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Abstract

Many client-server systems on the Internet are susceptible to Denial of Service (DoS)
attacks. This thesis presents Beaver - a client-server architecture that is robust against
DoS attacks. Its main purpose is to protect client-server communication from DoS
attacks, especially from flooding it with messages.

Beaver employs two DoS-protection mechanisms: one for admission of new client
sessions, and another for protecting ongoing sessions. The former uses dedicated
admission servers (ADMs). The use of ADMs takes the admission load off the server,
so that the server is not concerned with DoS attacks on clients trying to be admitted
into the system. The latter is ®-Hopper - a two-party communication protocol that
mitigates DoS attacks by filtering packets. ®-Hopper protects client-server
communication sessions from DoS attacks, but does not authenticate the
communication by itself. ®-Hopper only provides dynamic filtering and rate-limiting
facilities. Together, the ADMs and ®-Hopper are very effective against DoS attacks.

At the first stage, we design and implement a ®-Hopper. Our implementation extends
a Linux kernel's IPSec implementation. IPSec (IP Security) is a suite of protocols for
securing Internet Protocol (IP) communications by authenticating and/or encrypting
each IP packet in a data stream. The implementation is followed by experiments,
which investigate the influence of attacking power on systems with and without our
protection.

Next, we design and implement a rate-limiting mechanism also by extending Linux
kernel's IPSec implementation. Next, we design and implement the admission server.

Finally, we build the whole system by putting all parts together, and by running
experiments, we show that the system is robust even when DoS attacks and
compromised clients are present.
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http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Encryption
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1. Introduction

Denial of service (DoS) attacks, in which an attacker attempts to deplete the target's
resources, are common over the Internet [9]. In client-server communication, a DoS
attack may be launched by sending many bogus requests to the server. These bogus
requests might consume most of the server's resources, preventing it from answering
legitimate client requests. To obtain a large capacity for sending invalid requests, an
attacker sometimes utilizes many compromised machines, which send the bogus
requests to the server in concert. This is referred to as a distributed DoS (DDoS)
attack. Since in this research we are not concerned with the source of an attack, we
simply use the term DoS to refer to either DoS or DDoS.

The simplest way to perform a DoS attack, independent of the target's specifics, is to
congest the network leading to or from the target. However, such an attack requires
large transmission capacity, is easy to detect, and commercial solutions that solve this
problem already exist [22]. But even if the network is not congested by the attack, it is
still possible to overload the server so that it cannot answer valid client requests [18].
Attacks that do not congest the network are more difficult to detect. The more
resources, e.g., processing time, the server allocates per request, the easier it is for the
attacker to overload the server without congesting the network. In this research, we
deal with DoS attacks that do not congest the network, but may still degrade the
service provided to the clients. We compare the effectiveness of authentication-based
DoS-resistance solutions by measuring the performance of real system
implementations under various DoS attacks. This empirical study results in important
insights regarding DoS attacks and defenses.

The first approach that we examine is using per-packet authentication, as done in
IPSec [3] for example. IPSec uses shared secret keys to provide per-packet
authentication. In [10] it is argued that providing per-packet authentication for valid
client-server traffic is sufficient to prevent a DoS attack, since bogus requests are
identified and discarded. Indeed, IPSec helps in mitigating the effects of DoS attacks,
as servers usually perform much more work per request than IPSec needs in order to
validate the request. In our experiments we show that a simple HTTP server that is not
protected against DoS attacks collapses when faced with 10,000 bogus requests per
second. When IPSec is deployed to authenticate communication, the system can
withstand almost up to 30,000 bogus requests per second and still answer virtually all
valid client requests.

Although IPSec helps defend against medium-strength attacks, its shortcoming is that
calculating the authentication information for each packet requires substantial CPU
power for large volumes of traffic, and may in effect shift the DoS problem from the
server to the authentication module. For example, in our experiments, at 80,000 bogus
requests per second and IPSec deployed, the server manages to answer only about
45% of the valid requests, while a 100 Mbit network becomes congested at about
150,000 requests per second.



In addition to authentication information, the IPSec header includes a 32-bit Security
Parameter Index (SPI) field, which is unique for a flow. A packet that does not have a
valid SPI is discarded, while a packet that contains a valid SPI goes through IPSec's
authentication phase. In this research, we show that it is possible to significantly boost
the resilience of IPSec to DoS attacks by using a random SPI value that is unknown to
the attacker, and thus reducing the number of cryptographic operations performed.
Thus, proposals to use a predictable SPI value [1] are doomed to provide only a weak
defense against DoS attacks, since the adversary can craft all of its bogus packets to
reach IPSec's computationally-intensive authentication phase. Nevertheless, even
using a random SPI value only provides temporary protection if the SPI value is fixed
for the entire IPSec session, as is typically the case. In reality, attackers may
eventually discover a session's SPI value, either by intercepting a message pertaining
to the session as it traverses the Internet, or by observing the effects of their own
actions (a DoS attack succeeds when a correct SPI is targeted).

In order to avoid using a fixed SPI, and still reduce the number of cryptographic
computations under heavy attacks, one can employ authentication information that
changes over time, and not per packet [7, 17]. Each packet contains a filtering
identifier (FI), taken from a secret pseudorandom sequence, known only to the two
communicating parties. In this research, we use IPSec's SPI field as the FI. The
pseudorandom sequence is locally generated by the client and the server using a
shared secret key (as in IPSec), and each client shares a different key with the server.
Secret keys are common in existing client-server communication systems, e.g., SSL-
based transactions, or IPSec-based VPNSs. Every fixed time interval, the FI is chosen
to be the next number from the sequence. A party that receives a packet validates the
FI against the expected value. If there is no match, the packet is discarded and no
further processing is performed. This approach is called FI hopping. FI hopping
requires less processing time when dealing with high volumes of traffic (as in a DoS
attack), since the FI needs to be recalculated only once per time interval, e.g., 5
seconds, and not per packet. Naturally, many packets may be transmitted during a
single time interval. On the other hand, the interval can be short enough so that an
attacker will not have time to detect the FI value in use and react to it. Recall that a
real-world attacker usually employs thousands of zombie machines, and coordinating
all of them to start employing a discovered FI value may take a long time, perhaps
even 10 seconds or more.

We compare implementations of the two methods, per-packet authentication and FI
hopping. We call our implementation of FI hopping ®-Hopper. The per-packet
authentication used in our experiments is a standard Linux IPSec implementation. The
®-Hopper implementation presented here is a refinement of the ideas presented in
[7, 17]. These papers suggested hopping in the context of ports, and communicating
with a single client, while providing no real implementation. We implement and
deploy a protocol that supports communication from many clients to a server (can be
extended to a server farm), and can use various header fields of different lengths to
hold the FI, e.g., IPSec's SPI field. Alternatively, the FI can be appended to the
packets in transit. We describe an implementation of ®-Hopper by modifying a Linux
kernel's IPSec [3] implementation. Both IPSec and ®-Hopper use SHA-1 [21] as a
pseudorandom function (PRF) [11] for the calculation of the authentication
information. For simplicity, for the rest of this paper we neglect the probability that
the adversary can forge the PRF without knowing the secret key.



®-Hopper includes a rate-limiter that protects the server from corrupt legitimate
clients, instead of just letting authenticated communication pass through, as IPSec
does. It is common that valid clients get corrupted by a virus or a worm [24], and
these clients may behave unexpectedly, possibly overloading the server.

We provide measurement results for HTTP traffic over UDP or TCP and for file
transfers over TCP. When the communication is not authenticated, we show that the
server crashes even when the attack strength is light. Additionally, with no
authentication in place, it is easy to tear down a TCP connection using a low-rate DoS
attack [16] or a single RST packet [27]. We validate these results in our experiments.
For authenticated communication, we show that IPSec alone can only mitigate DoS
attacks to a limited extent, while ®-Hopper provides virtually perfect protection even
for attacks almost three times stronger. For file transfers over TCP, even when IPSec
provides adequate protection in terms of delivery probability, it incurs a severe
penalty on latency, with latencies ranging from 5 to 1,000 times more than the latency
exhibited by ®-Hopper, for attacks ranging from 30,000 to 50,000 bogus requests per
second, respectively. For these attacks, ®-Hopper exhibits the same latency as the
latency when no attack is performed at all. Our experimental results validate the
analytical results presented in [7].

