
 

 

 

 

 

Beaver on IPSec - Protection from 

DoS Attacks 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Oleg Romanov 
 

 

 

 

 

 



 

  



 

Beaver on IPSec - Protection from 

DoS Attacks 
 

 

 

Final Paper 

 

 

 

 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science in Electrical Engineering 

 

 

 

 

 

Oleg Romanov 
 

 

 

 

 

Submitted to the Senate of 

the Technion - Israel Institute of Technology 

 

 

 

 

ELUL, 5768  HAIFA  SEPTEMBER, 2008 



 

  



 

The Final Paper Was Done Under The Supervision of 

Associate Professor Idit Keidar 

in the Department of Electrical Engineering 

 

 

 

Acknowledgment 

 
I deeply thank my advisor, Associate Professor Idit Keidar, for giving me 

the opportunity to perform this research under her supervision, for the 

support and close guidance that I was privileged to receive.  

 

I thank Associate Professor Amir Herzberg and Dr. Gal Badishi for 

lending their experience and being an excellent research partners. 

 

I thank Dr. Keslassy Isaac for his helpful remarks. 

 

Many thanks to Dr. Ilana David, Mr. Viktor Kulikov, and to all software 

laboratory staff for all the assistance they willingly gave me. 

 

I would like to thank my dear family for the perpetual support they have 

given me. 

 

Special thanks to my fiancee Svetlana for her support through all my 

studies. 

 

 

 

 
The Generous Financial Help Of Technion Is Gratefully 

Acknowledged. 



 

  



 

Contents 

 
ABSTRACT ............................................................................................................................................ 1 

LIST OF SYMBOLS .............................................................................................................................. 2 

1. INTRODUCTION......................................................................................................................... 3 

2. DESIGN GOALS .......................................................................................................................... 6 

3. RELATED WORK ....................................................................................................................... 7 

4. BEAVER’S ARCHITECTURE ................................................................................................... 9 

4.1 SESSIONS IN BEAVER .................................................................................................................. 9 
4.2 Φ-HOPPER ................................................................................................................................. 10 

4.2.1 The front-end .................................................................................................................. 11 
4.2.2 The back-end................................................................................................................... 12 

5. IMPLEMENTATION ................................................................................................................ 13 

5.1 Φ-HOPPER ................................................................................................................................. 13 
5.2 RATE-LIMITING MECHANISMS .................................................................................................. 15 
5.3 SERVERS ................................................................................................................................... 17 

5.3.1 Simulation Server ........................................................................................................... 17 
5.3.2 Admission Server ............................................................................................................ 18 
5.3.3 The Admission Process ................................................................................................... 18 

5.4 SIMULATION CLIENT ................................................................................................................. 23 

6. EXPERIMENTS ......................................................................................................................... 25 

6.1 SIMULATION ATTACKER IMPLEMENTATION .............................................................................. 26 
6.2 UDP RESULTS........................................................................................................................... 27 

6.2.1 Receiving a response to a single request ........................................................................ 27 
6.3 TCP RESULTS ........................................................................................................................... 29 

6.3.1 TCP socket connection establishment ............................................................................. 29 
6.3.2 An attempt to break TCP communication ....................................................................... 30 
6.3.3 Receiving a response to the single request ..................................................................... 31 
6.3.4 File Transfer via TCP ..................................................................................................... 33 

6.4 RATE LIMITING ......................................................................................................................... 34 
6.4.1 Sending Rates ................................................................................................................. 34 
6.4.2 Experimenting Results .................................................................................................... 35 

7. SUMMARY ................................................................................................................................. 38 

BIBLIOGRAPHY ................................................................................................................................ 39 

 

  



 

  



 

List of Figures 

 
Figure 1: Beaver’s Architecture. .............................................................................................................. 9 
Figure 2: Communicating using Φ-Hopper (Alice’s view). ................................................................... 10 
Figure 3: IPSec channel communication between two gateways. .......................................................... 13 
Figure 4: Pseudo-code for Fixed-Quota (FQ) rate-limiter. ..................................................................... 15 
Figure 5: Pseudo-code for Round-Robin (RR) rate-limiter. ................................................................... 16 
Figure 6: Pseudo-code for Simulation Server. ........................................................................................ 17 
Figure 7: Pseudo-code for the admission process (continued on next page). ......................................... 20 
Figure 8 (continued): Pseudo-code for the admission process. .............................................................. 21 
Figure 9: Admission Process. ................................................................................................................. 22 
Figure 10: Pseudo-code for Simulation Client. ...................................................................................... 24 
Figure 11: Experiment setup................................................................................................................... 25 
Figure 12: Pseudo-code for Simulation Attacker. .................................................................................. 27 
Figure 13: Dos Attacks on IPSec with and without Φ-Hopper (UDP). .................................................. 28 
Figure 14: TCP socket connection establishment, with and without Φ-Hopper. .................................... 30 
Figure 15: Dos Attacks on IPSec with and without Φ-Hopper (TCP). ................................................... 32 
Figure 16: TCP 100KB file transfer over IPSec, with and without Φ-Hopper. ...................................... 33 
Figure 17: FQ rate-limiting - valid and compromised clients experiment. ............................................. 35 
Figure 18: FQ rate-limiting (delivery probability) - 1 compromised / 1 valid client (IPSec). ................ 35 
Figure 19: Rate Limiting - 3 valid clients experiment - a general scheme. ............................................ 36 
 



 

  



 

List of Tables 

 
Table 1: Rate Limiting - Average time from sending a request until getting a response [seconds]. ...... 36 
Table 2: Rate Limiting - Percentage of Responses received. ................................................................. 37 
 

  



 

  



- 1 - 

Abstract 

 
Many client-server systems on the Internet are susceptible to Denial of Service (DoS) 

attacks. This thesis presents Beaver - a client-server architecture that is robust against 

DoS attacks. Its main purpose is to protect client-server communication from DoS 

attacks, especially from flooding it with messages.  

 

Beaver employs two DoS-protection mechanisms: one for admission of new client 

sessions, and another for protecting ongoing sessions. The former uses dedicated 

admission servers (ADMs). The use of ADMs takes the admission load off the server, 

so that the server is not concerned with DoS attacks on clients trying to be admitted 

into the system. The latter is Φ-Hopper - a two-party communication protocol that 

mitigates DoS attacks by filtering packets. Φ-Hopper protects client-server 

communication sessions from DoS attacks, but does not authenticate the 

communication by itself. Φ-Hopper only provides dynamic filtering and rate-limiting 

facilities. Together, the ADMs and Φ-Hopper are very effective against DoS attacks. 

 

At the first stage, we design and implement a Φ-Hopper. Our implementation extends 

a Linux kernel's IPSec implementation. IPSec (IP Security) is a suite of protocols for 

securing Internet Protocol (IP) communications by authenticating and/or encrypting 

each IP packet in a data stream. The implementation is followed by experiments, 

which investigate the influence of attacking power on systems with and without our 

protection. 

 

Next, we design and implement a rate-limiting mechanism also by extending Linux 

kernel's IPSec implementation. Next, we design and implement the admission server. 

 

Finally, we build the whole system by putting all parts together,  and by running 

experiments, we show that the system is robust even when DoS attacks and 

compromised clients are present. 

