« « « « « « « v v v v v v e e e e e e e e e e
Checking whetheroisgreen. Lo
Speculative write €XeCUtion.o e e e e e e e e e e e e e e e

Flow of ajoinoperation. o i v et e e e e e e e

Client logs from detecting a simulated “split-brain” attack, where the verifier hides each
client’s operations from the other clients. System parameters were set to ¢gymmy = 9sec.,
tsenda = 10sec., and t,eceive = Dsec. There are two clients in the system, which also form
the core set. After 10 seconds, client #2 does not observe a new version corresponding to
client #1 and contacts it directly. Client #1 receives this email, and finds the version in
the email to be incomparable to its own latest version, as its own version does not reflect

any operations by client #2. The client replies reporting of an error, both clients notify

their applicationsand halt. oL

Average latency of a read and write operations, with 95% confidence intervals. The over-

head is negligible when the verifier is the same LAN as the client. The overhead for WAN

ISCONSTANT. & v v vt e e e e e e e e e e e e e e e e e e

140
142

List of Tables

7.1 Venus timeout parameters.t e e e e e e e e e e 128

Abstract

This thesis concerns the reliability, security, and consistency of storage in distributed systems.
Distributed storage architectures provide a cheap and scalable alternative to expensive monolithic
disk array systems currently used in enterprise environments. Such distributed architectures make
use of many unreliable servers (or storage devices) and provide reliability through replication.

Another emerging alternative is cloud storage, offered remotely by multiple providers.

The first problem addressed in this thesis is the support of reconfiguration in distributed storage
systems. The large number of fault-prone servers in such systems requires supporting dynamic
changes when faulty servers are removed from the system and new ones are introduced. In order
to maintain reliability when such changes occur, it is essential to ensure proper coordination, e.g.,
when multiple such changes occur simultaneously. Existing solutions are either centralized, or
use strong synchronization algorithms (such as consensus) among the servers to agree on every
change in the system. In fact, it was widely believed that reconfigurations require consensus and
just like consensus cannot be achieved in asynchronous systems. In this work we refute this belief
and present DynaStore, an asynchronous and completely decentralized reconfiguration algorithm

for read/write storage.

Cloud storage is another setting where reliability is a challenge. While cloud storage becomes
increasingly popular, repeated incidents show that clouds fail in a variety of ways. Yet, clients must
currently trust cloud providers to handle their information correctly, and do not have tools to verify
this. Previously proposed solutions that aim to protect clients from faulty cloud storage providers
sacrifice liveness of client operations in the normal case, when the storage is working properly. For
example, if a client crashes in the middle of making an update to a remote object, no other client
can ever read the same object. We prove that this problem is inherent in all theoretical semantics

previously defined for this model. We define new semantics that can be guaranteed to clients even

when the storage is faulty without sacrificing liveness, and present FAUST, an algorithm providing
these guarantees. We then present Venus, a practical system based on a variation of FAUST.
Venus guarantees data consistency and integrity to clients that collaborate using commodity cloud
storage, and alerts clients when the storage is faulty or malicious (e.g., as a result of a software
bug, misconfiguration, or a hacker attack). Venus does not require trusted components or changes
to the storage provider. Venus offers simple semantics, which further enhances its usability. We
evaluate Venus with Amazon S3, and show that it is scalable and adds no noticeable overhead to

storage operations.

Chapter 1
Introduction

Enterprise storage systems are monolithic disk arrays currently used in many enterprise environ-
ments. These systems are built from expensive customized hardware and provide high reliability
even in the most extreme and unlikely failure scenarios. These systems, however, have several im-
portant shortcomings. First, the organization of company storage in a single (or several) physical
storage racks often causes the I/O ports and controllers of the storage to become a bottleneck. Sec-
ond, the extensibility of such solutions is often limited, and many manufacturers maintain separate
product lines of enterprise storage, suitable for enterprises of different scale (called “entry level”,

“midrange” and “high-end” by IBM and HP). Finally, these systems are very expensive.

Distributed storage architectures provide a cheap and scalable alternative to such enterprise
storage systems. Such distributed architectures make use of many unreliable servers (or storage
devices) and provide reliability through replication. Another popular alternative is cloud storage,
offered remotely by multiple providers. This thesis deals with two problems concerning the reli-
ability of such solutions. First, we study reconfiguration in distributed storage systems: the large
number of fault-prone servers requires supporting dynamic changes when faulty servers are re-
moved from the system and new ones are introduced. The second topic studied in this thesis is
utrusted storage, namely, providing reliability when using remote cloud storage that by itself is
untrusted and can be arbitrarily faulty.

Although distributed replication protocols have been extensively studied in the past, replication
alone provides limited fault-tolerance — in an asynchronous system it is impossible to tolerate the

failure of more than a minority of the replicas [5]. Reconfiguring the system, i.e., changing the

set of replicas, increases its fault-tolerance: Suppose that the data is replicated over 5 servers in
an asynchronous system. Initially, only two replica failures can be tolerated. Obviously, if the
data is now copied to new replicas then additional replicas can fail. Note, however, that even by
only removing the faulty replicas we can gain fault-tolerance. If two replicas fail and we remove
them from the system, our system is now composed of 3 replicas and we can tolerate one more
failure, i.e., 3 replica failures overall, breaking the “minority barrier”. Obviously, the failures must
be gradual and additional failures can be allowed only after making sure that a majority of the new

system configuration stores the data.

In order to maintain reliability when such changes occur and to avoid “split-brain” behavior, it
is essential to ensure proper coordination, e.g., when multiple configuration changes occur simul-
taneously. Existing solutions are either centralized, or use strong synchronization algorithms (such
as consensus) among the servers to agree on every change in the system. In fact, it was widely be-
lieved that reconfigurations require consensus and just like consensus cannot be achieved in asyn-
chronous systems. In Chapter 3 we refute this belief and present DynaStore [3], an asynchronous

and completely decentralized reconfiguration algorithm for read/write storage.

Another emerging alternative for enterprise storage systems is cloud storage, which is now
provided by many companies remotely over the Internet. Cloud storage, and other cloud services,
allows users to collaborate with each other and to access shared data from anywhere. Unlike
enterprise storage solutions, cloud services allow users to acquire resources on-demand and pay
only for the resources currently in use. However, as we explain in Chapter 4, concerns about
the trustworthiness of cloud services abound [14]. It is important, for example, to guarantee the
integrity of user data, and to ensure that different collaborating users see their data consistently.
Very little research has previously tackled this subject. Moreover, the industry mostly focuses on

securing the cloud provider, and not on protecting the client from possible cloud malfunctions.

In this work we develop tools and semantics that enable clients using online cloud storage to
monitor the storage, making sure that the cloud behaves as expected. Our work enables a variety
of applications that already use the cloud to benefit from increased security, and, no less important,
it can encourage applications that require verifiable guarantees, and cannot afford to blindly trust

the cloud, to consider taking advantage of what the cloud has to offer.

In Chapter 4 we define the Untrusted Storage model. Chapter 5 shows that traditional strong

consistency semantics cannot be guaranteed with an untrusted remote storage [15] and studies

4

other semantics that can be ensured in this model even when the storage is faulty. We identify
an important limitation with previously proposed solutions: These solutions sacrifice liveness of
client operations in the normal case, when the storage is working properly. For example, if a client
crashes in the middle of making an update to an object, no other client can ever read the same
object. We prove that this problem is inherent in all previously defined theoretical semantics for
this model [13, 12, 15].

In Chapter 6 we present FAUST [12], a service that utilizes techniques from both distributed
computing and cryptography, guaranteeing meaningful semantics to clients even when the cloud
provider is faulty. In the common case, when the storage is working properly, FAUST guarantees
both strong data consistency and strong liveness for client operations.

Still, FAUST and previous work share a second problem that prevents their use with any of
the currently available cloud storage: they require complicated protocols to be run between the
clients and the cloud storage, instead of the currently available simple read/write storage interface.
To solve this problem, we design and implement Venus [71], presented in Chapter 7. Venus is a
verification service for monitoring the integrity and consistency of cloud storage. Venus can be
used with unmodified commodity cloud storage. In addition, Venus offers much simpler semantics
than FAUST and the previous solutions, which further enhances its usability. Venus copes with
failures ranging from simple data corruption to malicious failures of the cloud. We evaluated
Venus with Amazon S3, and showed that it is scalable and adds no noticeable overhead to storage

operations.

Chapter 2

Related Work

In Section 2.1 we review previous work on reconfiguration in distributed storage systems. Then,

Section 2.2 focuses on previous work related to interaction with a remote untrusted storage.

2.1 Reconfigurable Distributed Storage

Several existing solutions can be viewed in retrospect as solving a dynamic (reconfigurable) storage
problem. Most closely related are works on reconfigurable R/W storage. RAMBO [52, 31] solves
a similar problem to the one addressed by DynaStore; other works [58, 67, 68] extend this concept
for Byzantine fault tolerance. All of these works have processes agree upon a unique sequence of
configuration changes. Some works use an auxiliary source (such as a single reconfigurer process
or an external consensus algorithm) to determine configuration changes [50, 28, 52, 31, 58, 68, 35],
while others implement fault-tolerant consensus decisions on view changes [17, 67]. In contrast,
our work implements reconfigurable R/W storage without any agreement on view changes.

Since the closest related work is on RAMBO, we further elaborate on the similarities and
differences between RAMBO and DynaStore. In RAMBO, a new configuration can be proposed by
any process, and once it is installed, it becomes the current configuration. In DynaStore, processes
suggest changes and not configurations, and thus, the current configuration is determined by the
set of all changes proposed by complete reconfigurations. For example, if a process suggests to
add p; and to remove p,, while another process concurrently suggests to add p3, DynaStore will

install a configuration including both p; and p3 and without p,, whereas in RAMBO there is no

6

guarantee that any future configuration will reflect all three proposed changes, unless some process
explicitly proposes such a configuration. In DynaStore, a quorum of a configuration is any majority
of its members, whereas RAMBO allows for general quorum-systems, specified explicitly for each
configuration by the proposing process. In both algorithms, a non-faulty quorum is required from
the current configuration. A central idea in allowing dynamic changes is that a configuration can
be replaced, after which a quorum of the old configuration can crash. In DynaStore, a majority of
a current configuration C' is allowed to crash as soon as C' is no longer current. In RAMBO, two
additional conditions are needed: C' must be garbage-collected at every non-faulty process p € C,
and all read and write operations that began at p before C' was garbage-collected must complete.
Thus, whereas in DynaStore the conditions allowing a quorum of C' to fail can be evaluated based
on events visible to the application, in RAMBO these conditions are internal to the algorithm. Note
that if some process p € C' might fail, it might be impossible for other processes to learn whether
p garbage-collected C' or not. Assuming that all quorums required by RAMBO and DynaStore
are responsive, both algorithms require additional assumptions for liveness. In both, the liveness
of read and write operations is conditioned on the number of reconfigurations being finite. In
addition, in both algorithms, the liveness of reconfigurations does not depend on concurrent read
and write operations. However, whereas reconfigurations in RAMBO rely on additional synchrony
or failure-detection assumptions required for consensus, reconfigurations in DynaStore, just like

its read and write operations, only require the number of reconfigurations to be finite.

View-oriented group communication systems provide a membership service whose task is to
maintain a dynamic view of active members. These systems solve a dynamic problem of main-
taining agreement on a sequence of views, and additionally provide certain services within the
members of a view, such as atomic multicast and others [19]. Maintaining agreement on group
membership in itself is impossible in asynchronous systems [16]. However, perhaps surprisingly,
we show that the dynamic R/W problem is solvable in asynchronous systems. This appears to
contradict the impossibility but it does not: We do not implement group membership because our

processes do not have to agree on and learn a unique sequence of view changes.

The State Machine Replication (SMR) approach [45, 69] provides a fault tolerant emulation
of arbitrary data types by forming agreement on a sequence of operations applied to the data.
Paxos [45] implements SMR, and allows one to dynamically reconfigure the system by keeping

the configuration itself as part of the state stored by the state machine. Another approach for

7

reconfigurable SMR is to utilize an auxiliary configuration-master to determine view changes, and
incorporate directives from the master into the replication protocol. This approach is adopted in
several practical systems, e.g., [47, 53, 75], and is formulated in [46]. Naturally, a reconfigurable
SMR can support our dynamic R/W memory problem. However, our work solves it without using

the full generality of SMR and without reliance on consensus.

An alternative way to break the minority barrier in R/W emulation is by strengthening the
model using a failure detector. Delporte et al. [26] identify the weakest failure detector for solving
R/W memory with arbitrary failure thresholds. Their motivation is similar to ours— solving R/W
memory with increased resilience threshold. Unlike our approach, they tackle more than a minority
of failures right from the outset. They identify the quorums failure detector as the weakest detec-
tor required for strengthening the asynchronous model, in order to break the minority resilience
threshold. Our approach is incomparable to theirs, i.e., our model is neither weaker nor stronger.
On the one hand, we do not require a failure detector, and on the other, we allow the number of
failures to exceed a minority only after certain actions are taken. Moreover, their model does not
allow for additions as ours does. Indeed, our goal differs from [26], namely, our goal is to model

dynamic reconfiguration in which resilience is adaptive to actions by the processes.

Data-centric read/write storage [20], where servers do not communicate with one another (and
clients communicate directly with multiple servers), is considered in many works, e.g., [1, 18, 56,
58]. Most of these, however, assume a static world, where the set of servers is fixed from the
outset. Two exceptions are Ursa Minor [1] and the work of Martin et al. [58] allow dynamicity and
employ a centralized sequencer for configuration changes. Unlike Ursa Minor [1], the protocol
of Martin et al. [58] allows read/write operations to continue during reconfigurations. DynaStore
works in a different model, where a client submits operations to any one of the servers, which in
turn contacts other servers and then replies to the client. DynaStore is completely decentralized
and allows read/write operations to continue while reconfigurations are in progress. In a followup
work [72], we design an implement DynaDisk, a data-centric version of DynaStore, which retains

these properties of DynaStore.

Friedman et al. [30] implement atomic read/write objects in a data-centric dynamic system.
Their solution assumes two abstractions — dynamic quorums and persistent reliable broadcast. Our
work does not assume any high-level abstractions — we design low-level mechanisms that can pre-

serve consistency in face of reconfigurations. In [30], dynamic service liveness is stated in terms

8

of properties that must be preserved by their quorum and broadcast abstractions. In particular,
it is required that typed quorums (e.g., a read and a write quorum) accessed by two consecutive
read/write operations intersect. In contrast, in DynaStore, it is possible for no such intersection to
exist, due to reconfig operations that completely change system membership between two consec-
utive read/write operations. In part, this difference stems from the fact that we explicitly model
reconfig operations, and treat them similarly to reads and writes. DynaStore also uses a broadcast
primitive, however we only assume delivery to processes in the same configuration, and explicitly
make sure that the information propagates to following configurations, which can implement the
persistent broadcast of [30]. As do we, Friedman et al. [30] assume a crash model, where servers
must change their identifiers if they wish to re-join the system. A minor difference is that Fried-
man et al. [30] assume an infinite arrival process with finite concurrency [61], where finitely many
clients take steps during any finite time interval, whereas in DynaStore we allow infinitely many
read/write operations to execute concurrently, as long as the number of concurrent reconfig oper-
ations is finite (this is modeled by assuming a finite number of membership changes proposed in

the execution).

2.2 Untrusted Storage

Data integrity on untrusted storage accessed by a single client with small trusted memory can be
protected by storing the root of a hash tree locally [8]. In cryptographic storage systems with
multiple clients, such “root hashes” are signed; TDB [54], SiRiUS [32], and Plutus [40] are some
representative examples implementing this method. In order to ensure freshness, the root hashes
must be propagated by components that are at least partially trusted, however. Going beyond
ensuring the integrity of data that is actually read from an untrusted service by a single client,
recent work by Juels and Kaliski [39] and by Ateniese et al. [4] introduces protocols for assuring
the client that it can retrieve its data in the future, with high probability. Unlike FAUST and Venus,
this work does not guarantee consistency for multiple clients accessing the data concurrently.

One of the key principles in our solutions is that clients must be able to detect server (i.e., cloud
storage) malfunction, i.e., its inability to provide normal service. This principle is known as fail-
awareness [29] and it has been previously exploited by many systems in the timed asynchronous

model, where nodes are subject to crash failures [23]. Note that unlike in previous work, detecting

9

an inconsistency in our model constitutes evidence that the server has violated its specification,

and that it should no longer be used.

Several recent systems provide integrity using trusted components, which cannot be subverted
by intrusions. In contrast, the solutions presented in this thesis use client signatures on the data, but
no trusted components. The CATS system [78] adds accountability to a storage service. Similar to
our fail-aware approach, CATS makes misbehavior of the storage server detectable by providing
auditing operations. However, it relies on a much stronger assumption in its architecture, namely,
a trusted external publication medium accessible to all clients, like an append-only bulletin board
with immutable write operations. The server periodically publishes a digest of its state there and
the clients rely on it for audits. When the server in our service additionally signs all its responses
to clients using digital signatures, then we obtain the same level of strong accountability as CATS
(i.e., that any misbehavior leaves around cryptographically strong non-repudiable evidence and

that no false accusations are possible).

Exploring a similar direction, attested append-only memory [21] introduces the abstraction of
a small trusted module, implemented in hardware or software, which provides the function of an
immutable log to clients in a distributed system. The A2M-Storage [21] service relying on such a
module for consistency guarantees linearizability, even when the server is faulty. Although FAUST
guarantees weaker consistency when the server is faulty, its liveness guarantee is stronger than that
of A2M-Storage in the common case, when the storage is correct. Specifically, A2M storage has
two variants: an “pessimistic”’ protocol, where a client first reserves a sequence number for an
operation and then submits the actual operation with that sequence number, and an “optimistic”
protocol, where the client submits an operation right away, optimistically assuming that it knows
the latest sequence number, and then restarts in case its sequence number was in fact outdated.
When the server is correct, the pessimistic version of the protocol may prevent progress from
all clients in case some client fails after reserving a sequence number but before submitting the
actual operation. The optimistic protocol has stronger liveness, and specifically it is lock-free, i.e.,
some client always makes progress (but progress is not guaranteed for every individual client). On
the other hand, FAUST guarantees wait-freedom when the server is correct, i.e., all clients can

complete their operations regardless of failures or concurrent operations executed by other clients.

When using untrusted remote (cloud) storage without the use of external trusted components,

strong consistency semantics, such as linearizability [37] or sequential consistency cannot be guar-

10

anteed [15]. This limitation holds unless clients can communicate with other clients before com-
pleting each operation. In practice, clients should be able to complete operations independently,
i.e., in a wait-free [36] manner. Intuitively, even if the clients sign all their updates, the storage
can always hide client updates and create “split-brain” scenarios where clients believe they ex-
ecute in isolation. In order to provide wait-freedom when linearizability cannot be guaranteed,
numerous real-world systems guarantee eventual consistency, for example, Coda [41], Bayou [74],
Tempest [57], and Dynamo [25]. As in many of these systems, the clients in our model are not si-
multaneously present and may be disconnected temporarily. Thus, eventual consistency is a natural

choice for the semantics of our online storage application.

The pioneering work of Mazieres and Shasha [59] introduces untrusted storage protocols and
the notion of fork-linearizability (under the name of fork consistency). To date, this is the strongest
known consistency notion that can be achieved with a possibly Byzantine remote storage server
when the clients do not communicate with one another. SUNDR [48] and later work [15] im-
plement storage systems respecting this notion. The weaker notion of fork-sequential consistency
has been suggested by Oprea and Reiter [64]. Neither fork-linearizability nor fork-sequential con-
sistency can guarantee wait-freedom for client operations in all executions where the server is

correct [15, 13].

Fork-*-linearizability [49] has been introduced recently (under the name of fork-* consistency),
with the goal of allowing wait-free implementations of a service constructed using replication,
when more than a third of the replicas may be faulty. We show that in the single server setting,
just like the other consistency notions mentioned above, fork-* consistency does not allow for

protocols that are always wait-free when the server is correct.

Orthogonal to this work, many storage systems have been proposed that internally use replica-
tion across several nodes to tolerate a fraction of corrupted nodes (e.g., [34] and references therein).
For instance, HAIL [10] is a recent system that relies replicated storage servers internally, of which
at least a majority must be correct at any time. It combines data replication with a method that gives
proofs of retrievability to the clients. But a storage service employing replication within its cloud
infrastructure does not solve the problem addressed by FAUST and Venus — from the perspective

of the client, the cloud service is still a single trust domain.

The idea of monitoring applications to detect consistency violations due to Byzantine behavior

was considered in previous work in peer-to-peer settings, for example in PeerReview [33]. Even-

11

tual consistency has recently been used in the context of Byzantine faults by Zeno [73]; Zeno uses
replication to tolerate server faults and always requires some servers to be correct. Zeno relaxes
linearizable semantics to eventual consistency for gaining liveness, as does FAUST, but provides
a slightly different notion of eventual consistency to clients than FAUST. In particular, Zeno may
temporarily violate linearizability even when all servers are correct, in which case inconsistencies
are reconciled at a later point in time, whereas in FAUST linearizability can only be violated if the
server is Byzantine, however the application might be notified of operation stability (consistency)

after the operation completes (i.e., eventually).

12

Chapter 3

Dynamic Atomic Storage Without

Consensus

This chapter deals with the emulation of atomic read/write (R/W) storage in dynamic asynchronous
message passing systems. In static settings, it is well known that atomic R/W storage can be
implemented in a fault-tolerant manner even if the system is completely asynchronous, whereas
consensus is not solvable. In contrast, all existing emulations of atomic storage in dynamic systems
rely on consensus or stronger primitives, leading to a popular belief that dynamic R/W storage is

unattainable without consensus.

In this chapter, we specify the problem of dynamic atomic read/write storage in terms of the in-
terface available to the users of such storage. We discover that, perhaps surprisingly, dynamic R/W
storage is solvable in a completely asynchronous system: we present DynaStore, an algorithm that
solves this problem. Our result implies that atomic R/W storage is in fact easier than consensus,

even in dynamic systems.

A preliminary version of the work presented in this chapter appears in proceedings of the
28th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC
2009).

13

3.1 Introduction

Distributed systems provide high availability by replicating the service state at multiple processes.
A fault-tolerant distributed system may be designed to tolerate failures of a minority of its pro-
cesses. However, this approach is inadequate for long-lived systems, because over a long period,
the chances of losing more than a minority inevitably increase. Moreover, system administrators
may wish to deploy new machines due to increased workloads, and replace old, slow machines
with new, faster ones. Thus, real-world distributed systems need to be dynamic, i.e., adjust their
membership over time. Such dynamism is realized by providing users with an interface to recon-

figuration operations that add or remove processes.

Dynamism requires some care. First, if one allows arbitrary reconfiguration, one may lose
liveness. For example, say that we build a fault tolerant solution using three processes, p1, pa,
and p3. Normally, the adversary may crash one process at any moment in time, and the up-to-date
system state is stored at a majority of the current configuration. However, if a user initiates the
removal of p; while p; and p, are the ones holding the up-to-date system state, then the adversary
may not be allowed to crash p,, for otherwise the remaining set cannot reconstruct the up-to-
date state. Providing a general characterization of allowable failures under which liveness can be

ensured is a challenging problem.

A second challenge dynamism poses is ensuring safety in the face of concurrent reconfigura-
tions, i.e., when some user invokes a new reconfiguration request while another request (potentially
initiated by another user) is under way. Early work on replication with dynamic membership could
violate safety in such cases [24, 66, 27] (as shown in [77]). Many later works have rectified this
problem by using a centralized sequencer or some variant of consensus to agree on the order of
reconfigurations.

Interestingly, consensus is not essential for implementing replicated storage. The ABD algo-
rithm [5] shows that atomic read/write (R/W) shared memory objects can be implemented in a
fault-tolerant manner even if the system is completely asynchronous. Nevertheless, to the best
of our knowledge, all previous dynamic storage solutions rely on consensus or similar primitives,

leading to a popular belief that dynamic storage is unattainable without consensus.

In this work, we address the two challenges mentioned above, and debunk the myth that con-

sensus is needed for dynamic storage. We first provide a precise specification of a dynamic prob-

14

lem. To be concrete, we focus on atomic R/W storage, though we believe the approach we take
for defining a dynamic problem can be carried to other problems. We then present DynaStore, a
solution to this problem in an asynchronous system where processes may undetectably crash, so
that consensus is not solvable. We note that our solution is given as a possibility proof, rather than
as a blueprint for a new storage system. Given our result that consensus-less solutions are possible,
we expect future work to apply various practical optimizations to our general approach, in order to

build real-world distributed services. We next elaborate on these two contributions.

Dynamic Problem Specification

In Section 3.2, we define the problem of an atomic R/W register in a dynamic system. Simi-
larly to a static R/W register, the dynamic variant exposes a read and write interface to users, and
atomicity[44] is required for all such operations. In addition, users can trigger reconfigurations
by invoking reconfig operations, which return OK when they complete. Exposing reconfig oper-
ations in the model allows us to provide a protocol-independent specification of service liveness
guarantees, as we explain next.

Clearly, the progress of such a service is conditioned on certain failure restrictions in the de-
ployed system. A fault model specifies the conditions under which progress is guaranteed. It is
well understood how to state a liveness condition of the static version of this problem: ¢-resilient
R/W storage guarantees progress if fewer than ¢ processes crash. For an n-process system, it is
well known that ¢-resilient R/W storage exists when ¢ < n/2, and does not exist when ¢ > n/2 (see
[5]). A dynamic fault model serves the same purpose, but needs to additionally capture changes
introduced by the user through the reconfig interface. Under reasonable use of reconfig, and some
restricted fault conditions, the system will make progress. For example, an administrative-user can
deploy machines to replace faulty ones, and thereby enhance system longevity. On the other hand,
if used carelessly, reconfiguration might cause the service to halt, for example when servers are
capriciously removed from the system.

Suppose the system initially has four processes {p1, p2, p3, p4} in its configuration (also called
its view). Initially, any one process may crash. Suppose that p; crashes. Then, additional crashes
would lead to a loss of liveness. Now suppose that the user requests to reconfigure the system to
remove p;. While the request is pending, no additional crashes can happen, because the system

must transfer the up-to-date state from a majority of the previous view to a majority of the new

15

one. However, once the removal is completed, the system can tolerate an additional crash among
the new view {po, p3,p4}. Overall, two processes may crash during the execution. Viewed as a
simple threshold condition, this exceeds a minority threshold, which contradicts lower bounds.
The liveness condition we formulate is therefore not in the form of a simple threshold; rather, we
require crashes to occur gradually, contingent on reconfigurations.

A dynamic system also needs to support additions. Suppose that the system starts with three
processes {p1, p2,ps}. In order to reconfigure the system to add a new process p,, a majority
of the view {p1, p2, p3} must be alive to effect the change. Additionally, a majority of the view
{p1, P2, p3, p+} must be alive to hold the state stored by the system. Again, the condition here is
more involved than a simple threshold. That is, if a user requests to add p,, then while the request
is pending, a majority of both old and new views need to be alive. Once the reconfiguration is
completed, the requirement weakens to a majority of the new view.

Given these, we state the following requirement for liveness for dynamic R/W storage: At
any moment in the execution, let the current view consist of the initial view with all completed
reconfiguration operations (add/remove) applied to it. We require that the set of crashed processes
and those whose removal is pending be a minority of the current view, and of any pending future
views. Moreover, like previous reconfigurable storage algorithms [52, 31], we require that no new
reconfig operations will be invoked for “sufficiently long” for the started operations to complete.
This is formally captured by assuming that only a finite number of reconfig operations are invoked.

Note that a dynamic problem is harder than the static variant. In particular, a solution to dy-
namic R/W is a fortiori a solution to the static R/W problem. Indeed, the solution must serve read
and write requests, and in addition, implement reconfiguration operations. If deployed in a system
where the user invokes only read and write requests, and never makes use of the reconfiguration
interface, it must solve the R/W problem with precisely the same liveness condition, namely, tol-
erating any minority of failures. Similarly, dynamic consensus is harder than static consensus, and
is therefore a fortiori not solvable in an asynchronous setting with one crash failure allowed. As

noted above, in this thesis, we focus on dynamic R/W storage.

DynaStore: Dynamic Atomic R/W Storage

Our algorithm does not need consensus to implement reconfiguration operations. Intuitively, pre-

vious protocols used consensus, virtual synchrony, or a sequencer, in order to provide processes

16

with an agreed-upon sequence of configurations, so that the membership views of processes do not
diverge. The key observation in our work is that it is sufficient that such a sequence of configura-
tions exists, and there is no need for processes to know precisely which configurations belong to
this sequence, as long as they have some assessment which includes these configurations, possibly
in addition to others that are not in the sequence. In order to enable this property, in Section 3.3 we
introduce weak snapshots, which are easily implementable in an asynchronous system. Roughly
speaking, such objects support update and scan operations accessible by a given set of processes,
such that scan returns a set of updates that, if non-empty, is guaranteed to include the first update
made to the object (but the object cannot identify which update that is).

In DynaStore, which we present in Section 3.4, each view w has a weak snapshot object ws(w),
which stores reconfiguration proposals for what the next view should be. Thus, we can define a
unique global sequence of views, as the sequence that starts with some fixed initial view, and
continues by following the first proposal stored in each view’s ws object. Although it is impossible
for processes to learn what this sequence is, they can learn a DAG of views that includes this
sequence as a path. They do this by creating a vertex for the current view, querying the ws object,
creating an edge to each view in the response, and recursing. Reading and writing from a chain of

views is then done in a manner similar to previous protocols, e.g., [52, 31, 17, 67, 68].

Summary of Contributions

In summary, our work makes two contributions.

e We define a dynamic R/W storage problem that includes a clean and explicit liveness condi-
tion, which does not depend on a particular solution to the problem. The definition captures
a dynamically changing resilience requirement, corresponding to reconfiguration operations
invoked by users. The approach easily carries to other problems, such as consensus. As

such, it gives a clean extension of existing static problems to the dynamic setting.

e We discover that dynamic R/W storage is solvable in a completely asynchronous system
with failures, by presenting a solution to this problem. Along the way we define a new
abstraction of weak snapshots, employed by our solution, which may be useful in its own
right. Our result implies that the dynamic R/W is weaker than the (dynamic) consensus

problem, which is not solvable in this setting. This was known before for static systems, but

17

not for the dynamic version. The result counters the intuition that emanates from all previous

dynamic systems, which used agreement to handle configuration changes.

3.2 Dynamic Problem Definition

We specify a read/write service with atomicity guarantees. The storage service is deployed on a
collection of processes that interact using asynchronous message passing. We assume an unknown,
unbounded and possibly infinite universe of processes 1I. Communication links between all pairs
of processes do not create, duplicate, or alter messages. Moreover, the links are reliable. Below

we formally define reliable links in a dynamic setting.

Executions and histories. System components, namely the processes and the communication
links between them, are modeled as I/O Automata [51]. An automaton has a state, which changes
according to transitions that are triggered by actions, which are classified as input, output, and
internal'. A protocol P specifies the behaviors of all processes. An execution of P is a sequence
of alternating states and actions, such that state transitions occur according to the specification of
system components. The occurrence of an action in an execution is called an event.

The application interacts with the service via operations defined by the service interface. As
operations take time?, they are represented by two events — an invocation (input action) and a
response (output action). A process p; interacts with its incoming link from process p; via the
receive(m); j input action, and with its outgoing link to p; via the send(m); ; output action. The
failure of process p; is modeled using the input action crash;, which disables all input actions at p;.
In addition, p; can disable all input actions using the internal action halt;.

A history of an execution consists of the sequence of invocations and responses occurring in
the execution. An operation is complete in a history if it has a matching response. An operation o
precedes another operation o’ in a sequence of events o, whenever o completes before o’ is invoked
in 0. A sequence of events 7 preserves the real-time order of a history o if for every two operations
o and o in 7, if o precedes ¢ in o then o precedes o’ in 7. Two operations are concurrent if neither

one of them precedes the other. A sequence of events is sequential if it does not contain concurrent

' A minor difference from I/O Automata as defined in [51], is that in our model input actions can be disabled, as
explained below.
2By slight abuse of terminology, we use the terms operation and operation execution interchangeably.

18

operations.

We assume that executions of our algorithm are well-formed, i.e., the sequence of events at
each client consists of alternating invocations and matching responses, starting with an invocation.
Finally, we assume that every execution is fair, which means, informally, that it does not halt
prematurely when there are still steps to be taken or messages to be delivered (see the standard

literature for a formal definition [51]).

Service interface. We consider a multi-writer/multi-reader (MWMR) service, from which any
process may read or write. The service stores a value v from a domain V' and offers an interface for
invoking read and write operations and obtaining their result. Initially, the service holds a special
value 1 ¢ V. When a read operation is invoked at a process p;, the service responds with a value
x, denoted read;() — x. When a write is invoked at p; with a value x € V, denoted write;(x), the
response is OK. We assume that the written values are unique, i.e., no value is written more than
once. This is done so that we are able to link a value to a particular write operation in the analysis,
and can easily be implemented by having write operations augment the value with the identifier of
the writer and a local sequence number.

In addition to read and write operations, the service exposes an interface for invoking recon-
figurations. We define Changesdéf {Remove, Add} x11. We informally call any subset of Changes a
set of changes. A view is a set of changes. A reconfig operation takes as parameter a set of changes
c and returns OK. We say that a change w € Changes is proposed in an execution if a reconfig;(c)
operation is invoked at some process p; S.t. w € c.

Intuitively, only processes that are members of the current system configuration should be
allowed to initiate actions. To capture this restriction, we define an output action enable operations;
the read, write and reconfig input actions at a process p; are initially disabled, until an enable

operations event occurs at p;.

Safety specification. The sequential specification of the service indicates its behavior in sequen-
tial executions. It requires that each read operation returns the value written by the most recent
preceding write operation, if there is one, and the initial value L otherwise.

Atomicity [44], also called linearizability [37], requires that for every execution, there exist a

corresponding sequential execution, which preserves the real-time order, and which satisfies the

19

sequential specification. Formally, let oz be the sub-sequence of a history o consisting of all
events corresponding to the read and write operations in ¢, without any events corresponding to

reconfig operations. Linearizability is defined as follows:

Definition 1 (linearizability [37]). A history o is linearizable if o ry, can be extended (by append-
ing zero or more response events) to a history o’, and there exists a sequential permutation 7 of the

sub-sequence of ¢’ consisting only of complete operations such that:

1. 7 preserves the real-time order of o; and

2. The operations of 7 satisfy the sequential specification.

Active processes and reliable links. We assume a non-empty view /nit, which is initially known
to every process in the system. We say, by convention, that a reconfig(Init) completes by time 0. A
process p; is active in an execution if p; does not crash, some process invokes a reconfig operation
to add p;, and no process invokes a reconfig operation to remove p;. We do not require all processes
in II to start taking steps from the beginning of the execution, but instead we assume that if p; is
active then p; takes infinitely many steps (if p; is not active then it may stop taking steps).

A common definition of reliable links states that if processes p; and p; are “correct”, then every
message sent by p; to p; is eventually received by p;. We adapt this definition to a dynamic setting
as follows: for a message sent at time ¢, p; eventually receives the message if both p; and p; are

active and a reconfig(c) operation was invoked by time ¢ s.t. (Add, j) € c.

Dynamic service liveness. We first give preliminary definitions, required to specify service live-
ness. For a set of changes w, the removal-set of w, denoted w.remove, is the set {i | (Remove, i) €
w}. The join set of w, denoted w.join, is the set {i | (Add, i) € w}. Finally, the membership of w,
denoted w.members, is the set w.join\w.remove.

At any time ¢ in the execution, we define V() to be the union of all sets ¢ s.t. a reconfig(c)
completes by time ¢. Thus, V(0) = Init. Note that removals are permanent, that is, a process that
is removed will never again be in members. More precisely, if a reconfiguration removing p; from
the system completes at time ¢, then p; is excluded from V' (t).members, for every t > to>. Let

P(t) be the set of pending changes at time t, i.e., for each element w € P(t) some process invokes

3In practice, one can add back a process by changing its id.

20

a reconfig(c) operation s.t. w € ¢ by time ¢, and no process completes such a reconfig operation by
time ¢. Denote by F'(t) the set of processes that crashed by time t.

Intuitively, any pending future view should have a majority of processes that did not crash and
were not proposed for removal; we specify a simple condition sufficient to ensure this. A dynamic

R/W service guarantees the following liveness properties:

Definition 2. [Dynamic Service Liveness]
If at every time ¢ in the execution, fewer than |V (t).members|/2 processes out of V' (t).members U
P(t).join are in F'(t)U P(t).remove, and the number of different changes proposed in the execution

is finite, then the following holds:

1. Eventually, the enable operations event occurs at every active process that was added by a

complete reconfig operation.

2. Every operation invoked at an active process eventually completes.

3.3 The Weak Snapshot Abstraction

A weak snapshot object S accessible by a set P of processes supports two operations, update;(c)
and scan;(), for a process p; € P. The update;(c) operation gets a value ¢ and returns OK, whereas
scan;() returns a set C' of values. Note that the set P of processes is fixed (i.e., static). We require

the following semantics from scan and update operations:

NV1 Let o be a scan;() operation that returns C'. Then for each ¢ € C, an update(c) operation is

invoked by some process prior to the completion of o.

NV2 Let o be a scan;() operation that is invoked after the completion of an update;(c) operation,

and that returns C. Then C' # ().

NV3 Let o be a scan;() operation that returns C' and let o’ be a scan;() operation that returns C”

and is invoked after the completion of 0. Then C' C C".

NV4 There exists ¢ such that for every non-empty set C' returned by a scan() operation, it holds

thatc € C.