Some important insights follow from our measurements:

e A server that has no DoS protection at all collapses even under a light DoS attack.

e Per-packet authentication is effective against medium-strength attacks, but fails
for attacks well under the wire speed.

e It is important to keep IPSec's SPI field unknown to the attacker at all times. To
support this, the initial SPI should be random.

e FI hopping can ensure that IPSec's SPI is unknown to the attacker with high
probability, and can thus leverage IPSec's capabilities to provide better DoS
protection, as we show in the first real implementation and deployment of FI
hopping.

e Rate-limiting traffic is important even when authentication is performed, since
traffic corrupt valid clients passes authentication, and can thus consume an
arbitrary amount of the server's resources. Fixed limits per flow are not adequate
for bursty traffic, and it is better to be flexible and adjust rates between flows
according to the actual generated traffic.




2. Design Goals

We consider the problem of protecting the following basic client-server
communication from DoS attacks:
e A server or a server farm provides service to authorized clients. Client-server
sessions are relatively long, and consist of several transactions, potentially
using authenticated communication.

The number of registered clients may be very large, e.g., 1,000,000, but it is expected
that only a small number of them, e.g., 1,000, will communicate with the server
simultaneously. These basic properties are found in many web-based services, e.g.,
banking, stock trading, and online auctions. DoS attacks on these services may
degrade the service so much that clients lose money due to its unavailability.

Our goals in protecting the basic system against DoS attacks are as follows:

e Session DoS-resistance. Protect ongoing client-server sessions. Moreover,
separate the “war zones” - attacking the admission process should not affect
ongoing sessions.

e Admission DoS-resistance. Protect the admission process in which registered
clients create new sessions with the server.

e Fast communication. Do not harm communication latency for established
client-server sessions.

One might argue that authenticating client-server communication alone is enough to
filter out invalid packets sent by DoS attackers. But although authentication is enough
to discriminate bogus messages from valid ones, the validation itself is costly. This is
especially a problem if the server is the one performing the validation, as happens
when using SSL. Since the server should be mainly busy with answering requests, we
would like to minimize the number of invalid packets that reach the server and cause
extra processing. Our measurements in Section 6 show that by avoiding per-packet
authentication we can resist much stronger DoS attacks.



3. Related Work

Our work continues the line of research on prevention of Distributed Denial of
Service attacks, which focuses on filtering mechanisms to block and discard the
offending traffic.

Other mechanisms for mitigation of DoS attacks include the use of proxy networks
[26] such as SOS [15] and Mayday [2]. This approach is different from ours, since
proxy networks cause a substantial delay in latency as messages are routed through
the overlay, and rely on the client not knowing the server's IP address. In contrast, the
systems we examine do not require the complicated setup of an overlay network and
allow the direct client-server communication, without incurring a penalty on latency.
Other work focuses on quantifying DoS activity over the Internet [20], while our
focus is on DoS protection.

An additional work [25] employs an overlay network similar to SOS, which uses
spread-spectrum like path diversity to counter DoS attacks. The system also uses
secret keys to authenticate valid messages. Like SOS, it requires additional nodes to
construct the overlay network, and the additional overhead has an impact on message
throughput and latency.

Independently of our work, Lee and Thing [17] examined the use of port-hopping to
mitigate the effect of DoS attacks. Their empirical results do not state the strategy the
attacker employs for its attack, and it is not clear whether the adversary cannot launch
a better attack against their protocol.

Wang, et al. [26] provide simulation results for various DDoS attacks on general
proxy networks, and the applications protected by them. However, they only deal with
general proxy networks.

It has already been shown that DoS attacks can be harmful even when they are low-
rate and do not congest the network [16, 18]. We want to gain insights on the effect of
low-rate DoS attacks on systems protected using efficient authentication mechanisms
such as IPSec and FI hopping. Our complete, fully-tested FI hopping implementation,
®-Hopper, is one of our new contributions, resulting from the need to perform
extensive measurements on a real implementation.

The idea of repeatedly changing authentication credentials to avoid suffering damage
due to exposure, has been used in different contexts, e.g., in the S/KEY authentication
method [12]. ®-Hopper is based on ideas that have been suggested in [7] and in [17].
However, these previous suggestions lacked in several areas, and so ®-Hopper differs
from them in the following ways:

1. ®-Hopper supports communication between many clients and a single server,
and not just two-party communication.

2. ®-Hopper uses realistic rate-limiting techniques, as opposed to the purely
theoretical analysis in [7] that assumed a simplified model of rate-limiting at
the network level. Additionally, rate-limiting is performed per client, and not
per F1. The protocol described in [17] uses no rate-limiting at all.



3. ®-Hopper is implemented, and we provide measurements of the actual
protocol implementation, and not of its simulated behavior [17] or of an
analytical analysis of the protocol (as given in [7]). The analysis in [7] shows
that the basic idea of hopping is very effective against DoS attacks, but does
so under simplified network and rate-limiting models. In Section 6 we have
shown that the analysis in [7] gives a good estimate of realistic results, using a
real implementation of all of ®-Hopper's components. Other work simulates
the effect port-hopping has on the delivery probability under attack, and shows
that using it is expected to decrease the load on the server [17].

IPSec [3] performs filtering at the IP layer, by authenticating messages using message
authentication codes (MACSs), based on shared secret keys. IPSec ensures that higher-
level protocols only receive valid messages. However, the work required to
authenticate each message is invested for each incoming packet that has a valid SPI.
Once the SPI, which is sent in the clear, is known, an attacker can perform a DoS
attack by overloading IPSec with many bogus packets to authenticate. In contrast, our
solution ensures that the authentication phase is reached only for packets that are valid
with high probability, by constantly changing the clear text filtering identifier, e.g.,
the SPI. Our results in Section 6 show that relying only on authentication to provide
DoS protection is futile.



4. Beaver’s Architecture

We present Beaver - a robust architecture and method to protect servers from DoS
attacks. Beaver employs two DoS-protection mechanisms: one for admission of new
client sessions, and another for protecting ongoing sessions. The former uses
dedicated admission servers (ADMs). The latter is ®-Hopper - a two-party
communication protocol that mitigates DoS attacks by filtering packets. The use of
ADMs takes the admission load off the server, so that the server is not concerned with
DosS attacks on clients trying to be admitted into the system.

®-Hopper protects client-server communication sessions from DoS attacks, but does
not authenticate the communication by itself. ®-Hopper only provides dynamic
filtering and rate-limiting facilities. Together, the ADMs and ®-Hopper are very
effective against DoS attacks.

4.1 Sessions in Beaver

Figure 1 illustrates Beaver’s architecture, and shows how a session is established: (1)
a pre-registered client requests an ADM to start a new session with the server. The
client can choose the ADM arbitrarily. Specifically, a client that fails to start a session
through some ADM may choose a different ADM for the admission process. (2) The
ADM communicates with the client via ®-Hopper and authenticates the client.
Communication via ®-Hopper is marked in bold lines. The figure illustrates
®-Hopper in tunnel mode, i.e., hopping between gateways. (3) The ADM contacts the
server through a constant ®-Hopper session that they share, and asks it to start a new
session with the client. The server then opens a new ®-Hopper session with the client.
(4) The ADM notifies the client that it can start communicating with the server. (5)
The client communicates with the server via ®-Hopper. More generally, there can be
multiple servers (e.g., a server farm), and an ADM can direct the client to any one of
them.

Admission
Servers
(ADMs)

Client

Figure 1: Beaver’s Architecture.