 

http://en.wikipedia.org/wiki/Protocol_suite
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Packet_%28information_technology%29#Example:_IP_packets
http://en.wikipedia.org/wiki/Data_stream


- 2 - 

List of Symbols 
 

DoS Denial of Service 

TCP Transmission Control Protocol  

UDP User Datagram Protocol  

IPSec Internet Protocol Security  

ESP Encapsulating Security Payload 

AH Authentication Header 

SHA-1 Security Hash Algorithm 

SSL Secure Sockets Layer 

PRF Pseudo-Random Function 



- 3 - 

1. Introduction 

Denial of service (DoS) attacks, in which an attacker attempts to deplete the target's 

resources, are common over the Internet [9]. In client-server communication, a DoS 

attack may be launched by sending many bogus requests to the server. These bogus 

requests might consume most of the server's resources, preventing it from answering 

legitimate client requests. To obtain a large capacity for sending invalid requests, an 

attacker sometimes utilizes many compromised machines, which send the bogus 

requests to the server in concert. This is referred to as a distributed DoS (DDoS) 

attack. Since in this research we are not concerned with the source of an attack, we 

simply use the term DoS to refer to either DoS or DDoS. 

 

The simplest way to perform a DoS attack, independent of the target's specifics, is to 

congest the network leading to or from the target. However, such an attack requires 

large transmission capacity, is easy to detect, and commercial solutions that solve this 

problem already exist [22]. But even if the network is not congested by the attack, it is 

still possible to overload the server so that it cannot answer valid client requests [18]. 

Attacks that do not congest the network are more difficult to detect. The more 

resources, e.g., processing time, the server allocates per request, the easier it is for the 

attacker to overload the server without congesting the network. In this research, we 

deal with DoS attacks that do not congest the network, but may still degrade the 

service provided to the clients. We compare the effectiveness of authentication-based 

DoS-resistance solutions by measuring the performance of real system 

implementations under various DoS attacks. This empirical study results in important 

insights regarding DoS attacks and defenses. 

 

The first approach that we examine is using per-packet authentication, as done in 

IPSec [3] for example. IPSec uses shared secret keys to provide per-packet 

authentication. In [10] it is argued that providing per-packet authentication for valid 

client-server traffic is sufficient to prevent a DoS attack, since bogus requests are 

identified and discarded. Indeed, IPSec helps in mitigating the effects of DoS attacks, 

as servers usually perform much more work per request than IPSec needs in order to 

validate the request. In our experiments we show that a simple HTTP server that is not 

protected against DoS attacks collapses when faced with 10,000 bogus requests per 

second. When IPSec is deployed to authenticate communication, the system can 

withstand almost up to 30,000 bogus requests per second and still answer virtually all 

valid client requests. 

 

Although IPSec helps defend against medium-strength attacks, its shortcoming is that 

calculating the authentication information for each packet requires substantial CPU 

power for large volumes of traffic, and may in effect shift the DoS problem from the 

server to the authentication module. For example, in our experiments, at 80,000 bogus 

requests per second and IPSec deployed, the server manages to answer only about 

45% of the valid requests, while a 100 Mbit network becomes congested at about 

150,000 requests per second. 

 



- 4 - 

In addition to authentication information, the IPSec header includes a 32-bit Security 

Parameter Index (SPI) field, which is unique for a flow. A packet that does not have a 

valid SPI is discarded, while a packet that contains a valid SPI goes through IPSec's 

authentication phase. In this research, we show that it is possible to significantly boost 

the resilience of IPSec to DoS attacks by using a random SPI value that is unknown to 

the attacker, and thus reducing the number of cryptographic operations performed. 

Thus, proposals to use a predictable SPI value [1] are doomed to provide only a weak 

defense against DoS attacks, since the adversary can craft all of its bogus packets to 

reach IPSec's computationally-intensive authentication phase. Nevertheless, even 

using a random SPI value only provides temporary protection if the SPI value is fixed 

for the entire IPSec session, as is typically the case. In reality, attackers may 

eventually discover a session's SPI value, either by intercepting a message pertaining 

to the session as it traverses the Internet, or by observing the effects of their own 

actions (a DoS attack succeeds when a correct SPI is targeted). 

 

In order to avoid using a fixed SPI, and still reduce the number of cryptographic 

computations under heavy attacks, one can employ authentication information that 

changes over time, and not per packet [7, 17]. Each packet contains a filtering 

identifier (FI), taken from a secret pseudorandom sequence, known only to the two 

communicating parties. In this research, we use IPSec's SPI field as the FI. The 

pseudorandom sequence is locally generated by the client and the server using a 

shared secret key (as in IPSec), and each client shares a different key with the server. 

Secret keys are common in existing client-server communication systems, e.g., SSL-

based transactions, or IPSec-based VPNs. Every fixed time interval, the FI is chosen 

to be the next number from the sequence. A party that receives a packet validates the 

FI against the expected value. If there is no match, the packet is discarded and no 

further processing is performed. This approach is called FI hopping. FI hopping 

requires less processing time when dealing with high volumes of traffic (as in a DoS 

attack), since the FI needs to be recalculated only once per time interval, e.g., 5 

seconds, and not per packet. Naturally, many packets may be transmitted during a 

single time interval. On the other hand, the interval can be short enough so that an 

attacker will not have time to detect the FI value in use and react to it. Recall that a 

real-world attacker usually employs thousands of zombie machines, and coordinating 

all of them to start employing a discovered FI value may take a long time, perhaps 

even 10 seconds or more. 

 

We compare implementations of the two methods, per-packet authentication and FI 

hopping. We call our implementation of FI hopping Φ-Hopper. The per-packet 

authentication used in our experiments is a standard Linux IPSec implementation. The 

Φ-Hopper implementation presented here is a refinement of the ideas presented in    

[7, 17]. These papers suggested hopping in the context of ports, and communicating 

with a single client, while providing no real implementation. We implement and 

deploy a protocol that supports communication from many clients to a server (can be 

extended to a server farm), and can use various header fields of different lengths to 

hold the FI, e.g., IPSec's SPI field. Alternatively, the FI can be appended to the 

packets in transit. We describe an implementation of Φ-Hopper by modifying a Linux 

kernel's IPSec [3] implementation. Both IPSec and Φ-Hopper use SHA-1 [21] as a 

pseudorandom function (PRF) [11] for the calculation of the authentication 

information. For simplicity, for the rest of this paper we neglect the probability that 

the adversary can forge the PRF without knowing the secret key. 



- 5 - 

 

Φ-Hopper includes a rate-limiter that protects the server from corrupt legitimate 

clients, instead of just letting authenticated communication pass through, as IPSec 

does. It is common that valid clients get corrupted by a virus or a worm [24], and 

these clients may behave unexpectedly, possibly overloading the server. 

 

We provide measurement results for HTTP traffic over UDP or TCP and for file 

transfers over TCP. When the communication is not authenticated, we show that the 

server crashes even when the attack strength is light. Additionally, with no 

authentication in place, it is easy to tear down a TCP connection using a low-rate DoS 

attack [16] or a single RST packet [27]. We validate these results in our experiments. 

For authenticated communication, we show that IPSec alone can only mitigate DoS 

attacks to a limited extent, while Φ-Hopper provides virtually perfect protection even 

for attacks almost three times stronger. For file transfers over TCP, even when IPSec 

provides adequate protection in terms of delivery probability, it incurs a severe 

penalty on latency, with latencies ranging from 5 to 1,000 times more than the latency 

exhibited by Φ-Hopper, for attacks ranging from 30,000 to 50,000 bogus requests per 

second, respectively. For these attacks, Φ-Hopper exhibits the same latency as the 

latency when no attack is performed at all. Our experimental results validate the 

analytical results presented in [7]. 

 

Some important insights follow from our measurements: 

 A server that has no DoS protection at all collapses even under a light DoS attack. 

 Per-packet authentication is effective against medium-strength attacks, but fails 

for attacks well under the wire speed. 

 It is important to keep IPSec's SPI field unknown to the attacker at all times. To 

support this, the initial SPI should be random. 

 FI hopping can ensure that IPSec's SPI is unknown to the attacker with high 

probability, and can thus leverage IPSec's capabilities to provide better DoS 

protection, as we show in the first real implementation and deployment of FI 

hopping. 