21

Algorithm 1 Weak snapshot - code for process p;.
operation update;(c)
if collect() = () then
Memli]. Write(c)
return OK

C «— collect()
if C = () then return ()
C «— collect()

9: return C'

1:
2
3
4
5: operation scan;()
6
7
8

10: procedure collect()

1: C 0

12: foreachp, € P

13: ¢ «— Mem[k|].Read()

14: if c # L then C — C U {c}

15: return C

NV5 If some majority M of processes in P keep taking steps then every scan;() and update;(c)

invoked by every process p;€M eventually completes.

Although these properties bear resemblance to the properties of atomic snapshot objects [2],
NV1-NVS5 define a weaker abstraction: we do not require that all updates are ordered as in atomic
snapshot objects, and even in a sequential execution, the set returned by a scan does not have
to include the value of the most recently completed update that precedes it. Intuitively, these
properties only require that the “first” update is seen by all scans that see any updates. As we shall
see below, this allows for a simpler implementation than of a snapshot object.

DynaStore will use multiple weak snapshot objects, one of each view w. The weak snapshot
of view w, denoted ws(w), is accessible by the processes in w.members. To simplify notation, we
denote by update;(w, c¢) and scan;(w) the update and scan operation, respectively, of process p; of
the weak snapshot object ws(w). Intuitively, DynaStore uses weak snapshots as follows: in order
to propose a set of changes c to the view w, a process p; invokes update;(w, c); p; can then learn

proposals of other processes by invoking scan;(w), which returns a set of sets of changes.

Implementation Our implementation of scan and update is shown in Algorithm 1. It uses an
array Mem of |P| single-writer multi-reader (SWMR) atomic registers, where all registers are
initialized to L. Such registers support Read() and Write(c) operations s.t. only process p; € P

invokes Mem|[i]. Write(c) and any process p; € P can invoke Mem([i].Read(). The implementation

22

of such registers in message-passing systems is described in the literature [5].

A scan;() reads from all registers in Mem by invoking collect, which returns the set C' of values
found in all registers. After invoking collect once, scan;() checks whether the returned C' is empty.
If so, it returns (), and otherwise invokes collect one more time. An update;(c) invokes collect, and
in case () is returned, writes ¢ to Mem|i]. Intuitively, if collect() returns a non-empty set then some
process has already proposed changes to the view, and thus, the weak snapshot does not correspond
to the most up-to-date view in the system and there is no need to propose additional changes to this
view.

Standard emulation protocols for atomic SWMR registers [5] guarantee integrity (property
NV1) and liveness (property NV5). We next explain why Algorithm 1 preserves properties NV2-
NV4; the formal proof of correctness appears in Section 3.5. First, notice that for a given 7 at most
one Meml[i].Write operation can be invoked in the execution, since after the first Mem|[i]. Write
operation completes, any collect invoked by p; (the only writer of this register) will return a non-
empty set and p; will never invoke another Write. This together with atomicity of all registers in
Mem implies properties NV2-NV3. Property NV4 stems from the fact that every scan() operation
that returns C' # () executes collect twice. Observe that such operation o that is the first to complete
one collect. Any other scan() operation o’ begins its second collect only after o completes its first
collect. Atomicity of the registers in Mem along with the fact that each register is written at-most
once, guarantee that any value returned by a Read during the first collect of o will be read during

the second collect of o'.

3.4 DynaStore

This section describes DynaStore, an algorithm for multi-writer multi-reader (MWMR) atomic
storage in a dynamic system, which is presented in Algorithm 2. A key component of our algorithm
is a procedure ContactQ (lines 31-41) for reading and writing from/to a quorum of members in
a given view, used similarly to the communicate procedure in ABD [5]. When there are no
reconfigurations, Contact(Q is invoked twice by the read and write operations — once in a read-
phase and once in a write-phase. More specifically, both read and write operations first execute a
read-phase, where they invoke ContactQ to query a quorum of the processes for the latest value and

timestamp, after which both operations execute a write-phase as follows: a read operation invokes

23

ContactQ again to write-back the value and timestamp obtained in the read-phase, whereas a write
operation invokes ContactQ with a higher and unique timestamp and the desired value.

To allow reconfiguration, the members of a view also store information about the current view.
They can change the view by modifying this information at a quorum of the current view. We
allow the reconfiguration to occur concurrently with any read and write operations. Furthermore,
once reconfiguration is done, we allow future reads and writes to use (only) the new view, so that
processes can be expired and removed from the system. Hence, the key challenge is to make sure
that no reads linger behind in the old view while updates are made to the new view. Atomicity is

preserved using the following strategy.

e The read-phase is modified so as to first read information on reconfiguration, and then read
the value and its timestamp. If a new view is discovered, the read-phase repeats with the new

view.

e The write-phase, which works in the last view found by the read-phase, is modified as well.
First, it writes the value and timestamp to a quorum of the view, and then, it reads the
reconfiguration information. If a new view is discovered, the protocol goes back to the read-

phase (the write-phase begins again when the read-phase ends).

e The reconfig operation has a preliminary phase, writing information about the new view
to the quorum of the old one. It then continues by executing the phases described above,

starting in the old view.

The core of a read-phase is procedure ReadInView, which reads the configuration information
(line 67) and then invokes ContactQ to read the value and timestamp from a quorum of the view
(line 68). It returns a non-empty set if a new view was discovered in line 67. Similarly, procedure
WriteInView implements the basic functionality of the write-phase, first writing (or writing-back)
the value and timestamp by invoking ContactQ in line 73, and then reading configuration informa-
tion in line 74 (we shall explain lines 71-72 in Section 3.4.3).

We next give intuition into why the above regime preserves read/write atomicity, by considering
the simple case where only one reconfiguration request is ever invoked, reconfig(c), from ¢; to ¢y
(where ¢, = ¢ U ¢); we shall refer to this reconfiguration operation as RC. Figure 3.1(a) depicts

a scenario where RC, invoked by process p;, completes while a second process p, concurrently

24

reconfig(c)

reconfig(c) read()-v p1 | X >
pl T 1 I T > Write(V)
D IWrite(v)I p2 } i >
2 ! t > 03 :read() N [|: :read() - v: .
(a) (b)

Figure 3.1: Operation flow in DynaStore. (a) A reconfig operation from c; to ¢y is concurrent with a
write(v); one of them writes v to ca. (b) The reconfig fails; either the first read completes in ¢, or the write
writes v in co.

performs a write(v) operation. In our scenario p, is not initially aware of the existence of ¢, and
hence the write operation performs a write-phase W writing in ¢; the value v with timestamp ¢s.
After the write completes, p; executes a read operation, which returns v (the only possible return
value according to atomicity). The read operation starts with a read-phase which operates in ¢, —
the latest view known to p;. Therefore, for v to be returned by the read, our algorithm must make

sure that v and ts are transferred to ¢, by either RC or the write operation.

There are two possible cases with respect to RC. The first case is that RC’s read-phase observes
W, i.e., during the execution of ContactQ in the read-phase of RC, p; receives v and ts from at
least one process. In this case, RC’s write-phase writes-back v and ¢s into co. The second case is
that RC’s read-phase does not observe V. In this case, as was explained above, our algorithm must
not allow the write operation to complete without writing the value and timestamp to a quorum of
the new view co. We next explain how this is achieved. Since RC’s read-phase does not observe W,
when RC invokes ContactQ during its read-phase, I/’s execution of ContactQ writing a quorum
of ¢; has not completed yet. Thus, W starts to read c;’s configuration information after RC’s
preliminary phase has completed. This preliminary phase writes information about ¢, to a majority

of cy. Therefore, W discovers ¢, and the write operation continues in c;.

Figure 3.1(b) considers a different scenario, where p; fails before completing RC. Again, we
assume that p, is not initially aware of ¢, and hence the write operation performs a write-phase
W in ¢ writing the value v with timestamp t¢s. Concurrently with ps’s write, ps invokes a read
operation in c¢;. Atomicity of the register allows this read to return either v or _L, the initial value
of the register; in the scenario depicted in Figure 3.1(b) L is returned. After the write operation
completes, p3 invokes a second read operation, which returns v (the only possible value allowed
by atomicity for this read). There are two cases to consider, with respect to the view in which the

first read executes its final phase. The simple case is when this view is ¢;. Then, the second read

25

starts by executing a read-phase in c¢; and hence finds out about v.

The second case is more delicate, and it occurs when the first read completes in c,. Recall that
this read returns L and thus it does not observe W and the latest value v. Nevertheless, since the
second read starts with a read-phase in c,, the algorithm must ensure that v is stored at a quorum of
co. This is done by the write operation, as we now explain. Since the first read operation starts in
c1 but completes in c», it finds c; when reading the reconfiguration information during a read-phase
R in ¢;. Since R does not observe IV, it must be that W completes its ContactQ writing a majority
of ¢y only after R invokes its ContactQ reading from a majority of ¢;. Since R inspects reconfigu-
ration information before invoking ContactQ while W does so after completing ContactQ, it must
be that I/ starts inspecting reconfiguration information after R has finished inspecting reconfigu-
ration information. Property NV3 guarantees that 1/ finds all configuration changes observed by
R, and hence finds out about c;. Consequently, the write operation continues in ¢, and completes
only after writing v in c,. Here, it is important that the read-phase reads reconfiguration informa-
tion before it performs ContactQ, while the write-phase reads reconfiguration information after it
performs ContactQ. This inverse order is necessary to ensure atomicity in this scenario.

In our examples above, additional measures are needed to preserve atomicity if several pro-
cesses concurrently propose changes to c;. Thus, the rest of our algorithm is dedicated to the
complexity that arises due to multiple contending reconfiguration requests. Our description is
organized as follows: Section 3.4.1 introduces the pseudo-code of DynaStore, and clarifies its no-
tations and atomicity assumptions. Section 3.4.2 presents the DAG of views, and shows how every
operation in DynaStore can be seen as a traversal on that graph. Section 3.4.3 discusses reconfig
operations. Finally, Section 3.4.4 presents the notion of established views, which is central to the

analysis of DynaStore. Proofs are deferred to Section 3.6.

3.4.1 DynaStore Basics

DynaStore uses operations, upon clauses, and procedures. Operations are invoked by the appli-
cation, whereas upon-clauses are triggered by messages received from the network: whenever a
process p; receives a message m from p; (through a receive(m); ; input action), m is stored in a
buffer (this is not shown in the pseudo-code). The upon-clause is an internal action enabled when

some condition on the message buffer holds. Procedures are called from an operation. Operations

26

and local variables at process p; are denoted with subscript <.

Whereas upon-clauses are atomic, for simplicity of presentation, we do not formulate opera-
tions as atomic actions in the pseudo-code (with slight abuse of the I/O automata terminology),
and operations sometimes block waiting for a response from a majority of processes in a view (in
lines 30, 37, 55, 67 and 74), either explicitly (in lines 30 and 37), or in the underlying implemen-
tation of a SWMR register (e.g., [5]) which is used in the construction of weak snapshots. Note,
however, that it is a trivial exercise to convert the pseudo-code to the I/O automata syntax, as each
operation is atomic until it blocks waiting for a majority and thus the operation can be divided
into multiple atomic actions: initially an action corresponding to the code that precedes the wait
statement executes, and when messages are received from a majority, the upon-clause receiving the
messages uses an additional internal flag to enable the execution of the operation part following

the wait, which forms another atomic action, and to disable code which precedes the wait.

Operations and upon-clauses access different variables for storing the value and timestamp*:
v; and ts; are accessed in upon-clauses, whereas operations (and procedures) manipulate v;***
and ts]"*. Procedure ContactQ sends a write-request including v;"** and ¢s;*** (line 35) when
writing a quorum, and a read-request (line 36) when reading a quorum (msgNum,, a local sequence
number, is also included in such messages). When p; receives a write-request, it updates v; and
ts; if the received timestamp is bigger than ¢s;, and sends back a REPLY message containing the
sequence number of the request (line 45). When a read-request is received, p; replies with v;, ts;,

and the received sequence number (line 46).

Every process p; executing Algorithm 2 maintains a local estimation of the latest view, curView;
(line 9), initialized to Init when the process starts. Although p; is able to execute all event-handlers
immediately when it starts, recall that invocations of read, write or reconfig operations at p; are only
allowed once they are enabled for the first time; this occurs in line 11 (for processes in Init.join)
or in line 81 (for processes added later). If p; discovers that it is being removed from the system,
it simply halts (line 53). In this section, we denote changes of the form (Add, i) by (+,7) and
changes of the form (Remove, i) by (—,).

4This allows for a practical optimization, whereby operations and upon clauses act like separate monitors: an
operation can execute concurrently with an upon-clause, and at most one of each kind can be executed at a time.

27

Algorithm 2 Code for process p;.

1: state
2: v € VU{L}, initially L // latest value received in a WRITE message
3: ts; € Ng x (ITU{L}), initially (0, L) // timestamp corresponding to v; (timestamps have selectors num
and pid)
4: " € YU{L}, initially L // latest value observed in Traverse
50 ts"® € Ny x (ITU{L}), initially (0, L) // timestamp corresponding to v!™*
6: pickNewTS; € {FALSE, TRUE}, initially FALSE // whether Traverse should pick a new timestamp
7. M;: set of messages, initially ()
8: msgNum,; € No, initially O /[counter for sent messages
9: curView; € Views, initially Init // latest view
10: initially: 47: procedure Traverse(cng, v)
11: if (¢ € Init.join) then enable operations 48: desiredView «— curView; U cng
12: operation read;(): 49: Front «— {curView;}
13: pickNewTS,; + FALSE 50: - do)
14: newView « Traverse((), L) S s« mind|¢] : £ € Front}
. , : ¢ € Frontst. |[l| =s
15: NotifyQ(newView) 52 we any
16: return p9 53: if (i & w.members) then halt;
H . : :
54: if w # desiredView then
17: operation write;(v): 55: update;(w, desiredView\w)
18: pickNewTS,; < TRUE 56: ChangeSets < ReadInView(w)
19: newView < Traverse((),v) 57- if ChangeSets + () then
20: NotifyQ(newView) 58: Front < Front \ {w}
21: return OK 59: for each ¢ € ChangeSets
22: operation reconfig;(cng): 60: desiredView «— desiredView U c
23: pickNewTS, < FALSE 61: Front — Front U {w U C}
24: newView — Traverse(cng, 1) 62: else ChangeSets «— WriteInView(w, v)

25: NotifyQ(newView) 63: while ChangeSets # ()
26: return OK 64: curView; < desiredView

65: return desiredView
27: procedure NotifyQ(w)

28: if did not receive (NOTIFY, w) then
29: send (NOTIFY, w) to w.members
30: wait for (NOTIFY, w)

from majority of w.members

66: procedure ReadlnView(w)

67: ChangeSets «— scan;(w)

68: ContactQ(R, w.members)
69: return ChangeSets

31: procedure ContactQ(msgType, D) 70: pr?ceQure WritelnView(w, v)
32: M; — 0 71: if pickNewTS; then

33: msgNum; «— msgNum; + 1; 72: (pickNewTS;, v""*, ts"*") — ‘
34: if msgType = W then (FALSE, v, (ts{""".num + 1,1))
35: send (REQ,W,msgNum; v ts797) to D 73: ContactQ(W, w.members)

36: else send (REQ, R, msgNum;) to D 74: ChangeSets — scan;(w)

37 wait until M; contains (REPLY, msgNum,, - --) />~ Teturn ChangeSets

from a majority of D 76: upon receiving (NOTIFY, w) for the first time:
38: if msgType = R then 77: send (NOTIFY, w) to w.members
39: tme—max{t:(REPLY msgNum;,v,t)EM;} 78: if (curView; C w) then
40: vim « value corresponding to tm 79: pause any ongoing Traverse
41: if tm > ts7"“ then 280: curView; « w
(vt) —(vim, tm) 81: if (i € w.join) then enable operations
42: upon receiving (REQ,msgType,num.vts) 82: if paused in line 79, restart Traverse from
from p;: line 48
43: if msgType = W then 83: upon receiving (REPLY, - - -):

44: if (ts > ts;) then (v;, ts;) «— (v, ts) 84: add the message and its sender-id to M;

3.4.2 Traversing the Graph of Views

Weak snapshots organize all views in a given execution into a DAG, where views are the vertices
and there is an edge from a view w to a view w’ whenever an update;(w, c¢) has been made in
the execution by some process j € w.members, updating ws(w) to include the change ¢ # 0 s.t.
w' = wUc; |c| can be viewed as the weight of the edge — the distance between w’ and w in changes.
Our algorithm maintains the invariant that ¢ N w = (), and thus w’ always contains more changes
than w, i.e., w C w’. Hence, the graph of views is acyclic.

The main logic of Algorithm 2 lies in procedure Traverse, which is invoked by all operations.
This procedure traverses the DAG of views, and transfers the state of the emulated register from
view to view along the way. Traverse starts from the view curView;. Then, the DAG is traversed in
an effort to find all membership changes in the system; these are collected in the set desiredView.
After finding all changes, desiredView is added to the DAG by updating the appropriate ws object,
so that other processes can find it in future traversals.

The traversal resembles the well-known Dijkstra algorithm for finding shortest paths from a
single source [22], with the important difference that our traversal modifies the graph. A set of
views, Front, contains the vertices reached by the traversal and whose outgoing edges were not yet
inspected. Initially, Front = {curView;} (line 49). Each iteration processes the vertex w in Front
closest to curView; (lines 51 and 52).

During an iteration of the loop in lines 50-63, it might be that p; already knows that w does not
contain all proposed membership changes. This is the case when desiredView, the set of changes
found in the traversal, is different from w. In this case, p; installs an edge from w to desiredView
using update; (line 55). As explained in Section 3.3, in case another update to ws(w) has already
completed, update does not install an additional edge from w; the only case when multiple outgoing
edges exist is if they were installed concurrently by different processes.

Next, p; invokes ReadInView(w) (line 56), which reads the state and configuration information
in this view, returning all edges outgoing from w found when scanning ws(w) in line 67. By
property NV2, if p; or another process had already installed an edge from w, a non-empty set of
edges is returned from ReadInView. If one or more outgoing edges are found, w is removed from
Front, the next views are added to Front, and the changes are added to desiredView (lines 59-61).
If p; does not find outgoing edges from w, it invokes WriteInView(w) (line 62), which writes the

latest known value to this view and again scans ws(w) in line 74, returning any outgoing edges that

29

are found. If here too no edges are found, the traversal completes.

Notice that desiredView is chosen in line 52 only when there are no other views in Front,
since it contains the union of all views observed during the traversal, and thus any other view in
Front must be of smaller size (i.e., contain fewer changes). Moreover, when w # desiredView
is processed, the condition in line 54 evaluates to true, and ReadInView returns a non-empty set
of changes (outgoing edges) by property NV2. Thus, WriteInView(w, x) is invoked only when
desiredView 1is the only view in Front, i.e., w = desiredView (this transfers the state found during
the traversal to desiredView, the latest-known view). For the same reason, when the traversal
completes, Front = {desiredView}. Then, desiredView is assigned to curView; in line 64 and

returned from Traverse.

To illustrate such traversals, consider the example in Figure 3.2. Process p; invokes Traverse
and let initView be the value of curView; when Traverse is invoked. Assume that initView.members
includes at least p; and p;, and that cng = () (this parameter of Traverse will be explained in
Section 3.4.3). Initially, its Front, marked by a rectangle in Figure 3.2, includes only initView,
and desiredView = initView. Then, the condition in line 54 evaluates to false and p; invokes
ReadInView(initView), which returns {{(+,3)}, {(+,5)}, {(—,1), (+,4)}}. Next, p; removes
initView from Front and adds vertices V, V5 and V3 to Front as shown in Figure 3.2. For example,
V3 results from adding the changes in {(—, 1), (4, 4)} to initView. At this point, desiredView =
initViewJ{(+, 3), (+,5), (=, 1), (+,4)}. In the next iteration of the loop in lines 50-63, one of
the smallest views in Front is processed. In our scenario, V; is chosen. Since Vi # desiredView,
p; installs an edge from V; to desiredView. Suppose that no other updates were made to ws(V7)
before p;’s update completes. Then, ReadInView(V;) returns {{(+,5), (—, 1), (+,4)}} (properties
NV1 and NV2). Then, V; is removed from Front and V, = V; U {(+,5), (—, 1), (+,4)} is added

to Front. In the next iteration, an edge is installed from V5 to V,; and V5 is removed from Front.

Now, the size of V3 is smallest in Front, and suppose that another process p; has already com-
pleted update;(Vs,{(+,7)}). p; executes update (line 55), however since an outgoing edge already
exists, a new edge is not installed. Then, ReadInView(V3) is invoked and returns {{(+, 7)}}. Next,
V3 is removed from Front, Vs = V3 U {(+,7)} is added to Front, and (+,7) is added to desired-
View. Now, Front = {V,, Vs}, and we denote the new desiredView by V5. When V; and V; are
processed, p; installs edges from V; and V5 to V. Suppose that ReadInView of V; and V5 in line 56

return only the edge installed in the preceding line. Thus, V; and Vj; are removed from Front, and

30

Legend

—» edge returned
from ReadInView

— — » edge updated by p;

)
=initview O {(+, 3), (+, 5),
_ 3/\&: 5\\ ('; 1)! (+l 4)! (+l 7)}
A
Initial Front after Front after Front after
Front iteration 1 iteration 4 iteration 6

Figure 3.2: Example DAG of views.

Vs is added to Front, resulting in Front = {Vg}. During the next iteration ReadInView(Vs) and
WriteInView(V;) execute and both return) in our execution. The condition in line 63 terminates

the loop, V5 1s assigned to curView; and Traverse completes returning V.

3.4.3 Reconfigurations (Liveness)

A reconfig(cng) operation is similar to a read, with the only difference that desiredView initially
contains the changes in cng in addition to those in curView; (line 48). Since desiredView only
grows during a traversal, this ensures that the view returned from 7raverse includes the changes
in cng. As explained earlier, Front = {desiredView} when Traverse completes, which means that
desiredView appears in the DAG of views.

When a process p; completes WriteInView in line 62 of Traverse, the latest state of the register
has been transfered to desiredView, and thus it is no longer necessary for other processes to start
traversals from earlier views. Thus, after Traverse completes returning desiredView, p; invokes
NotifyQ with this view as its parameter (lines 15, 20 and 25), to let other processes know about
the new view. NotifyQ(w) sends a NOTIFY message (line 29) to w.members. A process receiving
such a message for the first time forwards it to all processes in w.members (line 77), and after a
NOTIFY message containing the same view was received from a majority of w.members, NotifyQ
returns. In addition to forwarding the message, a process p; receiving (NOTIFY, w) checks whether
curView; C w (i.e., w is more up-to-date than curView;), and if so it pauses any ongoing Traverse,
assigns w to curView;, and restarts Traverse from line 48. As the execution of Traverse between

wait statements is atomic, Traverse executed by p; can be restarted only when it blocks waiting for

31

messages from a majority of some view w’. Restarting Traverse in such case can be necessary if
less than a majority of members in w’ are active. Intuitively, Definition 2 implies that in such case
w’ must be an old view, i.e., some reconfig operation completes proposing new changes to system
membership. We prove in Section 3.6.3 that in this case p; will receive a (NOTIFY, w) message s.t.
curView; C w and restart its traversal.

Note that when a process p; restarts Traverse, p; may have an outstanding scan; or update;
operation on a weak snapshot ws(w) for some view w, in which case p; restarts Traverse without
completing the operation. It is possible that p; might be unable to complete such outstanding
operations because w is an old view, i.e., more than a majority of its members were removed.
After Traverse is restarted, it is possible that p; encounters w again in the traversal and needs to
invoke another operation on ws(w), in which case w is not known to be old. We require that in
this case p; first terminates previous outstanding operations on ws(w) before it invokes the new
operation. The mechanism to achieve this is a simple queue, and it is not illustrated in the code.
Note that started snapshot operations on old views do not need to be completed.

Restarts of Traverse introduce an additional potential complication for write operations: sup-
pose that during its execution of write(v), p; sends a WRITE message with v and a timestamp ¢s. It
is important that if Traverse is restarted, v is not sent with a different timestamp (unless it belongs

to some other write operation). Before the first message with v is sent, we set the pickNewTS;

max
K3

flag to false (line 72). The condition in line 71 prevents Traverse from re-assigning v to v or

max
(2

incorrect ts***, even if a restart occurs.

In Section 3.6.3 we prove that DynaStore preserves Dynamic Service Liveness (Definition 2).
Thus, liveness is conditioned on the number of different changes proposed in the execution being
finite. In reality, only the number of such changes proposed concurrently with every operation has
to be finite. Then, the number of times Traverse can be restarted during that operation is finite and

so is the number of views encountered during the traversal, implying termination.

3.4.4 Sequence of Established Views (Safety)

Our traversal algorithm performs a scan(w) to discover outgoing edges from w. However, different
processes might invoke update(w) concurrently, and different scans might see different sets of

outgoing edges. In such cases, it is necessary to prevent processes from working with views on

32

different branches of the DAG. Specifically, we would like to ensure an intersection between views
accessed in reads and writes. Fortunately, property NV4 guarantees that all scan(w) operations
that return non-empty sets (i.e., return some outgoing edges from w), have at least one element
(edge) in common. Note that a process cannot distinguish such an edge from others and therefore
traverses all returned edges. This property of the algorithm enables us to define a totally ordered

subset of the views, which we call established, as follows:

Definition 3. [Sequence of Established Views] The unique sequence of established views & is

constructed as follows:
e the first view in £ is the initial view Init;

e if w is in &, then the next view after w in £ is w’ = w U ¢, where c is an element chosen
arbitrarily from the intersection of all sets C' # () returned by some scan(w) operation in the

execution.

Note that each element in the intersection mentioned in Definition 3 is a set of changes, and
that property NV4 guarantees a non-empty intersection. In order to find such a set of changes c in
the intersection, one can take an arbitrary element from the set C' returned by the first collect(w)
that returns a non-empty set in the execution. This unique sequence £ allows us to define a total
order relation on established views. For two established views w and w’ we write w < w' if w
appears in £ no later than w’; if in addition w # w’ then w < w’. Notice that for two established
views w and w’, w < w’ if an only if w C w'.

Notice that the first graph traversal in the system starts from curView; = Init, which is estab-
lished by definition. When Traverse is invoked with an established view curView;, every time a
vertex w is removed from Front and its children are added, one of the children is an established
view, by definition. Thus, Front always includes at least one established view, and since it ulti-
mately contains only one view, desiredView, we conclude that desiredView assigned to curView; in
line 64 and returned from Traverse is also established. Thus, all views sent in NOTIFY messages
or stored in curView; are established. Note that while a process p; encounters all established views
between curView; and the returned desiredView in an uninterrupted traversal, it only recognizes a

subset of established views as such (whenever Front contains a single view, that view must be in

).

33

It is easy to see that each traversal performs a ReadInView on every established view in £ be-
tween curView; and the returned view desiredView. Notice that WriteInView (line 62) is always
performed in an established view. Thus, intuitively, by reading each view encountered in a traver-
sal, we are guaranteed to intersect any write completed on some established view in the traversed
segment of £. Then, performing the scan before ContactQ in ReadInView and after the ContactQ
in WriteInView guarantees that in this intersection, indeed the state is transferred correctly, as ex-
plained in the beginning of this section. A formal correctness proof of our protocol appears in

Section 3.6.

3.5 Analysis of Weak Snapshot Objects

First, note that whenever a process p; performs scan;(w) or update;(w, c), it holds that i € w.members
because of the check in line 53. Thus, it is allowed to perform these operations on w. The follow-
ing lemmas prove correctness of a single weak snapshot object accessible by a set of processes P.
We assume that all registers in Mem are initialized to L and that no process invokes update(_L),
which is indeed preserved by DynaStore. The first lemma shows that each register Mem/[i] can be

assigned at most one non-initial value.

Lemma 1. For any i € P, the following holds: (a) if Mem/|i].Read() is invoked after the completion
of Mem|i|.Write(c), and returns ¢, then ¢ = ¢; and (b) if two Memli].Read() operations return
c# Landcd # 1, thenc=¢.

Proof. Recall that only p; can write to Mem/[i| (by invoking an update operation). We next show
that Mem|[i]. Write can be invoked at most once in an execution. Suppose by way of contradiction
that Mem|i].Write is invoked twice in the execution, and observe the second invocation. Sec-
tion 3.4.3 mentions our assumption of a mechanism that always completes a previous operation
on a weak snapshot object, if any such operation has been invoked and did not complete (because
of restarts), whenever a new operation is invoked on the same weak snapshot object. Thus, when
Mem[i]. Write is invoked for the second time, the first Mem|[i|. Write has already completed. Before
invoking the Write, p; completes collect, which executes Mem|i].Read. By atomicity of Meml]i],
since the first Write to Mem[i| has already completed writing a non-_L value, collect returns a set

containing this value, and the condition in line 2 in Algorithm 1 evaluates to FALSE, contradicting

34

our assumption that a Write was invoked after the collect completes.

(a) follows from atomicity of Mem]|i] since Mem/|i]. Write is invoked at most once in the execu-
tion. In order to prove (b), notice that if ¢ # ¢/, since p; is the only writer of Mem|i], this means
that both Mem|i|. Write(c) and Mem|i]. Write(c’) are invoked in the execution, which contradicts the

fact that Mem|i]. Write is invoked at most once in the execution. O

Properties NV1 (integrity) and NVS5 (liveness) can be guaranteed by using standard emulation
protocols for atomic SWMR registers [5]. The following lemmas prove that Algorithm 1 preserves
properties NV2-NV4.

Lemma 2. Let 0 be a scan;() operation that is invoked after the completion of an update(c) oper-

ation, and returns C. Then C # ().

Proof. Since update;(c) completes, either Mem|[i|.Write(c) completes or collect returns a non-
empty set. In the first case, when o reads from Mem/i| during both first and second collect, the
Read returns c by Lemma 1. The second case is that collect completes returning a non-empty set.
Thus, a read from some register Mem|j] during this collect returns ¢ # L. By atomicity of Mem/;]
and Lemma 1, since o is invoked after update;(c) completes, any read from Mem|j] performed
during o returns ¢’. Thus, in both cases the first and second collect during o return a non-empty set,

which means that C' # (). O

Lemma 3. Let o be a scan;() operation that returns C and let o' be a scan() operation that returns

C" and is invoked after the completion of o. Then C' C C".

Proof. If C' = (), the lemma trivially holds. Otherwise, consider any ¢ € C'. Notice that c is re-
turned by a Read r from some register Mem|k| during the second collect of 0. Atomicity of Mem/|k]
and Lemma 1 guarantee that every Read r’ from the same register invoked after the completion of
7 returns c. Both times collect is executed during o', it reads from Mem[k| and since o’ is invoked

after o completes both times a set containing c is returned from collect, i.e, ¢ € C".]

Lemma 4. There exists ¢ such that for every scan() operation that returns C' # (), it holds that
ceC.

Proof. Let o be the first scan;() operation during which collect in line 6 returns a non-empty set,

and let C' # () be this set. Let o’ be any scan() operation that returns C’ # (). We next show that

35

C C (', which means that any ¢ € C' preserves the requirements of the lemma. Since C” # (), the
first invocation of collect() during o’ returns a non-empty set. By definition of o, the second collect
during o starts after the first collect of o completes. For every ¢ € C, there is a Mem|k].Read()
executed by the first collect of o that returns ¢ # L. By Lemma 1 and atomicity of Mem|k|, a Read

from the same register performed during the second collect of o' returns c. Thus, C' C . [

3.6 Analysis Of DynaStore

3.6.1 Traverse

We use the convention whereby each time Traverse is restarted, a new execution of Traverse begins;
this allows us to define one view from which a traversal starts — this is the value curView,; when the

execution of Traverse begins in line 48.

Lemma 5. At the beginning and end of each iteration of the loop in lines 50-63, it holds that

UwE From W € desiredView.

Proof. We prove that if an iteration begins with | J w C desiredView then this invariant holds

weFront
also when the iteration ends. The lemma then follows from the fact that at the beginning of the
first iteration Front = {curView;} (line 49) and desiredView = curView; U cng (line 48).

Suppose that at the beginning of an iteration [J w C desiredView. If the loop in lines 59-

weFront
61 does not execute, then Front and desiredView do not change, and the condition holds at the end
of the iteration. If the loop in lines 59-61 does execute, then w C desiredView is removed from

Front, w U c is added to Front and c is added to desiredView, thus the condition is again true. [
Lemma 6. Whenever update;(w, ¢) is executed, ¢ #) and ¢ N w = (.

Proof. update;(w, c) is executed only in line 55 when w # desiredView and ¢ = desiredView\w,
which means that cNw = (). By Lemma 5, since w # desiredView, it holds that w C desiredView.

Thus, ¢ = desiredView\w # (. O

Lemma 7. Let T' be an execution of Traverse that starts from curView; = initView. For every view

w that appears in Front at some point during the execution of T, it holds that initView C w.

36

Proof. We prove that if an iteration of the loop in lines 50-63 begins such that each view in Front
contains initView, then this invariant is preserved also when the iteration ends. The lemma then
follows from the fact that at the beginning of the first iteration Front = {curView;} (line 49).
Suppose that at the beginning of an iteration each view in Front contains initView. Front can
only change during this iteration if the condition in line 57 evaluates to true, i.e., if ChangeSets # ().
In this case, the loop in lines 59-61 executes at least once, and w U c is added to Front in line 61
for some c. Since w was in Front in the beginning of this iteration, by our assumption it holds that

initView C w, and therefore w U c also contains initView. O

Lemma 8. Let w € Front be a view. During the execution of Traverse, if w is removed from Front
in some iteration of the loop in lines 50-63, then the size of any view w' added to Front in the same

iteration or a later one, is bigger than |w|.

Proof. Suppose that w is removed from Front during an iteration. Then its size, |w|, is minimal
among the views in Front (lines 51 and 52) at the beginning of this iteration. By line 61, whenever a
view is inserted to Front, it has the form w U c where ¢ € ChangeSets returned by scan; in line 67.
By property NV1, some update(w, c) operation is invoked in the execution, and by Lemma 6,
¢ # L and cNw = (). Thus, the view w U c is strictly bigger than w removed from Front in the
same iteration. It follows that any view w’ added to Front in this or in a later iteration has size

bigger than |w]. O

Lemma 9. If at some iteration of the loop in lines 50-63 ReadlnView returns ChangeSets = (), then

w = desiredView and Front = {desiredView}.

Proof. Suppose for the sake of contradiction that w # desiredView. Before ReadlnView is invoked,
update;(w, desiredView \ w) completes, and then by Lemma 2 when ReadInView completes it
returns a non-empty set, a contradiction.

Suppose for the sake of contradiction that there exists a view w’ € Front s.t. w’ # desiredView.
By Lemma 5, w' C desiredView. Since w’ # desiredView, we get that w’ C desiredView and thus

|w'| < |desiredView

, contradicting the fact that w = desiredView, and not w’, is chosen in line 52

in the iteration. 0
Lemma 10. desiredView returned from Traverse(cng, v) contains cng.

37

Proof. At the beginning of Traverse, desiredView is set to curView; Ucng in line 48, and during the
execution of Traverse, no element is removed from desiredView. Thus, cng C desiredView when

Traverse completes. 0

Lemma 11. curView; is an established view. Moreover, desiredView in line 64 of Traverse is es-

tablished and whenever WriteInView(w, *) is invoked, w is an established view.
Proof. We prove the lemma using the following claim:

Claim 11.1. If curView; from which a traversal starts is an established view, then Front at the
beginning and end of the loop in lines 50-63 contains an established view, and the view desiredView
assigned to curView; in line 64 in Traverse is established. Moreover, whenever WriteInView(w, *)

is invoked, w is an established view.

Proof. Initially, Front contains curView; (line 48), which is established by assumption, and there-
fore Front indeed contains an established view when the first iteration of the loop begins. If a view
w is removed from Front in line 58, then ChangeSets # (). We distinguish between two cases: (1)
if w is not an established view, then Front at the end of the iteration still contains an established
view; (2) if w is an established view, then, by Lemma 4 and the definition of &, since ChangeSets
is a non-empty set returned by scan;(w), there exists ¢ € ChangeSets such that w U c is established.
Since for every ¢ € ChangeSets, wU c is added to Front in line 61, the established view succeeding
w 1n the sequence is added to Front, and thus Front at the end of this iteration of the loop in lines
50-63 still contains an established view.

By Lemma 9, when the loop in lines 50-63 completes, as well as when WriteInView(w, *)
is invoked, Front = {desiredView}. Since during such iterations, ReadInView returns (), Front
does not change from the beginning of the iteration. We have just shown that Front contains
an established view at the beginning of the do-while loop, and thus, desiredView in line 64 is

established, and so is any view w passed to WriteInView. [

We next show that the precondition of the claim above holds, i.e., that curView; is an established
view, by induction on |curView;|. The base is curView; = Init, in which case it is established by
definition. Assuming that curView; is established if its size is less than %, observe such view of
size k > |Init|. Consider how curView; got its current value — it was assigned either by some

earlier execution of Traverse at p; in line 64, or in line 80 when a NOTIFY message is received,

38

which implies that some process completes a traversal returning this view. In either case, since
curView; # Init, some process p; has desiredView = curView; in line 64, while starting the traversal
with a smaller view curView;. Notice that curView; is established by our induction assumption, and
since curView; is the value of desiredView in line 64 of a Traverse which started with an established

view, it is also established by Claim 11.1. [

Lemma 12. Let T be an execution of Traverse and initView be the value of curView; when p; starts
this execution, then (a) if T invokes WriteInView(w, *) then T' completes a ReadInView(w') which
returns a non-empty set for every established view w' s.t. initView < w' < w, and a ReadInView(w)
which returns (); and (b) if T reaches line 64 with desiredView = w", then it completes WriteInView(w'" , x)

which returns ().