The resources allocated by the server for communicating with a specific client are
freed when the client notifies the server that it wishes to terminate communication, or
when no valid message has been received from the client for a given predetermined
amount of time. This procedure is very similar to cookie-based authentication used in
web servers, where cookies expire after some inactivity period and the session must
be re-established to communicate with the server once more. An additional similarity
is that the server allows the client to have only one active session at a time.

The resources used by the server to communicate with the ADM are allocated at boot
time and never freed, as it is always possible for clients to start new sessions. Since
the server does not expect many clients to start new sessions at the same time, these
ADM-communication resources are low, compared to the resources allocated for
ongoing sessions with clients.

4.2 ®-Hopper

®-Hopper leverages existing, cheap, network-level packet-filtering and rate-limiting
solutions, along with more complex algorithms at a higher layer, which determine the
filtering criteria and rate limits. Filtering is based on a filtering identifier (FI, or @),
which is some message field value that can be changed by the communicating parties,
and is preserved during the transmission of the message. For example, it can be a
combination of IP address and ports [17], as shown in [7], or IPSec's security
parameter index (SPI) field [3]. The FI can also be an artificial field appended to the
message. The FI's size can be set according to the wanted DoS-resistance guarantees.

At each communicating party, ®-Hopper has two parts: a front-end that performs fast
packet-filtering, rate-limiting, and FI adding, and a back-end that controls the front-

end's parameters, e.qg., filtering criteria and rates. Figure 2 shows the decomposition of
®-Hopper and the interaction between its various components.

____________________________

Adder \E

Back-end

Rate
Limiter

_____________________________

Figure 2: Communicating using ®-Hopper (Alice’s view).
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The two parties wishing to communicate share a secret. This secret is used to create
pseudorandom sequences of Fls. Each message transmitted between the parties carries
a Fl taken from an appropriate pseudorandom sequence. The receiver's front-end
anticipates the FI according to the pseudorandom sequence, and filters out all
messages carrying invalid Fls. The Fls change in order to maintain DoS-resilience.
Otherwise, the adversary could eavesdrop on messages and discover the FI in use.
Hopping using an appropriate FI size ensures that with high probability, the adversary
cannot discover the FI (see [7]).

4.2.1 The front-end

The front-end can be a gateway or firewall. In fact, the front-end's components do not
all have to be deployed on the same machine. The first component is simple and
handles fast filtering of incoming packets. Its purpose is to defend the recipient from
being flooded with spoofed messages.

The second front-end component rate-limits incoming valid traffic according to its
source. The rationale behind this component is that registered clients can also get
corrupted, or try to receive better service at the expense of other valid clients. The
rate-limiter ensures that the server does not receive more requests than it can handle,
and that all clients receive their fair share of the server's time.

We use two types of rate-limiters: fixed-quota (FQ) and round-robin (RR) based.
When using the FQ rate-limiter, each source is allocated a maximum allowed rate that
can change during the session. This method is simple and fast. For example, a client
may be allowed to send 10 requests every second. Note, that when the server performs
costly processing per each client request, the rate that needs to be limited is the rate of
incoming requests, and not the rate of incoming bytes. Our FQ rate-limiter
approximates this by counting packets (indeed, in our experiments, each packet
corresponds to a single request). However, even if the average rate of requests is
adequate, but the client sends its traffic as bursts, packets will get dropped.

The RR rate-limiter strives to use resources more efficiently, by sharing them among
all clients. In RR rate-limiting, each source-destination pair has limited-size queues
for incoming/outgoing messages. The size of the queues is defined according to the
number of clients and the destination’s ability to serve arriving requests. Messages
arriving to a full queue are dropped. ®-Hopper sends messages from the queues to
their destination in a RR fashion, provided that the total maximum allowed rate of
messages is not exceeded. If a queue is empty, it is skipped for that RR cycle. RR
rate-limiting handles bursty traffic well, but incurs an increase in latency, due to its
periodic and cyclic nature. The importance of using RR to compensate for bursts of
one client with idle time of others increases with the number of clients in the system.

The third front-end component is quite trivial, as it only adds the appropriate FI to
outgoing packets, so that they will be accepted by the recipient.

-11 -



4.2.2 The back-end

Each party communicating via ®-Hopper uses its clock to determine its current
position in the pseudorandom sequence for incoming and outgoing messages. A ®-
Hopper session between two parties is initialized using a shared secret key used for
generating the pseudorandom sequence.

During session initialization, each party allocates bounded resources for
communication in this session. ®-Hopper allocates separate resources for each active
client, which are freed when the session for that client ends.

Whenever a client becomes active/inactive, resources allocated to other clients might
change, e.g., to achieve fairness or better utilization of the server. We note that, in
general, since the server separately allocates bounded resources for each active client,
compromised clients cannot significantly drain the server's resources by sending it an
excessive number of requests, and thus valid clients get their share of the server's
resources.

To compensate for loose time synchronization between the parties, each party keeps
multiple open FlIs at the receiving end. Every fixed time interval t, ®-Hopper
performs a hop, where it closes the oldest open FI and opens one new Fl.We say that
each party opens Fls for communication, when these Fls are added to the list of valid
Fls, and closes Fls, when these Fls are invalidated.
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5. Implementation
5.1 ®-Hopper

The implementation of ®-Hopper was done inside the Linux Kernel 2.6 within the
"AF_KEY" module. This module is responsible for creating and managing PF_KEY
sockets. PF_KEY [19] is a socket protocol family used by trusted privileged key
management applications outside of the kernel to communicate with the kernel. In our
work, PF_KEY sockets are used by ipsec-tools [14] for initializing / finalizing IPSec
services by sending appropriate requests to the kernel.

When IPSec is applied between two gateways, a separate IPSec channel is created for
incoming and outgoing directions (see Figure 3). IPSec uses shared secret keys
(private_key) to provide per packet authentication.

Gateway A Gateway B

Network

Figure 3: IPSec channel communication between two gateways.

IPSec stores a database (state) for each channel. In addition to authentication
information, the IPSec state includes a 32-bit Security Parameter Index (SPI) field,
which is unique for each channel. Every arrived packet that does not have a valid SPI
is discarded, while a packet that contains a valid SPI goes through IPSec's
authentication phase.

The purpose of ®-Hopper is to change the SPI of each channel in both gateways, so
that in every given time there will be the same SPI for the same channel in both
gateways. Because of the fact that it is impossible to synchronize both gateways
perfectly, and the delivery of packets takes time, the receiving gateway should agree
to accept packets with a number of previous SPIs.

In our implementation of ®-Hopper, in order to compensate the lack of
synchronization between the gateways, we store a linked list of incoming and
outgoing states in the ®-Hopper extension to IPSec. For each outgoing channel, only
one current state is saved. For each incoming channel, in every given time, in addition

to the current state, k previous and k next states are saved; totally (2k +1) states,
where k is a parameter. In our experiments, we used k =2.
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Each element of the linked list of incoming and outgoing states has all the data that
IPSec holds for every created channel and in addition, it has a lifetime identifier that

maps between the elements of linked list and (2k +1)stored states[—k,..., k]. In more

details, each element of liked list has:
e Destination address of IPSec channel (daddr)

Source address of IPSec channel (saddr)

SPI (Security Parameter Index) of the IPSec channel

Communication protocol

Network family (IPv4 or IPv6)

Private key (shared secret) that is specified when IPSec channel is created and

initialized for the first time (private_key)

e Lifetime identifier of the state - e.g., —k - for the k ’th previous state, -1 -
first previous state, 0 - current state, 1 - first next state, k - k *th next state.

In order to hop states, a timer was defined. The time between hopping states is z. All
simulations were performed with 7 equal to 5 seconds.

Every time the timer expires, old states are deleted (the old state of the outgoing
channel and the k ’th previous state of the incoming channel). Instead of the deleted
states, new ones (with a new SPI) are created.

For example, if =5 seconds and k =2, we store 5 states for an incoming channel -
of times (t-10), (t-5), (t), (t+5), (t+10), when t is “now” mod 5 (the current
time rounded downtown to the nearest value that can be divided by 5 without

remainder). This can compensate for the lack of synchronization between the
gateways of up to 20 seconds.