 Rate-limiting traffic is important even when authentication is performed, since 

traffic corrupt valid clients passes authentication, and can thus consume an 

arbitrary amount of the server's resources. Fixed limits per flow are not adequate 

for bursty traffic, and it is better to be flexible and adjust rates between flows 

according to the actual generated traffic. 

 

 



- 6 - 

2. Design Goals 

We consider the problem of protecting the following basic client-server 

communication from DoS attacks: 

 A server or a server farm provides service to authorized clients. Client-server 

sessions are relatively long, and consist of several transactions, potentially 

using authenticated communication. 

 

The number of registered clients may be very large, e.g., 1,000,000, but it is expected 

that only a small number of them, e.g., 1,000, will communicate with the server 

simultaneously. These basic properties are found in many web-based services, e.g., 

banking, stock trading, and online auctions. DoS attacks on these services may 

degrade the service so much that clients lose money due to its unavailability. 

 

Our goals in protecting the basic system against DoS attacks are as follows: 

 Session DoS-resistance. Protect ongoing client-server sessions. Moreover, 

separate the “war zones” - attacking the admission process should not affect 

ongoing sessions. 

 Admission DoS-resistance. Protect the admission process in which registered 

clients create new sessions with the server. 

 Fast communication. Do not harm communication latency for established 

client-server sessions. 

 

One might argue that authenticating client-server communication alone is enough to 

filter out invalid packets sent by DoS attackers. But although authentication is enough 

to discriminate bogus messages from valid ones, the validation itself is costly. This is 

especially a problem if the server is the one performing the validation, as happens 

when using SSL. Since the server should be mainly busy with answering requests, we 

would like to minimize the number of invalid packets that reach the server and cause 

extra processing. Our measurements in Section 6 show that by avoiding per-packet 

authentication we can resist much stronger DoS attacks. 

 

  



- 7 - 

3. Related Work 

Our work continues the line of research on prevention of Distributed Denial of 

Service attacks, which focuses on filtering mechanisms to block and discard the 

offending traffic. 

 

Other mechanisms for mitigation of DoS attacks include the use of proxy networks 

[26] such as SOS [15] and Mayday [2]. This approach is different from ours, since 

proxy networks cause a substantial delay in latency as messages are routed through 

the overlay, and rely on the client not knowing the server's IP address. In contrast, the 

systems we examine do not require the complicated setup of an overlay network and 

allow the direct client-server communication, without incurring a penalty on latency. 

Other work focuses on quantifying DoS activity over the Internet [20], while our 

focus is on DoS protection. 

 

An additional work [25] employs an overlay network similar to SOS, which uses 

spread-spectrum like path diversity to counter DoS attacks. The system also uses 

secret keys to authenticate valid messages. Like SOS, it requires additional nodes to 

construct the overlay network, and the additional overhead has an impact on message 

throughput and latency. 

 

Independently of our work, Lee and Thing [17] examined the use of port-hopping to 

mitigate the effect of DoS attacks. Their empirical results do not state the strategy the 

attacker employs for its attack, and it is not clear whether the adversary cannot launch 

a better attack against their protocol.  

 

Wang, et al. [26] provide simulation results for various DDoS attacks on general 

proxy networks, and the applications protected by them. However, they only deal with 

general proxy networks. 

 

It has already been shown that DoS attacks can be harmful even when they are low-

rate and do not congest the network [16, 18]. We want to gain insights on the effect of 

low-rate DoS attacks on systems protected using efficient authentication mechanisms 

such as IPSec and FI hopping. Our complete, fully-tested FI hopping implementation, 

Φ-Hopper, is one of our new contributions, resulting from the need to perform 

extensive measurements on a real implementation. 

 

The idea of repeatedly changing authentication credentials to avoid suffering damage 

due to exposure, has been used in different contexts, e.g., in the S/KEY authentication 

method [12]. Φ-Hopper is based on ideas that have been suggested in [7] and in [17]. 

However, these previous suggestions lacked in several areas, and so Φ-Hopper differs 

from them in the following ways: 

1. Φ-Hopper supports communication between many clients and a single server, 

and not just two-party communication. 

2. Φ-Hopper uses realistic rate-limiting techniques, as opposed to the purely 

theoretical analysis in [7] that assumed a simplified model of rate-limiting at 

the network level. Additionally, rate-limiting is performed per client, and not 

per FI. The protocol described in [17] uses no rate-limiting at all. 



- 8 - 

3. Φ-Hopper is implemented, and we provide measurements of the actual 

protocol implementation, and not of its simulated behavior [17] or of an 

analytical analysis of the protocol (as given in [7]). The analysis in [7] shows 

that the basic idea of hopping is very effective against DoS attacks, but does 

so under simplified network and rate-limiting models. In Section 6 we have 

shown that the analysis in [7] gives a good estimate of realistic results, using a 

real implementation of all of Φ-Hopper's components. Other work simulates 

the effect port-hopping has on the delivery probability under attack, and shows 

that using it is expected to decrease the load on the server [17]. 

 

IPSec [3] performs filtering at the IP layer, by authenticating messages using message 

authentication codes (MACs), based on shared secret keys. IPSec ensures that higher-

level protocols only receive valid messages. However, the work required to 

authenticate each message is invested for each incoming packet that has a valid SPI. 

Once the SPI, which is sent in the clear, is known, an attacker can perform a DoS 

attack by overloading IPSec with many bogus packets to authenticate. In contrast, our 

solution ensures that the authentication phase is reached only for packets that are valid 

with high probability, by constantly changing the clear text filtering identifier, e.g., 

the SPI. Our results in Section 6 show that relying only on authentication to provide 

DoS protection is futile. 

 



- 9 - 

4. Beaver’s Architecture 

We present Beaver - a robust architecture and method to protect servers from DoS 

attacks. Beaver employs two DoS-protection mechanisms: one for admission of new 

client sessions, and another for protecting ongoing sessions. The former uses 

dedicated admission servers (ADMs). The latter is Φ-Hopper - a two-party 

communication protocol that mitigates DoS attacks by filtering packets. The use of 

ADMs takes the admission load off the server, so that the server is not concerned with 

DoS attacks on clients trying to be admitted into the system. 

 

Φ-Hopper protects client-server communication sessions from DoS attacks, but does 

not authenticate the communication by itself. Φ-Hopper only provides dynamic 

filtering and rate-limiting facilities. Together, the ADMs and Φ-Hopper are very 

effective against DoS attacks. 

4.1 Sessions in Beaver 

Figure 1 illustrates Beaver’s architecture, and shows how a session is established: (1) 

a pre-registered client requests an ADM to start a new session with the server. The 

client can choose the ADM arbitrarily. Specifically, a client that fails to start a session 

through some ADM may choose a different ADM for the admission process. (2) The 

ADM communicates with the client via Φ-Hopper and authenticates the client. 

Communication via Φ-Hopper is marked in bold lines. The figure illustrates             

Φ-Hopper in tunnel mode, i.e., hopping between gateways. (3) The ADM contacts the 

server through a constant Φ-Hopper session that they share, and asks it to start a new 

session with the client. The server then opens a new Φ-Hopper session with the client. 

(4) The ADM notifies the client that it can start communicating with the server. (5) 

The client communicates with the server via Φ-Hopper. More generally, there can be 

multiple servers (e.g., a server farm), and an ADM can direct the client to any one of 

them. 

 

Figure 1: Beaver’s Architecture. 



- 10 - 

The resources allocated by the server for communicating with a specific client are 

freed when the client notifies the server that it wishes to terminate communication, or 

when no valid message has been received from the client for a given predetermined 

amount of time. This procedure is very similar to cookie-based authentication used in 

web servers, where cookies expire after some inactivity period and the session must 

be re-established to communicate with the server once more. An additional similarity 

is that the server allows the client to have only one active session at a time. 