Proof. When T begins, the established view w’ = initView is the only view in Front. Since
some iteration during 7" chooses w in lines 51 and 52, which has bigger size than w’, it must
be that w’ is removed from Front. This happens only if some ReadInView(w') during T returns
ChangeSets # (). After w’ is removed from Front, for every ¢ € ChangeSets, w' U ¢ is added to
Front, and thus, the established view succeeding w’ in £ is added to Front (by Lemma 4 and the
definition of £). The arguments above hold for every established view w’ s.t. initView < w' < w,
since a bigger view w is chosen from Front during 7". During the iteration when WriteInView(w, *)
is invoked, ReadInView(w) completes in line 56 and returns (), which completes the proof of (a).
Suppose that 7" reaches line 64 with desiredView = w"”. By Lemma 9, w during the last iteration
of the loop equals to w”. Observe the condition in line 63, which requires that ChangeSets = () for
the loop to end. Notice that ChangeSets is assigned either in line 56 or line 62. If it was assigned
in line 62, then WriteInView(w,) was executed which completes the proof of (b). Otherwise,
ReadInView(w) returns ChangeSets = () in line 56, which causes line 62 to be executed. Then,

since this is the last iteration, WriteInView(w, *) returns (). O

3.6.2 Atomicity

We say that WriteInView writes a timestamp ts if ¢s;"** sent in the REQ message by ContactQ(W,
*) equals ts. Similarly, a ReadInView reads timestamp ts if at the end of ContactQ(R, *) invoked

by the ReadInView, ts]*** is equal to ts.

39

Lemma 13. Let W be a WriteInView(w, *) that writes timestamp ts and returns C, and R be
a ReadInView(w) that reads timestamp ts' and returns C'. Then, either ts' > ts or C' C C.

Moreover, if R is invoked after W completes, then ts' > ts.

Proof. Because both operation invoke ContactQ in w, there exists a process p in w.members from
which both W and R get a REPLY message before completing their ContactQ, i.e., p’s answer
counts towards the necessary majority of replies for both W and R. If p receives the (REQ, W, - - -)
message from W with timestamp ¢s before the (REQ, R, - - -) message from R, then by lines 44 and
46 it responds to the message from R with a timestamp at least as big as ts. By lines 39-41, when
R completes ContactQ(R, w.members), ts7"** is set to be at least as high as ts, and thus ts’ > ts. It
is left to show that if p receives the (REQ, R, - - -) message from R before the (REQ, W, - - -) message
from W, then C' C C.

Suppose that p receives the (REQ, R, - - -) message from R first. Then, when this message is
received by p, ContactQ(W, w.members) has not yet completed at W, and thus W has not yet
invoked scan(w) in line 74. On the other hand, since R has started ContactQ(R, w.members), it has
already completed its scan(w) in line 67, which returned C’. When W completes its ContactQ it
invokes scan(w), which then returns C'. By Lemma 3 it holds that C’' C C.

Notice that if R is invoked after 1/ completes then it must be the case that p receives the

(REQ, W, - - -) message from W first, and thus, in this case, ts’ > ts. O

Lemma 14. Let T be an execution of Traverse that completes returning w and upon completion its

tsmax max

is equal to ts, and T" be an execution of Traverse that reaches line 64 with ts"** equal to

ts' and with its desiredView equal to w'. If w < w' thents < ts'.

Proof. Consider the prefix of £ up to w’: Vo, Vi,--- Vi st. Vo = Init, V; = ', and w = V;
where ¢ € {0,...,l — 1}. Moreover, let w” be the view from which 7" starts the traversal (w” is
established by Lemma 11).

First, consider the case that w” < w. By Lemma 12, since 7' returns w, it completes Writeln-
View(w, *) which returns C' = (). Since 7" starts from w” < w and reaches line 64 with desiredView
w' s.t. w < w', by Lemma 12 it completes a ReadInView(w) which returns C’ # () (notice that
ReadInView(w) might be executed in two consecutive iterations of 7", in which case during the

first iteration ReadInView(w) returns (J; we then look on the next iteration, where a non-empty set

maxr
K3

is necessarily returned). Since C’ Z C, by Lemma 13 we have that ¢s upon the completion of

40

the ReadInView(w) by 1" is at least as big as ¢s"** upon the completion of WriteInView(w, x) by

i
T, which equals to ts. Since ts]*** does not decrease during 7" and ¢s’ is the value of ¢s]*** when
T’ reaches line 64, we have that ts’ > ts.

The second case to consider is w < w”, which implies that w” ## Init. In this case, there

" < w” and reaches line 64 before T begins, with

exists a traversal 7" which starts from a view w
desiredView = w" (T" is either an earlier execution of Traverse by the same process that executes
T’, or by another process, in which case 7" completes and sends a NOTIFY message with w”
which is then received by the process executing 7" before 7" starts). Let ts” be the ¢s"** when T"
reaches line 64. Notice that 7" completes WriteInView(w”, x) before T" starts ReadInView(w"),
and by Lemma 13 when ReadInView(w") completes at 7" its ts/*** is at least ts”. Since ts"**
at 7" can only increase from that point on, we get that ts’ > ts”. It is therefore enough to show
that ts” > ts in order to complete the proof. In order to do this, we apply the arguments above
recursively, considering 7" instead of 7", w” instead of w’ and ts” instead of ts’ accordingly
(recall that w < w”). Notice that since the prefix of £ up to w’ is finite, and since w” < w”,
i.e., the starting point of 7" is before that of 7" in £, the recursion is finite and the starting point
of the traversal we consider gets closer to /nit in each recursive step. Therefore, the recursion
will eventually reach a traversal which starts from an established view « and reaches line 64 with
desiredView equal to an established view (s.t. « < w and w < (3, which is the base case we

consider.]

By definition of &, if w is an established view then for every established view w’ in the prefix
of &€ before w (not including), some scan;(w’) returns a non-empty set. However, the definition
only says that such a scan;(w’) exists, and not when it occurs. The following lemma shows that
if w is returned by a Traverse T at time ¢, then some scan on w’ returning a non-empty set must
complete before time ¢. Notice that this scan might be performed by a different process than the

one executing 7.

Lemma 15. Let T' be an execution of Traverse that reaches line 64 at time t with desiredView equal
to w s.t. w # Init, and consider the prefix of £ up to w: Vo, Vi,--- ,Vy s.t. Vo = Init and V; = w.

Then for every k =0, ...,l — 1, some scan(V},) returns a non-empty set before time t.

Proof. Since w # Init there exists a traversal 7" that starts from V; < w and reaches line 64 with

desiredView = w no later than ¢. Notice that 7" can be T if T starts from a view different than

41

w, or alternatively 7" can be a traversal executed earlier by the same process, or finally, a traversal
at another process that completes before 7" begins. By Lemma 12, a ReadInView(V;) performed
during 7" returns a non-empty set for every j = i,...,l — 1. If i = 0 we are done. Otherwise,
V; # Init and we continue the same argument recursively, now substituting V; with V;. Since the
considered prefix of £ is finite and since each time we recurse we consider a sub-sequence starting

at least one place earlier than the previous starting point, the recursion is finite. [

Corollary 16. Let T' be an execution of Traverse that returns a view w and let T" be an execution

of Traverse invoked after the completion of T, returning a view w'. Then w < w'.

Proof. First, note that by Lemma 11 both w and w’ are established. Suppose for the purpose of
contradiction that w’ < w. By Lemma 15, some scan(w’) completes returning a non-empty set
before T' completes. Since 7" returns w’, its last iteration performs a scan(w’) that returns an

empty set. This contradicts Lemma 3 since 7" starts after 7' completes. [

Corollary 17. Let T' be an execution of Traverse that returns a view w and let T" be an execution
of Traverse invoked after the completion of T. Then T" does not invoke WriteInView(w', x) for any
view w' < w.

Proof. First, by Lemma 11, WriteInView is always invoked with an established view as a param-
eter. Suppose for the sake of contradiction that WriteInView(w', *) is invoked during 7" for some
view w’ < w. Since T returns w and w’ < w, by Lemma 15 some scan(w’) completes returning
a non-empty set before 7' completes. Since 7" invokes WriteInView(w’, %), by Lemma 12 a Read-
InView(w'") returned () during 7”. Thus, during the execution of this ReadInView(w'), a scan(w’)

returned () during 7. This contradicts Lemma 3 since 7" starts after 7' completes. [
We associate a timestamp with read and write operations as follows:

Definition 4 (Associated Timestamp). Let o be a read or write operation. We define ats(0), the
timestamp associated with o, as follows: if o is a read operation, then ats(o) is ts!"** upon the
completion of Traverse during o; if o is a write operation, then ats(o) equals to ¢s"** when its

assignment completes in line 72.

Notice that not all operations have associated timestamps. The following lemma shows that all
complete operations as well as writes that are read-from by some complete read operation have an

associated timestamp.

42

Lemma 18. We show three properties of associated timestamps: (a) for every complete operation
o, ats(o) is well-defined; (b) if o is a read operation that returns v # 1, then there exists an
o' = write(v) operation such that ats(0') is well-defined, and it holds that ats(o) = ats(d'); (c)
if o and o' are write operations with associated timestamps, then ats(o) # ats(o') and both are

greater than (0, L).

Proof. There might be several executions of Traverse during a complete operation, but only one of
these executions completes. Therefore, ats(o) is well-defined for every complete read operation
o. If o0 is a complete write, then notice that pickNewTS; = TRUE until it is set to FALSE in line 72,
and therefore the condition in line 71 is TRUE until such time. Thus, for a wrife operation, line 72
executes at least once — in WriteInView which completes right before the completion of a Traverse
during o (notice that WriteInView might be executed earlier as well). Once line 72 executes for
the first time, pickNewTS; becomes FALSE. Thus, this line executes at-most once in every write
operation and exactly once during a complete write operation, which completes the proof of (a).

To show (b), notice that v]"** equals to v upon the completion of 0. Moreover, since v # L,

max
7 .

v is not the initial value of v Observe the first operation o' that sets v/"** to v during its

execution, and notice that v]"** is assigned only in lines 41 and 72. Suppose for the purpose of
contradiction that the process executing o’ receives v in a REPLY message from another process
and sets v]"** to v in line 41. A process p; sending a REPLY message always includes v; in this
message, and v; is set only to values received by p; in (REQ, W, - - -) messages. Thus, some process

sends a (REQ, W, - - -) message with v before o’ sets its v["** to v. Since a (REQ, W, - - -) message

max
(3

max
7

contains the v]"** of the sender, we conclude that some process must have v = v before o sets
its v/"** to v, contradiction to our choice of o’. Thus, it must be that o' sets v"*” to v in line 72.
We conclude that o' is a write(v) operation which executes line 72. As mentioned above, this line
is not executed more than once during o’ and therefore ats(o’) is well-defined.

Recall our assumption that only one write operation can be invoked with v. Thus, o’ is the
operation that determines the timestamp with which v later appears in the system (any process that
sets v; to v, also sets ts; to the timestamp sent with v by ¢, as the timestamp and value are assigned
atomically together in line 44). This timestamp is ats(o’), determined when o’ executes line 72.
When o sets v]"** to v, it also sets ts"** to ats(0’), as the timestamp and value are always assigned
atomically together in line 41. Thus, ats(o) = ats(0').

Finally, notice that the associated timestamp of a write operation is always of the form (¢s***.num-+

43

1,1), which is strictly bigger than (0, L). Since ¢ is a unique process identifier, if o and o’ are two

write operations executed by different processes, ats(o) # ats(o’). If they are executed by the

same process, since ts;'** pertains its value between operation invocations, increasing the first
component of the timestamp by one makes sure that ats(o) # ats(o’), which completes the proof

of (¢). [

Lemma 19. Let 0 and o' be two complete read or write operations such that o completes before o’

is invoked. Then ats(o) < ats(0') and if o' is a write operation, then ats(o) < ats(0').

Proof. Denote the complete execution of Traverse during o by 7', and let w be the view returned
by T and ts be the value of ¢s7** when T returns. Note that ats(o) < ts, since ts!"** only grows
during the execution of o, and if o is a read operation then ats(o) = ts. Notice that there might be
several incomplete traversals during o’ which are restarted, and there is exactly one traversal that
completes.

There are two cases to consider. The first is that o’ executes a ReadInView(w) that returns.
Before this ReadInView(w) is invoked, T' completes a WriteInView(w, %), writing a value with
timestamp ¢s. By Lemma 13, after the ReadInView(w) completes during o', ts7*** > ts > ats(o)
and thus, when o’ completes ¢ts/"** > ats(o). If o' is a read operation then ats(o’) is equal to
this £s7"**, which proves the lemma. Suppose now that o’ is a write operation. Then during o/,
pickNewTS; = TRUE until it is set to FALSE in line 72. By Corollary 17, no traversal during o’
invokes WriteInView for any established view o < w. Thus, ReadInView(w) completes during o’
before any WriteInView is invoked. By Lemma 18, ats(0') is well-defined and therefore exactly

one traversal during o’ executes line 72. As explained, since ReadInView(w) has already completed

max
3

when line 72 executes, ts!"** > ats(o) and then, ts7*** is assigned (¢s/"**.num + 1, 1), implying
that ats(o’) > ats(o).

The second case is that no ReadInView(w) completes during o’. Let 7" be the traversal which
determines ats(0’). Let w’ be the view from which 7" starts, and notice that since 7" sets ats(o),
it completes ReadInView(w'). By Lemma 11, w’ is an established view. We claim that w < w’'.
First, if o’ is a read, then T' completes and returns some view w”. By Corollary 16, w < w” and
by Lemma 12, 7" performs a ReadInView on all established views between w’ and w”. Since o
does not complete ReadInView(w), it must be that w < w’, which shows the claim. Now suppose

that o’ is a write. By Corollary 17, 7" does not invoke WriteInView(«, %) for any view o« < w. It is

44

also impossible that 7" invokes WriteInView(w, *) as it does not complete ReadInView(w). Thus,
it must be that 7" attains ats(o’) when it invokes WriteInView(«, *) where w < «. By Lemma 12,
T’ performs a ReadInView on all established views between w’ and . Since it does not complete
ReadInView(w), it must be that w < w’, which shows the claim.

Since w < w', w' # Init. Moreover, since curView; = w’ when T starts, there exists a
traversal 7" which reaches line 64 with desiredView equal to w’ before 17" begins. Let ts” be
the ¢s!"** when T" reaches line 64. By Lemma 14, since w < w/, it holds that ts < ¢s” and

thus ats(o) < ts”. Since T” performs WriteInView(w’, x) and after it completes, 7" invokes and

completes ReadInView(w'), by Lemma 13 we get that ¢s!"** when ReadInView(w') completes is
at least as high as ts”. If o is a read, then ats(0’) equals to ¢s/"** when T" completes, and since
ts?** only grows during the execution of 7", we have that ats(o’) > ts” > ats(o). If o' is a write,
then ats(o') is determined when line 72 executes. Since this occurs only after ReadInView(w')
completes, ts/"*" is already at least as high as ¢s”. Then, line 72 sets ats(o’) to be (ts"**.num—+1,1)

and therefore ats(o’) > ts” > ats(o), which completes the proof. O

Theorem 20. Every history o corresponding to an execution of DynaStore is linearizable.

Proof. We create o’ from o gy by completing operations of the form write(v) where v is returned
by some complete read operation in ory,. By Lemma 18 parts (a) and (b), each operation which
is now complete in ¢’ has an associated timestamp. We next construct 7w by ordering all com-
plete read and write operations in ¢’ according to their associated timestamps, such that a write
with some associated timestamp ts appears before all reads with the same associated timestamp,
and reads with the same associated timestamp are ordered by their invocation times. Lemma 18
part (c) implies that all write operations in 7 can be totally ordered according to their associated
timestamps.

First, we show that 7 preserves real-time order. Consider two complete operations o and o’
in o’ s.t. o is invoked after o completes. By Lemma 19, ats(o’) > ats(o). If ats(o’) > ats(o)
then o’ appears after o in 7 by construction. Otherwise ats(o’) = ats(o) and by Lemma 19 this
means that o’ is a read operation. If o is a write operation, then it appears before o’ since we placed

each write before all reads having the same associated timestamp. Finally, if o is a read, then it

45

appears before o’ since we ordered reads having the same associated timestamps according to their
invocation times.

To prove that 7 preserves the sequential specification of a MWMR register we must show that a
read always returns the value written by the closest write which appears before it in 7, or the initial

value of the register if there is no preceding write in 7. Let o, be a read operation returning a value

max
K3

v. If v = _L then since v]"** and ¢s]*** are always assigned atomically together in lines 41 and 72,
we have that ats(o,) = (0,.L), in which case o, is ordered before any write in 7 by Lemma 18
part (c). Otherwise, v # L and by part (b) of Lemma 18 there exists a write(v) operation, which
has the same associated timestamp, ats(o,). In this case, this write is placed in 7 before o,, by
construction. By part (c) of Lemma 18, other write operations in 7 have a different associated

timestamp and thus appear in 7 either before write(v) or after o,.. [

3.6.3 Liveness

Recall that all active processes take infinitely many steps. As explained in Section 2, termination
has to be guaranteed only when certain conditions hold. Thus, in our proof we make the following

assumptions:

Al Atany time t, fewer than |V (t).members|/2 processes out of V (t).members U P(t).join
are in F'(t) U P(t).remove.

A2 The number of different changes proposed in the execution is finite.

Lemma 21. Let w be any change s.t. w € desiredView at time t. Then a reconfig(c) operation was

invoked before t such that w € c.

Proof. If w € Init, the lemma follows from our assumption that a reconfig(Init) completes by time
0. In the remainder of the proof we assume that w ¢ Init. Let T’ be a traversal that adds w to
its desiredView at time t’ s.t. t' is the earliest time when w € desiredView for any traversal in the
execution. Thus, ¢’ < t. Suppose for the purpose of contradiction that w is added to desiredView in
line 60 during 7”. Then w € ¢, s.t. cis in the set returned by a scan in line 67. By property NV1, an
update completes before this time with c as parameter. By line 55, w € desiredView at the traversal
that executes the update, which contradicts our choice of 7" as the first traversal that includes w in

desiredView. The remaining option is that w is added to desiredView in line 48 during 7”. Since no

46

traversal includes w in desiredView before ', and since w ¢ Init, we conclude that w & curView;.
Thus, w € cng. This means that 7" is executed during a reconfig(c) operation invoked before time

t, such that w € ¢, which is what we needed to show. OJ

Lemma 22. (a) If w is an established view, then for every change w € w, a reconfig(c) operation
is invoked in the execution s.t. w € c; (b) If w is a view s.t. w € Front at time t then for every

change w € w, a reconfig(c) operation is invoked before t such that w € c.

Proof. We prove the claim by induction on the position of w in £. If w = Init, then the claim holds
by our assumption that a reconfig(Init) completes by time 0. Assume that the claim holds until
some position £ > 0 in €. Let w be the k-th view in £ and observe w’, the k + 1-th established
view. By definition of £, there exists a set of changes ¢ such that w’ = w U ¢, where ¢ was returned
by some scan(w) operation in the execution. By property NV1, some update(w, c) operation is
invoked. By line 55, ¢ C desiredView at the traversal that executes the update. (a) then follows
from Lemma 21. (b) follows from Lemma 21 since by Lemma 5 we have that w C desiredView

and therefore w € desiredView at time t. [
Corollary 23. The sequence of established views & is finite.

Proof. By Lemma 22, established views contain only changes proposed in the execution. Since all

views in £ are totally ordered by the “C” relation, and by assumption A2, £ is finite. [l
Definition 5. We define ;, to be any time s.t. V¢ > {4, the following conditions hold:

L V(t) =V(tsi)

2. P(t) = P(tiz)

3. (V(t)join U P(t).join) N F(t) = (V(t i) join U P(tsi,)join) N F(t i)

(i.e., all processes in the system that crash in the execution have already crashed by ¢ 4;,).
The next lemma proves that ¢4, is well-defined.
Lemma 24. There exists i ;, as required by Definition 5.

Proof. V(t) contains only changes that were proposed in the execution (for which there is a re-

configuration proposing them that completes). Since no element can leave V' (t) once it is in this

47

set, V/(¢) only grows during the execution, and from assumption A2 there exists a time ¢, start-
ing from which V' (¢) does not change. No reconfig operation proposing a change w ¢ V/(t)
can complete from ¢, onward, and therefore no element leaves the set P from that time and P
can only grow. From assumption A2 there exists a time ¢, starting from which P(¢) does not
change. Thus, from time ¢,, = max(t,,t,) onward, V" and P do not change. By assumption A2,
V (typ).join U P(t,,).join is a finite set of processes. Thus, we can take ¢ s;,, to be any time after ¢,,

s.t. all processes from this set that crash in the execution have already crashed by ¢ ;. [

Recall that an active process is one that did not fail in the execution, whose Add was proposed

and whose Remove was never proposed.

Lemma 25. If w is a view in Front s.t. V (ts;) C w, then at least a majority of w.members are

active.

Proof. By Lemma 22, all changes in w were proposed in the execution. Since all changes pro-
posed in the execution are proposed by time ¢ f;,, w C V(¢ ;) U P(tf4,). Denote the set of changes
w\V (tsi;) by AC. Notice that AC' C P(ty;,). Each elementin AC either adds or removes one pro-
cess. Observe the set of members in w, and let us build this set starting with M = V(¢ ;). members
and see how this set changes as we add elements from AC'. First, consider changes of the form
(+,7) in AC. Each change of this form adds a member to M, unless j € V/(tf;,).remove, in
which case it has no effect on M. A change of the form (—, k) removes p; from M. According
to this, we can write w.members as follows: w.members = (V (t;,).members U J,,) \ R,,, where
Jw C P(tsig).join \ V(tsiy).remove and R,, C P(ty;,).remove. We denote V' (t;,,).members U J,,
by L and we will show that a majority of L is active. Since R, contains only processes that are not
active, when removing them from L (in order to get w.members), it is still the case that a majority
of the remaining processes are active, which proves the lemma.

We next prove that a majority of L are active. By definition of ,,, all processes proposed for
removal in the execution have been proposed by time ¢ 4;,.. Notice that no process in V (¢ y;,,).membersU
Jy is also in V(% 4,).remove by definition of this set, and thus, if the removal of a process in L was
proposed by time ¢ ;,, this process is in P(ty;,).remove. Since L C V (ty;,).join U P(ty).join,
by definition of ¢y, every process in L that crashes in the execution does so by time ¢ ;.. Thus,
F(tfiz) U P(tyiy).remove includes all processes in L that are not active. Assumption A1 says that

fewer than |V (4,).members| /2 out of V(¢ ;..).membersUP (t f;,).join are in F'(t p;,,)UP (t ;). remove.

48

Thus, fewer than |V (¢;,).members|/2 out of V (tf;,).members U J,,, which equals to L, are in

F(tiz) U P(tiy).remove. This means that a majority of the processes in L are active. O

Lemma 26. Let p; be an active process and w be an established view s.t. i € w.members. Then

i € w'.members for every established view w' s.t. w < w'.

Proof. Since w C w' and i € w.members, we have that (+,7) € w’. Since p; is active, no
reconfig(c) is invoked s.t. (—,i) € ¢, and by Lemma 22 we have that (—,i) ¢ w’. Thus, i €

w’.members.]

Lemma 27. If p;, and p; are active processes and p; sends a message to p; during the execution of

DynaStore, then p; eventually receives this message.

Proof. Recall that the link between p; and p; is reliable. Since p; and p; are active, it remains to
show that if the message is sent at time ¢ then j € V' (t).joinUP(t).join. Note that p; sends messages
only to processes in w.members, where w is a view in Front during Traverse, and therefore (+, j) €
w at time ¢t. By Lemma 22, a reconfig(c) was invoked before time ¢ s.t. (4, j) € c. If such operation

completes by time ¢, then j € V (¢).join, and otherwise j € P(t).join. O

Lemma 28. If a reconfig operation o completes in which Traverse returns the view w, then every

active process p; s.t. j € w.members eventually receives a message (NOTIFY, W) where w < .

Proof. Since o completes, there is at least one complete reconfig operation in the execution. Let
Wmae be a view returned by a Traverse during some complete reconfig operation, such that no
reconfig operation completes in the execution during which Traverse returns a view w’ where
Winaz < W'. Wyae 18 Well defined since every view returned from Traverse is established (Lemma 11),
and & is finite by Corollary 23. Notice that w < Wynae- We next prove that V' (tf,) C Winaa-
Suppose for the purpose of contradiction that there exists a change w € V(i) \ Wiae- Since
w € V(tpis), a reconfig(c) operation completes where w € c¢. By Lemma 10, Traverse during
this operation returns a view w’ containing w. By Lemma 11 w’ is established, and recall that all
established views are totally ordered by the “C” relation. Since w € w' \ Wy, it must be that
Winae < w'. This contradicts the definition of wy,.,. We have shown that V' (¢4;,) C wya., Which
implies that a majority of w,,, are active, by Lemma 25.

Since a reconfig operation completes where Traverse returns Wy, qz, 8 (NOTIFY, Wiyq,) Message

is sent in line 29, and it is received by a majority of w,,...members. Each process receiving

49

this message forwards it in line 77. Since a majority of w,,,, are active, and every two majority
sets intersect, one of the processes that forwards this message is active. By Lemma 26, since
W < Winazs every active process p; s.t. j € w.members is also in Wy,q,.members. By Lemma 27,

every such p; eventually receives this message. [

Lemma 29. Consider an operation executed by an active process p; that invokes Traverse at time
to starting from curView; = initView. If no (NOTIFY, newView) messages are received by p;
from time t, onward s.t. initView C newView then Traverse eventually returns and the operation

completes.

Proof. Since operations are enabled at p; only once ¢ € curView;.join (lines 11 and 81) and
curView; only grows during the execution, ¢ € initView.join. By Lemma 7, for every view w
which appears in Front during the traversal it holds that initView C w and therefore : € w.join.
Since p; is active, no reconfig(c) is invoked such that (—,7) € ¢. By Lemma 22 we have that
(—,7) € w and therefore ¢ € w.members. This means that p; does not halt in line 53, and by
Lemma 27 p; receives every message sent to it by active processes in w.

Let w be any view that appears in Front during the execution of Traverse. Notice that w is
not necessarily established, however we show that V (tr,) C w. Suppose for the purpose of
contradiction that there exists w € V (t4;,) \ w. Since initView C w, w € V(ty;;) \ initView. Since
w € V(tsiz), a reconfig(c) operation completes where w € ¢, and by Lemma 10 this operation
returns a view w’ s.t. w € w’. By Lemma 11 both initView and w’ are established, and since
w € w'\ initView, we get that initView < w'. Since i € initView.members and p; is active, by
Lemma 26 we have that i € w’.members. By Lemma 28, a (NOTIFY, w") message where v’ < w”
is eventually received by p;. Since initView < w”, this contradicts the assumption of our lemma.

We have shown that V(¢s;,) € w, and from Lemma 25 there exists an active majority ()
of w.members. By Lemma 27, all messages sent by p; to w.members are eventually received by
every process in (), and every message sent to p; by a process in () is eventually received by p;.
Thus all invocations of ContactQ(*, w.members), which involves communicating with a majority
of w.members, eventually complete, and so do invocations of scan; and update; by property NVS5.
Given that all such procedures complete during a Traverse and it is not restarted (this follows from
the statement of the lemma since no NOTIFY messages that can restart Traverse are received at

p; starting from t;), it is left to prove that the termination condition in line 63 eventually holds.

50

After Traverse completes, NotifyQ(w) is invoked where w is a view returned from Traverse. By
Lemma 9, Front = {w} when Traverse returns, and therefore NotifyQ(w) completes as well since

there is an active majority in w.members, as explained above.

By assumption A2 and Lemma 22, the number of different views added to Front in the ex-
ecution is finite. Suppose for the purpose of contradiction that Traverse does not terminate and
consider iteration k of the loop starting from which views are not added to Front unless they have
been already added before the k-th iteration (notice that by Lemma 8, when a view is removed
from Front, it can never be added again to Front; thus, from iteration k£ onward views can only
be removed from Front and the additions have no affect in the sense that they can add views that
are already present in Front but not new views or views that have been removed from Front). We
first show that in some iteration k" > k, |Front| = 1. Consider any iteration where |Front| > 1,
and let w be the view chosen from Front in line 52 in this iteration. By Lemma 35, in this case
w # desiredView, as desiredView contains the changes of all views in Front, and |Front| > 1
means that there is at least one view in Front which contains changes that are not in w. Then,
line 55 executes, and by Lemma 2, ReadInView returns a non-empty set. Next, the condition in
line 57 evaluates to true and w is removed from Front in line 58. Since no new additions are made
to Front starting with the k-th iteration (i.e., only a view that is already in Front can be added
in line 61), the number of views in Front decreases by 1 in this iteration. Thus, there exists an

iteration k' > k where only a single view remains in Front.

Observe iteration k', where |Front| = 1, and let w be the view chosen from Front in line 52 in
this iteration. Suppose for the purpose of contradiction that the condition on line 57 evaluates to
true. Then, w is removed from Front, and the loop on lines 59—61 executes at least once, adding
views to Front. By Lemma 8, the size of these views is bigger than w, and therefore every such view
is different than w, contradicting the fact that starting from iteration & only views that are already
in Front can be added to Front (recall that k' > k). Thus, starting from iteration £’ the condition
on line 57 evaluates to false, and WriteInView is invoked in iteration &’. Assume for the sake of
contradiction that WriteInView does not return (). In this case, the loop would continue and w (the
only view in Front) is chosen again from Front in iteration &’ + 1. Then, ReadInView(w) returns a
non-empty set by Lemma 3 and the condition in line 57 evaluates to true, which cannot happen, as
explained above. Thus, in iteration £’, the condition in line 57 evaluates to false, WriteInView(w, *)

returns (), and the loop terminates. L]

51

Theorem 30. DynaStore preserves Dynamic Service Liveness (Definition 2). Specifically, (a) Even-
tually, the enable operations event occurs at every active process that was added by a complete re-

config operation, and (b) Every operation o invoked by an active process p; eventually completes.

Proof. (a) Let p; be an active process that is added to the system by a complete reconfig operation.
If ¢ € Init.join then the operations at p; are enabled from the time it starts taking steps (line 11).
Otherwise, a reconfig adding p; completes, and let w be the view returned by Traverse during this
operation. By Lemma 10, (+,7) € w. Since p; is active, no reconfig(c) operation is invoked s.t.
(—,4) € c. By Lemma 22 we get that (—, i) & w, which means that i € w.members. By Lemma 28,
p; eventually receives a (NOTIFY, w') message such that w < w’. By Lemma 26, (+,i) € ', i.e.,
i € w'.join. This causes operations at p; to be enabled in line 81 (if they were not already enabled
by that time).

(b) Every operation o invokes Traverse and during its execution, whenever a (NOTIFY, new View)
message is received by p; s.t. curView; C newView, curView; becomes newView in line 80, and
Traverse is restarted. By Corollary 23, £ is finite. By Lemma 11, only established views are sent in
NOTIFY messages. Thus, the number of times a Traverse can be restarted is finite and at some point
in the execution, no more (NOTIFY, newView) messages can be received s.t. curView; C newView.

By Lemma 29, Traverse eventually returns and the operation completes. [

52

Chapter 4

Untrusted Storage

Many providers now offer a wide variety of flexible online data storage services, ranging from
passive ones, such as online archiving, to active ones, such as collaboration and social networking.
They have become known as computing and storage “clouds.” Such clouds allow users to abandon
local storage and use online alternatives, such as Amazon S3, Nirvanix CloudNAS, or Microsoft
SkyDrive. Some cloud providers utilize the fact that online storage can be accessed from any lo-
cation connected to the Internet, and offer additional functionality; for example, Apple MobileMe
allows users to synchronize common applications that run on multiples devices. Clouds also offer
computation resources, such as Amazon EC2, which can significantly reduce the cost of maintain-
ing such resources locally. Finally, online collaboration tools, such as Google Apps or versioning
repositories for source code, make it easy to collaborate with colleagues across organizations and

countries.

The remainder of this thesis deals with tools and semantics enabling clients that use online
cloud services to monitor or audit them, making sure that the cloud behaves as expected. In this
chapter we motivate this study of untrusted storage and define a system model used in the following
chapters. Sections 4.1 and 4.2 are based on a paper published in the ACM SIGACT News [14].
A preliminary version of the material in Section 4.3 appeared in 2009 IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) [12].

53

4.1 What Can Go Wrong?

Although the advantages of using clouds are unarguable, there are many risks involved with re-
leasing control over your data. One concern that many users are aware of is loss of privacy. Never-
theless, the popularity of social networks and online data sharing repositories suggests that many
users are willing to forfeit privacy, at least to some extent. Setting privacy aside, we now briefly
survey what else “‘can go wrong” when your data is stored in a cloud.

Availability is a major concern with any online service, as such services are bound to have some
downtime. This was recently the case with Google Mail', Hotmail?>, Amazon S3° and MobileMe*.
Users must also understand their service contract with the storage provider. For example, what
happens if your payment for the storage is late? Can the storage provider decide that one of your
documents violates its policy and terminate your service, denying you access to the data? Even
the worst scenarios sometimes come true — a cloud storage-provider named LinkUp (MediaMax)
went out of business last year after losing 45% of stored client data due to an error of a system
administrator’. This incident also revealed that it is sometimes very costly for storage providers to
keep storing old client data, and they look for ways to offload this responsibility to a third party.
Can a client make sure that his data is safe and available?

No less important is guaranteeing the integrity of remotely stored data. One risk is that data
can be damaged while in transit to or from the storage provider. Additionally, cloud storage, like
any remote service, is exposed to malicious attacks from both outside and inside the provider’s
organization. For example, the servers of the Red Hat Linux distribution were recently attacked
and the intruder managed to introduce a vulnerability and even sign some packages of the Linux

operating-system distribution®. In its Security Advisory about the incident, Red Hat stated:

. we remain highly confident that our systems and processes prevented the intrusion
from compromising RHN or the content distributed via RHN and accordingly believe

that customers who keep their systems updated using Red Hat Network are not at risk.

"http://googleblog.blogspot.com/2009/02/current—gmail-outage.html
’http://www.datacenterknowledge.com/archives/2009/03/12/downtime—for-hotmail
3http://status.aws.amazon.com/s3-20080720.html
“http://blogs.zdnet.com/projectfailures/?p=908
Shttp://blogs.zdnet.com/projectfailures/?p=999
Shttps://rhn.redhat.com/errata/RHSA-2008-0855.html

54

Unauthorized access to user data can occur even when no hackers are involved, e.g., resulting
from a software malfunction at the provider. Such data breach occurred in Google Docs’ during
March 2009 and led the Electronic Privacy Information Center to petition® with the Federal Trade
Commission asking to “open an investigation into Google’s Cloud Computing Services, to de-
termine the adequacy of the privacy and security safeguards...”. Another example, where data
integrity was compromised as a result of provider malfunctions, is a recent incident with Ama-
zon S3, where users experienced silent data corruption’. Later Amazon stated in response to user

complaints'’:

We’ve isolated this issue to a single load balancer that was brought into service at
10:55pm PDT on Friday, 6/20. It was taken out of service at 1lam PDT Sunday,
6/22. While it was in service it handled a small fraction of Amazon S3’s total re-
quests in the US. Intermittently, under load, it was corrupting single bytes in the byte
stream ... Based on our investigation with both internal and external customers, the
small amount of traffic received by this particular load balancer, and the intermittent
nature of the above issue on this one load balancer, this appears to have impacted a

very small portion of PUTs during this time frame.

A further complication arises when multiple users collaborate using cloud storage (or simply
when one user synchronizes multiple devices). Here, consistency under concurrent access must be
guaranteed. A possible solution that comes to mind is using a Byzantine fault-tolerant replication
protocol within the cloud (e.g., [34]); indeed this solution can provide perfect consistency and at the
same time prevent data corruption caused by some threshold of faulty components within the cloud.
However, since it is reasonable to assume that most of the servers belonging to a particular cloud
provider run the same system installation and are most likely to be physically located in the same
place (or even run on the same machine), such protocols might be inappropriate. Moreover, cloud-
storage providers might have other reasons to avoid Byzantine fault-tolerant consensus protocols,
as explained by Birman et al. [7]. Finally, even if this solves the problem from the perspective

of the storage provider, in this thesis we are more interested in the users’ perspective. A user

"http://blogs.wsj.com/digits/2009/03/08/1214/

8http://cloudstoragestrategy.com/2009/03/trusting-the-cloud-the-ftc-and-google.
html

http://blogs.sun.com/gbrunett/entry/amazon_s3_silent_data_corruption

Onttp://developer.amazonwebservices.com/connect/thread. jspa?threadID=22709

55

perceives the cloud as a single trust domain and puts trust in it, whatever the precautions taken by
the provider internally might be; in this sense, the cloud is not different from a single remote server.
Note that when multiple clouds from different providers are used, running Byzantine-fault-tolerant

protocols across several clouds might be appropriate.

4.2 What Can We Do?

Users can locally maintain a small amount of trusted memory and use well-known cryptographic
methods in order to significantly reduce the need for trust in the storage cloud. A user can verify the
integrity of his remotely stored data by keeping a short hash in local memory and authenticating
server responses by re-calculating the hash of the received data and comparing it to the locally
stored value. When the volume of data is large, this method is usually implemented using a hash
tree [60], where the leaves are hashes of data blocks, and internal nodes are hashes of their children
in the tree. A user is then able to verify any data block by storing only the root hash of the
tree corresponding to his data [8]. This method requires a logarithmic number of cryptographic
operations in the number of blocks, as only one branch of the tree from the root to the hash of an
actual data block needs to be checked. Hash trees have been employed in many storage-system
prototypes (TDB [54] and SiRiUS [32] are just two examples) and are used commercially in the
Solaris ZFS filesystem'!. Research on efficient cryptographic methods for authenticating data
stored on servers is an active area [63, 65].