The new SPI of the new state of the outgoing channel is calculated by XOR’ing the
private key with the source and the destination addresses and with the hashed current
time rounded downtown to the nearest value that can be divided by 5 without
remainder as follows:

New SPI = (private_key)® saddr)@®(daddr)®(sha-1(t))
where “sha-1” is a cryptographic hash function that produce the 160-bit hash value.

The new SPI of k ’th next state of incoming channel is calculated by XOR’ing the
private key with the source and the destination addresses and with the hashed time of
k >th next state mod 5 (rounded downtown to the nearest value that can be divided by
5 without remainder) as follows:

New SPI = (private_key) @ (saddr)®(daddr) @ (sha-1(t+k*7))
where “sha-1" is a cryptographic hash function that produce the 160-bit hash value.
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5.2 Rate-Limiting Mechanisms

The implementation of rate-limiting mechanisms was done inside the Linux Kernel
2.6 within the “xfrm4 input.c” file. The initialization and finalization were done
within the "AF_KEY" module. All functions that were originally implemented inside
the “xfrm4 input.c” file are responsible for decapsulation, parsing and validation of
received IPSec packets. The validation includes: parsing the SPI, lookup for the IPSec
incoming state (according to the parsed SPI), checking its expiration time, encryption
and authentication.

We implemented two types of rate-limiters: Fixed-Quota (FQ) and Round-Robin (RR)
based. Both implementations use timers for controlling packet counters.

Figure 4 shows the pseudo-code for the Fixed-Quota (FQ) rate-limiter implementation.
The counter of transmitted packets is cleared every period of time (lines 5-8). In
order to distinguish between different clients, an IP address of the client’s computer is
used as a filtering criterion. For every packet with valid checksum that arrives, the
filtering criterion is checked (line 10). If the filtering criterion is not met, the packet is
dropped (line 11). If the filtering criterion is met, the transmitted packets counter is
checked (line 12). If the counter exceeds the limit, the packet is dropped (line 13).
Otherwise, the transmitted packets counter is incremented and the packet is
transmitted (lines 14-15).

(1) Initially:
(2 for each client in clients_list do
3) counter|client] « 0

(@) Set timer to Timeout

(5)  On wakeup of timer()

(6) for each client in clients_list do
(7 counter|client] « 0

(8) Set timer to Timeout

(9)  On receiving packet with valid checksum from client
(20) if client does not exists in clients_list then

(11) Drop packet

(12) return

(13) if counter[client] >= max_allowed_per_round then
(14) Drop packet

(15) return

(16) counter[client]++
7) Transmit packet

Figure 4: Pseudo-code for Fixed-Quota (FQ) rate-limiter.

Figure 5 shows the pseudo-code for the Round-Robin (RR) rate-limiter’s
implementation. A separate waiting queue is created for every IPSec channel
(identified as a combination of SPI, source address and destination address). Every
waiting queue has a limited size; in our experiments each queue is limited to 500
packets.
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For every packet with valid checksum that arrives, it is first checked if the client
exists in the list of known clients (line 25). If the client does not exist, the client is
added to the list and the waiting queue for newly added client is created (lines 26-27).
Next, the size of an appropriate waiting queue is checked (line 28). If the size exceeds
the limit, the packet is dropped (line 29). Otherwise, the packet is added to the waiting
queue (line 31), and if the timer was not initialized, it is set to timeout (lines 32-33).

A limited number of packets can be transmitted every period of time (line 13). The
transmission is performed “one by one” - one packet is removed from every
non-empty queue and transmitted (lines 16-17). This is done until all queues become
empty or until the limit for the current round is reached.

If all queues are empty during maximum allowed number of timer calls (line 9), all
queues are deleted and all allocated memory is freed (lines 10-11).

(1) Initially:
(2 transmitted_in_round < 0
3) Set timer to Timeout

(4)  On wakeup of timer()

(5) if no non-empty waiting_queue exists then

(6) empty_rounds_counter + +

(7 else

(8) empty_rounds_counter < 0

(9) if empty_rounds_counter > maxitiallowed_empty_rounds_counter then
(10) Delete all waiting_queues

(1) Remove all clients from clients_list

(12) return

(13) while transmitted_in_round < max_allowed_per_round and
at least one non-empty waiting_queue exists

(14) for each non-empty waiting_queue do

(15) if transmitted_in_round < max_allowed_per_round then
(16) transmitted_in_round + +

an Transmit first packet from waiting_queue

(18) else

(19) transmitted_in_round < 0

(20) Set timer to Timeout

(21) return

(22) transmitted_in_round < 0

(23) Set timer to Timeout

(24) On receiving packet with valid checksum from client
(25) if client does not exist in clients_list then

(26) Add client to clients_list

(27) Create waiting_queue for client

(28) if size of waiting_queue >= max_queue_size then
(29) Drop packet

(30) return

(31) Add packet to waiting_queue
(32) if timer is not initialized then
(33) Set timer to Timeout

Figure 5: Pseudo-code for Round-Robin (RR) rate-limiter.
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5.3 Servers

5.3.1  Simulation Server

Our simulation server was written in the C language and it runs under Linux as a
command-line utility. The server can listen to TCP / UDP incoming connections. The
protocol (TCP / UDP) and the port number for listening on are received as arguments.

Every message (request or response) that was sent from a client to the server (or from
the server to a client) has a header that includes the following information:
e |D of message
Length of message
ID of simulation the message belongs to
ID of current request within current simulation

The ID of the simulation and the ID of the current request are used for identifying the
messages - if some messages are lost, we should know not only how many messages
are lost, but also which messages exactly are lost. This information is stored in a local
database and used later for providing results and statistics calculations.

Figure 6 shows the pseudo-code for the Simulation Server implementation. When the
simulation starts, the server initializes the local database, creates callback for “kill”
signal, and waits for new clients to connect (lines 1-3).

Main thread:
(1) Initialize local database
(2) Initialize callback for kill signal
(3)  Wait for new clients to connect

(4)  On accepting new client connection

5) If protocol is TCP then

(6) Create a receiver thread for newly accepted client
@) else

(8) Analyze the request

9 Update local database

(10) Send the response

On receiving “kill” signal
(11) Terminate the communication
(12) Analyze local database
(13) Print database information
(14) Exit

Receiver thread:
(15) On receiving valid packet from client
(16) Analyze the request
a7 Update local database
(18) Send the response

Figure 6: Pseudo-code for Simulation Server.
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If the server is listening for TCP connections, for every client that is trying to
establish communication with the server, a separate receiver thread is created (line 5-
6). The newly created receiver thread is responsible for analyzing all requests,
updating the local database and sending a response to the client (lines 15-18).

If the server is listening for UDP connections, then analyzing all received requests,
updating the local database and sending a response to the appropriate client is all done
within the same main thread (lines 8-10).

If the server receives “kill” signal, it terminates the communication, analyzes the
database, prints information from database, and exits (lines 11-14).

5.3.2  Admission Server

According to [6], an admission server (ADM) has two roles. First, it allows clients to
register to the service. Second, the ADM performs the admission process -
authenticating registered clients before authorizing them to communicate with the
server. In the current work, only the second role (the admission process) was
implemented.

5.3.3  The Admission Process

The ADM authenticates registered clients before authorizing them to communicate
with the server. This is called the admission process. There may be multiple
admission servers, and all of them are identical, except for a unique secret, Sg opy (0f
a specific ADM), each of them shares with the server. The use of many admission
servers protects the admission process from DoS attacks, as the client can initiate the
admission process with an arbitrary ADM. A DoS-attacker that wishes to severely
harm the admission process needs to launch a massive attack that targets most, if not
all of the ADMs. It is make sense to add more ADMs to resist admission DDoS
attacks instead of just adding more servers to resist DDoS attacks directly. The main
reason for it is that ADMs should not be synchronized between them as servers should.
In addition, ADMs can be a simple desktop computers, while servers should be strong
enough to handle all client’s requests.