 

The resources used by the server to communicate with the ADM are allocated at boot 

time and never freed, as it is always possible for clients to start new sessions. Since 

the server does not expect many clients to start new sessions at the same time, these 

ADM-communication resources are low, compared to the resources allocated for 

ongoing sessions with clients. 

 

4.2 Φ-Hopper 

Φ-Hopper leverages existing, cheap, network-level packet-filtering and rate-limiting 

solutions, along with more complex algorithms at a higher layer, which determine the 

filtering criteria and rate limits. Filtering is based on a filtering identifier (FI, or Φ), 

which is some message field value that can be changed by the communicating parties, 

and is preserved during the transmission of the message. For example, it can be a 

combination of IP address and ports [17], as shown in [7], or IPSec's security 

parameter index (SPI) field [3]. The FI can also be an artificial field appended to the 

message. The FI's size can be set according to the wanted DoS-resistance guarantees. 

 

At each communicating party, Φ-Hopper has two parts: a front-end that performs fast 

packet-filtering, rate-limiting, and FI adding, and a back-end that controls the front-

end's parameters, e.g., filtering criteria and rates. Figure 2 shows the decomposition of 

Φ-Hopper and the interaction between its various components. 

 

 

Figure 2: Communicating using Φ-Hopper (Alice’s view). 



- 11 - 

The two parties wishing to communicate share a secret. This secret is used to create 

pseudorandom sequences of FIs. Each message transmitted between the parties carries 

a FI taken from an appropriate pseudorandom sequence. The receiver's front-end 

anticipates the FI according to the pseudorandom sequence, and filters out all 

messages carrying invalid FIs.  The FIs change in order to maintain DoS-resilience. 

Otherwise, the adversary could eavesdrop on messages and discover the FI in use. 

Hopping using an appropriate FI size ensures that with high probability, the adversary 

cannot discover the FI (see [7]). 

 

4.2.1 The front-end 

The front-end can be a gateway or firewall. In fact, the front-end's components do not 

all have to be deployed on the same machine. The first component is simple and 

handles fast filtering of incoming packets. Its purpose is to defend the recipient from 

being flooded with spoofed messages. 

 

The second front-end component rate-limits incoming valid traffic according to its 

source. The rationale behind this component is that registered clients can also get 

corrupted, or try to receive better service at the expense of other valid clients. The 

rate-limiter ensures that the server does not receive more requests than it can handle, 

and that all clients receive their fair share of the server's time. 

 

We use two types of rate-limiters: fixed-quota (FQ) and round-robin (RR) based. 

When using the FQ rate-limiter, each source is allocated a maximum allowed rate that 

can change during the session. This method is simple and fast. For example, a client 

may be allowed to send 10 requests every second. Note, that when the server performs 

costly processing per each client request, the rate that needs to be limited is the rate of 

incoming requests, and not the rate of incoming bytes. Our FQ rate-limiter 

approximates this by counting packets (indeed, in our experiments, each packet 

corresponds to a single request). However, even if the average rate of requests is 

adequate, but the client sends its traffic as bursts, packets will get dropped. 

 

The RR rate-limiter strives to use resources more efficiently, by sharing them among 

all clients. In RR rate-limiting, each source-destination pair has limited-size queues 

for incoming/outgoing messages. The size of the queues is defined according to the 

number of clients and the destination’s ability to serve arriving requests. Messages 

arriving to a full queue are dropped. Φ-Hopper sends messages from the queues to 

their destination in a RR fashion, provided that the total maximum allowed rate of 

messages is not exceeded. If a queue is empty, it is skipped for that RR cycle. RR 

rate-limiting handles bursty traffic well, but incurs an increase in latency, due to its 

periodic and cyclic nature. The importance of using RR to compensate for bursts of 

one client with idle time of others increases with the number of clients in the system. 

 

The third front-end component is quite trivial, as it only adds the appropriate FI to 

outgoing packets, so that they will be accepted by the recipient. 

 



- 12 - 

4.2.2 The back-end 

Each party communicating via Φ-Hopper uses its clock to determine its current 

position in the pseudorandom sequence for incoming and outgoing messages. A Φ-

Hopper session between two parties is initialized using a shared secret key used for 

generating the pseudorandom sequence. 

 

During session initialization, each party allocates bounded resources for 

communication in this session.  Φ-Hopper allocates separate resources for each active 

client, which are freed when the session for that client ends. 

 

Whenever a client becomes active/inactive, resources allocated to other clients might 

change, e.g., to achieve fairness or better utilization of the server. We note that, in 

general, since the server separately allocates bounded resources for each active client, 

compromised clients cannot significantly drain the server's resources by sending it an 

excessive number of requests, and thus valid clients get their share of the server's 

resources. 

 

To compensate for loose time synchronization between the parties, each party keeps 

multiple open FIs at the receiving end. Every fixed time interval 𝑡 , Φ-Hopper 

performs a hop, where it closes the oldest open FI and opens one new FI.We say that 

each party opens FIs for communication, when these FIs are added to the list of valid 

FIs, and closes FIs, when these FIs are invalidated.  



- 13 - 

5. Implementation 

5.1 Φ-Hopper 

The implementation of Φ-Hopper was done inside the Linux Kernel 2.6 within the 

"AF_KEY" module. This module is responsible for creating and managing PF_KEY 

sockets. PF_KEY [19] is a socket protocol family used by trusted privileged key 

management applications outside of the kernel to communicate with the kernel. In our 

work, PF_KEY sockets are used by ipsec-tools [14] for initializing / finalizing IPSec 

services by sending appropriate requests to the kernel. 

 

When IPSec is applied between two gateways, a separate IPSec channel is created for 

incoming and outgoing directions (see Figure 3). IPSec uses shared secret keys 

(private_key) to provide per packet authentication. 

 

Gateway A Gateway B

Network

IPSec Channel

IPSec Channel

 

Figure 3: IPSec channel communication between two gateways. 

 

IPSec stores a database (state) for each channel. In addition to authentication 

information, the IPSec state includes a 32-bit Security Parameter Index (SPI) field, 

which is unique for each channel. Every arrived packet that does not have a valid SPI 

is discarded, while a packet that contains a valid SPI goes through IPSec's 

authentication phase. 

 

The purpose of Φ-Hopper is to change the SPI of each channel in both gateways, so 

that in every given time there will be the same SPI for the same channel in both 

gateways. Because of the fact that it is impossible to synchronize both gateways 

perfectly, and the delivery of packets takes time, the receiving gateway should agree 

to accept packets with a number of previous SPIs. 

 

In our implementation of Φ-Hopper, in order to compensate the lack of 

synchronization between the gateways, we store a linked list of incoming and 

outgoing states in the Φ-Hopper extension to IPSec. For each outgoing channel, only 

one current state is saved. For each incoming channel, in every given time, in addition 

to the current state, k  previous and k  next states are saved; totally  2 1k   states, 

where k is a parameter. In our experiments, we used 2k  . 

 



- 14 - 

Each element of the linked list of incoming and outgoing states has all the data that 

IPSec holds for every created channel and in addition, it has a lifetime identifier that 

maps between the elements of linked list and  2 1k  stored states ,...,k k . In more 

details, each element of liked list has: 

 Destination address of IPSec channel (daddr) 

 Source address of IPSec channel (saddr) 

 SPI (Security Parameter Index) of the IPSec channel 

 Communication protocol 

 Network family (IPv4 or IPv6) 

 Private key (shared secret) that is specified when IPSec channel is created and 

initialized for the first time (private_key) 

 Lifetime identifier of the state - e.g., k  - for the k ’th previous state, -1 - 

first previous state, 0 - current state, 1 - first next state, k  - k ’th next state. 