Although these methods permit a user to verify the integrity of data returned by a server, they
do not allow a user to ascertain that the server is able to answer a query correctly without actually
issuing that particular query. In other words, they do not assure the user that all the data is “still
there”. As the amount of data stored by the cloud for a client can be enormous, it is impractical
(and might also be very costly) to retrieve all the data, if one’s purpose is just to make sure that it is
stored correctly. In recent work, Juels and Kaliski [39] and Ateniese et al. [4] introduced protocols
for assuring a client that his data is retrievable with high probability, under the name of Proofs of
Retrievability (PORs) and Proofs of Data Possession (PDP), respectively. They incur only a small,
nearly constant overhead in communication complexity and some computational overhead by the

server. The basic idea in such protocols is that additional information is encoded in the data prior to

”http ://blogs.sun.com/bonwick/entry/zfs_end_to_end_data

56

storing it. To make sure that the server really stores the data, a user submits challenges for a small
sample of data blocks, and verifies server responses using the additional information encoded in
the data. Recently, some improved schemes have been proposed and prototype systems have been

implemented [70, 9, 10].

The above tools allow a single user to verify the integrity and availability of his own data. But
when multiple users access the same data, they cannot guarantee integrity between a writer and
multiple readers. Digital signatures may be used by a client to verify integrity of data created by
others. Using this method, each client needs to sign all his data, as well as to store an authenticated
public key of the others or the root certificate of a public-key infrastructure in trusted memory. This
method, however, does not rule out all attacks by a faulty or malicious storage service. Even if all
data is signed during write operations, the server might omit the latest update when responding to
a reader, and even worse, it might “split its brain,” hiding updates of different clients from each
other. Some solutions use trusted components in the system [21, 78] which allow clients to audit
the server, guaranteeing atomicity even if the server is faulty. In Section 5.4 we show that without
additional trust assumptions, the atomicity of all operations in the sense of linearizability [37]
cannot be guaranteed; in fact, we show that even weaker consistency notions, such as sequential
consistency [43], are not possible either. Though a user may become suspicious when he does not
see any updates from a collaborator, the user can only be certain that the server is not holding back
information by communicating with the collaborator directly; such user-to-user communication is

indeed employed in some systems for this purpose.

If not atomicity, then what consistency can be guaranteed to clients? The first to address this
problem were Mazieres and Shasha [59], who defined a so-called forking consistency condition.
This condition ensures that if certain clients’ perception of the execution becomes different, for
example if the server hides a recent value of a completed write from a reader, then these two clients
will never again see each other’s later operations, or else the server will be exposed as faulty. This
prevents a situation where one user sees part of the updates issued by another user, and the server
can choose which ones. Moreover, fork-consistency prevents Alice from seeing new updates by
Bob and by Carol, while Bob sees only Alice’s updates, where Alice and Bob might think they are
mutually consistent, though they actually see different states. Essentially, with fork consistency,
each client has a linearizable view of a sub-sequence of the execution, and client views can only

become disjoint once they diverge from a common prefix; a simple definition can be found in

57

Section 5.2. The first protocol of this kind, realizing fork-consistent storage, was implemented in

the SUNDR system [48].

To save cost and to improve performance, several weaker consistency conditions have been
proposed. The notion of fork-sequential-consistency, introduced by Oprea and Reiter [64], allows
client views to violate real-time order of the execution. The fork-* consistency condition due to
Li and Mazieres [49] allows the views of clients to include one more operation without detecting
an attack after their views have diverged. This condition was used to provide meaningful service
in a Byzantine-fault-tolerant replicated system, even when more than a third of the replicas are

faulty [49].

Although consistency in the face of failures is crucial, it is no less important that the service
is unaffected in the common case by the precautions taken to defend against a faulty server. In
Section 5.5 we show that for all previously existing forking consistency conditions, and thus in
the protocols that implement them with a single remote server, concurrent operations by different
clients may block each other even if the provider is correct. More formally, these consistency
conditions do not allow for protocols that are wait-free [36] when the storage provider is correct.
In Section 5.7 we introduce a new consistency notion, called weak fork-linearizability, that does

not suffer from this limitation, and yet provides meaningful semantics to clients.

One disadvantage of forking consistency conditions is that they are not as intuitive to under-
stand as atomicity, for example. Aiming to provide simpler guarantees, we introduce the notion of a
Fail-Aware Untrusted Service in Chapter 6. Its basic idea is that each user should know which of his
operations are seen consistently by each of the other users, and in addition, find out whenever the
server violates atomicity. When all goes well, each operation of a user eventually becomes “stable”
with respect to every other correct user, in the sense that they have a common view of the execution
up to this operation. Thus, in all cases, users get either positive notifications indicating operation
stability, or negative notifications when the server violates atomicity. Our Fail-Aware Untrusted
Services rely on the well-established notions of eventual consistency [74] and fail-awareness [29],
and adapt them to this setting. The FAUST protocol [12], presented in Chapter 6, implements this
notion for a storage service, using an underlying weak fork-linearizable storage protocol. Intu-
itively, FAUST indicates stability as soon as additional information is gathered, either through the
storage protocol, or whenever the clients communicate directly. However, all complete operations,

even those not yet known to be stable, preserve causality [38]. Moreover, when the storage server

58

is correct, FAUST guarantees strong safety (linearizability) and liveness (wait-freedom).

Although FAUST is an important step towards providing tools and semantics for secure inter-
action with untrusted cloud storage, several aspects in FAUST limit its usability in practice. The
stability notion in FAUST is not transitive and requires users to explicitly track the other clients in
the system and to assess their relation to the data accessed by the operation. FAUST is therefore
not easily amenable to dynamic changes in the set of clients. Furthermore, global consistency in
FAUST (among all clients) is guaranteed only if no client ever crashes. FAUST does not work
with commodity storage — like other proposals it integrates storage operations with the consistency
mechanism and moreover it does not allow multiple clients to modify the same object, which is
the usual semantics of commodity storage services.

These shortcomings led to the development of Venus [71], a system presented in Chapter 7. In
Venus, stability indications simply specify the last operation of the client that has been verified to
be globally consistent, which is easy to integrate with an application. Venus eliminates the need for
clients to track one another, and enables dynamic client changes. Unlike the previous protocols,
Venus allows all clients to modify the same shared object. Most importantly, the design of Venus is
modular, so that it can be deployed with a commodity storage service. We deployed and evaluated

Venus with the Amazon S3 cloud storage service, demonstrating its usefulness in practice.

4.3 System Model

This section formally defines the system model we use in the following chapters to represent un-
trusted storage remotely accessed by clients.

We consider an asynchronous distributed system consisting of n clients C,...,C),, and a
server S. Every client is connected to S through an asynchronous reliable channel that delivers
messages in first-in/first-out (FIFO) order. Clients do not communicate with each other (we relax
this restriction in later chapters to allow infrequent offline communication among clients). The
clients and the server are collectively called parties. System components are modeled as deter-
ministic I/O Automata [51]. An automaton has a state, which changes according to transitions
that are triggered by actions. A protocol P specifies the behaviors of all parties. An execution of
P is a sequence of alternating states and actions, such that state transitions occur according to the

specification of system components. The occurrence of an action in an execution is called an event.

59

All clients follow the protocol, and any number of clients can fail by crashing. The server
might be faulty and deviate arbitrarily from the protocol. A party that does not fail in an execution

1S correct.

Operations and histories. Our goal is to emulate a shared functionality F, i.e., a shared object,
to the clients. Clients interact with ' via operations provided by F'. As operations take time, they
are represented by two events occurring at the client, an invocation and a response. A history of
an execution o consists of the sequence of invocations and responses of F' occurring in 0. An
operation is complete in a history if it has a matching response. For a sequence of events o,
complete(o) is the maximal sub-sequence of o consisting only of complete operations.

An operation o precedes another operation o' in a sequence of events o, denoted 0 <, 0,
whenever o completes before o is invoked in 0. A sequence of events 7 preserves the real-time
order of a history o if for every two operations o and o’ in 7, if 0 <, 0o’ then o <, o. Two operations
are concurrent if neither one of them precedes the other. A sequence of events is sequential if
it does not contain concurrent operations. For a sequence of events o, the sub-sequence of o
consisting only of events occurring at client C; is denoted by o|¢,. For some operation o, the prefix
of o that ends with the last event of o is denoted by o|°.

An operation o is said to be contained in a sequence of events o, denoted o € o, whenever at
least one event of o is in . Thus, every sequential sequence of events corresponds naturally to
a sequence of operations. Analogously, every sequence of operations corresponds naturally to a
sequential sequence of events.

An execution is well-formed if the sequence of events at each client consists of alternating
invocations and matching responses, starting with an invocation. An execution is fair, informally,
if it does not halt prematurely when there are still steps to be taken or messages to be delivered

(see the standard literature for a formal definition [51]).

Read/write registers. A functionality F'is defined via a sequential specification, which indicates
the behavior of F' in sequential executions.

The functionality considered in this thesis is a storage service composed of registers. Each
register X stores a value z from a domain X and offers read and write operations. Initially, a

register holds a special value | ¢ X. When a client C; invokes a read operation, the register

60

responds with a value z, denoted read;(X) — x; when C; invokes a write operation with value z,
denoted write;(X, x), the response of X is OK. By convention, an operation with subscript i
is executed by C;. The sequential specification requires that each read operation returns the value
written by the most recent preceding write operation, if there is one, and the initial value otherwise.
We assume that all values that are ever written to a register in the system are unique, i.e., no value
is written more than once. This can easily be implemented by including the identity of the writer
and a sequence number together with the stored value.

Specifically, the functionality /' considered in Chapter 6 is composed of n single-writer/multi-
reader (SWMR) registers X1, ..., X,, where every client may read from every register, but only
client C; can write to register X; for ¢ = 1,...,n. The registers are accessed independently of
each other. In other words, the operations provided by F' to C; are write;(X;, z) and read;(X;)
for j = 1,...,n. In Chapter 7 we consider a single multi-writer/multi-reader (MWMR) register,

which all clients can read and write.

Cryptographic primitives. The protocols in this thesis use hash functions and digital signatures
from cryptography. Because the focus of this work is on concurrency and correctness and not on
cryptography, we model both as ideal functionalities implemented by a trusted entity.

A hash function maps a bit string of arbitrary length to a short, unique representation. The
functionality provides only a single operation H; its invocation takes a bit string x as parameter
and returns an integer h with the response. The implementation maintains a list L of all = that have
been queried so far. When the invocation contains x € L, then H responds with the index of z in
L; otherwise, H adds x to L at the end and returns its index. This ideal implementation models
only collision resistance but no other properties of real hash functions. The server may also invoke
H.

The functionality of the digital signature scheme provides two operations, sign and verify. The
invocation of sign takes an index ¢ € {1,...,n} and a string m € {0,1}* as parameters and
returns a signature s € {0, 1}* with the response. The verify operation takes the index i of a client,
a putative signature s, and a string m € {0, 1}* as parameters and returns a Boolean value b €
{FALSE, TRUE} with the response. Its implementation satisfies that verify(i, s, m) — TRUE for
alli € {1,...,n} and m € {0,1}* if and only if C; has executed sign(i,m) — s before, and
verify(i,s,m) — FALSE otherwise. Only C; may invoke sign(i,-) and S cannot invoke sign.

Every party may invoke verify.

61

Chapter 5

Consistency Semantics for Untrusted

Storage

This chapter defines consistency semantics for the untrusted storage model, and studies their prop-
erties. We start by re-stating in Section 5.1 some well-known consistency and liveness properties
used to characterize distributed shared memory. Section 5.2 surveys known “forking” consis-
tency conditions. Even though these conditions were previously defined by others, we consider
the formal statement of these semantics to be a contribution of this work. Section 5.3 introduces
the notion of Byzantine emulation, i.e., the emulation of shared memory using untrusted storage.
Section 5.4 motivates the need for forking semantics showing that traditional semantics cannot
be guaranteed when the server is faulty. Section 5.5 shows a limitation inherent in all previously
known forking consistency conditions, namely that they hamper service availability in the common
case, when the storage provider is correct. This motivates the need to weaken forking conditions
even further. Section 5.6 compares forking conditions with causal consistency, showing that some
variations of forking consistency are too weak, in the sense that they may violate causality. Finally,
in Section 5.7 we introduce a new notion of weak fork-linearizability which on the one hand does
not affect availability when the provider is correct, and on the other hand it is strong enough and
in particular implies causality. This notion underlies our algorithms presented in the following

chapters. Parts of this chapter appeared in [12], [13] and [15].

62

5.1 Traditional Consistency and Liveness Properties

Our definitions rely on the notion of a possible view of a client, defined as follows.

Definition 6 (View). A sequence of events 7 is called a view of a history ¢ at a client C; w.r.t. a
functionality F if o can be extended (by appending zero or more responses) to a history ¢’ such

that:

1. 7 is a sequential permutation of some sub-sequence of complete(o’);
2. 7|¢, = complete(d’)|c,; and

3. 7 satisfies the sequential specification of F'.

Intuitively, a view 7 of ¢ at C; contains at least all those operations that either occur at C; or are
apparent from C;’s interaction with F'. Note there are usually multiple views possible at a client.
If two clients C; and C; do not have a common view of a history o w.r.t. a functionality I, we say
that their views of o are inconsistent with each other, w.r.t. F'.

One of the most important consistency conditions for concurrent access is sequential consis-

tency [43].

Definition 7 (Sequential consistency [43]). A history o is sequentially consistent w.r.t. a function-

ality F'if there exists a sequence of events 7 that is a view of o w.r.t. F’ at all clients.

Intuitively, sequential consistency requires that every operation takes effect at some point and
occurs somewhere in the permutation 7. This guarantees that every write operation is eventually
seen by all clients. In other words, if an operation writes v to a register X, there cannot be an
infinite number of subsequent read operations from register X that return a value written to X
prior to v.

A stronger consistency condition is linearizability [37]. Whereas sequential consistency pre-
serves the real-time order only for operations by the same client, linearizability guarantees that

real-time order is preserved for all operations.

Definition 8 (Linearizability [37]). A history o is linearizable w.r.t. a functionality F' if there

exists a sequence of events 7 such that:

1. 7 is a view of ¢ at all clients w.r.t. F'; and

63

2. m preserves the real-time order of o.

The notion of causal consistency for shared memory [38] weakens linearizability and allows
clients to observe different orders of those write operations that do not influence each other. It
is based on the notion of potential causality [42]. Recall that I’ consists of registers. For two
operations o and ¢’ in a history o, we say that o causally precedes o', denoted 0 —, o, whenever

one of the following conditions holds:

1. Operations o and o’ are both invoked by the same client and 0 <, 0';

2. Operation o is a write operation of a value x to some register X and o’ is a read operation

from X returning x; or

3. There exists an operation o” € ¢ such that o —, 0" and 0" —, 0'.

In the literature, there are several variants of causal consistency. Here, we formalize the intu-

itive definition of causal consistency by Hutto and Ahamad [38].

Definition 9 (Causal consistency). A history o is causally consistent w.r.t. a functionality F’ if for

each client C; there exists a sequence of events 7; such that:

1. 7; is aview of o at C; w.r.t. F';
2. For each operation o € m;, all write operations that causally precede o in ¢ are also in 7;; and

3. For all operations o, 0’ € 7; such that o —, ¢, it holds that o <, o'.

Finally, a shared functionality needs to ensure liveness. A desirable requirement is that clients
should be able to make progress independently of the actions or failures of other clients. A notion

that formally captures this idea is wait-freedom [36].

Definition 10 (Wait-freedom). A history is wait-free if every operation by a correct client is com-

plete.

By slight abuse of terminology, we say that an execution satisfies a notion such as linearizabil-

ity, causal consistency, wait-freedom, etc., if its history satisfies the respective condition.

64

5.2 Forking Consistency Conditions

The notion of fork-linearizability [59] (originally called fork consistency) requires that when an
operation is observed by multiple clients, the history of events occurring before the operation is
the same. For instance, when a client reads a value written by another client, the reader is assured

to be consistent with the writer up to the write operation.

Definition 11 (Fork-linearizability). A history o is fork-linearizable w.r.t. a functionality F' if for

each client C; there exists a sequence of events 7; such that:

1. m; is a view of ¢ at C; w.r.t. F';
2. m; preserves the real-time order of o;

3. (No-join) For every client C; and every operation o € m; N 7, it holds that 7;|* = ;|°.

Oprea and Reiter [64] define fork-sequential-consistency by replacing the real-time order con-

dition of fork-linearizability with:

2. (local-real-time-order) For every client C}, the sequence m;|¢; preserves the real-time order

of o.

Because preservation of real-time order is required only for a subset of every view, fork-sequential-
consistency is weaker than fork-linearizability. Note that the local-real-time-order condition is
weaker than the third condition of causal consistency, since all operations of each client are causally
ordered. Oprea and Reiter [64] do not give an emulation protocol for this condition, and indeed,
we show (in Section 5.5) that no such protocol is wait-free.

Li and Mazieres [49] relax the notion for fork-linearizability differently, and define fork-*-
linearizability (under the name of fork-* consistency) by replacing the no-join condition of fork-

linearizability with:

4. (At-most-one-join) For every client C'; and every two operations o, 0o’ € m; N 7; by the same

client such that o precedes ¢/, it holds that 7;|° = 7;|°.

The at-most-one-join condition of fork-*-linearizability guarantees to a client C; that its view
is identical to the view of any other client C; up to the penultimate operation of C; that is also
in the view of C;. Hence, if a client reads values written by rwo operations of another client, the

reader is assured to be consistent with the writer up to the first of these writes.

65

Oddly, fork-*-linearizability still requires that the real-time order of all operations in the view
is preserved, including the last operation of every other client. Furthermore, fork-*-linearizability
does not preserve linearizability when the server is correct and permits wait-free client operations

at the same time, as we show in Section 5.5.

5.3 Byzantine Emulation

We are now ready to define the requirements on our service. When the server is correct, it should
guarantee the standard notion of linearizability. Otherwise, one of the three forking consistency
conditions mentioned above must hold. In the following, let I' be one of fork, fork-*, or weak fork

(defined later in this chapter).

Definition 12 (I'-linearizable Byzantine emulation). A protocol P emulates a functionality F' on

a Byzantine server S with I'-linearizability whenever the following conditions hold:

1. If S is correct, the history of every fair and well-formed execution of P is linearizable w.r.t.
F; and

2. The history of every fair and well-formed execution of P is I'-linearizable w.r.t. F'.

Similarly, we define a fork-sequentially-consistent Byzantine emulation. It should guarantee

sequential consistency when the server is correct, and fork sequential consistency otherwise.

Definition 13 (fork-sequentially-consistent Byzantine emulation). A protocol P emulates a func-
tionality F' on a Byzantine server S with fork-sequential-consistency whenever the following con-

ditions hold:

1. If S is correct, the history of every fair and well-formed execution of P is sequentially
consistent w.r.t. F'; and

2. The history of every fair and well-formed execution of P is fork-sequentially-consistent w.r.t.
F.

Furthermore, we say that such an emulation is wait-free when every fair and well-formed exe-

cution of the protocol with a correct server is wait-free.

66

5.4 Impossibility of Linearizability and Sequential Consistency

with an Untrusted Server

This section explains why neither linearizability nor sequential consistency can be guaranteed to
clients when F' is implemented on a Byzantine server (at least not for functionalities F' where
some operations do not commute), which motivates the need for considering weaker (e.g., forking)
semantics. To see why linearizability is impossible suppose that C; was the last client to execute an
operation on F'; no matter what protocol the clients use to interact with the server, a faulty server
might roll back its internal memory to the point in time before executing the operation on behalf
of C;, and pretend to a client C} that C;’s operation did not occur. As long as C; and C; do not
communicate with each other, neither party can detect this violation and thus linearizability cannot
be satisfied.

The example above does not rule out that S may emulate a sequentially consistent register. Se-
quential consistency does not have to preserve the real-time order of operations, thus not showing
C;’s last update to C; does not violate sequential consistency. It would be acceptable for a correct
server to return old register values, as long as it preserves the relative order in which it shows them
to every client. However, we show in the following theorem that a faulty server may also violate

sequential consistency when it emulates more than one register:

Theorem 31. There is no protocol that emulates n > 1 SWMR registers on a Byzantine server with

sequential consistency.

Proof. For any protocol P which emulates two SWMR registers X; and X5, we demonstrate an
execution A involving a faulty server S which violates sequential consistency.

The execution consists of four operations by the clients C; and (5. Client C executes
write1(X1,v) — OK and read; (X3) — L. The server interacts with C as if it was the only client
executing any operation. Concurrently, Cy executes writes(Xs,v) — OK and read,(X;) — L and
S also pretends to (5 that it is the only client executing any operation. Such “split-brain” behavior
is obviously possible when S is faulty: it can act as if the write operations to X; and X, have
completed, as far as the writing client is concerned, but still return the old values of X; and X5 in
the read operations. Since the only interaction of the clients is with .S, neither client can distinguish

execution A\ from a sequentially consistent execution where it executes alone.

67

Notice that A is not sequentially consistent: There is no permutation of the operations in A in
which the sequential specification of both X; and X is preserved and, at the same time, the order
of operations occurring at each client is the same as their real-time order in \. Specifically, in any
possible permutation of A, the operation read; (X5) — L cannot be positioned after writes(X5, v),
since the read would have to return v # 1 according to the sequential specification of X5. How-
ever, read; (X3) — L cannot occur before write;(X5, v) as we now argue. Since the local order of
operations has to be the same as in \ in this case, write; (X1, u) must occur before read, (X,) — L
and hence also before writes(Xo,v). But since the latter operation precedes reads(X;) — L
in the local order seen by Cs5, we conclude that write; (X1, u) precedes reads(X;) — L, which

contradicts the sequential specification of X;. Thus, A is not sequentially consistent. [

Note that execution A constructed in the proof above is fork-linearizable but not sequentially
consistent. On the other hand, execution 7 exhibited in the proof of Theorem 33 below and shown
in Figure 5.3 is sequentially consistent but not fork-linearizable. Hence, we obtain the following

result.

Corollary 32. Fork-linearizability is neither stronger nor weaker than sequential consistency.

5.5 Limited Service Availability with Forking Semantics

We have shown that it is impossible to guarantee traditional strong semantics such as linearizability
and sequential consistency with an untrusted server. In contrast, emulations of shared memory
with forking semantics are possible. Such semantics provide well-defined guarantees to clients
even when the server is faulty. However, we show in this section that many of these semantics
have an inherent limitation — they hamper service availability in the common case, 1.e., when the
server is correct.

We start by proving that fork-*-linearizable Byzantine emulations cannot be wait-free in all
executions where the server is correct. We then continue to prove that fork sequential consistency
suffers from the same limitation. Both results separately imply the corresponding impossibility for

fork-linearizable Byzantine emulations, which appeared [15].

Theorem 33. There is no protocol that emulates the functionality of n > 1 SWMR registers on a

Byzantine server S with fork-*-linearizability that is wait-free in every execution with a correct S.

68

Proof. Towards a contradiction, assume that there exists such an emulation protocol P. Then in
any fair and well-formed execution of P with a correct server, every operation of a correct client
completes. We next construct three executions of P, called «, /3, and v, with two clients, C; and C5,
accessing a single SWMR register X;. All executions considered here are fair and well-formed, as
can easily be verified. The clients are always correct.

We note that protocol P describes the asynchronous interaction of the clients with S. This

interaction is depicted in the figures only when necessary.

0O
=

]
.
\j

J/
/
/

@)
N
\

Figure 5.1: Execution a:: S'is correct.

Execution o. 'We construct an execution «, shown in Figure 5.1, in which S is correct. Client
(' executes a write operation write; (X1, u) and Cy executes multiple read operations from X,
denoted i fori = 1,. .., z, as explained next.

The execution begins with C5, invoking the first read operation r3. Since S and C are correct
and we assume that P is wait-free in all executions when the server is correct, r% completes. Since
(' did not yet invoke any operations, it must return the initial value L.

Next, C invokes w; = write;(X1,u). This is the only operation invoked by C} in . Every
time a message is sent from C' to S during wy, if a non-_L value was not yet read by C5 from X,
then the following things happen in order: (a) the message from (' is delayed by the asynchronous
network; (b) Cy executes operation 74 reading from X;, which completes by our wait-freedom
assumption; (c) the message from C; to S is delivered. The operation w; eventually completes
(and returns OK) by our wait-freedom assumption. After that point in time, C'y invokes one more
read operation from X if and only if all its previous read operations returned L. According to the

first property of fork-*-linearizable Byzantine emulations, since S is correct, this last read must

69

return v # | because it was invoked after w; completed. We denote the first read in « that returns
a non-_L value by 72 (note that z > 2 since r3 necessarily returns | as explained above). By
construction, 75 is the last operation of C5 in a. We note that if messages are sent from C to S
after the completion of 73, they are not delayed.

We denote by t, the invocation point of 5" in . This point is marked by a vertical dashed

line in Figures 5.1-5.3.

Cy : S e
c, Pl e .

Figure 5.2: Execution 3: S is correct.

Execution 5. We next define execution (3, in which S is also correct. The execution is shown in
Figure 5.2. It is identical to « until the end of 752, i.e., until just before point ¢, (as defined in o
and marked by the dashed vertical line). In other words, execution (3 results from « by removing
the last two read operations. If z = 2, this means that there are no reads in /3, and otherwise r§_2 18
the last operation of Cy in 3. Operation w; is invoked in 3 like in «; if 3 does not include rJ, then
w; begins at the start of 3, and otherwise, it begins after the completion of 7. Since the server and

(' are correct, by our wait-freedom assumption w; completes.

Figure 5.3: Execution ~: S is faulty. It is indistinguishable from « to (5 and indistinguishable
from [to (.

Execution ~. Our final execution is 7, shown in Figure 5.3, in which S is faulty. Execution ~

begins just like the common prefix of o and [until immediately before point t,, and w; begins in

70

the same way as it does in 3. In -, the server simulates 3 to C; by hiding all operations of Cs,
starting with 2. Since C cannot distinguish these two executions, w; completes in 7 just like in
3. After w, completes, the server simulates o for the two remaining reads 75 ! and 3 by C5. We
next explain how this is done. Notice that in «, the server receives at most one message from C'
between ¢, and the completion of 75, and this message is sent before time ¢y, by our construction
of . In y, which is identical to « until just before ¢, the same message (if any) is sent by C'; and
therefore the server has all needed information in order to simulate @ for C'5 until the end of 73.
Hence, the output of 75" and rZ is the same as in « since it depends only on the state of C, before

these operations and on the messages received from the server during their execution.

Thus, ~ is indistinguishable from « to C5 and indistinguishable from 3 to C';. However, we
next show that v is not fork-*-linearizable. Observe the sequential permutation m, required by
the definition of fork-*-linearizability (i.e., the view of (). As the sequential specification of X
must be preserved in 7o, and since 75 returns u, we conclude that w; must appear in 7. Since
the real-time order must be preserved as well, the write appears before r; ' in the view. However,
this violates the sequential specification of X, since r3 ' returns L and not the most recently
written value © # 1. This contradicts the definition of P as a protocol that guarantees fork-*-

linearizability in all executions. U

The next theorem shows that fork-sequential-consistency has the same inherent limitation as

fork-*-linearizability and fork-linearizability.

Theorem 34. There is no wait-free fork-sequentially-consistent Byzantine emulation of n > 2

SWMR registers on a Byzantine server S.

Proof. Towards a contradiction assume that there exists such a protocol P. Then in any admissi-
ble execution of P with a correct server, every operation of a correct client completes. We next
construct three executions «, 3, and v of P, shown in Figures 5.4-5.6. All three executions are
admissible, since clients issue operations sequentially, and every message sent between two cor-
rect parties is eventually delivered. There are two clients C and C, which are always correct, and
access two SWMR registers X; and X5. Protocol P describes the asynchronous interaction of the

clients with S’ this interaction is depicted in the figures only when necessary.

71

Execution o. In execution «, the server is correct. The execution is shown in Figure 5.4 and
begins with four operations by C: first (5 executes a write operation with value v; to register Xo,
denoted w;, then an operation reading register X, denoted r%, then an operation writing v, to X5,
denoted w3, and finally again a read operation of X, denoted 3. Since S and Cs are correct and

P is wait-free with a correct server, all operations of C5 eventually complete.

write (X
0 \ \ \ g
S >
rt ry r,3 ' oot read(X))-u
C2
Wzl W22 W23 W24 WZZ-l WZZ
¢

0

Figure 5.4: Execution o, where S is correct.

Execution « continues as follows. (' starts to execute a single write operation with value u to
X, denoted w,. Every time a message is sent from (', to .S during this operation, and as long as
no read operation by C'y from X returns a value different from _L, the following steps are repeated

in order, forv = 3,4, ...:

(a) The message from (] is delayed by the asynchronous network;
(b) (5 executes an operation writing v; to X, denoted wg;

(c) (5 executes an operation reading X1, denoted r%; and

(d) the delayed message from (' is delivered to S.

Note that w?’ and i complete by the assumptions that P is wait-free and that S is correct. For the
same reason, operation w; eventually completes. After w; completes, and while C; does not read
any non-_L value from X, C, continues to execute alternating operations wj and r%, writing v; to
X5 and reading X, respectively. This continues until some read returns a non-_L value. Because
S is correct, eventually some read of X is guaranteed to return u # 1 by sequential consistency
of the execution. We denote the first such read by 5. This is the last operation of C5 in . If

messages are sent from (] to S after the completion of r3, they are not delayed.

72

Note that the prefix of o up to the completion of 73 is indistinguishable to C and S from an
execution in which no client writes to X, and therefore r%, T%, and rg’ return the initial value L.
Hence, z > 4.

We denote the point of invocation of w; ! in a by t,. It is marked by a dotted line. Executions

[and ~ constructed below are identical to « before ¢, but differ from « starting at .

C . write (X, u) - . read,(X,)-v, ,
1 I e |) 1 >
3 D).
C2 - |r21| - |r22| - |r2| - rlzzlz-)
1 2 g :
W2 W2 W23 W222 .
t,.

Figure 5.5: Execution 3, where S is correct.

Execution 3. We next define execution (3, shown in Figure 5.5, in which the server is also correct.
Execution £3 is identical to o up to the end of 75 (before t;), but then C; halts. In other words,
the last two write-read pairs of Cs in «v are missing in 5. Operation w is invoked in 3 like in o and
begins after the completion of 73 (notice that 73 is in 3 since z > 4). Because the protocol is wait-
free with the correct server, operation w; completes. Afterwards, C'; invokes a read of X5, denoted
by 71, which also eventually completes. Since the server is correct, 3 is sequentially consistent.
Observe a sequential permutation 7 guaranteed by sequential consistency. Since r; 2 returns L,
w, appears in 7 after 2~ 2. Since 7 preserves the order of C)’s operations in 3, r; appears after w,

in 7, and since the order of C5’s operations is also preserved, this means that 7| appears after wj 2

in 7, and therefore returns v 2.

Execution . The third execution «y is shown in Figure 5.6; here, the server is faulty. Execution ~
proceeds just like the common prefix of o and 3 before ¢y, and client C; invokes w; in the same
way as in « and in 3. From ¢, onward, the server simulates (3 to C. This is easy because S simply
hides from C} all operations of (', starting with wg’l. The server also simulates o to C. We
next explain how this is done. Notice that in «, the server receives at most one message from C'

between t, and the completion of 73, and C'; sends this message before ¢, by construction of . If

73

such a message exists in «, it also exists in v because + is identical to « before ty. Therefore, the

server has all of the information needed to simulate « to C and r3 returns u.

write, (X,,u) - read,(X,)-v,,
Cq : -} { >
1 2 3 -2 . -1 z —
C2 =t |r2| | ||r2| \ ”rzl o rlzzl | Irlzzl | Irel ad,’(X,) Iu \
2 -
Wzl w, W23 sz 2 lez-l sz
t, -

Figure 5.6: Execution 7y, where .S is faulty and simulates « to C'5 and (3 to (.

Thus, + is indistinguishable from « to C5 and indistinguishable from 3 to C';. However, we next
show that + is not fork-sequentially-consistent. Consider the sequential permutation 7, required
by the definition of fork sequential consistency, i.e., the view of C5. As the real-time order of C5’s
operations and the sequential specification of the registers must be preserved in o, and since 73,
v 7“5_1 return _L but 73 returns u, we conclude that w; must appear in 7, and is located after 7"5_1
but before 3. Because w; is one of C'y’s operations, it also appears in 7;. By the no-join property,
the sequence of operations preceding w; in 7wy must be the same as the sequence preceding w;
in . In particular, w3~ and w3 ? appear in 7; before w;, and w3 2 precedes wi '. Since the
real-time order of C}’s operations must be preserved in 7, operation w; and, hence, also w3 *,
appears in 7, before ;. But since wg’l writes v,_; to X5 and 7 reads v,_, from X5, this violates
the sequential specification of X (v,_5 is written only by wj). This contradicts the assumption

that P guarantees fork sequential consistency in all executions. [

5.6 Comparing Forking and Causal Consistency Conditions

The purpose of this section is to explore the relation between causal consistency and the forking

consistency notions. First, we show that fork-linearizability implies causal consistency.

Theorem 35. Every fork-linearizable history w.r.t. a functionality F' composed of registers is also

causally consistent w.r.t. F.

Proof. Consider a fork-linearizable execution 0. We will show that the views of the clients satisfy-

ing the definition of fork-linearizability also preserve the requirement of causal consistency, which

74

is that for each operation in every client’s view, all write operations that causally precede it appear
in the view before the particular operation. More formally, let 7; be some view of ¢ at a client C;
according to fork-linearizability and let o be an operation in 7;. We need to prove that any write
operation o’ that causally precedes o appears in 7; before 0. According to the definition of causal
order, this can be proved by repeatedly applying the following two arguments.

First, assume that both o and o’ are operations by the same client C; and consider a view 7; at
C}. Since 7; includes all operations by C}, also o and o’ appear in 7;. Since o' precedes o and since
7; preserves the real-time order of o according to fork-linearizability, operation o’ also precedes o
in 7;. By the no-join condition, we have that 7;|° = 7;|° and, therefore, o’ also appears before o in
.

Second, assume that o' is of the form write; (X, v) and o is of the form read,(X) — v. In this
case, operation ¢’ is contained in 7; and precedes o because 7; is a view of ¢ at C;; in particular, the

third property of a view guarantees that 7; satisfies the sequential specification of a register. [

The next two theorems establish that causal-consistency and fork-*-linearizability are incom-
parable to each other, in the sense that neither notion implies the other one. We consider a storage
service functionality with multiple SWMR registers.

The next theorem shows that a fork-*-linearizable history may not be causally consistent with
respect to functionalities with two registers.

w, (X,,u)

C1— :

\J

\J

Cs

Figure 5.7: A fork-*-linearizable history that is not causally consistent.

Theorem 36. There exist histories that are fork-*-linearizable but not causally consistent w.r.t. a

functionality containing two or more registers.

Proof. Consider the following execution, shown in Figure 5.7: Client C; executes write; (X1, u),

then client C, executes reads(X1) — u, writes(X2, v), and finally, client C; executes reads(Xs) —

75

v, reads(X;) — L. Define the client views according to the definition of fork-*-linearizability as

T - Writ€1<X1,u).
o o write1 (X1, u), reads(Xy) — u, writes(Xs,v).

7y o writea(Xo,v), reads(Xs) — v, reads(X;) — L.

It is easy to see that 71, 7o, and 73 satisfy the conditions of fork-*-linearizability. In particular, since
no two operations of any client appear in two views, the at-most-one-joint condition holds trivially.
But clearly, « is not causally consistent: write; (X1, u) causally precedes writes(X, v) which itself
causally precedes reads(X;) — L; thus, returning L violates the sequential specification of a

read/write register. [

Conversely, we now show that a causally consistent history may not be fork-*-linearizable with

respect to even one register.

w,(X,u) w(X,v) w(X,w)
C1 H N : >~

C2

Figure 5.8: A causally consistent execution that is not fork-*-linearizable.

Theorem 37. There exist histories that are causally consistent but not fork-*-linearizable with

respect to a functionality with one register.

Proof. Consider the following execution, shown in Figure 5.8: Client C; executes three write
operations, write; (X1, u), write1(X1,v), and write; (X, w). After the last one completes, client
C executes three read operations, reads(X;) — wu, ready(X1) — v, and reads(X1) — w. We
claim that this execution is causally consistent. Intuitively, the causally dependent write operations
are seen in the same order by both clients. More formally, the view of C'; according to the definition
of causal consistency contains only operations of (', and the view of (5 contains all operations,
with the write and read operations interleaved so that they satisfy the sequential specification; this
is consistent with the causal order of the execution.

However, the execution is not fork-*-linearizable, as we explain next. The view 7y of C5, as

76

required by the definition of fork-*-linearizability, must be the sequence:
write1 (X1, u), reads(Xy) — u, writey(X1,v), reads(X1) — v, write; (X1, w), ready(X;) — w.

But the operations reads(X;) — u and write;(X;,v) violate the real-time order requirement of

fork-*-linearizability. [

5.7 Weak Fork-Linearizability

We introduce a new consistency notion, called weak fork-linearizability, which does not suffer
from the availability problem inherent in all previously defined forking semantics, namely it per-
mits wait-free protocols, and on the other hand it is not “too weak”, and in fact, unlike fork-
*-linearizability, weak fork-linearizability implies causal consistency. Our new notion of weak
fork-linearizability is used in Chapters 6 and 7 as a building-block for providing higher-level and
more intuitive semantics.
It is based on the notion of weak real-time order that removes the anomaly in fork-*-linearizability

and allows the last operation of every client to violate real-time order. Let 7 be a sequence of events
and let lastops() be a function of 7 returning the set containing the last operation from every client

in 7 (if it exists), that is,

lastops(T) = U {o € 7|c, | there is no operation o’ € 7|c, such that o precedes o in 7 }.
i=1,...,n
We say that 7 preserves the weak real-time order of a sequence of operations ¢ whenever 7
excluding all events belonging to operations in lastops(m) preserves the real-time order of 0. With

these notions, we are now ready to state weak fork-linearizability.