The admission process commences and proceeds as follows (see pseudo-code in
Figure 7 and Figure 8):

1. Connection request (lines 1-8). The client sends the ADM a connection
request containing the client’s ID, the current local timestamp, and a random
K-bit number, requestID, used along with the client’s ID to uniquely identify
this admission process. «k is a security parameter, e.g., 128. If no challenge is
received within some timeout period, the client terminates the admission
process. The client may restart the admission process to start a session in spite
of transient failures.

2. Challenge (lines 39-48). If the connection request is valid and its timestamp is
more recent than the last saved timestamp for that client, the ADM saves the
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new timestamp and request ID for that client. Then, the ADM sends the client
a challenge comprised of a random nonce (a random number used only once in
the protocol). If no response is received within responseTimeout < E
seconds, the ADM effectively terminates the admission process, which must
be restarted for that client to be admitted into the system.

The challenge and timeout are used to prevent an adversary from launching a
replay attack after dropping the client’s messages. Without this mechanism, it
would have been possible for the adversary to accumulate dropped client
connection requests over a long period of time (even hours), and then replay
messages from many clients at once, which would all be deemed valid by the
ADM, and cause the server to start many new client sessions. Note that we do
not assume that the client and ADM’s clocks are synchronized with each
other; hence, the ADM cannot check the freshness of connection requests.

Response (lines 9-15). The client proves it holds S¢ opy by responding with a
MAC on the challenge sent by the ADM.

. Admission request (lines 49-56). If the response is valid, the ADM trusts the
authenticity of the client and sends an admission request with the client’s ID to
the server.

. Admission approval (lines 24-32). If the server does not currently have
resources allocated for a session with that client, and the client’s request is
fresh, the server is willing to start a session with the client. The server then
sends back to the ADM a message approving the client’s admittance, and
allocates ®-Hopper resources for communicating with that client. If the client
does not communicate with the server within sessionlInitTimeout seconds
from this stage, these resources are freed. The timeout is used to free resources
allocated by a compromised ADM that delays the transmission of admission
requests for valid clients, and then sends these requests once the clients no
longer try to communicate with the server.

. Admission completion (lines 57-58). The ADM sends a message to the client
indicating that communication with the server can take place.

Session (lines 16-20). Upon receiving an admission completion message, the
client starts a communication session with the server.
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CLIENT

Open:
clientTS « local time
requestlD « random « — bit number
connectionRequest « (data « {clientID, requestID, clientTS}, MACs o (data))

send connectionRequest to ADM

if no valid challenge received within timeout then
invalidate requestID
return connection failure

Upon receiving challenge from ADM:
if challenge. clientID = clientID and challenge. requestID is valid and
challenge. MACs, ,,, = MAGs ,,, (challenge. data) then
response « (data « challenge. data, MACGs ,ou (data), MACs_. (data))
send response to ADM
if no valid admission completion received within timeout then
invalidate requestID
return connection failure

Upon receiving admissionCompletion from ADM:

if admissionApproval. clientID = clientID and

admissionCompletion. requestID is valid and admissionCompletion. MACs =

MACs,. ,,\ (admissionCompletion. data) and

admissionCompletion. MACs ¢ = MACs ; (admissionCompletion. data) then
seed < admissionApproval. clientID || admissionApproval. requestID ||
admissionApproval. clientTS
initHopperSession (seed, S s, admissionCompletion. serverID)

SERVER

Init(ADMs):
for each ADM in ADMs do
initHopperSession (0, ADM. Sg apy , ADM. ADMID)

Upon receiving admissionRequest from ADM for client
A < admissionRequest. clientID:
if A is authorized to connect through ADM and no session with A is pending or in
progress and
(admReqTS[A] is uninitialized or admissionRequest. clientTS > admReqTS[A])
and
admissionRequest. MACs, , . = MACs , (admissionRequest. data) and
admissionRequest. MACs, = MAGs (admissionRequest. data) then
admReqTS[A] « admissionRequest. clientTS
seed « admissionRequest. clientID || admissionRequest. requestID ||
admissionRequest. clientTS
initHopperSession (seed, S¢ s, serverID)

admissionApproval « (data < {admissionRequest. data, serverID},
MACs, ,,,, (data), MACs, (data))

Figure 7: Pseudo-code for the admission process (continued on next page).
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ADMISSION SERVER

(36) Init(serverID):
(37)  initHopperSession (0, Ss apy , serverID)

(38) Uponreceiving connectionRequest from client A < connectionRequest. clientID:
(39)  if (connReqTS[A] is uninitialized or connectionRequest. clientTS >

connReqTS[A] ) and
(40)  connectionRequest. MAC = MACs (connectionRequest. data) then

(41) connReqTS[A] « connectionRequest. clientTS

(42) connReqID[A] « connectionRequest. requestID

43) nonce « random k — bit number

(44) connReqNonce[A] « nonce

(45) challenge « (data « {connectionRequest.data, nonce}, MACGs. ,ou (data))
(46) send challenge to A

47) if no valid response received within responseTimeout seconds then

(48) connReqNonce[A] « null

(49) Upon receiving response from client A < response. clientID:

(50) ifresponse.clientTS = connReqTS[A] and response. requestID = connReqID[A]
and

(51)  connReqNonce[A] ! = null and response. nonce = connReqNonce[A] and

(52)  response.MAC = MAGs, ., (response. data) then

(53) admissionRequest «
(data « response. data, response. MACs. , MACs; .\, (data))
(54) hopperSend (admissionRequest, server)
(55) if no valid response received within responseTimeout seconds then
(56) connReqNonce[A] « null

(57) Uponreceiving admissionApproval from server for client
A < admissionApproval. clientID:
(58) ifadmissionApproval. requestID = connReqID[A] and

Figure 8 (continued): Pseudo-code for the admission process.

Figure 9(a) shows the messages passed during the admission process if all procedures
succeed. Figure 9(b) shows a case where the admission completion message is lost,
and so the client never knows that it can connect to the server. After
sessionInitTimeout seconds expire, the server releases the resources allocated for
the session.

Figure 9(c) shows a case where the client delays its response to the ADM’s challenge,
perhaps due to some unexpected multitasking processing. The ADM maintains the
nonce used in the challenge for responseTimeout time, but if that time passes and
no response is received by the ADM, the ADM invalidates the nonce and effectively
terminates the admission process. When the client responds later, its message is
silently discarded by the ADM.
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5.4 Simulation Client

Our simulation client was written in the C language and it runs under Linux as a
command-line utility. The client can connect to the server by using TCP / UDP
sockets. The protocol (TCP / UDP) and the port number for connecting to the server
are received as arguments.

Additional parameters that the client receives as arguments are the number of
simulations to perform, the number of requests that have to be sent in each simulation,
an average desired rate for sending requests, a timeout - maximum time to wait for
receiving response, and an optional parameter - name of file to transfer (used for file
transfer experiments).

Figure 10 shows the pseudo-code for the Simulation Client implementation. When the
simulation starts, the client initializes the local database, creates callbacks for “alarm”,
“kill”, and “broken pipe” signals, and connects to the server (lines 1-3).

For each simulation, the client first creates a separate receiver thread (lines 4-5),
which is responsible for receiving responses to all sent requests and updating the
database with received information (lines 19-21). If the timeout occurs before
receiving responses to all sent requests, receiver thread returns (lines 17-18).

Next, the client prepares and sends all requests for the current simulation one by one
and updates the local database (lines 6-9).

When the last simulation finishes, the client analyzes local database, performs
statistics calculations and exits (lines 11-12).