 

 

In order to hop states, a timer was defined. The time between hopping states is  . All 

simulations were performed with   equal to 5 seconds. 

 

Every time the timer expires, old states are deleted (the old state of the outgoing 

channel and the k ’th previous state of the incoming channel). Instead of the deleted 

states, new ones (with a new SPI) are created. 

 

For example, if 5   seconds and 2k  , we store 5 states for an incoming channel - 

of times  10t  ,  5t  ,  t ,  5t  ,  10t  , when t  is “now” mod 5 (the current 

time rounded downtown to the nearest value that can be divided by 5 without 

remainder). This can compensate for the lack of synchronization between the 

gateways of up to 20 seconds. 

 

The new SPI of the new state of the outgoing channel is calculated by XOR’ing the 

private key with the source and the destination addresses and with the hashed current 

time rounded downtown to the nearest value that can be divided by 5 without 

remainder as follows: 

        New SPI = private_key saddr daddr sha-1 t    

where “sha-1” is a cryptographic hash function that produce the 160-bit hash value. 

 

The new SPI of k ’th next state of incoming channel is calculated by XOR’ing the 

private key with the source and the destination addresses and with the hashed time of 

k ’th next state mod 5 (rounded downtown to the nearest value that can be divided by 

5 without remainder) as follows: 

        New SPI = private_key saddr daddr sha-1 t+k*  
 

where “sha-1” is a cryptographic hash function that produce the 160-bit hash value.  



- 15 - 

5.2 Rate-Limiting Mechanisms 

The implementation of rate-limiting mechanisms was done inside the Linux Kernel 

2.6 within the “xfrm4_input.c” file. The initialization and finalization were done 

within the "AF_KEY" module. All functions that were originally implemented inside 

the “xfrm4_input.c” file are responsible for decapsulation, parsing and validation of 

received IPSec packets. The validation includes: parsing the SPI, lookup for the IPSec 

incoming state (according to the parsed SPI), checking its expiration time, encryption 

and authentication. 

 

We implemented two types of rate-limiters: Fixed-Quota (FQ) and Round-Robin (RR) 

based. Both implementations use timers for controlling packet counters. 

 

Figure 4 shows the pseudo-code for the Fixed-Quota (FQ) rate-limiter implementation. 

The counter of transmitted packets is cleared every period of time (lines 5-8).  In 

order to distinguish between different clients, an IP address of the client’s computer is 

used as a filtering criterion. For every packet with valid checksum that arrives, the 

filtering criterion is checked (line 10). If the filtering criterion is not met, the packet is 

dropped (line 11). If the filtering criterion is met, the transmitted packets counter is 

checked (line 12). If the counter exceeds the limit, the packet is dropped (line 13). 

Otherwise, the transmitted packets counter is incremented and the packet is 

transmitted (lines 14-15). 

 

 

Figure 4: Pseudo-code for Fixed-Quota (FQ) rate-limiter. 

 

Figure 5 shows the pseudo-code for the Round-Robin (RR) rate-limiter’s 

implementation. A separate waiting queue is created for every IPSec channel 

(identified as a combination of SPI, source address and destination address). Every 

waiting queue has a limited size; in our experiments each queue is limited to 500 

packets. 

 

(1) Initially: 

(2) for each 𝑐𝑙𝑖𝑒𝑛𝑡 in 𝑐𝑙𝑖𝑒𝑛𝑡𝑠_𝑙𝑖𝑠𝑡 do 

(3) 𝑐𝑜𝑢𝑛𝑡𝑒𝑟[client] ← 0 
(4) Set timer to Timeout 

 

(5) On wakeup of timer() 

(6) for each 𝑐𝑙𝑖𝑒𝑛𝑡 in 𝑐𝑙𝑖𝑒𝑛𝑡𝑠_𝑙𝑖𝑠𝑡 do 

(7) 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 client ← 0 
(8) Set timer to Timeout 

 

(9) On receiving packet with valid checksum from client 

(10) if 𝑐𝑙𝑖𝑒𝑛𝑡 does not exists in 𝑐𝑙𝑖𝑒𝑛𝑡𝑠_𝑙𝑖𝑠𝑡 then 

(11) Drop packet 

(12) return 

(13) if counter[client] >= 𝑚𝑎𝑥_𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑝𝑒𝑟_𝑟𝑜𝑢𝑛𝑑 then 

(14) Drop packet 

(15) return 

(16) counter[client]++ 

(17) Transmit packet 



- 16 - 

For every packet with valid checksum that arrives, it is first checked if the client 

exists in the list of known clients (line 25). If the client does not exist, the client is 

added to the list and the waiting queue for newly added client is created (lines 26-27). 

Next, the size of an appropriate waiting queue is checked (line 28). If the size exceeds 

the limit, the packet is dropped (line 29). Otherwise, the packet is added to the waiting 

queue (line 31), and if the timer was not initialized, it is set to timeout (lines 32-33). 

 

A limited number of packets can be transmitted every period of time (line 13). The 

transmission is performed “one by one” - one packet is removed from every          

non-empty queue and transmitted (lines 16-17). This is done until all queues become 

empty or until the limit for the current round is reached. 
 

If all queues are empty during maximum allowed number of timer calls (line 9), all 

queues are deleted and all allocated memory is freed (lines 10-11). 

 

 

Figure 5: Pseudo-code for Round-Robin (RR) rate-limiter. 

(1) Initially: 

(2) 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑖𝑛_𝑟𝑜𝑢𝑛𝑑 ← 0 

(3) Set timer to Timeout 

 

(4) On wakeup of timer() 

(5) if no non-empty 𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑞𝑢𝑒𝑢e exists then 

(6) 𝑒𝑚𝑝𝑡𝑦_𝑟𝑜𝑢𝑛𝑑𝑠_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + +  
(7) else 

(8) 𝑒𝑚𝑝𝑡𝑦_𝑟𝑜𝑢𝑛𝑑𝑠_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0 

(9) if 𝑒𝑚𝑝𝑡𝑦_𝑟𝑜𝑢𝑛𝑑𝑠_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 > max_𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑒𝑚𝑝𝑡𝑦_𝑟𝑜𝑢𝑛𝑑𝑠_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 then 

(10) Delete all 𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑞𝑢𝑒𝑢𝑒𝑠 

(11) Remove all 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 from 𝑐𝑙𝑖𝑒𝑛𝑡𝑠_𝑙𝑖𝑠𝑡 

(12) return 

(13) while 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑖𝑛_𝑟𝑜𝑢𝑛𝑑 < 𝑚𝑎𝑥_𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑝𝑒𝑟_𝑟𝑜𝑢𝑛𝑑 and 

at least one non-empty 𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑞𝑢𝑒𝑢e exists 

(14) for each non-empty 𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑞𝑢𝑒𝑢𝑒 do 

(15) if 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑖𝑛_𝑟𝑜𝑢𝑛𝑑 < 𝑚𝑎𝑥_𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑝𝑒𝑟_𝑟𝑜𝑢𝑛𝑑 then 

(16) 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑖𝑛_𝑟𝑜𝑢𝑛𝑑 + +  
(17) Transmit first packet from 𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑞𝑢𝑒𝑢𝑒 

(18) else 

(19) 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑖𝑛_𝑟𝑜𝑢𝑛𝑑 ← 0 

(20) Set timer to Timeout 

(21) return 

(22) 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑_𝑖𝑛_𝑟𝑜𝑢𝑛𝑑 ← 0 

(23) Set timer to Timeout 

 

(24) On receiving packet with valid checksum from 𝑐𝑙𝑖𝑒𝑛𝑡  

(25) if  𝑐𝑙𝑖𝑒𝑛𝑡 does not exist in 𝑐𝑙𝑖𝑒𝑛𝑡𝑠_𝑙𝑖𝑠𝑡 then 

(26) Add 𝑐𝑙𝑖𝑒𝑛𝑡 to 𝑐𝑙𝑖𝑒𝑛𝑡𝑠_𝑙𝑖𝑠𝑡 

(27) Create 𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑞𝑢𝑒𝑢𝑒  for 𝑐𝑙𝑖𝑒𝑛𝑡 

(28) if size of 𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑞𝑢𝑒𝑢𝑒  >=  𝑚𝑎𝑥_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 then 

(29) Drop packet 

(30) return 

(31) Add packet to 𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑞𝑢𝑒𝑢𝑒  

(32) if timer is not initialized then 

(33) Set timer to Timeout 



- 17 - 

5.3 Servers 

5.3.1 Simulation Server 

Our simulation server was written in the C language and it runs under Linux as a 

command-line utility. The server can listen to TCP / UDP incoming connections. The 

protocol (TCP / UDP) and the port number for listening on are received as arguments. 