Definition 14 (Weak fork-linearizability). A history o is weakly fork-linearizable w.r.t. a func-

tionality £ if for each client C; there exists a sequence of events 7; such that:

1. m; is aview of o at C; w.r.t. F';
2. m; preserves the weak real-time order of o;
3. For every operation o € 7; and every write operation o’ € ¢ such that o’ —, o, it holds that

o' € m; and that o’ <., o; and

77

4. (At-most-one-join) For every client C; and every two operations o, o’ € m; N 7; by the same

client such that o precedes ¢/, it holds that 7;|° = ;|°.

Compared to fork-linearizability, weak fork-linearizability only preserves the weak real-time
order in the second condition. The third condition in Definition 14 explicitly requires causal con-
sistency; this is implied by fork-linearizability, as shown in Section 5.6. The fourth condition
allows again an inconsistency for the last operation of every client in a view, through the at-most-
one-join property from fork-*-linearizability. Hence, every fork-linearizable history is also weakly

fork-linearizable.

(@)
=
\J

\J

Figure 5.9: A weak fork-linearizable history that is not fork-linearizable.

Consider the following history, shown in Figure 5.9: Initially, X; contains L. Client C ex-
ecutes write; (X1, u), then client Cy executes reads(X;) — L and read;(X;) — wu. During the
execution of the first read operation of (5, the server pretends that the write operation of C'; did

not occur. This history is weak fork-linearizable. The sequences:

m o writer(Xy, u)

To o reado(X1) — L, writey (X1, u), ready(X,) — u

are a view of the history at C'; and Cs, respectively. They preserve the weak real-time order of
the history because the write operation in 7, is exempt from the requirement. However, there is
no way to construct a view of the execution at C' that preserves the real-time order of the history,
as required by fork-linearizability. Intuitively, every protocol that guarantees fork-linearizability
prevents this example because the server is supposed to reply to C in a read operation with evi-
dence for the completion of a concurrent or preceding write operation to the same register. But this
implies that a reader should wait for a concurrent write operation to finish.

Weak fork-linearizability and fork-*-linearizability are not comparable in the sense that neither
notion implies the other one. This is illustrated in Section 5.5 and follows, intuitively, because

the real-time order condition of weak fork-linearizability is less restrictive than the corresponding

78

condition of fork-*-linearizability. On the other hand, however, weak fork-linearizability requires

causal consistency, whereas fork-*-linearizability does not.

79

Chapter 6

FAUST: Fail-Aware Untrusted Storage

In diesem Sinne kannst du’s wagen.
Verbinde dich; du sollst, in diesen Tagen,
Mit Freuden meine Kiinste sehn,

Ich gebe dir was noch kein Mensch gesehn.!

— Mephistopheles in Faust I, by J. W. Goethe

In this chapter we introduce the abstraction of a fail-aware untrusted service, with meaningful
semantics even when the storage provider is faulty. In the common case, when the provider is
correct, such a service guarantees consistency (linearizability) and liveness (wait-freedom) of all
operations. In addition, the service always provides accurate and complete consistency and failure
detection.

We illustrate our new abstraction by presenting a Fail-Aware Untrusted STorage service (FAUST).
Existing storage protocols in this model guarantee so-called forking semantics. We observe, how-
ever, that none of the previously suggested protocols suffice for implementing fail-aware untrusted
storage with the desired liveness and consistency properties (at least wait-freedom and linearizabil-
ity when the server is correct). We present a new storage protocol, which does not suffer from this
limitation, and implements a new consistency notion, called weak fork-linearizability. We show
how to extend this protocol to provide eventual consistency and failure awareness in FAUST. A
preliminary version of this work was published in 2009 IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) [12].

'In this mood you can dare to go my ways. / Commit yourself; you shall in these next days / Behold my arts and
with great pleasure too. / What no man yet has seen, I'll give to you.

80

6.1 Introduction

In this chapter, we tackle the challenge of providing meaningful service semantics with an un-
trusted (possibly Byzantine) service provider and define a class of fail-aware untrusted services.
We also present FAUST, a Fail-Aware Untrusted STorage service, which demonstrates our new
notion for online storage. We do this by reinterpreting in our model, with an untrusted provider,

two established notions: eventual consistency and fail-awareness.

Eventual consistency [74] allows an operation to complete before it is consistent in the sense
of linearizability, and later notifies the client when linearizability is established and the operation
becomes stable. Upon completion, only a weaker notion holds, which should include at least causal
consistency [38], a basic condition that has proven to be important in various applications [6, 76].
Whereas the client invokes operations synchronously, stability notifications occur asynchronously;

the client can invoke more operations while waiting for a notification on a previous operation.

Fail-awareness [29] additionally introduces a notification to the clients in case the service
cannot provide its specified semantics. This gives the clients a chance to take appropriate recovery
actions. Fail-awareness has previously been used with respect to timing failures; here we extend

this concept to alert clients of Byzantine server faults whenever the execution is not consistent.

Our new abstraction of a fail-aware untrusted service, introduced in Section 6.2, models a data
storage functionality. It requires the service to be linearizable and wait-free when the provider
is correct, and to be always causally consistent, even when the provider is faulty. Furthermore,
the service provides accurate consistency information in the sense that every stable operation is
guaranteed to be consistent at all clients and that when the provider is accused of being faulty,
it has actually violated its specification. Furthermore, the stability and failure notifications are
complete in the sense that every operation eventually either becomes stable or the service alerts the
clients that the provider has failed. For expressing the stability of operations, the service assigns a

timestamp to every operation.

The main building block we use to implement our fail-aware untrusted storage service is an
untrusted storage protocol. Such protocols guarantee linearizability when the server is correct, and
weaker, so-called forking consistency semantics when the server is faulty [59, 48, 15]. Forking
semantics ensures that if certain clients’ perception of the execution is not consistent, and the

server causes their views to diverge by mounting a forking attack, they eventually cease to see

81

each other’s updates or expose the server as faulty. The first protocol of this kind, realizing fork-
linearizable storage, was implemented by SUNDR [59, 48].

Although we are the first to define a fail-aware service, the existing untrusted storage proto-
cols come close to supporting fail-awareness, and it has been implied that they can be extended to
provide such a storage service [48, 49]. However, none of the existing forking consistency seman-
tics allow for wait-free implementations; in previous protocols [48, 15] concurrent operations by
different clients may block each other, even if the provider is correct. In fact, as we have shown
in Section 5.5, this is not merely a shortcoming of a specific implementation, but rather inherent
in the semantics. Specifically, no fork-linearizable storage protocol can be wait-free in all execu-
tions where the server is correct. Moreover, this limitation is inherent also in the other previously
defined forking semantics, namely fork-*-linearizability (when adapted to our model with only
one server) and fork-sequential-consistency. Fork-*-linearizability also permits a faulty server to
violate causal consistency, as we show in Section 5.6. Thus, a new definition of the untrusted stor-
age building block was needed, which will be strong enough to be useful for building fail-aware
untrusted storage, and yet weak enough to allow for wait-free implementations.

In Section 5.7, we defined a new consistency notion, called weak fork-linearizability, which
circumvents the above impossibility and has all necessary features for building a fail-aware un-
trusted storage service. We present a weak fork-linearizable storage protocol in Section 6.3 and
show that it never causes clients to block, even if some clients crash. The protocol is efficient,
requiring a single round of message exchange between a client and the server for every operation,
and a communication overhead of O(n) bits per request, where n is the number of clients.

Starting from the weak fork-linearizable storage protocol, we introduce our fail-aware un-
trusted storage service (FAUST) in Section 6.4. FAUST adds mechanisms for consistency and
failure detection, issues eventual stability notifications whenever the views of correct clients are
consistent with each other, and detects all violations of consistency caused by a faulty server.

In addition to the client-server communication channels, the FAUST protocol assumes a low-
bandwidth communication channel among every pair of clients, which is reliable and FIFO-ordered.
We call this an offline communication method because it stands for a method that exchanges mes-
sages reliably even if the clients are not simultaneously connected. The system is illustrated in

Figure 6.1.

Although this chapter focuses on fail-aware untrusted services that provide a data storage func-

82

Untrusted
Server

Client-Server
Channels

Client-to-Client
Communication
(offline)

Figure 6.1: System architecture. Client-to-client communication may use offline message ex-
change.

tionality, we believe that the notion can be generalized to a variety of additional functionalities.

6.2 Fail-Aware Untrusted Services

Consider a shared functionality F' that allows clients to invoke operations and returns a response
for each invocation. Our goal is to implement F' with the help of server S, which may be faulty.

We define a fail-aware untrusted service OF from I as follows. When S is correct, then it
should emulate F' and ensure linearizability and wait-freedom. When S is faulty, then the ser-
vice should always ensure causal consistency and eventually provide either consistency or failure
notifications. For defining these properties, we extend £ in two ways.

First, we include with the response of every operation of F' an additional parameter ¢, called
the timestamp of the operation. We say that an operation of O returns a timestamp t when
the operation completes and its response contains timestamp ¢. The timestamps returned by the
operations of a client increase monotonically. Timestamps are used as local operation identifiers, so
that additional information can be provided to the application by the service regarding a particular
operation, after that operation has already completed (using the stable notifications as defined
below).

Second, we add two new output actions at client C;, called stable; and fail;, which occur asyn-
chronously. (Note that the subscript ¢ denotes an action at client C;.) The action stable; includes

a vector of timestamps W as a parameter and informs C; about the stability of its operations with

83

respect to the other clients.

Definition 15 (Operation stability). Let o be a complete operation of C; that returns a timestamp ¢.
We say that o is stable w.r.t. a client C;, for j = 1,...,n, after some event stable; (W) has occurred
at C; with Wj] > t. An operation o of C; is stable w.r.t. a set of clients C, where C includes C;,
when o is stable w.r.t. all C; € C. Operations that are stable w.r.t. all clients are simply called

stable.

Informally, stable; defines a stability cut among the operations of C; with respect to the other
clients, in the sense that if an operation o of client C; is stable w.r.t. C}, then C; and C; are
guaranteed to have the same view of the execution up to o. If o is stable, then the prefix of the
execution up to o is linearizable. The service should guarantee that every operation eventually
becomes stable, but this may only be possible if S is correct. Otherwise, the service should notify
the users about the failure.

Failure detection should be accurate in the sense that it should never output false suspicions.
When the action fail; occurs, it indicates that the server is demonstrably faulty, has violated its
specification, and has caused inconsistent views among the clients. According to the stability
guarantees, the client application does not have to worry about stable operations, but might invoke
a recovery procedure for other operations.

When considering an execution o of OF', we sometimes focus only on the actions correspond-
ing to F', without the added timestamps, and without the stable and fail actions. We refer to this
as the restriction of o to F and denote it by o|r (similar notation is also used for restricting a

sequence of events to those occurring at a particular client).

Definition 16 (Fail-aware untrusted service). A shared functionality O is a fail-aware untrusted
service with functionality I, if OF implements the invocations and responses of F' and extends it
with timestamps in responses and with stable and fail output actions, and where the history o of

every fair execution such that o|p is well-formed satisfies the following conditions:

1. (Linearizability with correct server) If S is correct, then | is linearizable w.r.t. F’;

2. (Wait-freedom with correct server) If S is correct, then o| ¢ is wait-free;

3. (Causality) o|F is causally consistent w.r.t. F';

4. (Integrity) When an operation o of C; returns a timestamp ¢, then ¢ is bigger than any time-

stamp returned by an operation of C;; that precedes o;

84

5. (Failure-detection accuracy) If fail; occurs, then S is faulty;

6. (Stability-detection accuracy) If o is an operation of C; that is stable w.r.t. some set of
clients C then there exists a sequence of events 7 that includes o and a prefix 7 of o|r such
that 7 is a view of 7 at all clients in C w.r.t. F'. If C includes all clients, then 7 is linearizable

w.r.t. F;

7. (Detection completeness) For every two correct clients C; and C; and for every timestamp
t returned by an operation of C};, eventually either fail occurs at all correct clients, or sta-

ble;(W) occurs at C; with W[j] > t.

We now illustrate how a fail-aware service can be used by clients who collaborate from across
the world by editing a file. Suppose that the server S is correct and three correct clients access
it: Alice and Bob from Europe, and Carlos from America. Since S is correct, linearizability is
preserved. However, the clients do not know this, and rely on stable notifications for detecting
consistency. Suppose that it is daytime in Europe, Alice and Bob use the service, and they see the
effects of each other’s updates. However, they do not observe any operations of Carlos because he
is asleep.

Suppose that Alice completes an operation that returns timestamp 10, and subsequently re-
ceives a notification stable;;..([10, 8, 3]), indicating that she is consistent with Bob up to her oper-
ation with timestamp 8, consistent with Carlos up to her operation with timestamp 3, and trivially
consistent with herself up to her last operation (see Figure 6.2). At this point, it is unclear to Al-
ice (and to Bob) whether Carlos is only temporarily disconnected and has a consistent state, or if
the server is faulty and hides operations of Carlos from Alice (and from Bob). If Alice and Bob
continue to execute operations while Carlos is offline, Alice will continue to see vectors with in-
creasing timestamps in the entries corresponding to Alice and Bob. When Carlos goes back online,
since the server is correct, all operations issued by Alice, Bob, and Carlos will eventually become
stable at all clients.

In order to implement a fail-aware untrusted service, we proceed in two steps. The first step
consists of defining and implementing a weak fork-linearizable Byzantine emulation of a storage
service. This notion is formulated in the next section and implemented in Section 6.3. The second
step consists of extending the Byzantine emulation to a fail-aware storage protocol, as presented

in Section 6.4.

85

Alice 41 J
Bob —— [

Carlos ——

Figure 6.2: The stability cut of Alice indicated by the notification stableyj;..([10, 8, 3]). The values
of ¢ are the timestamps returned by the operations of Alice.

6.3 A Weak Fork-Linearizable Untrusted Storage Protocol

We present a wait-free weak fork-linearizable emulation of n SWMR registers X5, ..., X,,, where

client C; writes to register X.

At a high level, our untrusted storage protocol (USTOR) works as follows. When a client in-
vokes a read or write operation, it sends a SUBMIT message to the server S. The server processes
arriving SUBMIT messages in FIFO order; when the server receives multiple messages concur-
rently, it processes each message atomically. The client waits for a REPLY message from S. When
this message arrives, C; verifies its content and halts if it detects any inconsistency. Otherwise, C;
sends a COMMIT message to the server and returns without waiting for a response, returning OK
for a write and the register value for a read. Sending a COMMIT message is simply an optimization
to expedite garbage collection at S'; this message can be eliminated by piggybacking its contents
on the SUBMIT message of the next operation. The bulk of the protocol logic is devoted to dealing

with a faulty server.

The USTOR protocol for clients is presented in Algorithm 3, and the USTOR protocol for
the server appears in Algorithm 4. The notation uses operations, upon-clauses, and procedures.
Operations correspond to the invocation events of the corresponding operations in the functionality,
upon-clauses denote a condition and are actions that may be triggered whenever their condition is
satisfied, and procedures are subroutines called from an operation or from an upon-condition. In
the face of concurrency, operations and upon-conditions act like monitors: only one thread of
control can execute any of them at a time. By invoking a wait for condition, the thread releases
control until condition is satisfied. The statement return args at the end of an operation means that
it executes output response(args), which triggers the response event of the operation (denoted by

response with parameters args).

86

We augment the protocol so that C; may output an asynchronous event fail;, in addition to
the responses of the storage functionality. It signals that the client has detected an inconsistency
caused by S the signal will be picked up by a higher-layer protocol.

We describe the protocol logic in two steps: first in terms of its data structures and then by the

flow of an operation.

Data structures. The variables representing the state of client C; are denoted with the subscript 7.
Every client locally maintains a timestamp t that it increments during every operation (lines 113
and 126). Client C; also stores a hash z; of the value most recently written to X; (line 107).

A SUBMIT message sent by C; includes ¢ and a DATA-signature ¢ by C;; on ¢ and Z;; for write
operations, the message also contains the new register value x. The timestamp of an operation o is
the value ¢ contained in the SUBMIT message of o.

The operation is represented by an invocation tuple of the form (7, oc, j, o), where oc is either
READ or WRITE, j is the index of the register being read or written, and o is a SUBMIT-signature

by C; on oc, j, and t. In summary, the SUBMIT message is
(SUBMIT, t, (i, 0c, j,0), ,0).

Client C; holds a timestamp vector V;, so that when C; completes an operation o, entry V;[j]
holds the timestamp of the last operation by C; scheduled before o and V;[i] = t. In order for C;
to maintain V;, the server includes in the REPLY message of o information about the operations
that precede o in the schedule. Although this prefix could be represented succinctly as a vector of
timestamps, clients cannot rely on such a vector maintained by S. Instead, clients rely on digitally
signed timestamp vectors sent by other clients. To this end, C; signs V; and includes V; and the

signature ¢ in the COMMIT message. The COMMIT message has the form
(CoOMMIT, V;, M;, @, 1),

where M, and ¢ are introduced later.
The server stores the register value, the timestamp, and the DATA-signature most recently re-
ceived in a SUBMIT message from every client in an array MEM (line 202), and stores the time-

stamp vector and the signature of the last COMMIT message received from every client in an ar-

87

ray SVER (line 204).

At the point when S sends the REPLY message of operation o, however, the COMMIT messages
of some operations that precede o in the schedule may not yet have arrived at .S. Hence, .S includes
explicit information in the REPLY message about the invocations of such submitted and not yet
completed operations. Consider the schedule at the point when S receives the SUBMIT message
of o, and let 0* be the most recent operation in the schedule for which S has received a COMMIT
message. The schedule ends with a sequence o*,0',. .., 0% o for £ > 0. We call the operations
o', ..., o' concurrent to o; the server stores the corresponding sequence of invocation tuples in L
(line 205). Furthermore, .S stores the index of the client that executed o* in ¢ (lines 203 and 219).
The REPLY message from S to C; contains ¢, L, and the timestamp vector V¢ from the COMMIT
message of 0* together with a signature ¢¢ by C.. We use client index ¢ as superscript to denote

data in a message constructed by S, such that if S is correct, the data was sent by the indicated

client C.. Hence, the REPLY message for a write operation consists of
(REPLY, ¢, (V¢ M€ ©°), L, P),

where M€ and P are introduced later; the REPLY message for a read operation additionally contains

the value to be returned.

We now define the view history VH(o) of an operation o to be a sequence of operations, as
will be explained shortly. Client C; executing o receives a REPLY message from S that contains
a timestamp vector V¢, which is either 0" or accompanied by a COMMIT-signature ¢ by C,,

corresponding to some operation o, of C.. The REPLY message also contains the list of invocation

tuples L, representing a sequence of operations w?, ..., w™. Then we set
N wh ., W™ o if vVe=0"

VH(o) =
VH(o.),w,...,w™ o otherwise,

where the commas stand for appending operations to sequences of operations. Note that if S is

correct, it holds that o, = 0* and o', ..., 0" = w',...,w™. View histories will be important in the

protocol analysis.

After receiving the REPLY message (lines 117 and 129), C; updates its vector of timestamps to

88

reflect the position of o according to the view history. It does that by starting from V¢ (line 138),
incrementing one entry in the vector for every operation represented in L (line 143), and finally
incrementing its own entry (line 147).

During this computation, the client also derives its own estimate of the view history of all
concurrent operations represented in L. For representing these estimates compactly, we introduce
the notion of a digest of a sequence of operations w', ..., w™. In our context, it is sufficient to

represent every operation w* in the sequence by the index :* of the client that executes it. The

digest D(w', ..., w™) of a sequence of operations is defined recursively using a hash function H
as
L ifm=20
D(w',...,w™) & /
H(D(W?,...,w™ ")|[i™) otherwise.

The collision resistance of the hash function implies that the digest can serve a unique represen-
tation for a sequence of operations in the sense that no two distinct sequences that occur in an
execution have the same digest.

Client C; maintains a vector of digests M; together with V;, computed as follows during the
execution of o. For every operation o, by a client C}, corresponding to an invocation tuple in L, the
client computes the digest d of VH(0)|%, i.e., the digest of C;’s expectation of C’s view history
of oy, and stores d in M;[k| (lines 139, 146, and 148).

The pair (V;, M;) is called a version; client C; includes its version in the COMMIT message,
together with a so-called COMMIT-signature on the version. We say that an operation o or a
client C; commits a version (V;, M;) when C; sends a COMMIT message containing (V;, M;) during

the execution of o.

Definition 17 (Order on versions). We say that a version (V;, M;) is smaller than or equal to a

version (V;, M), denoted (V;, M;) < (V;, M;), whenever the following conditions hold:

1. V; <Vjie.,forevery k = 1,...,n, it holds that V;[k] < V;[k]; and
2. For every k such that V;[k] = V;[k], it holds that M;[k] = M;[k].

Furthermore, we say that (V;, M;) is smaller than (V;, M;), and denote it by (V;, M;) < (V}, M;),
whenever (V;, M;) < (V;, M;) and (Vi, M;) # (V;, M;). We say that two versions are comparable

when one of them is smaller than or equal to the other.

89

Suppose that an operation o; of client C; commits (V;, M;) and an operation o; of client C;
commits (V};, M;) and consider their order. The first condition orders the operations according to
their timestamp vectors. The second condition checks the consistency of the view histories of C;
and C} for operations that may not yet have committed. The precondition V;[k] = V;[k] means that
some operation oy, of C}, is the last operation of C, in the view histories of o; and of 0;. In this case,
the prefixes of the two view histories up to o, should be equal, i.e., VH(0;)|* = VH(0;)|°; since
M;[k] and M, k] represent these prefixes in the form of their digests, the condition M;[k] = M, k]
verifies this. Clearly, if .S is correct, then the version committed by an operation is bigger than the
versions committed by all operations that were scheduled before. In the analysis, we show that this
order is transitive, and that for all versions committed by the protocol, (V;, M;) < (V;, M;) if and
only if VH(o;) is a prefix of VH(o;).

The COMMIT message from the client also includes a PROOF-signature i) by C; on M;][i] that
will be used by other clients. The server stores the PROOF-signatures in an array P (line 206) and

includes P in every REPLY message.

Algorithm flow. In order to support its extension to FAUST in Section 6.4, protocol USTOR not
only implements read and write operations, but also provides extended read and write operations.
They serve exactly the same function as standard counterparts, but additionally return the relevant
version(s) from the operation.

Client C; starts executing an operation by incrementing the timestamp and sending the SUBMIT
message (lines 116 and 128). When S receives this message, it updates the timestamp and the
DATA-signature in MEM[i] with the received values for every operation, but updates the register
value in MEM][i] only for a write operation (lines 209-210 and 213). Subsequently, S retrieves
¢, the index of the client that committed the last operation in the schedule, and sends a REPLY
message containing ¢ and SVER[c| = (V¢, M, ¢°). For a read operation from X, the reply also
includes MEM|j] and SVER(j], representing the register value and the largest version committed
by C}, respectively. Finally, the server appends the invocation tuple to L (line 215).

After receiving the REPLY message, C; invokes a procedure updateVersion. It first verifies the
COMMIT-signature ¢° on the version (V'¢, M) (line 136). Then it checks that (V¢, M¢) is at least
as large as its own version (V;, M;), and that V“[¢] has not changed compared to its own version

(line 137). These conditions always hold when S is correct, since the channels are reliable with

90

Algorithm 3 Untrusted storage protocol (USTOR). Code for client C;, part 1.

101: notation

102: Strings = {0,1}* U {L}

103: Clients = {1,...,n}

104: Opcodes = {READ, WRITE, L }

105: Invocations = Clients X Opcodes x Clients x Strings

106: state

107: Z; € Strings, initially L // hash of most recently written value
108: (Vi, M;) € Ny x Strings™, initially (0™, L") // last version committed by C;
109: operation write;(x) /] write x to register X;

110: (---) « writex;(x)
111: return OK

112: operation writex;(x) /Il extended write x to register X;
113: t«—Vili] +1 // timestamp of the operation
114: Ti H(.%')

115: 7 « sign(i, SUBMIT||WRITE||i||t); § < sign(i, DATA||t||Z;)

116: send message (SUBMIT, ¢, (i, WRITE, i, T), x,0) to S

117: wait for receiving a message (REPLY, ¢, (V¢, M€, ¢°), L, P) from S

118: wupdateVersion(i, (¢, V<, M€, ¢), L, P)

119: ¢ « sign(i, COMMIT||V;|| M;); 1) < sign(i, PROOF|| M;[i])

120: send message (COMMIT, V;, M;, ¢, 1) to S

121: return (V;, M;)

122: operation read;(X) // read from register X;
123: (27, --) « readx;(X;)
124: return 7

125: operation readx;(X) Il extended read from register X ;
126t Vi[i] +1 // timestamp of the operation
127: 7 « sign(i, SUBMIT||READ||j||t); 0 < sign(i, DATA||t||Z;))

128: send message (SUBMIT, ¢, (i, READ, j,7), L,d) to S

129: wait for a message (REPLY, c, (V¢, M€, o), (VI, M7, o7), (t/,27,67), L, P) from S

130: updateVersion(j, (c, V¢, M€, ©°), L, P)

131: checkData(c, (V¢, M€, ¢°), 5, (VI MI @I), (t7,27,67))

132: ¢ « sign(i, COMMIT||V;|| M;); ¢ < sign(i, PROOF|| M;][i])

133: send message (COMMIT, V;, M;, ¢, 1) to S

134: return (27, V;, M;, VI, M7)

FIFO order and therefore, S receives and processes the COMMIT message of an operation before

the SUBMIT message of the next operation by the same client.

Next, C; starts to update its version (V;, M;) according to the concurrent operations represented

in L. It starts from (V¢, M¢). For every invocation tuple in L, representing an operation by CY, it

91

Algorithm 3 (cont.) Untrusted storage protocol (USTOR). Code for client C;, part 2.

135: procedure updateVersion(j, (c, V<, M€, ¢°), L, P)

136: ifnot ((V¢,M¢) = (0", L™) or verify(c, ¢°, COMMIT||V¢||M¢)) then output fail;; halt
137 ifnot ((V;,M;) < (V¢,M®) and V°[i] = V;[i]) then output fail;; halt

138: (V;, M;) — (V¢ M°)

139: d«— M¢c]

140: forg=1,...,|L|do

141: (k,oc,l,T) < L[q]

142: if not (M;[k] = L or verify(k, P[k], PROOF||M;[k])) then output fuil,; halt
143: Vi[k] < Vi[k] +1

144: if k& = i or not verify(k, 7, SUBMIT||oc||l||V;[k]) then output fail,; halt

145: d— H(d||k)

146: M;[k] — d

147: Vi[i] = Vi[i] + 1
148: M;[i] — H(d||?)

149: procedure checkData(c, (V¢, M€,), j,(VI, M7,), (7,27, 57))

150 if ot ((V7, M7) = (0", L™) or verify(j, ¢/, COMMITHVJHMJ)) then output fail,; halt
151: ifnot (¢/ =0 or verzfy(j, 67 DATA||#! HH(xJ))) then output fuil,; halt

152: if not ((VJ MJ (V¢,M¢) and ¢/ = V;[j]) then output fail;; halt

153: ifnot (VJ[j] = tﬂ or VJ[j] =t/ — 1) then output fail;; halt

checks the following (lines 140—146): first, that S received the COMMIT message of C;’s previous
operation and included the corresponding PROOF-signature in P[k] (line 142); second, that k # 1,
i.e., that C; has no concurrent operation with itself (line 144); and third, after incrementing V;[k],
that the SUBMIT-signature of the operation is valid and contains the expected timestamp V;|[k]
(line 144). Again, these conditions always hold when S is correct. During this computation, C;
also incrementally updates the digest d and assigns d to M;[k| for every operation. As the last step
of updateVersion, C; increments its own timestamp V;[i|, computes the new digest, and assigns it

to M;[i] (lines 147-148). If any of the checks fail, then updateVersion outputs fail, and halts.

For read operations, C; also invokes a procedure checkData. 1t first verifies the COMMIT-signa-
ture ¢’ by the writer C; on the version (V7, M7) (line 150). If S is correct, this is the largest version
committed by C; and received by .S before it replied to C;’s read request. The client also checks
the integrity of the returned value 27 by verifying the DATA-signature 67 on ¢/ and on the hash of 2/
(line 151). Furthermore, it checks that the version (V7, M7) is smaller than or equal to (V¢, M¢)
(line 152). Although C; cannot know if S returned data from the most recently submitted operation

of Cj, it can check that C; issued the DATA-signature during the most recent operation o; of C}

92

Algorithm 4 Untrusted storage protocol (USTOR). Code for server.

201: state

202: MEM][i]| € Ng x X x Strings, // last timestamp, value, and DATA-sig. received from C;
initially (0, L, 1), fori=1,...,n

203: ¢ € Clients, initially 1 // client who committed last operation in schedule

204: SVER[i] € Ny x Strings™ x Strings, // 1ast version and COMMIT-signature received from C;
initially (0", L™ 1), fori=1,...,n

205: L € Invocations™, initially empty // invocation tuples of concurrent operations

206: P € Strings™, initially 1" // PROOF-signatures

207: upon receiving a message (SUBMIT, t, (i, 0c, 7, T), x, d) from C;:
208: if oc = READ then

209: (t',a',0") «— MEM]i]

210: MEM[i] « (t,2',9)

211: send message (REPLY, ¢, SVER|c|, SVER|[j|, MEM[j], L, P) to C;
212: else

213: MEM[i] — (t,z,0)

214: send message (REPLY, ¢, SVER]c], L, P) to C;

215: append (i,0c,j,7) to L

216: upon receiving a message (COMMIT, V;, M;, ¢, 1) from C;:

217: (V€ M€,) «— SVER|[(]

218: if V; > V¢ then

219: c—1

220: remove the last tuple of the form (i, - - -) and all preceding tuples from L
221: SVERJi| — (V;, M;,)

222: Pli] — ¢

represented in the version of C; by checking that t/ = V;[j] (line 152). If S is correct and has
already received the COMMIT message of o;, then it must be V7[j] = ¢/, and if S has not received
this message, it must be V7[j] = #/ — 1 (line 153).

Finally, C; sends a COMMIT message containing its version (V;, M;), a COMMIT-signature ¢
on the version, and a PROOF-signature ¢ on M;][i] (lines 120 and 133).

When the server receives the COMMIT message from C; containing a version (V;, M;), it stores
the version and the PROOF-signature in SVER[i| and stores the COMMIT-signature in P[i] (lines 221
and 222). Last but not least, the server checks if this operation is now the last committed operation
in the schedule by testing V; > V¢; if this is the case, the server stores 7 in ¢ and removes from L
the tuples representing this operation and all operations scheduled before. Note that L has at most

n elements because at any time there is at most one operation per client that has not committed.

The following result summarizes the main properties of the protocol. As responding with a

93

fail, event is not foreseen by the specification of registers, we ignore those outputs in the theorem.

Theorem 38. Protocol USTOR in Algorithms 3 and 4 emulates n SWMR registers on a Byzantine
server with weak fork-linearizability; furthermore, the emulation is wait-free in all executions

where the server is correct.

Proof overview. A formal proof of the theorem appears in Section 6.5. Here we explain in-
tuitively why the protocol is wait-free, how the views of the weak fork-linearizable Byzantine
emulation are constructed, and why the at-most-one-join property is preserved.

To see why the protocol is wait-free when the server is correct, recall that the server processes
the arriving SUBMIT messages atomically and in FIFO order. The order in which SUBMIT mes-
sages are received therefore defines the schedule of the corresponding operations, which is the
linearization order when S is correct. Since communication channels are reliable and the event
handler for SUBMIT messages sends a REPLY message to the client, the protocol is wait-free in
executions where S is correct.

We now explain the construction of views as required by weak fork-linearizability. It is easy to
see that whenever an inconsistency occurs, there are two operations o; and o; by clients C; and C;
respectively, such that neither one of VH(0;) and VH(o;) is a prefix of the other. This means that
if 0; and o; commit versions (V;, M;) and (V}, M;), respectively, these versions are incomparable.
By Lemma 49 in Section 6.5, it is not possible then that any operation commits a version greater
than both (V;, M;) and (V}, M;). Yet the protocol does not ensure that all operations appear in
the view of a client ordered according to the versions that they commit. Specifically, a client may
execute a read operation o, and return a value that is written by a concurrent operation o,,; in this
case, the reader compares its version only to the version committed by the operation of the writer
that precedes o,, (line 152). Hence, o,, may commit a version incomparable to the one committed
by o,, although o,, must appear before o, in the view of the reader.

In the analysis, we construct the view ; of client C; as follows. Let o; be the last complete
operation of C; and suppose it commits version (V;, M;). We construct 7; in two steps. First,
we consider all operations that commit a version smaller than or equal to (V;, M;), and order
them by their versions. As explained above, these versions are totally ordered since they are
smaller than (V, M;). We denote this sequence of operations by p;. Second, we extend p; to m; as

follows: for every operation o, = read;(X}) — v in p; such that the corresponding write operation

94

0w = writep(Xy, v) is not in p;, we add o,, immediately before the first read operation in p; that
returns v. We will show that if a write operation of client C'; is added at this stage, no subsequent
operation of C}, appears in ;. Thus, if two operations o and o’ of C}, are both contained in two
different views m; and 7; and o precedes o, then o € p; and o € p;. Because the order on versions
is transitive and because the versions of the operations in p; and p; are totally ordered, we have
that p;|° = p;|°. This sequence consists of all operations that commit a version smaller than the
version committed by o. It is now easy to verify that also m;|° = 7;|° by construction of 7; and ;.

This establishes the at-most-one-join property.

Complexity. Each operation entails sending exactly three protocol messages (SUBMIT, REPLY,
and COMMIT). Every message includes a constant number of components of the following types:
timestamps, indices, register values, hash values, digital signatures, and versions. Additionally,
the COMMIT message contains a list L of invocation tuples and a vector P of digital signatures.
Although in theory, timestamps, hash values, and digital signatures may grow without bound, they
grow very slowly. In practice, they are typically implemented by constant-size fields, e.g., 64 bits
for a timestamp or 256 bits for a hash value. Let x denote the maximal number of bits needed to
represent a timestamp, hash value, or digital signature. For the sake of the analysis, we will assume
that the number of steps taken by all parties of the protocol together is bounded by 2%. Register
values in X require at most log | X'| bits. Indices are represented using O(k) bits. Versions consist
of n timestamps and n hash values, and thus require O(nk) bits. For each client, at most one
invocation tuple appears in L and at most one PROOF-signature in P. Hence, the sizes of L and P
are also O(nk) bits. All in all, the bit complexity associated with an operation is O(log | X | + nk).
Note that if S is faulty and sends longer messages, then some check by a client fails. Therefore, in

all cases, each completed operation incurs at most O(log | X| + nx) communication complexity.

6.4 Fail-Aware Untrusted Storage Protocol

In this section, we extend the USTOR protocol of the previous section to a fail-aware untrusted
storage protocol (FAUST). The new component at the client side calls the USTOR protocol and
uses the offline client-to-client communication channels; its purpose is to detect the stability of

operations and server failures. For both goals, FAUST needs access to the version of every oper-

95

ation, as maintained by the USTOR protocol; FAUST therefore calls the extended read and write
operations of USTOR.

For stability detection, the protocol performs extra dummy operations periodically, for confirm-
ing the consistency of the preceding operations with respect to other clients. A client maintains the
maximal version committed by the operations of every other client. When the client determines
that a version received from another client is consistent with the version committed by an opera-
tion of its own, then it notifies the application that the operation has become stable w.r.t. the other
client.

Our approach to failure detection takes up the intuition used for detecting forking attacks in
previous fork-linearizable storage systems [59, 48, 15]. When a client ceases to obtain new ver-
sions from another client via the server, it contacts the other client directly with a PROBE message
via offline communication and asks for the maximal version that it knows. The other client replies
with this information in a VERSION message, and the first client verifies that all versions are con-
sistent. If any check fails, the client reports the failure and notifies the other clients about this
with a FAILURE message. The maximal version received from another client may also cause some
operations to become stable; this combination of stability detection and failure detection is a novel
feature of FAUST.

Figure 6.3 illustrates the architecture of the FAUST protocol. Below we describe at a high level
how FAUST achieves its goals, and refer to Algorithm 5 for the details. For FAUST, we extend
our pseudo-code by two elements. The notation periodically is an abbreviation for upon TRUE.
The condition completion of o with return value args in an upon-clause stands for receiving the

response of some operation o with parameters args.

Protocol overview. For every invocation of a read or write operation, the FAUST protocol at
client C; directly invokes the corresponding extended operation of the USTOR protocol. For every
response received from the USTOR protocol that belongs to such an operation, FAUST adds the
timestamp of the operation to the response and then outputs the modified response. FAUST retains
the version committed by every operation of the USTOR protocol and takes the timestamp from
the i-th entry in the timestamp vector (lines 316 and 325). More precisely, client C; stores an
array VER,; containing the maximal version that it has received from every other client. It sets

VER;[i] to the version committed by the most recent operation of its own and updates the value of

96

Application
A A

[
|

read‘(Xj)
OK, t

stable([t,,t,, ..., t]) fail,

val, t
write (val)

FAUST Protocol

]
Lt

]

V,M
fail,

writex (val)

-

readx’(Xl)
val, V,M vV ,M

A

USTOR PrOtOCOI PROBE VERSION FAILURE
(Client Side)

A
SUBMIT |COMMIT |REPLY

Client-Server Channel Client-to-Client Comm.

Figure 6.3: Architecture of the fail-aware untrusted storage protocol (FAUST).

VER;[j] when a readx;(X ;) operation of the USTOR protocol returns a version (V;, M) committed

by C;. Let max; denote the index of the maximum of all versions in VER;.

To implement stability detection, C; periodically issues a dummy read operation for the reg-
ister of every client in a round-robin fashion (lines 331-332). In order to preserve a well-formed
interaction with the USTOR protocol, FAUST ensures that it invokes at most one operation of
USTOR at a time, either a read or a write operation from the application or a dummy read. We
assume that the application invokes read and write operations in a well-formed manner and that
these operations are queued such that they are executed only if no dummy read executes concur-
rently (this is omitted from the presentation for simplicity). The flags execop; and execdummy;
indicate whether an application-triggered operation or a dummy operation is currently executing

at USTOR, respectively. The protocol invokes a dummy read only if execx; and dummyexec; are
FALSE.