If the client receives a “kill” or “broken pipe” signal, it terminates the communication,
analyzes the local database, performs statistics calculations, and exits (lines 13-16).
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Main thread:
(1) Initialize local database
(2) Initialize callbacks for alarm / kill / broken pipe signals
(3) Connect to server

(4)  For each simulation do

(5) Create a receiver thread for current simulation
(6) For each request in current simulation do

(7) Prepare the request

(8) Send the request

9) Update local database

(10) Wait for receiver thread of current simulation to return
(11) Analyze local database
(12) Perform statistics calculations

On receiving “kill” or “broken pipe” signal
(13) Terminate the communication
(14) Analyze local database
(15) Perform statistics calculations
(16) Exit

Receiver thread:
(17) On timeout
(18) Return
(19) On receiving packet with valid checksum from server
(20) Analyze the response
(21) Update local database

Figure 10: Pseudo-code for Simulation Client.
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6. Experiments

Figure 11 shows a general experiment setup scheme. The server is located behind the
gateway A and the clients are located behind the gateway B. All attackers and both
gateways are connected together to the same network.

Attacker 1 Attacker 2

Server Gateway A Gateway B
Network

=
Attacker 3

Figure 11: Experiment setup.

The gateways run Linux with IPSec in tunnel mode. The gateways have a Pentium Il
650 MHz CPU and 256MB of RAM. The server and clients have a Pentium 111 550
MHz CPU and 256MB of RAM. The attackers have a Pentium IV 1.8 GHz CPU and
512MB of RAM. All computers have an Intel PRO\1000 MT Desktop Adapter
network card. All clients are connected to the gateway via a 3Com 10/100 switch.

The purpose of our experiments was to see the influence of the attacking power (in
thousands of requests per second) on the average time for getting the response
(latency) and on the number of successful responses received (delivery probability).

The results of next scenarios were compared in different experiments:

1. No Protection: the server has no DoS protection at all.

2. IPSec, Valid SPI: the gateways run IPSec in Encapsulating Security Payload
(ESP) mode without encryption (authentication only), and the attacker knows the
SPI used.

3. IPSec, Invalid SPI: the gateways run IPSec in Encapsulating Security Payload
(ESP) mode without encryption (authentication only), and the attacker does not
know the SPI used.

4. 1PSec + &-Hopper: the gateways run IPSec in Encapsulating Security Payload
(ESP) mode without encryption (authentication only) with ®-Hopper.

5. IPSec + &-Hopper (No Auth): the gateways run IPSec in Encapsulating Security
Payload (ESP) mode without encryption and without authentication with ®-

Hopper (only hopping).
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When attacking, the adversary sends bogus requests at a constant rate. In scenario (2),
the bogus requests carry the correct SPI field, but fail authentication. In scenarios (3),
(4) and (5), the bogus requests carry an incorrect SPI field (with high probability), and
so the bogus requests do not reach the authentication phase (or the server, for scenario

(5)).

Scenario (3) protects the server well from DoS attacks as long as the SPI used cannot
be easily guessed, and the session time is short. However, if the session time is long,
an attacker has enough time to discover the SPI, e.g., by sniffing packets in
intermediate routers. Once the adversary obtains the SPI, scenario (3) transforms into
scenario (2). Since we assume relatively long sessions, we include scenario (3) mainly
to quantify the overhead of port hopping. Scenario (5) is included to show how DoS-
protection can be employed even when packet contents do not get authenticated (other
than the SPI check). This scheme is faster than the one used in scenario (4), as it
requires less processing time for valid traffic.

Section 6.1 presents an attacker implementation. Section 6.2 presents the results of
experiments done with UDP communication. Section 6.3 presents the results of
experiments done with TCP communication. Section 6.4 presents the results of
experiments on Rate-Limiting mechanisms.

6.1 Simulation Attacker Implementation

Our simulation attacker was written in the C language and it runs under Linux as a
command-line utility. An attacker uses RAW sockets, which allow constructing any
packet with any header. This way, an attacker, for example, can construct a TCP
packet and send it to the server behind the gateway so that the server will think that
the packet arrived from a client. An attacker receives as arguments: the name of the
protocol (can be TCP or UDP for the scenario (1) above, or can be ESP over TCP,
ESP over UDP, AH over TCP, AH over UDP for the scenarios (2) - (5) above), an IP
address of the source we are trying to impersonate, the port of the source, an IP
address of the destination we are trying to attack, the port of the destination, the IP
address of the gateway that the source is behind of, the IP of gateway that the
destination is behind of, an average rate of sending requests, and optionally the SPI
(used for constructing packets for IPSec protocols - ESP or AH only).

Figure 12 shows the pseudo-code for the Simulation Attacker implementation. When
the simulation starts, an attacker initializes the local database, creates a callback for
the “kill” signal, constructs the needed packet and sets the timeout value according to
required sending rate (lines 1-4).

An attacker sends the requests to the desired destination according to the needed
average rate of sending requests until it is terminated by receiving the “kill” signal or
until an error occurs on sending a request (lines 5-6). The local database is updated
after each sent request (line 7). An attacker waits for the timeout before sending the
next request (line 8).
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When an attacker receives a “kill” signal, it terminates the communication and
performs some statistics calculations (lines 9-11).

(1) Initialize local database

(2) Initialize callbacks for alarm / kill signals

(3) Construct needed packet

(4)  Settimeout value according to required sending rate

(5)  While not terminated and no error during sending packets
(6) Send packet to destination

@) Update local database

(8) Wait timeout

(9)  On receiving “kill” signal
(10) Terminate communication
(11) Perform statistics calculations

Figure 12: Pseudo-code for Simulation Attacker.

6.2 UDP Results
6.2.1 Receiving a response to a single request

A single request was sent from the client to the server 100 times (1 request per
second) for each attacking power (in thousands of requests per second) in each
simulation. Every request was sent only after receiving a response to the previously
sent request, or after timeout was occurred.

Figure 13(a) shows the delivery probability as the attacker's strength increases. We
see that ®-Hopper achieves the same delivery probability as when an attacker does
not know the SPI used, as filtering in these cases is based on a simple comparison of a
header field. We can see that when ®-Hopper is used, the effect of authentication on
the system's load is insignificant, as bogus requests do not reach the authentication
phase at all. The delivery probability is much lower when the SPI is known to the
attacker, since this case requires complete authentication of every packet. This
difference is most evident for relatively weak attacks (80,000 requests/sec), where
®-Hopper maintains 100% delivery, but the delivery for IPSec with a known SPI
drops to 44%. We can further see that having any form of protection is better than
having no protection at all. When the server has no protection, it crashes even when
the attack is very weak, reducing delivery probability to O.

Figure 13(b) shows the effect of increasing-strength attacks on latency. In this
experiment the server does not really process the request, but rather returns a reply
immediately. We measure this parameter since we want to isolate the effect the
algorithms run by the gateways have on latency. We can see that unless the SPI is
known, the latency stays the same even when the attack strength increases.
Additionally, the latency is virtually equal for ®-Hopper with and without
authentication, and for IPSec when the SPI is unknown. This is also the same latency
measured when IPSec and ®-Hopper do not run at all (not shown on graph).
Conversely, when only IPSec is used and the SPI is known, the latency is increased
by tenfold and more even for mild attacks. Since the delivery probability is low for
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attacks stronger than the ones plotted, it is meaningless to calculate the latency for
such attacks.