 

Every message (request or response) that was sent from a client to the server (or from 

the server to a client) has a header that includes the following information: 

 ID of message 

 Length of message 

 ID of simulation the message belongs to 

 ID of current request within current simulation 

 

The  ID of the simulation and the ID of the current request are used for identifying the 

messages - if some messages are lost, we should know not only how many messages 

are lost, but also which messages exactly are lost. This information is stored in a local 

database and used later for providing results and statistics calculations. 

 

Figure 6 shows the pseudo-code for the Simulation Server implementation. When the 

simulation starts, the server initializes the local database, creates callback for “kill” 

signal, and waits for new clients to connect (lines 1-3). 

 

 

Figure 6: Pseudo-code for Simulation Server. 

 

Main thread: 

(1) Initialize local database 

(2) Initialize callback for kill signal 

(3) Wait for new clients to connect 

 

(4) On accepting new client connection 

(5) If protocol is TCP then 

(6) Create a receiver thread for newly accepted client 

(7) else 

(8) Analyze the request 

(9) Update local database 

(10) Send the response 

 

On receiving “kill” signal 

(11) Terminate the communication 

(12) Analyze local database 

(13) Print database information 

(14) Exit 

 

Receiver thread: 

(15) On receiving valid packet from client 

(16) Analyze the request 

(17) Update local database 

(18) Send the response 



- 18 - 

If the server is listening for TCP connections, for every client that is trying to 

establish communication with the server, a separate receiver thread is created (line 5-

6). The newly created receiver thread is responsible for analyzing all requests, 

updating the local database and sending a response to the client (lines 15-18). 

 

If the server is listening for UDP connections, then analyzing all received requests, 

updating the local database and sending a response to the appropriate client is all done 

within the same main thread (lines 8-10). 

 

If the server receives “kill” signal, it terminates the communication, analyzes the 

database, prints information from database, and exits (lines 11-14). 

 

5.3.2 Admission Server 

According to [6], an admission server (ADM) has two roles. First, it allows clients to 

register to the service. Second, the ADM performs the admission process - 

authenticating registered clients before authorizing them to communicate with the 

server. In the current work, only the second role (the admission process) was 

implemented. 

 

5.3.3 The Admission Process 

The ADM authenticates registered clients before authorizing them to communicate 

with the server. This is called the admission process. There may be multiple 

admission servers, and all of them are identical, except for a unique secret, SS,ADM  (of 

a specific ADM), each of them shares with the server. The use of many admission 

servers protects the admission process from DoS attacks, as the client can initiate the 

admission process with an arbitrary ADM. A DoS-attacker that wishes to severely 

harm the admission process needs to launch a massive attack that targets most, if not 

all of the ADMs. It is make sense to add more ADMs to resist admission DDoS 

attacks instead of just adding more servers to resist DDoS attacks directly. The main 

reason for it is that ADMs should not be synchronized between them as servers should. 

In addition, ADMs can be a simple desktop computers, while servers should be strong 

enough to handle all client’s requests. 

 

The admission process commences and proceeds as follows (see pseudo-code in 

Figure 7 and Figure 8):  

 

1. Connection request (lines 1-8). The client sends the ADM a connection 

request containing the client’s ID, the current local timestamp, and a random 

κ-bit number, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐼𝐷, used along with the client’s ID to uniquely identify 

this admission process. κ is a security parameter, e.g., 128. If no challenge is 

received within some timeout period, the client terminates the admission 

process. The client may restart the admission process to start a session in spite 

of transient failures. 

 

2. Challenge (lines 39-48). If the connection request is valid and its timestamp is 

more recent than the last saved timestamp for that client, the ADM saves the 



- 19 - 

new timestamp and request ID for that client. Then, the ADM sends the client 

a challenge comprised of a random nonce (a random number used only once in 

the protocol). If no response is received within 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒𝑜𝑢𝑡 < 𝐸 

seconds, the ADM effectively terminates the admission process, which must 

be restarted for that client to be admitted into the system. 

 

The challenge and timeout are used to prevent an adversary from launching a 

replay attack after dropping the client’s messages. Without this mechanism, it 

would have been possible for the adversary to accumulate dropped client 

connection requests over a long period of time (even hours), and then replay 

messages from many clients at once, which would all be deemed valid by the 

ADM, and cause the server to start many new client sessions. Note that we do 

not assume that the client and ADM’s clocks are synchronized with each 

other; hence, the ADM cannot check the freshness of connection requests. 

 

3. Response (lines 9-15). The client proves it holds SC,ADM  by responding with a 

MAC on the challenge sent by the ADM. 

 

4. Admission request (lines 49-56). If the response is valid, the ADM trusts the 

authenticity of the client and sends an admission request with the client’s ID to 

the server. 

 

5. Admission approval (lines 24-32). If the server does not currently have 

resources allocated for a session with that client, and the client’s request is 

fresh, the server is willing to start a session with the client. The server then 

sends back to the ADM a message approving the client’s admittance, and 

allocates Φ-Hopper resources for communicating with that client. If the client 

does not communicate with the server within 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝑛𝑖𝑡𝑇𝑖𝑚𝑒𝑜𝑢𝑡 seconds 

from this stage, these resources are freed. The timeout is used to free resources 

allocated by a compromised ADM that delays the transmission of admission 

requests for valid clients, and then sends these requests once the clients no 

longer try to communicate with the server. 

 

6. Admission completion (lines 57-58). The ADM sends a message to the client 

indicating that communication with the server can take place. 

 

7. Session (lines 16-20). Upon receiving an admission completion message, the 

client starts a communication session with the server. 

 



- 20 - 

 

 

Figure 7: Pseudo-code for the admission process (continued on next page). 