However, dummy read operations alone do not guarantee stability-detection completeness ac-

cording to Definition 16 because a faulty server, even when it only crashes, may not respond to the

97

client messages in protocol USTOR. This prevents two clients that are consistent with each other
from ever discovering that. To solve this problem, the clients communicate directly with each other
and exchange their versions, as explained next.

For every entry VER;|j], the protocol stores in T;[j] the time when the entry was most recently
updated. If a periodic check of these times reveals that more than § time units have passed without
an update from C, then C; sends a PROBE message with no parameters directly to C (lines 329—
330). Upon receiving a PROBE message, C; replies with a message (VERSION, (V, M)), where
(V.M) = VERj|max;] is the maximal version that C; knows. Client C; also updates the value
of VER;[j] when it receives a bigger version from C; in a VERSION message. In this way, the
stability detection mechanism eventually propagates the maximal version to all clients. Note that
a VERSION message sent by C; does not necessarily contain a version committed by an operation
of C;.

Whenever C; receives a version (V, M) from C}, either in a response of the USTOR protocol or
in a VERSION message, it calls a procedure update that checks (V, M) for consistency with the ver-
sions that it already knows. It suffices to verify that (V, M) is comparable to VER;[max;] (line 336).
Furthermore, when VER;[j] < (V, M), then C; updates VER;[j] to the bigger version (V, M).

The vector W; in stable;(W;) notifications contains the i-th entries of the timestamp vectors
in VER;, i.e., W;[j] = V;[i], where (V}, M;) = VER;[j] for j = 1,...,n. Hence, whenever the
i-th entry in a timestamp vector in VER;[j] is larger than W;[j] after an update to VER;[j], then C;
updates W;[j] accordingly and issues a notification stable;(W;). This means that all operations of
FAUST at C; that returned a timestamp ¢ < I¥[j] are stable w.r.t. C;.

Note that C; may receive a new maximal version from C; by reading from X or by receiving
a VERSION message directly from C;. Although using client-to-client communication has been
suggested before to detect server failures [59, 48], FAUST is the first algorithm in the context of
untrusted storage to employ offline communication explicitly for detecting stability and for aiding
progress when no inconsistency occurs.

The client detects server failures in one of three ways: first, the USTOR protocol may output
USTOR fail, if it detects any inconsistency in the messages from the server; second, procedure up-
date checks that all versions received from other clients are comparable to the maximum of the
versions in VER;; and last, another client that has detected a server failure sends a FAILURE mes-

sage via offline communication. When one of these conditions occurs, the client enters procedure

98

Algorithm 5 Fail-aware untrusted storage protocol (FAUST). Code for client C;.

301:
302:
303:
304:
305:
306:
307:
308:
309:

310:
311:
312:

313:

314:
315:
316:

317:
318:
319:

320:

321:
322:
323:
324:
325:
326:
327:

328

329:
330:
331:
332:
333:
334:

state
ki € Clients, initially O
VER;[j] € N§j x Strings™, initially (0", L"), forj =1,...,n /1 biggest received from C;
max; € Clients, initially 1 // index of client with maximal version
W; € N, initially 0™ // maximal timestamps of C;’s operations observed by different clients

wchange; € {FALSE, TRUE}, initially TRUE // indicates that TV; changed since last stable;(W;)
execop; € {FALSE, TRUE}, initially FALSE // indicates that a non-dummy operation is executing
execdummy; € {FALSE, TRUE}, initially FALSE // indicates that a dummy operation is executing

T; € N, initially 0" // time when last updated version was received from C’;
operation write;(x): 335: procedure update(j, (V, M)):
execop; «+— TRUE 336: ifnot ((V,M) < VER;max;] or
invoke USTOR.writex;(x) VER;[max;] < (V,M)) then
. . 337: fail()
let f USTOR.writex; .
UpOT cOMPpIEHOn O et 338: if VER;[j] < (V, M) then
with return value (V;, M;): ;
339: VER;[j] «— (V, M)
execop; < FALSE 200, Tij] — time()
update(i, (V;, M;)) e e
output (OK, V;[i]) 341: if VER, [maxtl] < (V, M) then
342: max; < j
operation read;(X): 343: if W;[j] < Vi] then
execop; < TRUE 344: Wilj] < V]i]
invoke USTOR.readx;(X ;) 345: wchange; «— TRUE
upon completion of USTOR.readx; 346: upon wchange,:
with return value (z, V;, M;, V;, M;): 347: wchange; < FALSE
update(i, (V;, M;)) 348: output stable;(W;)

update(j, (Vj, M;))
if execop, then
execop; < FALSE

349: upon receiving msg. (PROBE) from C):
350: send message (VERSION, VER;[i]) to C}

output (x, V;[i]) 351: upon receiving msg. (VERSION,(V, M)) from
else Cj:
execdummy; < FALSE 352: update(j, (V, M))
periodically: 353: procedure fail():
D — {Cj | time() — T;[j] > &} 354: send message (FAILURE) to all clients
send message (PROBE) to all Cj € D 355: output fail;

if not execop; and not execdummy; then 356: halt
ki — k‘i mod n + 1
execdummy, < TRUE
invoke USTOR.readx;(k;)

357: upon receiving USTOR fail,; or
receiving a message (FAILURE) from Cj:
358: fail()

fail, sends a FATLURE message to alert all other clients, outputs fail;, and halts.

The following result summarizes the properties of the FAUST protocol.

99

Theorem 39. Protocol FAUST in Algorithm 5 implements a fail-aware untrusted storage service

consisting of n SWMR registers.

Proof overview. A proof of the theorem appears in Section 6.6; here we sketch its main ideas.
Note that properties 1, 2, and 3 of Definition 16 immediately follow from the properties of the
USTOR protocol: it is linearizable and wait-free whenever the server is correct, and weak fork-
linearizable at all times. Property 4 (integrity) holds because subsequent operations of a client
always commit versions with monotonically increasing timestamp vectors. Furthermore, the US-
TOR protocol never detects a failure when the server is correct, even when the server is arbitrarily
slow, and the versions committed by its operations are monotonically increasing; this ensures prop-
erty 5 (failure-detection accuracy).

We next explain why FAUST ensures property 6 of a fail-aware untrusted service (stability-
detection accuracy). It is easy to see that any version returned by an extended operation of USTOR
at C; which is subsequently stored in VER;[i] is comparable to all other versions stored in VER,.
Additionally, we show (Lemma 55 in Section 6.6) that every complete operation of the USTOR
protocol at a client C; that does not cause FAUST to output fail;, commits a version that is com-
parable to VER;[j].

When combined, these two properties imply that when C; receives a version from C) that is
larger than the version (V;, M;) committed by some operation o; of Cj, then all versions committed
by operations of C; that do not fail are comparable to (V;, M;). Hence, when (V;, M;) < VER;[j]
and o; becomes stable w.r.t. C;, then C;; has promised, intuitively, to C; that they have a common
view of the execution up to o;.

For property 7 (detection completeness), we show that every complete operation of FAUST
at C; eventually becomes stable with respect to every correct client C';, unless a server failure is
detected. Suppose that C; and C; are correct and that some operation o; of C; returned timestamp ¢.
Under good conditions, when the server is correct and the network delivers messages in a timely
manner, the FAUST protocol eventually causes C; to read from X;. Every subsequent operation of
C; then commits a version (V;, M;) such that V[i] > t. Since C; also periodically reads all values,
C; eventually reads from X and receives such a version committed by C};, and this causes o; to
become stable w.r.t. C;.

However, it is possible that C; does not receive a suitable version committed by C;, which

100

makes o; stable w.r.t. C;. This may be caused by network delays, which are indistinguishable to
the clients from a server crash. At some point, C; simply stops to receive new versions from C}
and, conversely, C; receives no new versions from Cj. But at most ¢ time units later, C; sends a
PROBE message to C; and eventually receives a VERSION message from C; with a version (V;, M;)
such that V;[i] > t. Analogously, C; eventually sends a PROBE message to C; and receives a
VERSION message containing some (V;, M;) from C; with Vj[i] > ¢. This means that o; becomes

stable w.r.t. C.

6.5 Analysis of the Weak Fork-Linearizable Untrusted Storage

Protocol

This section is devoted to the proof of Theorem 38. We start with some lemmas that explain how

the versions committed by clients should monotonically increase during the protocol execution.

Lemma 40 (Transitivity of order on versions). Consider three versions (V;, M;), (V;, M;), and

Proof. First, V; < V; and V; <V, implies V; < V}, because the order on timestamp vectors is
transitive. Second, let ¢ be any index such that V;[c] = Vi [c]|. Since V;[c] < Vj[c] and V}[c] < Vi[],
but Vi[c] = Vi[c], we have V[c] = Vi[c]. From (V;, M;) < (Vj, M) it follows that M;[c] =
M;]c]. Analogously, it follows that M;[c] = M;[c|, and hence M;[c] = Mj[c|. This means that
(Vi, My) < (Vi, My). L

Lemma 41. Let o; be an operation of C; that commits a version (V;, M;) and suppose that during its

execution, C; receives a REPLY message containing a version (V¢, M¢). Then (V¢, M¢) < (V;, M,).

Proof. We first prove that (V¢, M¢) < (V;, M;). According to the order on versions, we have to
show that for all & = 1,...,n, we have either V°[k] < V;[k] or V°[k] = V;[k] and M°[k] =
M;[k]. Note how the computation of (V;, M;) starts from (V;, M;) = (V¢, M*¢) (line 138); later,
an entry V;[k] is either incremented (lines 143 and 147), hence V¢[k] < V;[k], or not modified,
and then M°[k] = M;[k]. Moreover, V;[i] is incremented exactly once, and therefore (V¢ M¢) #
(Vi, M;) H

101

Lemma 42. Let 0, and o; be two operations of C; that commit versions (V/, M!) and (V;, M;),

respectively, such that o} precedes o,. Then:

1. o} and o; are consecutive operations of C; if and only if V/[i] + 1 = V;[i]; and

2. (V;,MZ/) < (VHMZ)

Proof. At the start of o;, client C; remembers the most recent version (V;/, M) that it committed.
During the execution of o, C; receives from S a version (V¢, M¢) and verifies that V/[i] = V°[i]
(line 137) and sets V; = V. Afterwards, C; increments V;[i] (line 147) exactly once (as guarded
by the check on line 144). This establishes the first claim of the lemma. The second claim follows
from the check (V/, M!) < (V¢, M¢) (line 137) and from Lemma 41 by transitivity of the order on

versions. O]

The next lemma addresses the situation where a client executes a read operation that returns a

value written by a preceding operation or a concurrent operation.

Lemma 43. Suppose o; is a read operation of C; that reads a value x from register X; and com-
mits version (V;, M;). Then the version (V{, M}) that C; receives with x in the REPLY message
satisfies (Vi , M3) < (Vi, M;). Moreover, suppose o; is the operation of C; that writes x. Then all

operations of C; that precede o; commit a version smaller than (V;, M,).

Proof. Let (V¢ M¢) be the version that C; receives during o; in the REPLY message, together with
(V{, M), which was committed by an operation o], of C; (line 150). In procedure checkData, C;
verifies that (V5 M]) < (V¢, M¢); Lemma 41 shows that (V¢, M¢) < (V;, M;); hence, we have
that (VJ, MJ) < (V;, M;) from the transitivity of the order on versions. Because the timestamp
t/ that was signed together with = under the DATA-signature (line 151) is equal to Voj [7] or to
Voj[j] + 1 (line 153), it follows from Lemma 42 that either o; precedes 0%, or o; is equal to 06, or

0{) immediately precedes o;. In either case, the claim follows. [

We now establish the connection between the view history of an operation and the digest vector

in the version committed by that operation.

Lemma 44. Let o; be an operation invoked by C; that commits version (V;, M;). Furthermore,

if Vilj] > 0, let w denote the operation of C; with timestamp V;[j]; otherwise, let w denote an

102

imaginary initial operation o, . Then M;|[j] is equal to the digest of the prefix of VH(0;) up to w,
lLe.,

M;[j] = D(VH(0:)]).

Proof. We prove the lemma by induction on the construction of the view history of o;. Consider
operation o; executed by C; and the REPLY message from S that C; receives, which contains a
version (V¢ M¢). The base case of the induction is when (V¢ M¢) = (0", L™). The induction
step is the case when (V¢, M¢) was committed by some operation o, of client C..

For the base case, note that for any 7, it holds M*[j] = L, and this is equal to the digest of
an empty sequence. During the execution of o; in updateVersion, the version (V;, M;) is first set
to (V¢, M¢) (line 138) and the digest d is set to M[c]. Let us investigate how V; and M; change
subsequently.

If j # i, then V;[j] and M;[j] change only when an operation by C} is represented in L. If there
is such an operation, C; computes d = D (VH(0;)|*) and sets M;[j] to d by the end of the loop
(lines 140-146). In other words, the loop starts at the same position and cycles through the same
sequence of operations w!,...w™ as the one used to define the view history. This establishes the
claim when w is the operation of C; with timestamp V;[7].

If 7 = j, then the test in line 144 ensures that there is no operation by C; represented in L. After
the execution of the loop, V;[7] is incremented (line 147), the invocation tuple of o; is included into
the digest at the position corresponding to the definition of the view history, and the result stored
in M;[i]. Hence, M;[i] = D(VH(0;)) and the claim follows also for w = o;.

For the induction step, note that M¢[c] = D(VH(o.)) by the induction assumption. For any
j such that V¢[j] = V;[j], the claim holds trivially from the induction assumption. During the
execution of o; in updateVersion, the reasoning for the base case above applies analogously. Hence,

the claim holds also for the induction step, and the lemma follows. O]

Lemma 45. Let o; be an operation that commits version (V;, M;) such that V;[j] > 0 for some

Jj € {1,...,n}. Then the operation of C; with timestamp V;[j] is contained in VH(o;).

Proof. Consider the first operation 6 € VH(o;) that committed a version (V, M) such that V[j] =
Vilj]- According to the test on line 144, the operation of C; with timestamp V;[j] is concurrent to

0 and therefore is contained in VH(0;) by construction. O

103

Lemma 46. Consider two operations o; and o; that commit versions (V;, M;) and (V;, M;), re-
spectively, such that V;[k| = V;[k] > 0 for some k € {1,...,n}, and let oy be the operation of C,
with timestamp V;[k]. Then M;[k] = M;[k] if and only if VH(0;)|°* = VH(0;)|%.

Proof. By Lemma 45, o, is contained in the view histories of o; and 0;. Applying Lemma 44 to

both sides of the equation M;[k] = M;[k] gives
D(VH(0;)|*) = Mi[k] = M;[k] = D(VH(0;)|**).

Because of the collision resistance of the hash function in the digest function, two outputs of D are

only equal if the respective inputs are equal. The claim follows. [

We introduce another data structure for the analysis. The commit history CH(o) of an oper-
ation o is a sequence of operations, defined as follows. Client C; executing o receives a REPLY
message from S that contains a timestamp vector V¢, which is either equal to 0" or comes together

with a COMMIT-signature ¢ by C,, corresponding to some operation o, of C.. Then we set

o if Ve = o
CH(o) =
CH(o.),0 otherwise.

Clearly, CH (o) is a sub-sequence of VH(o0); the latter also includes all concurrent operations.

Lemma 47. Consider two consecutive operations o* and o**! in a commit history and the versions
(Vi M*) and (VP MPTY) committed by o and 0"+, respectively. For k = 1,...,n, it holds
VEFLHE] < VEK] + 1.

Proof. The lemma follows easily from the definition of a commit history and from the statements in
procedure updateVersion during the execution of 0#*!, because V#*! is initially set to VV* (line 138)

and V#*1[k] is incremented (line 143) at most once for every k.]

The purpose of the versions in the protocol is to order the operations if the server is faulty.
When a client executes an operation, the view history of the operation represents the impression
of the past operations that the server provided to the client. But if an operation o; that com-

mitted (V}, M;) is contained in VH(o;), where o; committed (V;, M;), this does not mean that

104

(Vj, M;) < (Vi, M;). Such a relation holds only when VH (o) is also a prefix of VH(o;), as the

next lemma shows.

Lemma 48. Let o; and o; be two operations that commit versions (V;, M;) and (V;, M;), respec-

tively. Then (V;, M;) < (Vi, M;) if and only if VH(0;) is a prefix of VH(0,).

Proof. To show the forward direction, suppose that (V;, M;) < (Vi, M;). Clearly, V;[j] > 0 be-
cause C; completed o; and V;[j] < V;[j] according to the order on versions. In the case that
Vilj] = Vilj], the assumption of the lemma implies that M;[j] = M;[j] by the order on versions.
The claim now follows directly from Lemma 46.

It is left to show the case V;[j] < V;[j]. Let o,, be the first operation in CH(o;) that commits a
version (V,, M,,) such that V,[j] > V;[j]; let o, be the operation that precedes o,, in its commit
history and suppose o, commits (V¢, M). Note that V°[j] < V;[j]. According to Lemma 47, we
have V°[j] = V[j] = Valj] 1.

Let o} be the operation of C; with timestamp V [7] + 1. Note that o; and 0’; are two consecutive
operations of C; according to Lemma 42. There are two possibilities for the relation between o;

and o,,:

Case 1: If o;- = 0,,, then we observe from the definitions of view histories and commit histories

that VH(0]) is a prefix of VH(o;). We only have to prove that V'H(o;) is a prefix of VH (o).

According to the protocol, C; verifies that V°[j] = V;[j] > 0 and that (V}, M;) < (V¢, M¢)
(line 137). By the definition of the order on versions, we get M/[j] = M;|[j]. Lemma 46 now
implies that VH(o;) is a prefix of VH(o.), which, in turn, is a prefix of VH(0}) according to

the definition of view histories, and the claim follows.

Case 2: If o) was a concurrent operation to o,,, then the invocation tuple of o was contained in L
received by the client executing o,,,, and the client verified the PROOF-signature by C; in P|[j]
from operation o; on M¢[j]. If the verification succeeds, we know that M<[j] = D(VH(o;))
according to Lemma 44. According to the verification of the SUBMIT-signature from C;
on V°[j], we have V;[j] = V°[j] > O (line 144); hence, Lemma 46 implies that VH(o;)
is a prefix of VH(o.) and the claim follows because VH(o.) is a prefix of VH(o;) by the

definition of view histories.

105

To prove the backward direction, suppose that (V;, M;) £ (V;, M;). There are two possibilities
for this comparison to fail: there exists a k such that either V;[k] > V;[k] or that V;[k] = V}[k] and
Milk] # M; 4]

In the first case, Lemma 45 shows that there exists an operation oy, by client Cj, in VH(o,) that
is not contained in VH(o;). Thus, VH(o;) is not a prefix of VH(o;).

In the second case, Lemma 46 implies that VH (o;)|% is different from VH(0;)|, and, again,

V'H(o;) is not a prefix of VH(o;). This concludes the proof. O

This result connects the versions committed by two operations to their view histories and shows
that the order relation on committed versions is isomorphic to the prefix relation on the correspond-

ing view histories. The next lemma contains a useful formulation of this property.

Lemma 49 (No-join). Let o; and o, be two operations that commit versions (V;, M;) and (V;, M),
respectively. Suppose that (Vy, M;) and (V;, M) are incomparable, i.e., (Vy, M;) £ (V;, M;) and

(Vi, M;) £ (Vi, M;). Then there is no operation oy, that commits a version (Vj,, My,) that satisfies
(Vi, M;) < (Vi, My) and (Vj, M;) < (Vi, My).

Proof. Suppose for the purpose of reaching a contradiction that there exists such an operation oy.
From Lemma 48, we know that VH(o;) and VH(o,) are not prefixes of each other. But the same
lemma also implies that VH(o;) is a prefix of VH (o) and that VH(o;) is a prefix of VH(oy).
This is only possible if one of VH (o;) and VH(0,) is a prefix of the other, and this contradicts the

previous statement. O

We are now ready to prove that our algorithm emulates a storage service of n SWMR registers
on an untrusted server with weak fork linearizability. We do this in two steps. The first theorem
below shows that the protocol execution with a correct server is linearizable and wait-free. The
second theorem below shows that the protocol preserves weak fork-linearizability even with a

faulty server. Together they imply Theorem 38.
Theorem 50. In every fair and well-formed execution with a correct server:

1. Every operation of a correct client is complete; and

2. The history is linearizable w.r.t. n SWMR registers.

106

Proof. Consider a fair and well-formed execution o of protocol USTOR where S is correct. We
first show that every operation of a correct client is complete. According to the protocol for S,
every client that sends a SUBMIT message eventually receives a REPLY message from S. This fol-
lows because the parties use reliable FIFO channels to communicate, the server processes arriving
messages atomically and in FIFO order, and at the end of processing a SUBMIT message, the server
sends a REPLY message to the client.

It remains to show that a correct client does not halt upon receiving the REPLY message and
therefore satisfies the specification of the functionality. We now examine all checks by C; in
Algorithm 3 and explain why they succeed when S is correct.

The COMMIT-signature on the version (V'¢, M°) received from S is valid because S sends it
together with the version that it received from the signer (line 136). For the same reason, also the
COMMIT-signature on (V7 M7) (line 150) and the DATA-signature on ¢/ and H (z7) (line 151) are
valid.

Suppose C; executes operation o;. In order to see that (V;, M;) < (V¢, M¢) and V;[i] = V*[i]
(line 137), consider the schedule constructed by S: The schedule at the point in time when S
receives the SUBMIT message corresponding to o; is equal to the view history of o,. Moreover, the
version committed by any operation scheduled before o; is smaller than the version committed by
0;.

According to Algorithm 4, S keeps track of the last operation in the schedule for which it has
received a COMMIT message and stores the index of the client who executed this operation in ¢
(line 203). Note that SVER|c| holds the version (¢, V) committed by this operation. Therefore,
when C; receives a REPLY message from S containing (M¢, V), the check (V;, M;) < (V¢, M)
succeeds since the preceding operation of C; already committed (V;, M;). This preceding operation
is in VH(o;) by Lemma 45; moreover, it is the last operation of C; in the schedule, and therefore,
Vilil = Vil

Next, we examine the verifications in the loop that runs through the concurrent operations
represented in L (lines 140-146). Suppose C; is verifying an invocation tuple representing an
operation o, of Cy. It is easy to see that the PROOF-signature of Cj, in P[k| was created during
the most recent operation o), of C}, that precedes oy, because Cj and S communicate using a
reliable FIFO channel and, therefore, the COMMIT message of o) has been processed by S before

the SUBMIT message of oy. It remains to show that the value M;[k], on which the signature is

107

verified (line 142), is equal to M/ [k], where (M}, V}) is the version committed by o}.. Since o}, is
the last operation by C, in the schedule before o, it holds V}/[k] = V¢[k]. Furthermore, it holds
(V!, M}) < (V¢, M°) and this means that M/ [k] = M°¢[k] by the order on versions. Since M is
set to M ¢ before the loop (line 138), we have that M;[k| = M°[k] = M| [k] and the verification of
the PROOF-signature succeeds.

Extending this argument, since 1/ “[k] holds the timestamp of o}, the timestamp of oy, is V°[k] +
1, and thus the SUBMIT-signature of oy, is valid (line 144). Since no operation of C; that precedes
o0; occurs in the schedule after o., and since L includes only operations that occur in the schedule
after o, (according to line 220), no operation by C; is represented in L. Therefore, the check that
k # i succeeds (line 144).

For a read operation from X, client C; receives the timestamp ¢/ and the value 27, together
with a version (V7, M7) committed some operation o; of C;. Consider the operation o,, of C; that
writes 2. It may be that o,, = o, if S has received its COMMIT message before the read operation.
But since C; sends the timestamp and the value with the SUBMIT message to S, it may also be that
o; precedes o,,. C; first verifies that (V7, M7) < (V¢, M¢), and this holds because (V¢, M¢) was
committed by the last operation in the schedule (line 152). Furthermore, C; checks that t/ = V;]j]
(line 152); because both values correspond to the timestamp of the last operation by C; scheduled
before o;, the check succeeds. Finally, C; verifies that (V7, M7) is consistent with ¢/: if 0,, = o;,
then V7[j] = #/; otherwise, o, is the subsequent operation of C; after o;, and VI[j] = # — 1
(line 153).

For the proof of the second claim, we have to show that the schedule constructed by S’ satisfies
the two conditions of linearizability. First, the schedule preserves the real-time order of o because
any operation o that precedes some operation o’ is also scheduled before ¢, according to the in-
structions for S. Second, every read operation from X, returns the value written either by the most

recent completed write operation of C'; or by a concurrent write operation of C}. [

Let o be the history of a fair and well-formed execution of the protocol. The definition of weak
fork-linearizability postulates the existence of sequences of events 7; for 7 = 1, ..., n such that 7,

is a view of ¢ at client ;. We construct 7; in three steps:

1. Let o; be the last complete operation of C; in ¢ and suppose it committed version (V;, M;).

Define «; to be the set of all operations in ¢ that committed a version smaller than or equal

108

to (V;, M;).
2. Define 3; to be the set of all operations o; of the form write;(X;, z) from o \ «; for any z
such that «; contains a read operation returning x. (Recall that written values are unique.)
3. Construct a sequence p; from «; by ordering all operations in «; according to the versions
that these operations commit, in ascending order. This works because all versions are smaller
than (V;, M;) by construction of «;, and, hence, totally ordered by Lemma 49. Next, we
extend p; to m; by adding the operations in [3; as follows. For every o; € 3;, let x be the value

that it writes; insert o; into m; immediately before the first read operation that returns .

Theorem 51. The history of every fair and well-formed execution of the protocol is weakly fork-

linearizable w.r.t. n SWMR registers.
Proof. We use o, 3;, p;, and ; as defined above.

Claim 51.1. Consider some 7; and let 0;,0; € o be two operations of client C; such that o’; € ;.

Then o; <, 0 if and only if 0; € a; and 0; <, o).

Proof. To show the forward direction, we distinguish two cases. If 0} € (3;, then it must be a write
operation and there is a read operation o, in «; that returns the value written by 03-. According to
Lemma 43, any other operation of C; that precedes 0;- commits a version smaller than the version
committed by o,. In particular, this applies to o;. Since o, € «;, we also have o; € «; by
construction and o; <, 0, since 7; contains the operations of «; ordered by the versions that they
commit. Moreover, because o} appears in 7; immediately before oy, it follows that 0; <, 0.

If o;» ¢ (3;, on the other hand, then 0;- € «;, and Lemma 42 shows that o; commits a version that
is smaller than the version committed by o). Hence, by construction of «;, we have that o; € «;
and 0; <, 0.

To establish the reverse implication, we distinguish the same two cases as above. If o} € 3,
then then it must be a write operation and there is a subsequent read operation oy € «; that returns
the value written by 0. Since 0; € «; by assumption and 0; <, 0, it must be that the version
committed by o; is smaller than the version committed by o, because the operations of p; are
ordered according to the versions that they commit. Hence, 0; <, 0 by Lemma 42.

If o, ¢ 3;, on the other hand, then o) € «;. Since the operations of p; are ordered according to

the versions that they commit, the version committed by o, is smaller than the version committed

by o). Lemma 42 now implies that 0; <, 0. O]

109

Recall the function lastops(w;) from the definition of weak real-time order, denoting the last

operations of all clients in ;.
Claim 51.2. For any m;, we have that (3; C lastops(m;).

Proof. We have to show that operation o; € (3; invoked by C is the last operation of C; in 7;.
Towards a contradiction, suppose there is another operation o} of C; that appears in 7; after o;.
Because the execution is well-formed, operations o; and oj are not concurrent. If 0; <, oj», then
Claim 51.1 implies that o; € «;, contradicting the assumption o; € [3;. On the other hand, if
0; <, 0j, then Claim 51.1 implies that o] <, o;. Since each operation appears at most once in 7,

this contradicts the assumption on oj. [
The next claim is only needed for the proof of Theorem 39 in Section 6.6.

o, let (V!, M!) be
e version committe o;, and let o; be an operation that commits version (V.) suc a
th tted by o], and let 0; b peration that t Vi, M; h that

(V/, M!) < (Vj, M;). Then oy, is invoked before o; completes.

Claim 51.3. Let o) be a complete operation of C;, let oy, be any operation in T;

Proof. Suppose o;, commits version (Vi, My). If o, € ay, then (Vi, My) < (V/, M]) by con-
struction of o, and in particular V/[k] > Vi[k]. If o, € [3;, then there exists some read op-
eration o, € «; that commits (V,, M,) < (V/, M!) and returns the value written by o;. Thus,
V/[k] > V,[k] > Vi[k]. In both cases, we have that V/[k] > Vj[k]. Since V; > V/, we conclude
that V;[k] > Vi[k] > 0. According to the protocol logic, this means that o, is invoked before o;,

and in particular before o; completes. U
Claim 51.4. 7; is a view of o at C; w.r.t. n SWMR registers.

Proof. The first requirement of a view holds by construction of ;.

We next show the second requirement of a view, namely that all complete operations in o,
are contained in ;. Because the o; is the last complete operation of C’;, and all other operations of
C; commit smaller versions by Lemma 42, the statement follows immediately from Lemma 48.

Finally, we show that the operations of 7; satisfy the sequential specification of n SWMR
registers. The specification requires for every read operation o, € m;, which returns a value x
written by an operation o, of C,, that o,, appears in 7; before o,, and there must not be any other

write operation by C,, in 7; between o,, and o,..

110

Suppose o, is executed by C',. and commits version (V,., M,.); note that C,. in checkData makes
sure that V,.[w] is equal to the timestamp ¢ that C,. receives together with the data (according to
the verification of the DATA-signature in line 151 and the check in line 152). Since [3; contains
only write operations, we conclude that o, € «;. Let 0!, be the operation of C, with timestamp ¢.
According to the protocol, 0/, is either equal to o,, or the last one in a sequence of read operations
executed by C,, immediately after o,,.

We distinguish between two cases with respect to o/,. The first case is o}, € 3;. Then o), = o,
and o}, appears in m; immediately before the first read operation that returns x, and o/, is the last
operation of C,, in 7; as shown by Claim 51.2. Therefore, no further write operation of C',, appears
in 7; and the sequential specification of the register holds.

The second case is 0}, € «;; suppose 0, commits version (V,,, M/), where V, [w] = ¢ by def-
inition. Lemma 45 shows that o/, € VH(o,). Because o, and 0/, are in «;, versions (V. M,)
and (V, M!) are ordered and we conclude from Lemma 48 that this is only possible when
(V. M) < (V,., M,). Therefore, o], appears in 7; before o, by construction.

We conclude the argument for the second case by showing that there is no further write opera-
tion by C,, between o/, and o, in 7;. Towards a contradiction, suppose there is such an operation 6,,
of C,. Suppose 6,, has timestamp 7 and note that V! [w] < # follows from Lemma 42.

We distinguish two further cases. First, suppose 6,, € «;. Since o), precedes 6,, and since
o\, € a, it follows from Lemma 42 that V,[w] = V/ [w] < t. This contradicts the assumption that
0., appears before o, in 7; because the operations in 7; restricted to «; are ordered by the versions
they commit.

Second, suppose o,, € [3;. By construction 6,, appears in 7; immediately before some read
operation 0, € «; that commits (f@,]\;[r). Note that 6, precedes o, and that f = f/r[w] according to
the verification in checkData. Hence, V,[w] = V/'[w] < = V;, and this contradicts the assumption
that 0, appears before o, in 7; because the operations in 7; restricted to «; are ordered according

to the versions they commit. [

Claim 51.5. 7; preserves the weak real-time order of 0. Moreover, let w; be the sequence of
operations obtained from T; by removing all operations of 3; that complete in o, then 7, preserves

the real-time order of 0.

Proof. We first show that p; preserves the real-time order of 0. Let o; and o, be two operations in

p; that commit versions (V;, M;) and (V},, M},), respectively, such that o; executed by C; precedes

111

oy executed by C}, in 0. Since oy, is invoked only after o; completes, C; does not find in L any
operation by C} with a valid SUBMIT-signature on a timestamp equal to or greater than Vj[k].
Hence V}[k] < Vi[k], and, thus, (V;, M;) < (Vk, My). Since o; and oy, are ordered in p; according
to their versions by construction, we conclude that o; appears before oy, also in p;. The extension
to the weak real-time order and the operations in 7; follows immediately from Claim 51.2.

For the second part, note that we have already shown that every pair of operations from 7, Ny
preserves the real-time order of 0. Moreover, the claim also holds vacuously for every pair of
operations from 7, \ «a; because neither operation completes before the other one. It remains to
show that every two operations o; € 7; \ o; C f3; and o}, € «; preserve the real-time order of o.
Suppose o; is the operation of C; with timestamp ¢. Since o; does not complete, not preserving
real-time order means that o, <, 0; and 0; <, o,. Suppose for the purpose of a contradiction that
this is the case. Since o; € 3;, it appears in 7; immediately before some read operation o, € «; that
commits a version (V., M,). From the check in line 152 in Algorithm 3 we know that V,.[j] > ¢.
Since o; has not been invoked by the time when o;, completes, o, must be different from o, and
it follows o, <,, ox by assumption. Hence, the version (Vj, M;,) committed by oy, is larger than
(V, M,), and this implies V}[j] > ¢. But this contradicts the fact that o; has not yet been invoked
when o, completes, because according to the protocol logic, when an operation commits a version
(Vi, M;) with V;[j] > 0, then the operation of C; with timestamp V;[j] must have been invoked
before. 0

Claim 51.6. For every operation o € m; and every write operation o' € o, if o —, othen d € w;

and o' <, o.

Proof. Recalling the definition of causal precedence, there are three ways in which o’ —, o might

arise:

1. Suppose o and o’ are operations executed by the same client C; and o’ <, o. Since 0 € T,
Claim 51.1 shows that o' € 7; and o’ <, o.

2. If o is a read operation that returns = and o’ is the operation that writes x, then the fact that
m; is a view of o at C;, as established by Claim 51.4, implies that o’ € 7; and precedes o in
;.

3. If there is another operation o” such that o' —, 0" and 0o —, o, then, using induction, o”

is contained in 7r; and precedes o, and o’ is contained in 7; and precedes o”, and, hence, o’

112

precedes o in ;. O

Claim 51.7. For every client C;, consider an operation oy, of client Cy, such that either o, € a;Nay;

or for which there exists an operation o), of C, such that oy, precedes 0. Then ;| = 7;|%.

Proof. In the first case that o, € o; N «;, then by construction of p; and p;, and by the transitive
order on versions, p;|° and p;|° contain exactly those operations that commit a version smaller
than the version committed by o,. Hence, p;|° = p;|°*. Any operation o,, € [3; that appears in
m;|°* is present in (3; only because of some read operation o, € p;|. Since o, also appears in p;|°
as shown above, o,, is also included in [3; and appears in 7; immediately before o, and at the same
position as in 7;. Hence, 7;|% = m;|.

In the second case, the existence of o) implies that o, is not the last operation of C}, in 7; and,

hence, o;, € a; and o5, € ;. The statement then follows from the first case. U]

Claims 51.4-51.7 establish that the protocol is weak fork-linearizable w.r.t. n SWMR registers. []

6.6 Analysis of the Fail-Aware Untrusted Storage Protocol

We prove Theorem 39, i.e., that protocol FAUST in Algorithm 5 satisfies Definition 16. The
functionality F'is n SWMR registers; this is omitted when clear from the context.

The FAUST protocol relies on protocol USTOR for untrusted storage. We refer to the oper-
ations of these two protocols as fail-aware-level operations and storage-level operations, respec-
tively. In the analysis, we have to rely on certain properties of the low-level untrusted storage
protocol, which are formulated in terms of the storage operations read and write. But we face
the complication that here, the high-level FAUST protocol provides read and write operations, and
these, in turn, access the extended read and write operations of protocol USTOR, denoted by writex
and readx.

In this section, we denote storage-level operations by 0;,0;,... as before. It is clear from
inspection of Algorithm 3 that all of its properties for read and write operations also hold for its
extended read and write operations with minimal syntactic changes. We denote all fail-aware-level
operations in this section by 0;,0;, ..., in order to distinguish them from the operations at the

storage level.

113

The FAUST protocol invokes exactly one storage-level operation for every one of its operations
and also invokes dummy read operations. Therefore, the fail-aware-level operations executed by
FAUST correspond directly to a subset of the storage-level operations executed by USTOR.

We say we sieve a sequence of storage-level events o to obtain a sequence of fail-aware-level
events ¢ by removing all storage-level events that are part of dummy read operations and by map-
ping every one of the remaining storage-level events to its corresponding fail-aware-level event.

Note that read operations can be removed from a sequence of events without affecting whether
the sequence satisfies the sequential specification of read/write registers. More precisely, when
we remove the events of a set of read operations Q from a sequence of events 7 that satisfies the
sequential specification, the resulting sequence 7 also satisfies the sequential specification, as is
easy to verify. This implies that if 7 is a view of a history o, then 7 is a view of 7, where ¢ is
obtained from ¢ by removing the events of all operations in Q. Analogously, if ¢ is linearizable
or causally consistent, then ¢ is linearizable or causally consistent, respectively. We rely on this
property in the analysis.

Analogously, removing all events of a set of read operations from a sequence 7 and from a
history o does not affect whether 7 is a view of . Hence, sieving does not affect whether a history
linearizable and whether some sequence is a view of a history. Furthermore, according to the algo-
rithm, an invocation (in ¢) of a fail-aware-level operation triggers immediately an invocation (in o)
at the storage level, and, analogously, a response at the fail-aware level (in 6) occurs immediately
after a corresponding response (in o) at the storage level. Thus, sieving preserves also whether a

history wait-free. We refer to these three properties as the invariant of sieving below.