Figure 13(c) displays the delivery probability under a bursty DoS attack, where bogus
requests are not sent at constant intervals, but rather as bursts. The attack strength is
measured as the average number of bogus requests per second. Comparing these
results to Figure 13(a), we observe that a bursty attacker induces less damage than an
attacker whose sending times are uniformly distributed over time. This can be
explained by the fact that at times in which the attacker does not send any bogus
message, the client's requests can be easily processed. We compare our results to
analytical results for the delivery probability under DoS attacks. Figure 13(d) shows
when the total sending rate (attacker + client) is k times the server’s capacity, the
delivery probability is 1/k . The theoretical analysis assumes the attacker’s sending
rates are uniformly distributed, and thus the results shown in this figure can be
compared to Figure 13(a). Indeed, we can see that the actual measurements closely
match the theoretical analysis.

a
5

o |PSec + 0—Hopper (No Auth) - |PSec, Valid SPI
«—|PSec + ¢-Hopper e -IPSec, Invalid SPI
\ e -|PSec, Invalid SPI ——|PSec + ¢—Hopper

190099 0-0-%-Q

&

\ ~ |PSec, Valid SPI ° sk IPSec + ¢—Hopper (No Auth)
208 \ o No Protection - S
3 \ ~
© \ - 25
o \ o
O 06} \ c
f -4 \ D .,
o \ 2
- N -
g 04 §, 15}
8 N 5
¥ € > 10+
S <
0.2
s}
R —
e Tl T T w0 20 % 10 20 30 40 50 60 70 80
Attacking Power (thousand requests/sec) Attacking Power (thousand requests/sec)
(a) Delivery probability. (b) Latency (RTT).
+—|PSec + ¢—Hopper
G "“\ e - |PSec, Invalid SPI | b
| \ = |PSec, Valid SPI )
\ \\ > No Protection !
208 * \ > st
= N =
ﬁ 9 -g —— Attacker does not know Fl
2 "\ 2 Attacker knows FI
O osf W™\ O 06f;
~ X X 2 %
[ \ A o
e 7 \‘\ /o 1\\ 2 |
2. WO\ H
E : oo g
02 2 N 02
oleos—soes8—— 5 ot 5L " ol . L L il e el S
0 50 100 150 200 250 300 0 10 20 30 40 50 60 70 80 9 100
Attacking Power (thousand requests/sec) Attack Power Normalized to Authenticator’s Reception Capacity
(c) Delivery probability, bursty attacker. (d) Theoretical values

Figure 13: Dos Attacks on 1PSec with and without ®-Hopper (UDP).
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6.3 TCP Results
6.3.1 TCP socket connection establishment

The purpose of this simulation was to see the influence of the attacking power on the
average time for establishing a TCP socket connection (TCP’s 3-way handshake) and
on the percentage of connections that are successfully established.

A client tries to establish TCP socket connection with server 1000 times for each
attacking power (in thousands of requests per second) in each simulation for scenarios
(2) - (5). In scenario (1), when the server has no DoS protection at all, it crashes even
when the attack is very weak (10,000 requests per second), reducing delivery
probability to 0.

From Figure 14(a) we can see that when the gateways run IPSec in Encapsulating
Security Payload (ESP) mode without encryption (authentication only), and the
attacker knows the SPI used (IPSec - valid SPI), at a rate equal to 80,000 messages
per second, the percentage of connections established falls by about 5%. In all other
experiments, 100% of sessions are established.

From Figure 14(b) we can see that when the gateways run IPSec in Encapsulating
Security Payload (ESP) mode without encryption (authentication only), and the
attacker knows the SPI used (IPSec - valid SPI), at a rate equal to 80,000 messages
per second the average time for establishing a connection is about 7 seconds.

Figure 14(c) zooms in on lower attack rates. We can see that when the gateways run
IPSec in Encapsulating Security Payload (ESP) mode without encryption
(authentication only), and the attacker knows the SPI used (IPSec - valid SPI), already
at the rate of 30,000 messages per second, the average time for establishing a
connection starts growing. We see that the overhead of SPI hopping is negligible as
the graph of IPSec with an invalid (unknown) SPI coincides with the graph of
®-Hopper. On the other hand, we see that when authentication is not performed, and
protection relies only on SPI hopping, the latency is lower.
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Figure 14: TCP socket connection establishment, with and without @-Hopper.

6.3.2  An attempt to break TCP communication

The purpose of this simulation was to check the ability of attacker to break the TCP
communication between a client and the server.

We used our simulation attacker, which can construct TCP, UDP, ESP, and AH
packets and send them to the destination. In order to break a communication, an
attacker sends TCP packet with the TH_RST flag enabled. Upon receiving a packet
with this flag, the receiver should close the TCP communication according to the TCP

protocol.

Our experiments show that when the server has no DoS protection at all (TCP
communication), an attacker causes the server to close the communication with the
client without too much effort. The attacker only needs to know the IP address and
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port of the server, the IP address and port of the client, and the IP addresses of the
client’s and server’s gateways (if they exists) in order to encapsulate the packet. In
addition, the adversary needs to discover or guess the sequence numbers used in TCP,
but this can be done easily by sending many packets with increasing sequence
numbers.

In case the gateways run IPSec in Encapsulating Security Payload (ESP) mode
without encryption (authentication only), it becomes hard to break the communication,
because the attacker needs to add authentication information on the sent packet
exactly the same way the client does and this is almost impossible. We did not
succeed to break the communication in that case, even when an attacker knows the
SPI used.

6.3.3  Receiving a response to the single request

The purpose of this simulation was to see the influence of the attacking power on the
average time for getting a response and on the percentage of successful responses
received in communication in an on-going TCP session. A single request was sent
from a client to the server 100 times (1 request per second) for each attacking power
(in thousands of requests per second) in each simulation. Every request was sent only
after receiving a response to the previously sent request, or after timeout was occurred.

Using TCP with no IPSec protection is problematic for two reasons: First, if the
adversary discovers or guesses the sequence numbers used in TCP, it can bring down
the connection by sending a single RST packet (see section 6.3.2). The second
problem when using TCP without client authentication is that bogus clients can
connect and overload the server. Thus, for both reasons, TCP without authentication
is insufficient. We therefore experiment with TCP over IPSec with ESP, as in our
UDP setting.

Figure 15(a) shows the delivery probability of TCP traffic over IPSec, with and
without ®-Hopper. TCP's retransmission mechanism ensures that all messages
eventually arrived to their destination. The figure shows the percentage of requests for
which the client receives a response within 7 seconds of the moment the request was
sent. As expected, when no protection is in use, the server crashes due to the heavy
load. We can see that using ®-Hopper provides better delivery probability compared
to IPSec with a compromised SPI, for attacks stronger than 100,000 requests per
second. For weaker attacks, all packets are delivered within 7 seconds in both
scenarios.

Figure 15(b) shows the cumulative distribution function (CDF) of TCP latencies
(RTT) for ®-Hopper and IPSec with a compromised SPI, for an attack power of
100,000 requests per second. We can see that ®-Hopper provides better RTTs than
IPSec with a compromised SPI. While over 80% of the messages passing through
®-Hopper had no latency penalty (cf. data point 0 in Figure 15(b)), IPSec managed to
deliver only 60% of the messages with no delay. This corresponds to about 20%
message loss in the first transmission when using ®-Hopper, compared to about 40%
message loss in the first transmission for IPSec with a known SPI (cf. Figure 15(a).)
Furthermore, ®-Hopper managed to deliver 99% of the messages within 250 msecs,
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while IPSec delivered only about 82% of the messages by that time, and had overall
delays of up to 3.5 seconds in delivery. We can clearly see TCP's exponential backoff
in action - the probability for loss should be the same in every retransmission,
therefore if the first bar is at 60%, the next should be at 60% + (60% * 40%) = 84%,
as delays get about 2 times longer for each retransmission.

Figure 15(c) shows the CDF of TCP latencies for a stronger attack, of 240,000
requests per second. Notice that the latency in the figure is given in seconds, and not
in msecs, as before. The figure clearly shows that ®-Hopper provides reasonable
latency for 85% to 90% of the messages, while IPSec's latency starts deteriorating at
about 75% to 80%. Moreover, the delivery of some messages in IPSec takes over 20
minutes - about 4.5 times worse than the longest delay in ®-Hopper. ®-Hopper
degrades under strong attacks due to network congestion and not due to gateway CPU
load - the network became overloaded by attacker’s requests.
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Figure 15: Dos Attacks on I1PSec with and without ®-Hopper (TCP).
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6.3.4  File Transfer via TCP

The purpose of this simulation was to see the influence of the attacking power on the
average time for getting a response and on the percentage of successful responses
received. A 100Kb file was sent from a client to the server 1000 times for each
attacking power (in thousands of requests per second) in each simulation. Every file
was sent only after receiving a response to the previously sent file, or after timeout
was occurred.