 

CLIENT 

 

(1) Open: 

(2) clientTS ← local time 

(3) requestID ← random κ − bit number 

(4) connectionRequest ←  data ←  clientID, requestID, clientTS , MACSC ,ADM
 data   

(5) send 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑅equest to ADM 

(6) if no valid challenge received within timeout then 

(7) invalidate requestID 

(8) return connection failure 

 

(9) Upon receiving challenge from ADM: 

(10) if challenge. clientID = clientID and challenge. requestID is valid and 

challenge. MACSC ,ADM
= MACSC ,ADM

 challenge. data  then 

(11) response ←  data ← challenge. data, MACSC ,ADM
 data , MACSC ,S

 data   

(12) send response to ADM 

(13) if no valid admission completion received within timeout then 

(14) invalidate requestID 

(15) return connection failure 

 

(16) Upon receiving 𝐚𝐝𝐦𝐢𝐬𝐬𝐢𝐨𝐧𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐢𝐨𝐧 from ADM: 

(17) if admissionApproval. clientID = clientID and  

admissionCompletion. requestID is valid and admissionCompletion. MACSC ,ADM
=

MACSC ,ADM
 admissionCompletion. data  and 

(18) admissionCompletion. MACSC ,S
= MACSC ,S

 admissionCompletion. data  then 

(19) seed ← admissionApproval. clientID || admissionApproval. requestID ||  
admissionApproval. clientTS  

(20) initHopperSession(seed, SC,S , admissionCompletion. serverID) 

 

 

 

SERVER 

 

(21) Init(ADMs): 
(22) for each ADM in ADMs do 
(23) initHopperSession(0, ADM. SS,ADM , ADM. ADMID) 

 
(24) Upon receiving 𝐚𝐝𝐦𝐢𝐬𝐬𝐢𝐨𝐧𝐑𝐞𝐪𝐮𝐞𝐬𝐭 from ADM for client 

𝐀 ← 𝐚𝐝𝐦𝐢𝐬𝐬𝐢𝐨𝐧𝐑𝐞𝐪𝐮𝐞𝐬𝐭. 𝐜𝐥𝐢𝐞𝐧𝐭𝐈𝐃: 
(25) if A is authorized to connect through ADM and no session with A is pending or in 

progress and 
(26) (admReqTS A  is uninitialized or admissionRequest. clientTS > 𝑎𝑑𝑚𝑅𝑒𝑞𝑇𝑆 A ) 

and 
(27) admissionRequest. MACSS ,ADM

= MACSS,ADM
 admissionRequest. data  and 

(28) admissionRequest. MACSC ,S
= MACSC ,S

 admissionRequest. data  then 

(29) admReqTS A ← admissionRequest. clientTS 
(30) seed ← admissionRequest. clientID || admissionRequest. requestID ||  

admissionRequest. clientTS  

(31) initHopperSession(seed, SC,S , serverID) 

(32) admissionApproval ←  data ←  admissionRequest. data, serverID ,
MACSS ,ADM

 data , MACSC ,S
 data   

(33) hopperSend(admissionApproval, ADM) 
(34) if no session with A begins within sessionInitTimeout  seconds then 
(35) endHopperSession(A) 



- 21 - 

 

 

Figure 8 (continued): Pseudo-code for the admission process. 

 

Figure 9(a) shows the messages passed during the admission process if all procedures 

succeed. Figure 9(b) shows a case where the admission completion message is lost, 

and so the client never knows that it can connect to the server. After 

𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝑛𝑖𝑡𝑇𝑖𝑚𝑒𝑜𝑢𝑡 seconds expire, the server releases the resources allocated for 

the session. 

 

Figure 9(c) shows a case where the client delays its response to the ADM’s challenge, 

perhaps due to some unexpected multitasking processing. The ADM maintains the 

nonce used in the challenge for 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒𝑜𝑢𝑡 time, but if that time passes and 

no response is received by the ADM, the ADM invalidates the nonce and effectively 

terminates the admission process. When the client responds later, its message is 

silently discarded by the ADM. 

 

 

 

ADMISSION SERVER 

 

(36) Init(serverID): 
(37) initHopperSession(0, SS,ADM , serverID) 

 
(38) Upon receiving 𝐜𝐨𝐧𝐧𝐞𝐜𝐭𝐢𝐨𝐧𝐑𝐞𝐪𝐮𝐞𝐬𝐭 from client 𝐀 ← 𝐜𝐨𝐧𝐧𝐞𝐜𝐭𝐢𝐨𝐧𝐑𝐞𝐪𝐮𝐞𝐬𝐭 . 𝐜𝐥𝐢𝐞𝐧𝐭𝐈𝐃: 
(39) if (connReqTS A   is uninitialized or connectionRequest. clientTS >

connReqTS A  ) and 
(40) connectionRequest. MAC = MACSC ,ADM

 connectionRequest. data  then 

(41) connReqTS[A]  ← connectionRequest. clientTS 
(42) connReqID[A]  ← connectionRequest. requestID 
(43) nonce ← random κ − bit number 
(44) connReqNonce[A] ←  nonce 
(45) challenge ←  data ←  connectionRequest. data, nonce , MACSC ,ADM

 data   

(46) send challenge to A 
(47) if no valid response received within responseTimeout  seconds then 
(48) connReqNonce[A] ←  null 

 
(49) Upon receiving 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 from client 𝐀 ← 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞. 𝐜𝐥𝐢𝐞𝐧𝐭𝐈𝐃: 
(50) if response. clientTS = connReqTS A   and response. requestID = connReqID A  

and 
(51) connReqNonce A  ! = null and response. nonce = connReqNonce[A] and 
(52) response. MAC = MACSC ,ADM

 response. data  then 

(53) admissionRequest ←
 data ← response. data, response. MACSC ,S

, MACSS ,ADM
 data   

(54) hopperSend(admissionRequest, server) 
(55) if no valid response received within responseTimeout  seconds then 
(56) connReqNonce[A] ←  null 

 
(57) Upon receiving 𝐚𝐝𝐦𝐢𝐬𝐬𝐢𝐨𝐧𝐀𝐩𝐩𝐫𝐨𝐯𝐚𝐥 from server for client 

𝐀 ← 𝐚𝐝𝐦𝐢𝐬𝐬𝐢𝐨𝐧𝐀𝐩𝐩𝐫𝐨𝐯𝐚𝐥. 𝐜𝐥𝐢𝐞𝐧𝐭𝐈𝐃: 
(58) if admissionApproval. requestID = connReqID A  and 
(59) admissionApproval. MACSS ,ADM

= MACSS,ADM
 admissionApproval. data  then 

(60) admissionCompletion ←
 data ← admissionApproval. data, MACSC ,S

 data , MACSC ,ADM
 data   

(61) send admissionCompletion to A 



- 22 - 

 

(a)  Correct execution. 

 

(b)  Message loss. 

 

(c)  Delayed client. 

Figure 9: Admission Process. 



- 23 - 

5.4 Simulation Client 

Our simulation client was written in the C language and it runs under Linux as a 

command-line utility. The client can connect to the server by using TCP / UDP 

sockets. The protocol (TCP / UDP) and the port number for connecting to the server 

are received as arguments. 

 

Additional parameters that the client receives as arguments are the number of 

simulations to perform, the number of requests that have to be sent in each simulation, 

an average desired rate for sending requests, a timeout - maximum time to wait for 

receiving response, and an optional parameter - name of file to transfer (used for file 

transfer experiments). 

 

Figure 10 shows the pseudo-code for the Simulation Client implementation. When the 

simulation starts, the client initializes the local database, creates callbacks for “alarm”, 

“kill”, and “broken pipe” signals, and connects to the server (lines 1-3). 

 

For each simulation, the client first creates a separate receiver thread (lines 4-5), 

which is responsible for receiving responses to all sent requests and updating the 

database with received information (lines 19-21). If the timeout occurs before 

receiving responses to all sent requests, receiver thread returns (lines 17-18). 

 

Next, the client prepares and sends all requests for the current simulation one by one 

and updates the local database (lines 6-9). 

 

When the last simulation finishes, the client analyzes local database, performs 

statistics calculations and exits (lines 11-12). 

 

If the client receives a “kill” or “broken pipe” signal, it terminates the communication, 

analyzes the local database, performs statistics calculations, and exits (lines 13-16). 



- 24 - 

 

 

Figure 10: Pseudo-code for Simulation Client. 