Lemma 52 (Integrity). When an operation o; of C; returns a timestamp t, then t is bigger than

any timestamp returned by an operation of C; that precedes 0;.

Proof. Note that t = V[i], where (V}, M;) is the version committed by the corresponding storage-
level operation (lines 316 and 325). By Lemma 42, V[i] is larger than the timestamp of any
preceding operation of C;. [

Lemma 53 (Failure-detection accuracy). If Algorithm 5 outputs fail;, then S is faulty.

Proof. According to the protocol, client C; outputs fail; only if one of three conditions are met:

(1) the untrusted storage protocol outputs USTOR fail;; (2) in update, the version (V, M) received

114

from a client C; during a read operation or in a VERSION message is incomparable to VER; [max;];
or (3) C; receives a FAILURE message from another client.

For the first condition, Theorem 38 guarantees that Algorithm 3 does not output USTOR.fail,
when S is correct. The second condition does not occur since the view history of every operation is
a prefix of the schedule produced by the correct server, and all versions are therefore comparable,
according to Lemma 48 in the analysis of the untrusted storage protocol. And the third condition
cannot be met unless at least one client sends a FAILURE message after detecting condition (1)

or (2). Since no client deviates from the protocol, this does not occur. [

The next lemma establishes requirements 1-3 of Definition 16. The causal consistency property

follows because weak fork-linearizability implies causal consistency.

Lemma 54 (Linearizability and wait-freedom with correct server, causality). Let ¢ be a fair
execution of Algorithm 5 such that &|p is well-formed. If S is correct, then &|p is linearizable

w.rt. F' and wait-free. Moreover, G| is weak fork-linearizable w.r.t. F.

Proof. As shown in the preceding lemma, a correct the server does not cause any client to output
fail. Since S is correct, the corresponding execution ¢ of the untrusted storage protocol is lineariz-
able and wait-free by Theorem 38. According to the invariant of sieving, also & | is linearizable
and wait-free.

In case S is faulty, the execution o at the storage level is weak fork-linearizable w.r.t. F' ac-
cording to Theorem 51. Note that in case a client detects incomparable versions, its last operation
in o does not complete in &|z. But omitting a response from o does not change the fact that it is
weak fork-linearizable because it can be added again by Definition 14. The invariant of sieving

then implies that 7| is also weak fork-linearizable w.r.t. F'. [l

Lemma 55. Let 0; be a complete fail-aware-level operation of C; and suppose the corresponding
storage-level operation o; commits version (V;, M;). Then the value of VER;[j] at C; at any time

of the execution is comparable to (V;, M).

Proof. Let (V*, M*) = VER,[j] at any time of the execution. If C; has assigned this value to
VER;|j] during a read operation from X, then an operation of C; committed (V*, M/*) and the
claim is immediate from Lemma 42. Otherwise, C; has assigned (V*, M*) to VER;[j] after receiv-

ing a VERSION message containing (V*, M*) from Cj.

115

Notice that when C sends this message, it includes its maximal version at that time, in
other words, (V*, M*) = VER;[max;]. Consider the point in the execution when VER;[max;] =
(V*, M*) for the first time. If 0; completes before this point in time, then (V;, M;) < VER;[max;] =
(V*, M*) by the maintenance of the maximal version (line 342) and by the transitivity of versions.
On the other hand, consider the case that o; completes after this point in time. Since 0; completes
in 7|, the check on line 336 has been successful, and thus (V}, M;) < (V°, M°), where (V°, M°)
is the value of VER;[max;| at the time when 6, completes. Because (V'°, M°) is also greater than
or equal to (V*, M*) by the maintenance of the maximal version (line 342), Lemma 49 (no-join)
implies that (V}, M;) and (V*, M*) are comparable. O

Lemma 56. Suppose a fail-aware-level operation o; of C; is stable w.r.t. C; and suppose the corre-
sponding storage-level operation o; commits version (V;, M;). Let 0; be any complete fail-aware-
level operation of C; and suppose the corresponding storage-level operation o; commits version
(V;, M;). Then (V;, M;) and (V;, M;) are comparable.

Proof. Let (V*,M*) = VER,[j] at the time when 6; becomes stable w.r.t. C;, and denote the
operation that commits (V*, M*) by o*.

It is obvious from the transitivity of versions and from the maintenance of the maximal version
(line 342) that (V;, M;) < VER;[max;]. For the same reasons, we have (V*, M*) < VER;[max;).
Hence, Lemma 49 (no-join) shows that (V;, M;) and (V*, M*) are comparable.

We now show that (V;, M;) < (V*, M*). Note that when stable;(W;) occurs at C;, then W;[j] >
Vili]. According to lines 343-345 in Algorithm 5, we have that V*[i{] = W;[j] > V;i[i]. Then
Lemma 45 implies that o; appears in VH(0*). By Lemma 48, since (V;, M;) is comparable
to (V*, M*), either H"(0;) is a prefix of H"(0*) or H"(0*) is a prefix of H"(0;). But since
0; € VH(o"), it must be that H"(o;) is a prefix of H"(0*). From Lemma 48, it follows that
(Vi, M) < (V*, M™).

Considering the relation of (V*, M*) to (V;, M), it must be that either (V}, M) < (V*, M*) or
(V*, M*) < (V;, M;) according to Lemma 55. In the first case, the lemma follows from Lemma 49

(no-join), and in the second case, the lemma follows by the transitivity of versions. 0

Lemma 57 (Stability-detection accuracy). If 0; is a fail-aware-level operation of C; that is stable

w.r.t. some set of clients C, then there exists a sequence of events T that includes o; and a prefix

116

T of &|r such that 7 is a view of T at all clients in C w.r.t. F. If C includes all clients, then T is

linearizable w.r.t. .

Proof. Let o; be the storage-level operation corresponding to 6;, and let (V, M;) be the version
committed by o,. Let o be any history of the execution of protocol USTOR induced by o. Let o,
B, pi» and 7; be sets and sequences of events, respectively, defined from o according to the text

before Theorem 51. We sieve T,

% to obtain a sequence of fail-aware-level operations 7 and let 7
be the shortest prefix of & | that includes the invocations of all operations in 7.

We next show that 7 is a view of 7 at C; w.r.t. I for any C; € C. According to the definition
of a view, we create a sequence of events 7/ from 7 by adding a response for every operation in 7
that is incomplete in &|r; we add these responses to the end of 7 (there is at most one incomplete
operation for each client).

In order to prove that 7 is a view of 7 at C; w.rt. F', we show (1) that 7 is a sequential
permutation of a sub-sequence of complete(7'); (2) that T|c, = complete(7')|c,; and (3) that 7
satisfies the sequential specification of F'. Property (1) follows from the fact that 7 is sequential
and includes only operations that are invoked in 7 and by construction of complete(7') from 7.
Property (3) holds because 7; is a view of ¢ at C; w.r.t. F' according to Claim 51.4, and because
the sieving process that constructs 7 from 7|° preserves the sequential specification of F.

Finally, we explain why property (2) holds. We start by showing that the set of operations in
7|c, and complete(7')|c, is the same. For any operation 6; € 7|¢;, property (1) already establishes
that 6; € complete(7'). It remains to show that any 6; € complete(7') also satisfies 6, € 7|c;.

The assumption that 6, is in complete(7') means that either 6; € 7 or that 6, is complete
already in 7. In the former case, the implication holds trivially. In the latter case, because the
corresponding storage-level operation o; € m;|* is complete and commits (V}, M), Lemma 56
implies that (V;, M;) and (V;, M;) are comparable. If (V;, M;) < (Vi, M;), then o; € m;|° by

construction of 7;, and furthermore, 0; € 7~r|cj by construction of ;. Otherwise, it may be that

(Vi, M;) < (V;, M;), but we show next that this is not possible.

If (V;, M;) < (V}, M;), then by definition of 7, the invocation of some operation o, € 7 appears
in 7|p after the response of 6;. By construction of 7, the corresponding storage-level operation
oy is contained in m;|%. According to the protocol, operations and upon clauses are executed
atomically, and therefore the invocation of o, appears in o after the response of 0;. At the same

time, Claim 51.3 implies that o, is invoked before o; completes, a contradiction.

117

To complete the proof of property (2), it is left to show that the order of the operations in 7|¢,
and in complete(7')|c; is the same. By Claim 51.1, 7; preserves the real-time order of o among the
operations of C;. Therefore, 7 also preserves the real-time order of &|r among the operations of
C};. On the other hand, since 7 is a prefix of 7| and since 7’ is created from 7 by adding responses
at the end, it easy to see that the operations of C; in 7 are in the same order as in & |p.

For the last part of the lemma, it suffices to show that when C includes all clients, and, hence,
7 1s a view of 7 at all clients, then 7 preserves the real-time order of 7. By Lemma 56, every

complete operation in & |z corresponds to a complete storage-level operation that commits a version

comparable to (V;, M;). Therefore, all operations of 7;|° that correspond to a complete fail-aware-

level operation are in 7;

% M «y. There may be incomplete fail-aware-level operations as well,

and the above argument shows that the corresponding storage-level operations are contained in

m;|% N B;. We create a sequence of events ¢’ from | by removing the responses of all operations

% N ;. Claim 51.5 implies that 7;

in 7; % preserves the real-time order of o’. Notice that sieving
o’ also yields &|p. Therefore, 7 preserves the real-time order of 7| and since 7 is a prefix of 7|,

we conclude that 7 also preserves the real-time order of 7. [

Lemma 58 (Detection completeness). For every two correct clients C; and C; and for every time-
stamp t returned by some operation o; of C;, eventually either fail occurs at all correct clients or

stable;(W) occurs at C; with W |j] > t.

Proof. Notice that whenever fail occurs at a correct client, the client also sends a FAILURE mes-
sage to all other clients. Since the offline communication method is reliable, all correct clients
eventually receive this message, output fail, and halt. Thus, for the remainder of this proof we as-
sume that C; and C; do not output fail and do not halt. We show that stable;(1V') occurs eventually
at C; such that W[j] > t. Let o; be the storage-level operation corresponding to ;. Note that o;
completes and suppose it commits version (V;, M;). Thus, V;[i] = t.

We establish the lemma in two steps: First, we show that VER;[max;] eventually contains a
version that is greater than or equal to (V;, M;). Second, we show that also VER;[j] eventually
contains a version that is greater than or equal to (V;, M;).

For the first step, note that every VERSION message that C; sends to C; after completing o; con-
tains a version that is greater than or equal to (V;, M;), by the maintenance of the maximal version

(line 342) and by the transitivity of versions. Since the offline communication method is reliable

118

and both C; and C; are correct, C; eventually receives this message and updates VER,[max;| to
this version that is greater than or equal to (V;, M;).

Suppose that C; does not send any VERSION message to C; after completing o0;. This means
that C; never receives a PROBE message from C; and hence, C; ¢ D at C;. This is only pos-
sible if C; updates T;[i] periodically, at the latest every ¢ time units, when receiving a version
from C; during a read operation from X;. Therefore, one of these read operations eventually re-
turns a version (V;/, M) committed by an operation o} of C;, where o, = o; or o; precedes 0.
Thus, (V;, M;) < (V/, M!) and by the maintenance of the maximal version at C; (line 342) and
by the transitivity of versions, we conclude that (V, M;) < VER j[max;] when the read operation
completes. This concludes the first step of the proof.

We now address the the second step. Note when C; sends to C; a VERSION message at a time
when (V;, M;) < VER;[max;] holds, the message includes a version that is also greater than or
equal to (V;, M;). When C; receives this message, it stores this version in VER;[7].

Suppose that after the first time when (V;, M;) < VER;[max;] holds, C; does not send any
VERSION message to C;. Using the same argument as above with the roles of C; and C; reversed,
we conclude that C; periodically executes a read operation from X ; and stores the received versions
in VER;[j]. Eventually some read operation o} commits a version (V;, M/) and returns a version
(V;, M) committed by an operation of C; that was invoked after o, completed. Lemma 43 shows
that (V;, M;) < (V/, M), and since o; and o} are both operations of C; and o; precedes o/, it
follows (V;, M;) < (V/, M!) from Lemma 42. Then Lemma 49 (no-join) implies that (V;, M;) is
comparable to (V;, M;), and it must be that (V;, M;) < (V;, M;) since o; precedes o;. Thus, after
completing o}, we observe that VER;[j] is greater than or equal to (V;, M;).

To conclude the argument, note that when VER;[j] contains a version greater than or equal to
(Vi, M;) for the first time, then wchange; = TRUE and this triggers a stable;(W) notification with
Wil = t. O

119

Chapter 7

Venus: Verification for Untrusted Cloud

Storage

This chapter presents Venus, a service for securing user interaction with untrusted cloud storage.
Specifically, Venus guarantees integrity and consistency for applications accessing a key-based ob-
ject store service, without requiring trusted components or changes to the storage provider. Venus
completes all operations optimistically, guaranteeing data integrity. It then verifies operation con-
sistency and notifies the application. Whenever either integrity or consistency is violated, Venus
alerts the application. We implemented Venus and evaluated it with Amazon S3 commodity stor-
age service. The evaluation shows that it adds no noticeable overhead to storage operations. A
preliminary version of this work was published in the ACM Cloud Computing Security Workshop
(CCSW) 2010 [71].

7.1 Introduction

In this chapter we present Venus, short for VErificatioN for Untrusted Storage. With Venus, a
group of clients accessing a remote storage provider benefits from two guarantees: infegrity and
consistency. Integrity means that a data object read by any client has previously been written by
some client; it protects against simple data modifications by the provider, whether inadvertent or
caused by malicious attack. Note that a malicious provider might also try a “replay attack™ and

answer to a read operation with properly authenticated data from an older version of the object,

120

which has been superseded by a newer version. Venus restricts such behavior and guarantees that
either the returned data is from the latest write operation to the object, ensuring that clients see
atomic operations, or that the provider misbehavior is exposed. This is the consistency property of

Venus, which allows multiple clients to access the stored data concurrently in a consistent fashion.

Venus notifies the clients whenever it detects a violation of integrity or consistency. Applica-
tions may handle this error in a variety of ways, such as switching to another service provider.
Venus works transparently with simple object-based cloud storage interfaces, such that clients may
continue to work with a commodity storage service of their choice without changing their applica-

tions.

During normal operation, clients of cloud storage should not have to communicate with each
other. If clients did communicate, they could simply exchange the root value of a hash tree on the
stored objects to obtain consistency. This, however, would introduce a prohibitive coordination
overhead — clients should be able to execute operations in isolation, when the other clients are
disconnected. But without client-to-client communication for every operation, a malicious service
could simply ignore write operations by some clients and respond to other clients with outdated
data, as we have demonstrated in Section 5.4. Previous solutions dealt with the problem using so-
called “forking” semantics (in SUNDR [59, 48], and other proposals [15, 55, 11]). These solutions
guarantee integrity, and by adding some extra out-of-band communication among the clients can
also be used to achieve a related notion of consistency. However, they also incur a major drawback
that hampers system availability. Specifically, even when the service functions correctly, all these
protocols may sometimes block a client during an operation, requiring the client to wait for another
client to finish, and do not guarantee that every client operation successfully completes. We have

shown in Section 5.5 that this limitation is inherent.

Venus eliminates this problem by letting operations finish optimistically and establishing con-
sistency later. When the service is correct, all client operations therefore terminate immediately
and the service is “wait-free.” When an operation returns optimistically, it is called red, and Venus
guarantees integrity, but not yet consistency. If the storage service is indeed correct, Venus notifies
the application later when a red operation is known to be consistent and thereby becomes green; in
this sense, Venus is eventually consistent. Venus guarantees that the green operations of all clients
are consistent, i.e., that they can be ordered in a single sequence of atomic operations. If some

red operations are irreconcilable and so may never become green, Venus ensures that every client

121

eventually receives a failure notification.

Venus does not require any additional trusted components and relies only on the clients that
are authorized to access the data. Venus allows a dynamic set of potentially disconnected clients.
A subset of clients that are frequently online is designated as a core set; these clients manage the
group membership and help to establish consistency. Venus assumes that clients are correct or
may crash silently, but otherwise follow their specification, and that a majority of the clients in
the core set is correct. The storage service usually functions properly, but may become subject
to attacks or behave arbitrarily. Venus is asynchronous and never violates consistency or integrity
due to timeouts, but relies on some synchrony assumptions for liveness. Clients may occasionally
communicate with each other by email. Since this is conducted in the background, independently
of storage operations, and only if a client suspects that the storage service is faulty, it does not
affect the performance of Venus.

Venus implementation is comprised of a client-side library and a verifier. The client-side li-
brary overrides the interface of the storage service, extending it with eventual consistency and
failure notifications. The verifier brokers consistency information and can be added to the storage
service in a modular way; typically it will also run in the cloud, hosted by the same untrusted
service that provides the storage. Internally, the verifier and the storage service might be replicated
for fault tolerance and high availability. Note that using replication within the cloud does not solve
the problem addressed by Venus, since from the client’s perspective, the entire cloud is a single
trust domain. We stress that Venus does not trust the verifier any more than the storage service —
the two entities may collude arbitrarily against the clients, and separating them simply supports
a layered implementation with commodity providers. Of course, the verifier could be run by a
trusted third party, but it would be a much stronger assumption and existing protocols suffice for
integrity and consistency in this model [8].

We have implemented Venus and deployed it using the commodity Amazon S3 cloud storage
service!. Venus requires an additional message exchange between client and verifier for each op-
eration, in addition to accessing the raw storage. We report on experiments using Venus connected
to S3 and with a verifier deployed either on a remote server or on the same LAN as the clients.
We compare the performance of storage access using Venus to that of the raw S3 service. Both the

latency and the throughput of Venus closely match the performance of the raw S3 service. Specif-

"http://aws.amazon.com/s3/

122

ically, when the verifier is deployed on the local LAN, Venus’ performance is identical to that of
S3. When the verifier is deployed remotely, Venus adds a small overhead to latency compared to
S3 (corresponding to one round of additional communication with the verifier) and achieves the
same throughput. We have also tested Venus’ capability to detect service misbehavior and present
logs from such an experiment, where the clients communicate with each other and detect that the

cloud storage provider has violated consistency (as simulated).

Contributions Our results demonstrate that data integrity and consistency for remote storage
accessed by multiple clients can be obtained with insignificant overhead, no additional trusted
components, and without interrupting normal operations. Specifically, Venus is the first practical

decentralized algorithm that

e verifies cryptographic integrity and consistency of remotely stored data accessed by multiple
clients without introducing trusted components,

e does not involve client-to-client coordination or introduce extra communication on the criti-
cal path of normal operations,

e provides simple semantics to clients, lets operations execute optimistically, but guarantees
that either all operations eventually become consistent, or that every client is informed about
the service failure, and

e is practically implemented on top of a commodity cloud storage service.

Venus may secure a variety of applications that currently use cloud storage, such as online collab-
oration, Internet backup, and document archiving. No less important is that Venus can encourage
applications that require verifiable guarantees, and cannot afford to blindly trust services in the

cloud, to consider taking advantage of what the cloud has to offer.

Comparison to FAUST. FAUST [12] (presented in Chapter 6) is an algorithm that implements
the notion of weak fork-linearizability, which allows client operations to complete optimistically,
as in Venus. It also provides notifications to clients, but they are different and less intuitive —
FAUST issues stability notifications, where each notification includes a vector indicating the level
of synchronization that a client has with every other client. This stability notion is not transitive
and requires users to explicitly track the other clients in the system and to assess their relation to the

data accessed by the operation. FAUST is therefore not easily amenable to dynamic changes in the

123

set of clients. Furthermore, global consistency in FAUST (among all clients) is guaranteed only
if no client ever crashes. FAUST does not work with commodity storage — like other proposals
it integrates storage operations with the consistency mechanism and moreover it does not allow
multiple clients to modify the same object, which is the usual semantics of commodity storage
services.

In contrast, indications in Venus simply specify the last operation of the client that has been
verified to be globally consistent, which is easy to integrate with an application. Venus eliminates
the need for clients to track one another, and enables dynamic client changes. Unlike the previous
protocols [12, 15, 55], Venus allows all clients to modify the same shared object. Most importantly,

the design of Venus is modular, so that it can be deployed with a commodity storage service.

Organization The remainder of the chapter is organized as follows: Section 7.2 presents the
design of Venus, and Section 7.3 defines its semantics. The protocol for clients and the verifier is
given in Section 7.4. Section 7.5 describes our implementation of Venus, and finally, Section 7.6

presents its evaluation.

7.2 System Model

Figure 7.1 depicts our system model, which includes a storage service, a generic commodity online
service for storing and retrieving objects of arbitrary size, a verifier, which implements our consis-
tency and verification functions and multiple clients. The storage service is used as is, without any
modification. Usually the storage service and the verifier are hosted in the same cloud and will be
correct; but they may become faulty or corrupted by an adversary, and they may collude together
against the clients.

There are an arbitrary number of clients, which are subject to crash failures. Clients may be
connected intermittently and are frequently offline. The core set of clients is a publicly known
subset of the clients with a special role. These clients help detect consistency and failures (Sec-
tion 7.4.4) and manage client membership (Section 7.4.6); to this end, clients occasionally com-
municate directly with clients from the core set. A quorum of the core set of clients must not crash
(but may also be offline temporarily). Note that clients of cloud services, and especially users

of cloud storage, do not operate continuously. Hence, clients should not depend on other clients

124

Verifier

— T
S

Commodity Storage Service
-

clien

Figure 7.1: Venus Architecture.

for liveness of their operations. Indeed, every operation executed by a client in Venus proceeds
independently of other clients and promptly completes, even if all other clients are offline.

Clients in Venus are honest and do not deviate from their specification (except for crashing).
Note that tolerating malicious clients does not make a lot of sense, because every client may write
to the shared storage. From the perspective of the correct clients, the worst potential damage by an-
other client is to simply overwrite the storage with bogus information. Venus, just like commodity
cloud storage, cannot perform application-specific validation of written data.

Venus clients are admitted by a member of the core set, as determined by the same access-
control policy as the one used at the commodity storage interface. Clients are identified by a
signature public key and an email address, bound together with a self-signed certificate. Every
client knows initially at least the public keys of all clients in the core set.

Messages between clients and the verifier or the storage service are sent over reliable point-
to-point channels. Client-to-client communication is conducted using digitally signed email mes-
sages; this allows clients to go temporarily offline or to operate behind firewalls and NATSs. Clients
rarely communicate directly with each other.

The storage service is assumed to have an interface for writing and reading data objects. The

125

write operation takes the identifier obj of the object and some data x as parameters and returns an
acknowledgment. The read operation expects an object identifier obj and returns the data stored
in the object. After a new object is successfully stored, clients are able to read it within a bounded
period of time, though perhaps not immediately. We assume that this bound is known; in practice,
it can be obtained dynamically?. The assumption that such time threshold exists reflects clients’
expectation from any usable storage service. Inability to meet this expectation (e.g., due to an in-
ternal partition) can be perceived as a failure of the storage provider as far as clients are concerned.
Venus makes several attempts to read the object, until this time bound is exceeded, at which time

a failure notification is issued to clients.

7.3 Venus Interface and Semantics

Venus overrides the write(obj, x) and read(obj) operations for accessing an object identified by
obj in the interface of the storage service. Venus does not allow partial updates of an object, the
value x overwrites the value stored previously. If the object does not exist yet, it is created. For
simplicity of presentation, we assume that each client executes operations sequentially.

Venus extends the return values of write and read operations by a local timestamp ¢, which
increasing monotonically with the sequence of operations executed by the client. An operation o
always completes optimistically, without waiting for other clients to complete their operations; at
this point, we say that o is red, which means that the integrity of the operation has been checked,
but its consistency is yet unverified.

A weak form of consistency is nevertheless guaranteed for all operations that become red.
Namely, they ensure causal consistency [38], which means intuitively that all operations are con-
sistent with respect to potential causality [42]. For example, a client never reads two causally
related updates in the wrong order. In addition, it guarantees that a read operation never returns
an outdated value, if the reader was already influenced by a more recent update. Causality has
proven to be important in various applications, such as various collaborative tools and Web 2.0
applications [62, 76]. Although usually necessary for applications, causality is often insufficient.

For example, it does not rule out replay attacks or prevent two clients from reading two different

2Amazon guarantees that S3 objects can be read immediately after they are created: http://aws.typepad.
com/aws/2009/12/aws—-importexport—-goes—global.html

126

versions of an object.

Venus provides an asynchronous callback interface to a client, which issues periodic consis-
tency and failure notifications. A consistency notification specifies a timestamp ¢ that denotes the
most recent green operation of the client, using the timestamp returned by operations. All oper-
ations of the client up to this operations have been verified to be consistent and are also green.
Intuitively, all clients observe the green operations in the same order. More precisely, Venus en-
sures that there exists a global sequence of operations, including at least the green operations of all
clients, in which the green operations appear according to their order of execution. Moreover, this
sequence is legal, in the sense that every read operation returns the value written by the last write
that precedes the read in the sequence, or an empty value if no such write exists. Note that the
sequence might include some red operations, in addition to the green ones. This may happen, for
instance, when a client starts to write and crashes during the operation, and a green read operation
returns the written value.

Failure notifications indicate that the storage service or the verifier has violated its specifica-
tion. Venus guarantees that every complete operation eventually becomes green, unless the client

executing it crashes, or a failure is detected.

7.4 Protocol Description

Section 7.4.1 describes the interaction of Venus clients with the storage service. Section 7.4.2
describes versions, used by Venus to check consistency of operations. Section 7.4.3 presents the
protocol between the clients and the verifier. Section 7.4.4 describes how clients collect informa-
tion from other clients (either through the verifier or using client-to-client communication), and
use it for eventual consistency and failure detection. Section 7.4.5 describes optimizations.

For simplicity, we first describe the protocol for a fixed set of clients (', ..., (), and relax
this assumption later in Section 7.4.6. The algorithm uses several timeout parameters, which are
introduced in Table 7.1. We have formally proven that Venus provides the properties defined in
Section 7.3.

In what follows, we distinguish between objects provided by Venus and which can be read or
written by applications, and objects which Venus creates on storage. The former are simply called

objects, while the latter are called low-level objects. Every update made by the application to an

127

object obj managed with Venus creates a new low-level object at the storage service with a unique
identifier, denoted p, in the description below, and the verifier maintains a pointer to the last such
update for every object managed by Venus. Clients periodically garbage-collect such low-level

objects (see also Section 7.4.5).

R Number of times an operation is retried on the storage service.

taummy | Frequency of dummy-read operations.

tsena | Time since last version observed from another client, before that client is contacted directly.

treceive | Frequency of checking for new messages from other clients.

Table 7.1: Venus timeout parameters.

7.4.1 Opverview of read and write operations

The protocol treats all objects in the same way; we therefore omit the object identifier in the sequel.

The general flow of read and write operations is presented in Figure 7.2. When a write(z)
operation is invoked at a client C; to update the object, the client calculates h,, a cryptographic
hash of x, and writes z to the storage service, creating a new low-level object with a unique path
Pz, chosen by the client-side library. Using p, as a handle, the written data can later be retrieved
from storage. Notice that p, identifies the low-level object created for this update, and it is different
from the object identifier exported by Venus, which is not sent to storage. After the low-level write
completes, C; sends a SUBMIT message to the verifier including p, and h,, informing it about
the write operation. C; must wait before sending the SUBMIT message, since if C; crashes before
x is successfully stored, p, would not be a valid handle and read operations receiving p, from
the verifier would fail when trying to retrieve x from the storage service. The verifier orders all
SUBMIT messages, creating a global sequence H of operations.

When a read operation is invoked, the client first sends a SUBMIT message to the verifier, in
order to retrieve a handle corresponding to the latest update written to the object. The verifier
responds with a REPLY message including p, and h, from the latest update. The reader then
contacts the storage service and reads the low-level object identified by p,. In most cases, the
data will be returned by the storage service. The reader then checks the integrity of the data by
computing its hash and comparing it to h,; if they are equal, it returns the data to the application.

If the storage provider responds that no low-level object corresponds to p,, the client re-executes

128

verifier client storage verifier client storage

0] uBMIT
/fe(p)(Ly (S/
e

r

ac\(\ W

(w /
*

W) 200

write operation read operation

Figure 7.2: Operation flow.

the read. If the correct data can still not be read after R repetitions, the client announces a failure.
Similarly, failure is announced if hashing the returned data does not result in h,. Updates follow
the same pattern: if the storage does not successfully complete the operation after R attempts, then
the client considers it faulty.

Since the verifier might be faulty, a client must verify the integrity of all information sent by
the verifier in REPLY messages. To this end, clients sign all information they send in SUBMIT
messages. A more challenging problem, which we address in the next section, is verifying that
p. and h, returned by the verifier correspond to the latest write operation, and in general, that the

verifier orders the operations correctly.

7.4.2 From timestamps to versions

In order to check that the verifier constructs a correct sequence H of operations, our protocol
requires the verifier to supply the context of each operation in the REPLY. The context of an
operation o is the prefix of H up to o, as determined by the client that executes o. This information
can be compactly represented using versions as follows.

Every operation executed by a client C; has a local timestamp, returned to the application
when the operation completes. The timestamp of the first operation is 1 and it is incremented
for each subsequent operation. We denote the timestamp of an operation o by ts(0). Before C;
completes o, it determines a vector-clock value vc(o) representing the context of o; the j-th entry
in vc(o0) contains the timestamp of the latest operation executed by client C; in 0’s context.

In order to verify that operations are consistent with respect to each other, more information

129

about the context of each operation is needed. Specifically, the context is compactly represented
by a version, as in previous works [59, 15, 12]. A version(o) is a pair composed of the vector-clock
version(o).ve, which is identical to vc(o), and a second vector, version(o).vh, where the i-th entry
contains a cryptographic hash of the prefix of H up to o. This hash is computed by iteratively hash-
ing all operations in the sequence with a cryptographic collision-resistant hash function. Suppose
that o; is the last operation of C; in C;’s context, i.e., version(o).vc[j| = ts(o;). Then, the j-th
entry in version(o).vh contains a representation (in the form of a hash value) of the prefix of H
up to o;. Client C; calculates version(o).vh during the execution of o according to the informa-
tion provided by the verifier in the REPLY message. Thus, if the verifier follows its protocol, then
version(o).vh[j] is equal to version(o;).vh[j].

For simplicity, we sometimes write vc(o) and vh(o) for version(o).vc and version(o).vh, re-
spectively. We define the following order (similarly to [59, 15, 12]), which determines whether o

could have appeared before another operation o’ in the same legal sequence of operations:

Order on versions: version(o) < version(o’) whenever both of the following conditions hold:

1. ve(o) < we(o'), i.e., for every k, ve(o)[k] < ve(o')[k].
2. For every k such that vc(o)[k] = ve(o')[k], it holds that vh(o)[k] = vh(d')[k].

The first condition checks that the context of o’ includes at least all operations that appear in
the context of o. Suppose that oy, is the last operation of C}, appearing both in the context of 0 and
in that of ¢’. In this case, the second condition verifies that the prefix of H up to o, is the same
in the contexts of 0 and o’. We say that two versions are comparable when one of them is smaller

than or equal to the other. The existence of incomparable versions indicates a fault of the verifier.

7.4.3 Operation details

Each client maintains a version corresponding to its most recently completed operation opye,.
Moreover, if 0,.¢, 1s a read operation, the client keeps pyre, and e, retrieved by opy, from
the verifier. Note that client C; does not know context and version of its current operation when
it sends the SUBMIT message, as it only computes them after receiving the REPLY. Therefore, it
sends the version of 0,,., with the SUBMIT message its next operation to the verifier.

When sending the SUBMIT message for a READ operation o, C; encloses a representation of o

(including the timestamp ¢s(0)), the version o,,., of its previous operation as well as a signature on

130

vh(0prey)[7]. Such a signature is called a proof and authenticates the prefix of C;’s context of 0., .
If o is a write operation, the message also includes the tuple (p,, h.,ts(0)), where p, is the handle
and h, is the hash of the data already written to the storage provider. Otherwise, if o is a read
operation, and o0,,., was also a read, the message includes (Dprev; Rprev, tS(Oprev)). All information
in the SUBMIT message is signed (except for the proof, which is a signature by itself).

Recall that the verifier constructs the global sequence H of operations. It maintains an array
Ver, in which the j-th entry holds the last version received from client C;. Moreover, the verifier
keeps the index of the client from which the maximal version was received in a variable c; in
other words, Ver[c] is the maximal version in Ver. We denote the operation with version Ver|c|
by o.. The verifier also maintains a list Pending, containing the operations that follow o, in H.
Hence, operations appear in Pending according to the order in which the verifier received them
from clients (in SUBMIT messages). Furthermore, a variable Proofs contains an array of proofs
from SUBMIT messages. Using this array, clients will be able to verify their consistency with C}
up to C;’s previous operation, before they agree to include C;’s next operation in their context.

Finally, the verifier stores an array Paths containing the tuple (p,,h.,ts(0)) received most
recently from every client. Notice that if the last operation of a client C} is a write, then this tuple
is included in the SUBMIT message and the verifier updates Paths|j] when it receives the SUBMIT.
On the other hand, the SUBMIT message of a read operation does not contain the handle and the
hash; the verifier updates Paths|j] only when it receives the next SUBMIT message from C;. The
verifier processes every SUBMIT message atomically, updating all state variables together, before
processing the next SUBMIT message.

After processing a SUBMIT message, the verifier sends a REPLY message that includes c,
version(o..), Pending, Proofs (only those entries in Proofs which correspond to clients executing
operations in Pending), and for a read operation also a tuple (p, h., t,) with a handle, hash, and
timestamp as follows. If there are write operations in Pending, then the verifier takes (p, hy, t.)
from the entry in Paths corresponding to the client executing the last write in Pending. Otherwise,
if there are no writes in Pending, then it uses the tuple (p,, h,, t,) stored in Paths|c|.

When C; receives the REPLY message for its operation o, it verifies the signatures on all infor-

mation in the message, and then performs the following checks:

1. The maximal version sent by the verifier, version(o.), is at least as big as the version corre-

sponding to C;’s previous operation, version(opyey).

131

1: function compute-version-and-check-pending(o)
2 (ve, vh) «— version(o,)

3: histHash < vh|c]|

4. forq=1,...,|Pending|: // traverse pending ops
5: let C; be the client executing Pending|q]

6: velj] «— velj] + 1

7 histHash «— hash(histHash||Pending|q])

8 vh[j] < histHash

9 perform checks 4, 5, and 6 (see text below)
10: version(o) = (vc,vh)

11: return version(o)

Figure 7.3: Computing the version of an operation.
2. The timestamp ts(0,.e,) Of C;’s previous operation is equal to vc(o.)[i], as oy, should be

the last operation that appears in the context of o,.

3. If o is a read operation, then (p,, h,,t,) indeed corresponds to the last write operation in
Pending, or to o, if there are no write operations in Pending. This can be checked by com-

paring ¢, to the timestamp of the appropriate operation in Pending or to ts(o..), respectively.

Next, C; computes version(o), by invoking the function shown in Figure 7.3, to represent
0’s context based on the prefix of the history up to o. (represented by version(o.)), and on the
sequence of operators in Pending. The following additional checks require traversing Pending, and
are therefore performed during the computation of version(o), which iterates over all operations in

Pending:

4. There is at most one operation of every client in Pending, and no operation of C}, that is, the
verifier does not inlcude too many operations in Pending.

5. For every operation o by client C; in Pending, the timestamp ¢s(0) is equal to vc(o.)[7] + 1,
that is, o is indeed the next operation executed by C; after the one appearing in the context
of o,.

6. For every client C; that has an operation in Pending, Proofs|j] is a valid signature by C; on
vh(o.)[j]- That s, the context of o, includes and properly extends the context of the previous

operation of C}, as represented by the hash vh(o.)[j] and the signature Proofs|[j].

If one of the checks fails, the application is notified and a failure message is sent to the core set

clients, as described in Section 7.4.4.

132

7.4.4 Detecting consistency and failures

An application of Venus registers for two types of callback notifications: consistency notifications,
which indicate that some operations have become green and are known to be consistent, and failure
notifications, issued when a failure of the storage service or the verifier has been detected. Below
we describe the additional mechanisms employed by the clients for issuing such notifications,
including client-to-client communication.

Each client C; maintains an array CVer. For every client C; in the core set, CVer[j] holds the
biggest version of C; known to C;. The entries in CVer might be outdated, for instance, when Cj
has been offline for a while, and more importantly, CVer[j] might not correspond to an operation
actually executed by C;, as we explain next. Together with each entry of CVer, the client keeps the
local time of its last update to the entry.

Every time a client C; completes an operation o, it calculates version(o) and stores it in CVer|i].
To decide whether its own operations are globally consistent, C; must also collect versions from
other clients. More precisely, it needs to obtain the versions from a majority quorum of clients
in the core set. Usually, these versions arrive via the verifier, but they can also be obtained using
direct client-to-client communication.

To obtain another client’s version via the verifier, C; piggybacks a VERSION-REQUEST message
with every SUBMIT message that it sends. The VERSION-REQUEST message includes the identifier
k of some client in the core set. In response, the verifier includes Version[k] with the REPLY
message. When C; receives the REPLY message, it updates CVer|k] if the received version is
bigger than the old one (of course, the signature on the received version must be verified first).
Whenever C; executes an operation, it requests the version of another client from the core set
in the VERSION-REQUEST message, going in round-robin over all clients in the core set. When
no application-invoked operations are in progress, the client also periodically (every £gymm, time
units) issues a dummy-read operation, to which it also attaches VERSION-REQUEST messages.
The dummy-read operations are identical to application-invoked reads, except that they do not
access the storage service after processing the REPLY message. A dummy-read operation invoked
by C; causes an update to Version[i] at the verifier, even though no operation is invoked by the
application at C;. Thus, clients that repeatedly request the version of C; from the verifier see an
increasing sequence of versions of C;.