We measure the latency and probability of complete delivery of a 100Kb file over a
TCP connection, in much the same way as an FTP transfer is performed. Figure 16(a)
shows that all implementations manage to deliver the file to the destination when
under a DoS attack. This is due to TCP's retransmission mechanism. However, Figure
16(b) shows that the latency measured when using IPSec with a known SP1 is as large
as 25 seconds, as opposed to a latency of a few milliseconds, exhibited by the other
protocols. Moreover, all other protocols maintain roughly the same latency as the one
measured when there is no attack at all. Figure 16(c) is the first part of Figure 16(b).
The figure shows that even for milder attacks, IPSec with a known SPI entails latency
5 times larger than the latency measured using the other protocols.
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Figure 16: TCP 100KB file transfer over IPSec, with and without @-Hopper.
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6.4 Rate Limiting
6.4.1 Sending Rates

We experimented with three sending patterns:

e Constant rate:
The delay between two message transmissions is constant and calculated as

follows:
delay =expected _time—actual _time

Where
number _of _sent messages

average _number _of _requests to_send _per _second
actual _time =(current _time—start _time)

expected _time=

e Poisson rate:
If the delay time is distributed exponentially, then the rate of sending messages is

a Poisson process. Therefore, the delay between sending every two messages is
calculated as follows:

1
average _number _of _requests to_send per _second

delay =— *log(1—drand48())

Where drand48() - function that generates uniformly distributed pseudo-random

numbers.

o Bursty rate:
The messages are not sent at constant intervals, but rather at bursts. The delay

between sending bursts is calculated as follows:

delay =bursty _ period —(current _time —start _time)
If the calculated delay is negative, which can be caused by OS timing, two packets are

sent one after another without any delay between them. That way, it is ensured that on

average, with high probability, the messages are sent at the needed rate.
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6.4.2 Experimenting Results

We first study the effect of rate-limiting on one valid client, when the server is
overloaded by one compromised client (see Figure 17).

The valid client sends requests at a constant rate of 10 requests per second. The
compromised client tries to load the server by sending requests at rates between
0-1000 requests per second. The purpose of this experiment is to measure the delivery
probability and the average time for getting a response at the valid client as a function

of the rate of requests sent by the compromised client.
—&$

Valid Client

Gy,
Switch

Gateway B

Network

Compromised
Client

Figure 17: FQ rate-limiting - valid and compromised clients experiment.

Figure 18 shows the effect of FQ rate-limiting on the delivery probability. It can be
seen that when rate-limiting is not enforced, the delivery probability drops rapidly due
to the load on the server. Limiting the rate of each client to at most 12 requests per
second suffices to ensure a delivery probability of 1.
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Figure 18: FQ rate-limiting (delivery probability) - 1 compromised / 1 valid client (IPSec).
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Next, we study the impact of different rate-limiting schemes on valid clients in the
absence of on attack. Three valid clients participate in this experiment. Each valid
client sends requests with an average rate of 100 requests per second.

g

Valid Client 1

Gy,
Switch

&

Valid Client 2

Valid Client 3

Server Gateway A Gateway B

Network

Figure 19: Rate Limiting - 3 valid clients experiment - a general scheme.

The purpose of this simulation was to compare the fixed-quota (FQ) rate-limiting to
the Round-Robin-based (RR) rate-limiting algorithm. We examine the average time
for getting a response and the percentage of successful responses received.

All clients send their messages either at constant intervals, or as a Poisson process, or
as bursts. 1000 requests were sent from client to server in each simulation for each
sending rate and for each rate-limiting algorithm.

The effectiveness of the FQ rate-limiting and the RR rate-limiting techniques are
measured in these 3 scenarios (Constant rate, Poisson rate, Bursty rate), for a total of 6
experiments.

The total rate allowed by the server is set to 315 messages per second. When using
FQ rate-limiting, we allow each client a rate of 105 messages per second. For RR
rate-limiting, we give each session a queue of 300 messages, and wake the RR
dispatcher every 100 msec. The dispatcher sends messages from the queues in a cyclic
fashion, and goes back to sleep after sending roughly 30 messages, or when all the
queues are empty.

Constant rate| Poisson rate | Bursty rate
Client 1 0.001127 0.001100 0.003060

Fixed-Quota Client 2 0.000925 0.000883 0.002997
Rate Limiting " Client3 | 0.000919 0.000887 0.002496
Average | 0.000990 0.000957 0.002851
Client 1 0.157834 0.150451 0.632827
Round-Robin | Client2 0.149934 0.150326 0.617601
Rate Limiting Client 3 0.148824 0.149161 0.641877
Average | 0.152197 0.149979 0.630768

Table 1: Rate Limiting - Average time from sending a request until getting a response [seconds].
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Constant rate| Poisson rate | Bursty rate
Client 1 100% 100% 11%
Fixed-Quota Client 2 100% 100% 11%
Rate Limiting Client 3 100% 100% 11%
Average 100% 100% 11%
Client 1 100% 100% 100%
Round-Robin Client 2 100% 100% 100%
Rate Limiting Client 3 100% 100% 100%
Average 100% 100% 100%

Table 2: Rate Limiting - Percentage of Responses received.

Table 1 and Table 2 show the average times from sending a request until getting
response and the percentage of responses received respectively. We can see that,
although RR rate-limiting imposes a higher average time from sending a request
until getting a response due to its periodic and cyclic nature, it handles bursty
traffic much better than FQ rate-limiting. While the delivery probability drops
down to 11% (110 out of 1000 responses are received) for FQ rate-limiting in
conjunction with bursty traffic, RR rate-limiting manages to deliver all messages
contained in the bursts. RR rate-limiting’s superiority is achieved because RR
allows all queues to share a single pool of resources, and so if one queue is empty,
the other flows gain better maximum rates.

Our rate-limiting experiments show the flexibility and modularity of ®-Hopper.

®-Hopper can work well with different rate-limiting approaches suitable for
various systems.
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/. Summary

We performed an empirical evaluation of two techniques that mitigate the effects of
DoS attacks on client-server communication: per-packet authentication, and FI
hopping. We presented ®-Hopper, a Fl hopping protocol that supports client-server
communication, and measured its resilience to DoS attacks compared to a per-packet
authentication protocol, IPSec. Our empirical results provide insights to the efficiency
of various client-server DoS protection schemes. For example, they show that using
IPSec alone helps to some extent, but is insufficient when dealing with DoS attacks of
at least moderate strength, or with corrupted clients.

In contrast, ®-Hopper protects the communication even for much stronger DoS
attacks. Our work illustrates that ®-Hopper is robust, efficient, and easy to implement
and deploy. Moreover, it can be used in conjunction with IPSec, to improve IPSec's
resilience to DoS attacks.

®-Hopper without the authentication works better than ®-Hopper with authentication
(same DoS protection, less overhead) and thus if there is a need for DDoS protection
only (not security), then the former should be used. The latter has better security
properties in case a FI leaks and / or in case the authentication information is longer.

We presented Beaver, a method and architecture to protect applications from DoS
attacks. Beaver uses the following ideas to provide strong protection against DoS
attacks:

e An admission process that authorizes clients to communicate with the server. The
server does not allocate resources for a client that was not authorized. The
admission servers are a separate entity and so provide separation of “war zones” -
attacking the admission servers does not harm ongoing client-server sessions.
Additionally, having redundant admission servers makes it hard for the attacker to
easily harm the admission process.

e Filtering based on a pseudorandom number that is hard to guess, and changing the
pseudorandom number periodically (“hopping™), so that even if a filter is revealed,
it becomes irrelevant before the attacker has the opportunity to load the server
with bogus requests.

e Rate-limiting each authorized client to make sure compromised clients cannot
consume much of the server’s resources, at the expense of other clients.

Our results show that it is not enough to protect just the network layer from DoS
attacks, but the application layer should also be protected. Additionally, we show that
using authentication alone to mitigate the effects of DoS attacks is insufficient, and
may effectively shift the DoS problem from the prospective target to the authenticator.

We implemented and tested our system in real conditions, and provided
measurements that show that indeed Beaver is a promising solution.
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