It is possible, however, that C}, goes offline or crashes, in which case C; will not see a new

133

version from C}, and will not update CVer|k]. Moreover, a faulty verifier could be hiding C},’s new
versions from C;. To client C; these two situations look the same. In order to make progress faced
with this dilemma, C; contacts C} directly whenever CVer|k] does not change for a predefined
time period t,.,s. More precisely, C; sends the maximal version in CVer to C}, asking C} to
respond with a similar message. When C; is online, it checks for new messages from other clients
eVery t,eceive time units, and thus, if C, has not permanently crashed, it will eventually receive this
message and check that the version is comparable to the maximum version in its array CVer. If
no errors are found, Cj, responds to C; with the maximal version from CVer, as demonstrated in
Figure 7.4(a). Notice that this maximal version does not necessarily correspond to an operation
executed by C;. All client-to-client messages use email and are digitally signed to prevent attacks

from the network.

client C,; client C, client C; client C,
maximal kn . , maximal kn ,
W} consistency W’;/ failure
. / .f. t- .pe .
rsion|” notification notification
. aximal known 2 FAILURE
consistency | failure
notification™ N
notification
(a) (b)

Figure 7.4: Consistency checks using client-to-client communication. In (a) the checks pass, which leads
to a response message and consistency notifications. In (b) one of the checks fails and C5 broadcasts a
FAILURE message.

When a client C; receives a version directly from C}, it makes sure the received version is
comparable with the maximal version in its array CVer. If the received version is bigger than
CVer|k], then C; updates the entry.

Whenever an entry in CVer is updated, C; checks whether additional operations become green,
which can be determined from CVer as explained next. If this is the case, Venus notifies the
application and outputs the timestamp of the latest green operation. To check if an operation o
becomes green, C; invokes the function in Figure 7.5, which computes a consistency set C(0) of
o. If C(o) contains a majority quorum of the clients in the core set, the function returns green,

indicating that o is now known to be consistent.

134

1: function check-consistency(o)

2: C(o) 0

3: for each client C}, in the core set:

4: if CVer[k].vc[i] > ts(o) then

5: add & to C(o)

6: if C(o) contains a quorum of the core set then
7 return green

8: else

9: return red

Figure 7.5: Checking whether o is green.

C; starts with the latest application-invoked (non-dummy) red operation o, going over its red
operations in reverse order of their execution, until the first application-invoked red operation o is
encountered that becomes green. If such an operation o is found, C; notifies the application that all
operations with timestamps smaller than or equal to ¢s(0) are now green.

If at any point a check made by the client fails, it broadcasts a failure message to all core set
clients; when receiving such message for the first time, a core set client forwards this message to
all other core set clients. When detecting a failure or receiving a failure message, a client notifies
its application and ceases to execute application-invoked and dummy operations. After becoming
aware of a failure, a core set client responds with a failure message to any received version message,

as demonstrated in Figure 7.4(b).

7.4.5 Optimizations and garbage collection

Access to the storage service consumes the bulk of execution time for every operation. Since this
time cannot be reduced by our application, we focus on overlapping as much of the computation
as possible with the access to storage.

For a read operation, as soon as a REPLY message is received, the client immediately starts
reading from the storage service, and concurrently makes all checks required to complete its current
operation. In addition, the client prepares (and signs) the information about the current operation
that will be submitted with its next operation (notice that this information does not depend on the
data returned by the storage service).

A write operation is more difficult to parallelize, since a SUBMIT message cannot be sent to
the verifier before the write to the storage service completes. This is due to the possibility that a

SUBMIT message reaches the verifier but the writer crashes before the data is successfully written

135

to the storage service, creating a dangling pointer at the verifier. If this happens, no later read
operation will be able to complete successfully.

We avoid this problem by proceeding with the write optimistically, without changing the state
of the client or verifier. Specifically, while the client awaits the completion of its write to the stor-
age, it sends a DUMMY-SUBMIT message to the verifier, as shown in Figure 7.6. Unlike a normal
SUBMIT, this message is empty and thus cannot be misused by the verifier, e.g., by presenting
it to a reader as in the scenario described above. When receiving a DUMMY-SUBMIT message,
the verifier responds with a REPLY message identical to the one it would send for a real SUBMIT
message (notice that a REPLY message for a write operation does not depend on the contents of
the SUBMIT message). The writer then optimistically makes all necessary checks, calculations and
signatures. When storing the data is complete, the client sends a SUBMIT message to the verifier.
If the REPLY message has not changed, pre-computed information can be used, and otherwise, the

client re-executes the checks and computations for the newly received information.

verifier client storage

W,
susMIT 71z,

puMMY &

X ,\y
REPLY
consistency
checks ‘3—0\(\

y
—REPLy

Figure 7.6: Speculative write execution.

Venus creates a new low-level object at the storage provider for every write operation of the
application. In fact, this is exactly how updates are implemented by most cloud storage providers,
which do not distinguish between overwriting an existing object and creating a new one. This
creates the need for garbage collection. We have observed, however, that with Amazon S3 the

cost of storing multiple low-level objects for a long period of time is typically much smaller than

136

the cost of actually uploading them (which is anyway necessary for updates), thus eager garbage
collection will not significantly reduce storage costs. In Venus, each client periodically garbage-

collects low-level objects on storage corresponding to its outdated updates.

7.4.6 Joining the system

We have described Venus for a static set of clients so far, but in fact, Venus supports dynamic
client joins. In order to allow for client joins, clients must have globally unique identifiers. In our
implementation these are their unique email addresses. All arrays maintained by the clients and
by the verifier, including the vector clock and the vector of hashes in versions, are now associative
arrays, mapping a client identifier to the corresponding value. Clients may also leave Venus silently
but the system keeps their entries in versions.

The verifier must not accept requests from clients for which it does not have a public key signed
by some client in the core set. As mentioned in Section 7.2, every client wishing to join the system
knows the core set of clients and their public keys. To join the system, a new client C; sends a
JOIN message, including its public key, to some client in the core set; if the client does not get a
response it periodically repeats the process until it gets a successful response. When receiving a
JOIN request from C, a client C; in the core set checks whether C; can be permitted access to the
service using the externally defined access policy, which permits a client to access Venus if and
only if the client may also access the object at the storage service. If access to C; is granted, C}
still needs to verify that C; controls the public key in the JOIN message. To this end, C; asks the
joining client to sign a nonce under the supplied public key, as shown in Figure 7.7.

If the signature returned by C is valid, then C; signs C;’s public key and sends it to the verifier.
After the verifier has acknowledged its receipt, C; sends a final acknowledgment to C;, and from
this time on, C; may invoke read and write operations in Venus.

The verifier informs a client C; about clients that are yet unknown to C;, by including their
signed public keys in REPLY messages to C;. In order to conclude what information C; is missing,
the verifier inspects version(op,.,) received from C; in the SUBMIT message, where it can see
which client identifiers correspond to values in the associative arrays. A client receiving a REPLY
message extracts all public keys from the message and verifies that the signature on each key was

made by a client from the core set. Then, it processes the REPLY message as usual. If at any time

137

joining client client in core-set verifier
JOIN, public key

W

W)‘
W

ack

ack

Figure 7.7: Flow of a join operation.

some information is received from the verifier, but a public key needed to verify this information
is missing, then C; concludes that the verifier is faulty and notifies its application and the other

clients accordingly.

7.5 Implementation

We implemented Venus in Python 2.6.3, with Amazon S3 as the storage service. Clients communi-
cate with S3 using HTTP. Communication with the verifier uses direct TCP connections or HTTP
connections; the latter allow for simpler traversal of firewalls.

Client-to-client communication is implemented by automated emails. This allows our system
to handle offline clients, as well as clients behind firewalls or NATs. Clients communicate with
their email provider using SMTP and IMAP for sending and receiving emails, respectively. Clients
are identified by their email addresses.

For signatures we used GnuPG. Specifically, we used 1024-bit DSA signatures. Each client
has a local key-ring where it stores the public keys corresponding to clients in our system. Initially
the key-ring stores only the keys of the clients in the core set, and additional keys are added as they
are received from the verifier, signed by some client in the core set. We use SHA-1 for hashing.

Venus does not access the versioning support of Amazon S3, which was announced only re-

cently, and relies on the basic key-value store functionality.

138

Log of Client #1: venusclientl@gmail.com

09:26:38: initializing client venusclientl@gmail.com

09:26:43: executing dummy-read with <REQUEST-VERSION, venusclient2@gmail.com>
————— "----: no update to CVersions[venusclient2@gmail.com]

09:26:45: received email from client venusclient2@gmail.com. Signature OK

--------- - failure detected: venusclient2@gmail.com sent an incomparable version
--------- : notifying other clients and shutting down...

Log of Client #2: venusclient2@gmail.com

09:26:30: initializing client venusclient2@gmail.com

09:26:35: executing dummy-read with <REQUEST-VERSION, venusclientl@gmail.com>
----- "----: no update to CVersions[venusclientl@gmail.com]

09:26:40: executing dummy-read with <REQUEST-VERSION, venusclientl@gmail.com>
----- "----: no update to CVersions[venusclientl@gmail.com]

--------- : sending version to client venusclientl@gmail.com, requesting response
09:26:45: executing dummy-read with <REQUEST-VERSION, venusclientl@gmail.com>
----- "----: no update to CVersions[venusclientl@gmail.com]

09:26:49: received email from client venusclientl@gmail.com. Signature OK

--------- - failure reported by client venusclientl@gmail.com
————— "----: notifying other clients and shutting down...

Figure 7.8: Client logs from detecting a simulated “split-brain” attack, where the verifier hides each client’s
operations from the other clients. System parameters were set t0 {gymmy = 9sec., tseng = 10sec., and
treceive = Dsec. There are two clients in the system, which also form the core set. After 10 seconds, client
#2 does not observe a new version corresponding to client #1 and contacts it directly. Client #1 receives
this email, and finds the version in the email to be incomparable to its own latest version, as its own version
does not reflect any operations by client #2. The client replies reporting of an error, both clients notify their
applications and halt.

To evaluate how Venus detects service violations of the storage service and the verifier, we
simulated some attacks. Here we demonstrate one such scenario, where we simulate a “split-brain”
attack by the verifier, in a system with two clients. Specifically, the verifier conceals operations of
each client from the other one. Figure 7.8 shows the logs of both clients as generated by the Venus

client-side library. We observe that one email exchange suffices to detect the inconsistency.

7.6 Evaluation

We report on measurements obtained with Venus for clients deployed at the Technion (Haifa,

Israel), Amazon S3 with the US Standard Region as the storage service, and with the verifier

139

Oraw S3 (a) read

B Venus (verifier in LAN)
®Venus (remote verifier)

avg. read latency (sec)
O P N W M 01 O N 0
|

ol ol

1 10 100 1000
data size (KB)

(b) write
Oraw S3

7 711 mVvenus (verifier in LAN)

6 - | ®Venus (remote verifier) T
O
85 i
)
c 4
2
{8 3
2
52
24

0

1 10 100 1000
data size (KB)

Figure 7.9: Average latency of a read and write operations, with 95% confidence intervals. The overhead
is negligible when the verifier is the same L AN as the client. The overhead for WAN is constant.

deployed at MIT (Cambridge, USA) and locally at the Technion.

The clients in our experiments run on two IBM 8677 Blade Center chassis, each with 14 JS20
PPC64 blades. We dedicate 25 blades to the clients, each blade having 2 PPC970FX cores (2.2
GHz), 4GB of RAM and 2 BroadCom BCM5704S NICs. When deployed locally, the verifier runs

140

on a separate HS21 XM blade, Intel QuadCore Xeon E5420 with 2.5GHz, 16GB of RAM and two
BroadCom NetXtreme II BCM5708S NICs. In this setting the verifier is connected to the clients
by a 1Gb Ethernet.

When run remotely at MIT, the verifier is hosted on a shared Intel Xeon CPU 2.40GHz machine
with 2GB RAM. In this case, clients contact the verifier using HTTP, for tunneling through a
firewall, and the requests reach the Venus verifier redirected by a CGI script on a web server.

All machines run the Linux 2.6 operating system.

7.6.1 Operation latency

We examine the overhead Venus introduces for a client executing operations, compared to direct,
unverified access to S3, which we denote here by “raw S3.”

Figure 7.9 shows the average operation latency for a single client executing operations (since
there is a single client in this experiment, operations become green immediately upon completing).
The latencies are shown for raw S3, with the verifier in the same LAN as the client at the Technion,
and with the remote verifier at MIT. Each measurement is an average of the latencies of 300 op-
erations, with the 95% confidence intervals shown. We measure the average latency for different
sizes of the data being read or written, namely 1KB, 10KB, 100KB and 1000KB.

Figure 7.9 shows that the latency for accessing raw S3 is very high, in the orders of seconds.
Many users have previously reported similar measurements®*. The large confidence intervals for
1000KB stem from a high variance in the latency (also previously reported by S3 users) of ac-
cessing big objects on S3. The variance did not decrease when an average of 1000 operations was
taken.

The graphs show that the overhead of using Venus compared to using Amazon S3 directly
depends on the location of the verifier. When the verifier is local, the overhead is negligible.
When it is located far from the clients, the overhead is constant (450-550 ms.) for all measured
data sizes. It stems from one two-way message exchange between the client and verifier, which
takes two round-trip times in practice, one for establishing a TCP connection and another one
for the message itself. Although we designed the verifier and the clients to support persistent

HTTP connections, we found that the connection remained open only between each client and a

3http://bob.pythonmac.org/archives/2006/12/06/cachefly-vs—amazon-s3/
‘http://developer.amazonwebservices.com/connect /message. jspa?messageID=93072

141

red and green latency
—e— operation completes (red)
10 4 —® - consistency (green) notification, t_dummy= 3
9 -| --a--consistency (green) notification, t_dummy=5
,,,,, }I;
8 ________
8’ T =
L 6 T %
> AT F—— g ————— - -
e 5 e -
q_) ///
IS 4 - i e
s 37
z 5.
1 —— * + % * +
0 T T 1
0 2 4 6 8 10 12
time between application-invoked operations (sec.)

Figure 7.10: Average latency for operations with multiple clients to become red and green respectively.
local proxy, and was closed and re-opened between intermediate nodes in the message route. We
suspect the redirecting web server does not support keeping HTTP connections open.

We next measure the operation latency with multiple clients and a local verifier. Specifically,
we run 10 clients, 3 of which are the core set. Half of the clients perform read operations, and half
of them perform writes; each client executes 50 operations. The size of the data in this experiment
is 4KB. Figure 7.10 shows the average time for an operation to complete, 1.e., to become red, as
well as the time until it becomes green, with ¢ g,mm, set to 3 sec., or to 5 sec. Client-to-client
communication was disabled for these experiments.

One can observe that as the time between user-invoked operations increases, the average latency
of green notifications initially grows as well, because versions advance at a slower rate, until the
dummy-read mechanism kicks in and ensures steady progress. Of course the time it takes for an

operation to complete, i.e., to become red, is not affected by the frequency of invocations.

7.6.2 Verifier

Knowing that the overhead of our algorithm at the client-side is small, we proceed to test the
verifier’s scalability and throughput. Since our goal here is to test the verifier under high load,
we perform this stress test with a synthetic multi-client program, which simulates many clients to

the server. The simulated clients only do as much as is needed to flood the verifier with plausible

142

throughput

40 -----raw S3
—a—\enus (verifier in LAN)

operations / sec.
)
o

O T T T

0 10 20 30 40 50
number of clients

Figure 7.11: Average throughput with multiple clients.
requests.

Amazon S3 does not support pipelining HTTP operation requests, and thus, an operation of a
client on S3 has to end before that client can invoke another operation. Consequently, the through-
put for clients accessing raw S3 can be expected to be the number of client threads divided by the
average operation latency. In order to avoid side effects caused by contention for processing and
I/O resources, we do not run more than 2 client threads per each of our 25 dual-core machines, and
therefore measure throughput with up to 50 client threads. As Venus clients access Amazon S3
for each application-invoked operation, our throughput cannot exceed that of raw S3, for a given
number of clients. Our measurements show that the throughput of Venus is almost identical to that

of raw S3, as can be seen in Figure 7.11.

143

Chapter 8
Conclusions

This thesis dealt with providing consistency, integrity and availability for clients collaborating
through unreliable storage servers or devices. We tackled two areas where such problems arise —

distributed storage and cloud storage.

For distributed storage, we defined a dynamic R/W storage problem, including an explicit
liveness condition stated in terms of user interface and independent of a particular solution. The
definition captures a dynamically changing resilience requirement, corresponding to reconfigura-
tion operations invoked by users. Our approach easily carries to other problems, and allows for
cleanly extending static problems to the dynamic setting. We presented DynaStore, which is the
first algorithm we are aware of to solve the atomic R/W storage problem in a dynamic setting
without consensus or stronger primitives. In fact, we assumed a completely asynchronous model
where fault-tolerant consensus is impossible even if no reconfigurations occur. This implies that
atomic R/W storage is weaker than consensus, not only in static settings as was previously known,
but also in dynamic ones. Our result thus refutes a common belief, manifested in the design of all
previous dynamic storage systems, which used agreement to handle configuration changes. Our
main goal in DynaStore was to prove feasibility; in a recent follow-up work [72] we studied the

performance tradeoffs between consensus-based solutions and consensus-free ones.

In the second part of this thesis we tackled the problem of providing meaningful semantics
for a service implemented by an untrusted provider. As clients increasingly use online services
provided by third parties in computing clouds, the importance of addressing this problem becomes

more prominent. We studied previously defined consistency conditions, and proved that tradi-

144

tional strong semantics cannot be guaranteed with an untrusted remote server. We then showed
that all previously defined weaker, so called “forking”, semantics inherently rule out wait-free im-
plementations, i.e., although they protect the client when the server is faulty they hamper service
availability in the common case, when the server is correct. We then presented a new forking
consistency condition called weak fork-linearizability, which does not suffer from this limitation.
We developed an efficient wait-free protocol that provides weak fork-linearizable semantics with
untrusted storage.

We then presented a higher-level abstraction of a fail-aware untrusted service. This notion
generalizes the concepts of eventual consistency and fail-awareness to account for Byzantine faults.
We realized this new abstraction in the context of an online storage service. We designed FAUST,
a fail-aware untrusted storage protocol using our weak fork-linearizable protocol as an underlying
layer. FAUST guarantees linearizability and wait-freedom when the server is correct, provides
accurate and complete consistency and failure notifications, and ensures causality at all times.

Finally, we presented Venus, a practical service that guarantees integrity and consistency to
users of untrusted cloud storage. Venus can be deployed transparently with commodity online
storage and does not require any additional trusted components. Unlike previous solutions, Venus
offers simple semantics and never aborts or blocks client operations when the storage is correct.
We implemented Venus and evaluated it with Amazon S3. The evaluation demonstrates that Venus
has insignificant overhead and can therefore be used by applications that require cryptographic

integrity and consistency guarantees while using online cloud storage.

145

Bibliography

[1] M. Abd-El-Malek. et al. ursa minor: versatile cluster-based storage. In FAST, 2005.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared
memory. J. ACM, 40(4):873-890, 1993.

[3] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without con-
sensus. In PODC, pages 17-25, 2009.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Prov-
able data possession at untrusted stores. In Proc. ACM CCS, pages 598-609, 2007.

[5] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems.
J. ACM, 42(1):124-142, 1995.

[6] R. Baldoni, A. Milani, and S. T. Piergiovanni. Optimal propagation-based protocols imple-
menting causal memories. Distributed Computing, 18(6):461-474, 2006.

[7] K. Birman, G. Chockler, and R. van Renesse. Towards a cloud computing research agenda.
SIGACT News, 40(2), June 2009.

[8] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of
memories. Algorithmica, 12:225-244, 1994.

[9] K. D. Bowers, A. Juels, and A. Oprea. Proofs of retrievability: Theory and implementation.
Cryptology ePrint Archive, Report 2008/175, 2008. http://eprint.iacr.org/.

[10] K. D. Bowers, A. Juels, and A. Oprea. HAIL: A high-availability and integrity layer for cloud
storage. In CCS, pages 187-198, 2009.

146

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. Cachin and M. Geisler. Integrity protection for revision control. In ACNS, pages 382-399,
20009.

C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted storage. In DSN, pages 494-503,
2009.

C. Cachin, I. Keidar, and A. Shraer. Fork sequential consistency is blocking. Inf. Process.

Lett., 109(7):360-364, 2009.
C. Cachin, I. Keidar, and A. Shraer. Trusting the cloud. SIGACT News, 40(2):81-86, 2009.

C. Cachin, A. Shelat, and A. Shraer. Efficient fork-linearizable access to untrusted shared

memory. In PODC, pages 129-138, 2007.

T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group
membership. In Proceedings of the 15th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC’96), pages 322-330, 1996.

G. Chockler, S. Gilbert, V. C. Gramoli, P. M. . Musial, and A. A. Shvartsman. Reconfigurable
distributed storage for dynamic networks. In 9th International Conference on Principles of

Distributed Systems (OPODIS), 2005.

G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic. Reliable distributed storage. IEEE
Computer, 42(4):60-67, 2009.

G. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A compre-

hensive study. ACM Computing Surveys, 33(4):1-43, 2001.

G. Chockler, D. Malkhi, and D. Dolev. A data-centric approach for scalable state machine
replication. In FuDiCo, LNCS Volume 2584, 2002.

B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-only memory:
Making adversaries stick to their word. In Proc. SOSP, pages 189-204, 2007.

T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press,
Cambridge, MA, USA, 1990.

147

[23] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE Transac-
tions on Parallel and Distributed Systems, 10(6):642—-657, 1999.

[24] D. Davcev and W. Burkhard. Consistency and recovery control for replicated files. In /0th
ACM SIGOPS Symposium on Operating Systems Principles (SOSP), pages 87-96, 1985.

[25] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-
ramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store.

In SOSP, pages 205-220, 2007.

[26] C. Delporte, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and S. Toueg. The
weakest failure detectors to solve certain fundamental problems in distributed computing. In
Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC 2004),
pages 338-346, 2004.

[27] A. El Abbadi and S. Dani. A dynamic accessibility protocol for replicated databases. Data
and Knowledge Engineering, 6:319-332, 1991.

[28] B. Englert and A. A. Shvartsman. Graceful quorum reconfiguration in a robust emulation
of shared memory. In ICDCS ’00: Proceedings of the The 20th International Conference
on Distributed Computing Systems (ICDCS 2000), page 454, Washington, DC, USA, 2000.
IEEE Computer Society.

[29] C. Fetzer and F. Cristian. Fail-awareness in timed asynchronous systems. In Proc. 18th ACM

Symposium on Principles of Distributed Computing (PODC), pages 314-321, 1996.

[30] R. Friedman, M. Raynal, and C. Travers. Two abstractions for implementing atomic objects

in dynamic systems. In OPODIS, pages 73-87, 2005.

[31] S. Gilbert, N. Lynch, and A. Shvartsman. Rambo ii: Rapidly reconfigurable atomic memory
for dynamic networks. In Proceedings of the 17th Intl. Symp. on Distributed Computing
(DISC), pages 259-268, June 2003.

[32] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing remote untrusted
storage. In NDSS, 2003.

148

[33] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical accountability for

distributed systems. In SOSP, pages 175-188, 2007.

[34] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-tolerant storage.
In SOSP, pages 73-86, 2007.

[35] M. Herlihy. A quorum-consensus replication method for abstract data types. ACM Trans.
Comput. Syst., 4(1):32-53, 1986.

[36] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and

Systems, 11(1):124-149, Jan. 1991.

[37] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463—-492, 1990.

[38] P. W. Hutto and M. Ahamad. Slow memory: Weakening consistency to enchance concurrency

in distributed shared memories. In ICDCS, pages 302—-309, 1990.

[39] A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for large files. In CCS, pages
584-597, 2007.

[40] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable secure file
sharing on untrusted storage. In FAST, 2003.

[41] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM
Transactions on Computer Systems, 10(1):3-25, 1992.

[42] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,

21(7):558-565, 1978.

[43] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. [EEE Transactions on Computers, 28(9):690-691, 1979.

[44] L. Lamport. On interprocess communication — part ii: Algorithms. Distributed Computing,

1(2):86-101, 1986.

[45] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133—
169, May 1998.

149

[46] L. Lamport, D. Malkhi, and L. Zhou. Brief announcement: Vertical paxos and primary-
backup replication. In 28th ACM Symposium on Principles of Distributed Computing
(PODC), August 2009. Full version appears as Microsoft Technical Report MSR-TR-2009-
63, May 2009.

[47] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proceedings of the Seventh
International Conference on Architectural Support for Programming Languages and Oper-

ating Systems, pages 84-92, Cambridge, MA, 1996.

[48] J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secure untrusted data repository (SUNDR). In
OSDI, pages 121-136, 2004.

[49] J. Li and D. Mazieres. Beyond one-third faulty replicas in Byzantine fault tolerant systems.
In NSDI, 2007.

[50] N. Lynch and A. Shvartsman. Robust emulation of shared memory using dynamic quorum-
acknowledged broadcasts. In In Symposium on Fault-Tolerant Computing, pages 272-281.
IEEE, 1997.

[51] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.

[52] N. A. Lynch and A. A. Shvartsman. RAMBO: A reconfigurable atomic memory service for
dynamic networks. In DISC, 2002.

[53] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou. Boxwood: Abstrac-
tions as the foundation for storage infrastructure. In OSDI, pages 105-120, 2004.

[54] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database system on
untrusted storage. In Proc. OSDI, 2000.

[55] M. Majuntke, D. Dobre, M. Serafini, and N. Suri. Abortable fork-linearizable storage. In
OPODIS, pages 255-269, 2009.

[56] D. Malkhi and M. Reiter. Byzantine quorum systems. In STOC, pages 569-578, 1997.

[57] T. Marian, M. Balakrishnan, K. Birman, and R. van Renesse. Tempest: Soft state replication
in the service tier. In DSN, pages 227-236, 2008.

150

[58] J.-P. Martin and L. Alvisi. A framework for dynamic byzantine storage. In Proceedings of
the International Conference on Dependable Systems and Networks, 2004.

[59] D. Mazieres and D. Shasha. Building secure file systems out of Byzantine storage. In PODC,
pages 108-117, 2002.

[60] R. C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security and
Privacy, pages 122—-134, 1980.

[61] M. Merritt and G. Taubenfeld. Computing with infinitely many processes. In DISC, pages
164-178, 2000.

[62] A. Milani. Causal consistency in static and dynamic distributed systems. PhD Thesis, “La

Sapienza” Universita di Roma, 2006.

[63] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced
databases. Trans. Storage, 2(2):107-138, 2006.

[64] A. Oprea and M. K. Reiter. On consistency of encrypted files. In S. Dolev, editor, DISC,
volume 4167 of Lecture Notes in Computer Science, pages 254-268, 2006.

[65] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables. In Proc.
ACM CCS, pages 437448, 2008.

[66] J. Paris and D. Long. Efficient dynamic voting algorithms. In /3th International Conference
on Very Large Data Bases (VLDB), pages 268-275, 1988.

[67] R. Rodrigues and B. Liskov. Rosebud: A scalable byzantine-fault-tolerant storage architec-
ture. Technical Report TR/932, MIT LCS, 2003.

[68] R. Rodrigues and B. Liskov. Reconfigurable byzantine-fault-tolerant atomic memory. In
Twenty-Third Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting (PODC), St. John’s, Newfoundland, Canada, July 2004. Brief Announcement.

[69] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Comput. Surv., 22(4):299-319, 1990.

151

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk, editor, Proceed-
ings of Asiacrypt 2008, volume 5350 of LNCS, pages 90-107. Springer-Verlag, Dec. 2008.

A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D. Shaket. Venus: Verification
for untrusted cloud storage. In the ACM Cloud Computing Security Workshop (CCSW), 2010.

A. Shraer, J.-P. Martin, D. Malkhi, and 1. Keidar. Data-centric reconfiguration with network-
attached disks. In the 4th ACM SIGOPS/SIGACT Workshop on Large Scale Distributed Sys-
tems and Middleware (LADIS), July 2010.

A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, , and P. Maniatis. Zeno: Eventually
consistent Byzantine fault tolerance. In NSDI, 2009.

D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer, and C. Hauser. Managing
update conflicts in Bayou, a weakly connected replicated storage system. In SOSP, pages

172-182, 1995.

R. van Renesse and F. B. Schneider. Chain replication for supporting high throughput and
availability. In Sixth Symposium on Operating Systems Design and Implementation (OSDI
04), December 2004.

J. Yang, H. Wang, N. Gu, Y. Liu, C. Wang, and Q. Zhang. Lock-free consistency control for
Web 2.0 applications. In WWW, pages 725-734, 2008.

E. Yeger Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primary components.
In 16th ACM Symp. on Principles of Distributed Computing (PODC-16), pages 63-71, Au-
gust 1997.

A. R. Yumerefendi and J. S. Chase. Strong accountability for network storage. ACM Trans-
actions on Storage, 3(3), 2007.

152

1DINQ V2 MV 0°210° ROWI MY 2V 27 DY NIN°IT WA N PN AN0AR NRT 2PWNTI 2°00M
JIV2 WINWR DOYUW MDA NIITP? Inah Mpwt [y

P07 WOR PN72W 2°1°21 1IR 5 P92 AR K2 PI0ART 70 DX 20070 1R 4 P2
190 TN MWST NIPPUIA0 2PN L TPAR KD NI DY MW YO0 YW PN NPVIVD0NR MImpoR
MmN 992 72WR 7223 0O UK L[18] PPN nawi WK ox AR 0°a%»a 1°0aaR 1003
MP2 OX ,2wWnY PPN N0NRT DWW WRD L2377 2812 NI NIHT DR 0°2°7P0 O 10N TR0
DA IR LTI DR RPN 2100 R MPY AR MR YT 19TV RIW 112 991 TN
[18,15 ,14] 11 57m% 17707 NPLIVDO0NRIT NNV 257 NININPK T YWY

NINan NMoAYHRR NP1 Yntw awww Mmw ,[14] FAUST nR 23031 1R 6 P92
WK L7377 2872 .20 PI0ART POD IWRD O3 NIMPY? 77172 IR°03A0 P02 7700300 RN
Y7o SW N2 MIAT 0N AR NPUIL0 1R o3 mMph? mvan FAUST ,ppn nonxa naw

10O 1Y TI0MAR CNIW OV WInwH NN X7 nnTip M7ayy FAUST ,nRt 95 nynb
TIONRIT *NIPW 12°RY NOART MPWH MNP 192 032570 2°23P1010 N7 MWNT 128 MOwn
W00 T Y2 TINDY 2T YT DV 120091 ARIPY MWD pwian 93 7172 299910 010 2OYXnT
W NPLIVD ONPI NMNPWI DR P77 MW X1 Venus .7 paoa axnn ,[78] Venus nX awnm
QAW 0w T°I¥A 1ORY L0017 TV 10N TNIY oy Wt 1001 VEeNnus Ly jomRag y7n
FAUST-7 172772 nows apo0ind mphs wen Venus ,nmind X 23wm o112 .98 2°mwa
217 N127 NPPN aY T7RNa2 2120 Venus anvwiw’t ANy Ty e01mw 77,0070 MINneam
1V OAKR MW oY VEeNnus-2 wnnwi .1ava NIPIRDA MYPN2a 7901 ¥71on YW 0w wiaswn
127 77PN 770 X9 scalable 1107 Venus-w R 1R Amazon S3

aTH PN

W1 01°2 171 2700 (M1oNR MR Im192) 2°P0T 237YN 1337 NIRIR NOAR MOIWn
03 77123 NITAR NIPO0NT 7R NPTV 7NN N2 72X NI .N1IAIN N12°202 207
,22 07 .79KRD NDWRY 0221w N1310N 1901 QIS ,NRT NN 097720 PNYA) 27X 092302
NP Y2 27 (79RD NINIR HW R 1907 IR) 772 PIOAR 1R 77207 21N 90 N3
N192397 X7 A0 1773V VAR N2VA YW 2P 19D/UPT B9 PP TIRNE NN
9239 07791 PIOAR NINND 2OYXA TI0NKR N2IVA DW 2927 2°17%71 ,NONRT MR 2w 720007
Sentry level™ mioawn ooyoxn HP-1 IBM Swnb) mpa 1aRa Hw oonw 0o973 ay
IR NP 19R Nwn 707 qona .(“high-end’-y “midrange”

NN 17 NPIRIR NOAR MWR? 3277 7200IT0PR MY LA NN 1008 NNUPY IR
MPART 221AR R? (NONR 21PN IX) 22N 712972 NM2NA 72X MM NDwH .N9pa 7
y¥m ,(cloud) "1av"-2 NONR 71°7 NHOI NPIRDIDID F2WINVIR YT 1D°W 7 HY NpoIon
INWRIT V2T R DINOND2 MIPAR NPV SNWA NP0 T TN .0°27 07913 070 DY DINUIR2
W7 217K N9 2°NWT DY 277 27902 [NINAA PI0AR NIV TOXTONR WD 5wR
N2VNY DWW 2°NTW NOIDT NIIWANN 2OPN 22N DRI 019D 0NRIT 2w 707N
PODY TMNX 0P 1172 ,(MAY" NONR DWNR) PN NOAR SNINWA NIPHR 01T RO 70w 7°Yan
7D 19IR2 PIPN N1AY D9V ARY PAR 119X WK 11V 7I0MR Wanwnan 7poh Mn

PD0M 1727 2195W ,72¥2 2771 19IR2 171271 NN NIDIYNA IDOW AN TNAPRY NN
SW M2°01 0¥ TTIANIY MIWOR PR N°11N01°0K NN — A¥aun N92a3n 7100w M01% mTny
ADIR I1W M2 ,PRNNONR W L[6] YTn DW PRy 22w 2°ONNwn vwan ANy
5-2 990w Y7ORaW 7731 :M9°01% NOWNT MITAY DR 023 L,V YW PR 2w 2%awnng
NOOIT *T° HYW 12,7272 0N V3w NP°DI2 TIAYY 9211 79N .NPIN21°0K NOWNR2 N
DN DWW 7292 ARXT 0T OV 2aw 2% 2°W7 1°7vA IR L0190 MPUHI12 TINYY o1 navnb 2N
DORXIN 1IRY D°0TIP DONW CIW AR IRANT? .NI1PIDI7 NIV MITOAY DR AAT? 911 NOwnan
L0102 2127 (019 1MD3) 0 TR .0ONW SWIPW NYI NP0 UOW NIV ,NOTVNRNN ONINR
N127X NYP03W N2 0w 210" DR P 21977 T02 M1 WIbwa Ty D1 m1d
SW PRIV QN WIAT NOIYNA 2°NWT W IRD P 11901 M0 1N 1N AANTA2 Mg
A pah]

Swnb) N2Yna "2IRD" A Y AR DOP 19K NRAITI DR WRI MIINR DY 0w 070
WK HWnY ,0MWn YW DIRCN mY2an% 1127 L,(71W 220w A0IR Y 172Y° 2w MMPY 12 287
DOWHANWH IR 0°°112°7 %7 01D 2O1°°P MININDT .2°2pna 27 XD IPW 907
MW 92 HY 2°3077 75 2PN P2 (DINRNP - NN An007 Pwnb) ORI PN2I0 AN TIAYR2
112) 1991 DMIXNP2 WINW DOWNT PXNIONR YW NS DN ANNKRT ,IWYNRT .N07vna
DR DO20XM T AR 0997797 1R 3 2792 .N1PNN21°0K MIDIWNA ¥IXNY 021001 DR (0TIRNp
A0 TNIONP W WHRAT PUIPY MM 210K POAR 2NNk L[3] DynaStore
NN VTR YW 120091 ARPD

N2 070 BV 012 NYEIA RO 112 1I0MR X7 O1AOR 1I0AR N127YAY DD VIR
YR DWARY A0 ANWY WnANwR? DWORA 07001 11V PN JAV2 0NN LBIT0I1R2 N120
19X IWRI Q2ARWH NIIPY NIMIPY7 D2WORA 12V "MW 130K PIOAR NIDIvAn A1wa .00 7o
952 0%wn MpPYa M2 .NPIRIR NOAR NM2WNR2 1M WRIM 09w 871, (on demand) oownTa
MITPHR 4 2792 0577207 1RW 7DD ,NRT NI1NY AT Y02 WNOWAW DOARWHT M2V P N1 YA
MWL VTN NRYW DR 10 Swnt 2wn J[17] 2ownnwnn PER 527 TART DOMIYH 1Y o mw
WY1 DPINR TRA VYD VTN 2w DOVIV0 01R 31N IR YT DIDNWAT NIMIPOY RN 1va
MIPDI NI RDY LV M2 ,PD00 NAYARA NTPRNN 7 WYNT ,A0112 19K N1PAI0 DY 12v2
JIVA S NIwoR nopnn

V2 NONR SMW2A D WHNWHAT MMIPY? D IWORAT AR IR0 0°72 DOINON 1IN 7 7712va
N2 NAWHRA T 772V LIDXD A7INA PYAY XIND,0°92P0 07 MR NOART MW IR 2P0
DA TR 3912° KO ,NIND K7 WA .NI2NA IM0ARKD MY 152 2OWANYHA 120 WK DR

100 — SAWnN NOTIAR AURIPO2 VTR NOTOY 'D1D NN WY1 phen

SMINDNWIA 727737 NYDDIT 129N DY HRIWOT SN0 1101 — 1171007 7717 NIR

N DTV PPN Q%N Rnw

29N KD 1ONN

"R By M2

IRINT NPAPY MW7 YW phh 120 awh

7791017797 MW7

299 9TI005N

DRIWOH 2100 1101 — 1710017 VDD WA

2010 ="anvoo 7om v'wn DI9R

N NtV PPN Q%N Rnw

29N R 1ONN

=99 9 T7I0O5N

	main
	hebrew-reverse
	hebrew-part_Part8
	hebrew-part_Part7
	hebrew-part_Part6
	hebrew-part_Part5
	hebrew-part_Part4
	hebrew-part_Part3
	hebrew-part_Part2
	hebrew-part_Part1