 

 

  

Main thread: 

(1) Initialize local database 

(2) Initialize callbacks for alarm / kill / broken pipe signals 

(3) Connect to server 

 

(4) For each simulation do 

(5) Create a receiver thread for current simulation 

(6) For each request in current simulation do 

(7) Prepare  the request 

(8) Send the request 

(9) Update local database 

(10) Wait for receiver thread of current simulation to return 

(11) Analyze local database 

(12) Perform statistics calculations 

 

On receiving “kill” or “broken pipe” signal 

(13) Terminate the communication 

(14) Analyze local database 

(15) Perform statistics calculations 

(16) Exit 

 

Receiver thread: 

(17) On timeout 

(18) Return 

(19) On receiving packet with valid checksum from server 

(20) Analyze the response 

(21) Update local database 



- 25 - 

6. Experiments 
 

Figure 11 shows a general experiment setup scheme. The server is located behind the 

gateway A and the clients are located behind the gateway B. All attackers and both 

gateways are connected together to the same network. 

 

Gateway A Gateway B

Network

IPSec Channel

IPSec Channel

Server

Client

Attacker 2

Attacker 3

Attacker 1

Switch

 

Figure 11: Experiment setup. 

 

The gateways run Linux with IPSec in tunnel mode. The gateways have a Pentium III 

650 MHz CPU and 256MB of RAM. The server and clients have a Pentium III 550 

MHz CPU and 256MB of RAM. The attackers have a Pentium IV 1.8 GHz CPU and 

512MB of RAM. All computers have an Intel PRO\1000 MT Desktop Adapter 

network card. All clients are connected to the gateway via a 3Com 10/100 switch. 

 

The purpose of our experiments was to see the influence of the attacking power (in 

thousands of requests per second) on the average time for getting the response 

(latency) and on the number of successful responses received (delivery probability). 

 

The results of next scenarios were compared in different experiments: 

1. No Protection: the server has no DoS protection at all. 

2. IPSec, Valid SPI: the gateways run IPSec in Encapsulating Security Payload 

(ESP) mode without encryption (authentication only), and the attacker knows the 

SPI used. 

3. IPSec, Invalid SPI: the gateways run IPSec in Encapsulating Security Payload 

(ESP) mode without encryption (authentication only), and the attacker does not 

know the SPI used. 

4. IPSec + Φ-Hopper: the gateways run IPSec in Encapsulating Security Payload 

(ESP) mode without encryption (authentication only) with Φ-Hopper. 

5. IPSec + Φ-Hopper (No Auth): the gateways run IPSec in Encapsulating Security 

Payload (ESP) mode without encryption and without authentication with Φ-

Hopper (only hopping). 

 

  



- 26 - 

When attacking, the adversary sends bogus requests at a constant rate. In scenario (2), 

the bogus requests carry the correct SPI field, but fail authentication. In scenarios (3), 

(4) and (5), the bogus requests carry an incorrect SPI field (with high probability), and 

so the bogus requests do not reach the authentication phase (or the server, for scenario 

(5)). 

 

Scenario (3) protects the server well from DoS attacks as long as the SPI used cannot 

be easily guessed, and the session time is short. However, if the session time is long, 

an attacker has enough time to discover the SPI, e.g., by sniffing packets in 

intermediate routers. Once the adversary obtains the SPI, scenario (3) transforms into 

scenario (2). Since we assume relatively long sessions, we include scenario (3) mainly 

to quantify the overhead of port hopping. Scenario (5) is included to show how DoS-

protection can be employed even when packet contents do not get authenticated (other 

than the SPI check). This scheme is faster than the one used in scenario (4), as it 

requires less processing time for valid traffic. 

 

Section 6.1 presents an attacker implementation. Section 6.2 presents the results of 

experiments done with UDP communication. Section 6.3 presents the results of 

experiments done with TCP communication. Section 6.4 presents the results of 

experiments on Rate-Limiting mechanisms. 

 

6.1 Simulation Attacker Implementation 
 

Our simulation attacker was written in the C language and it runs under Linux as a 

command-line utility. An attacker uses RAW sockets, which allow constructing any 

packet with any header. This way, an attacker, for example, can construct a TCP 

packet and send it to the server behind the gateway so that the server will think that 

the packet arrived from a client. An attacker receives as arguments: the name of the 

protocol (can be TCP or UDP for the scenario (1) above, or can be ESP over TCP, 

ESP over UDP, AH over TCP, AH over UDP for the scenarios (2) - (5) above), an IP 

address of the source we are trying to impersonate, the port of the source, an IP 

address of the destination we are trying to attack, the port of the destination, the IP 

address of the gateway that the source is behind of, the IP of gateway that the 

destination is behind of, an average rate of sending requests, and optionally the SPI 

(used for constructing packets for IPSec protocols - ESP or AH only). 

 

Figure 12 shows the pseudo-code for the Simulation Attacker implementation. When 

the simulation starts, an attacker initializes the local database, creates a callback for 

the “kill” signal, constructs the needed packet and sets the timeout value according to 

required sending rate (lines 1-4). 

 

An attacker sends the requests to the desired destination according to the needed 

average rate of sending requests until it is terminated by receiving the “kill” signal or 

until an error occurs on sending a request (lines 5-6). The local database is updated 

after each sent request (line 7). An attacker waits for the timeout before sending the 

next request (line 8). 

 



- 27 - 

When an attacker receives a “kill” signal, it terminates the communication and 

performs some statistics calculations (lines 9-11). 

 

Figure 12: Pseudo-code for Simulation Attacker. 

 

6.2 UDP Results 

6.2.1 Receiving a response to a single request 
 

A single request was sent from the client to the server 100 times (1 request per 

second) for each attacking power (in thousands of requests per second) in each 

simulation. Every request was sent only after receiving a response to the previously 

sent request, or after timeout was occurred. 

 

Figure 13(a) shows the delivery probability as the attacker's strength increases. We 

see that Φ-Hopper achieves the same delivery probability as when an attacker does 

not know the SPI used, as filtering in these cases is based on a simple comparison of a 

header field. We can see that when Φ-Hopper is used, the effect of authentication on 

the system's load is insignificant, as bogus requests do not reach the authentication 

phase at all. The delivery probability is much lower when the SPI is known to the 

attacker, since this case requires complete authentication of every packet. This 

difference is most evident for relatively weak attacks (80,000 requests/sec), where    

Φ-Hopper maintains 100% delivery, but the delivery for IPSec with a known SPI 

drops to 44%. We can further see that having any form of protection is better than 

having no protection at all. When the server has no protection, it crashes even when 

the attack is very weak, reducing delivery probability to 0. 

 

Figure 13(b) shows the effect of increasing-strength attacks on latency. In this 

experiment the server does not really process the request, but rather returns a reply 

immediately. We measure this parameter since we want to isolate the effect the 

algorithms run by the gateways have on latency. We can see that unless the SPI is 

known, the latency stays the same even when the attack strength increases. 

Additionally, the latency is virtually equal for Φ-Hopper with and without 

authentication, and for IPSec when the SPI is unknown. This is also the same latency 

measured when IPSec and Φ-Hopper do not run at all (not shown on graph). 

Conversely, when only IPSec is used and the SPI is known, the latency is increased 

by tenfold and more even for mild attacks. Since the delivery probability is low for 

(1) Initialize local database 

(2) Initialize callbacks for alarm / kill signals 

(3) Construct needed packet 

(4) Set timeout value according to required sending rate 

 

(5) While not terminated and no error during sending packets 

(6) Send packet to destination 

(7) Update local database 

(8) Wait timeout 

 

(9) On receiving “kill” signal 

(10) Terminate communication 

(11) Perform statistics calculations 



- 28 - 

attacks stronger than the ones plotted, it is meaningless to calculate the latency for 

such attacks. 

 

Figure 13(c) displays the delivery probability under a bursty DoS attack, where bogus 

requests are not sent at constant intervals, but rather as bursts. The attack strength is 

measured as the average number of bogus requests per second. Comparing these 

results to Figure 13(a), we observe that a bursty attacker induces less damage than an 

attacker whose sending times are uniformly distributed over time. This can be 

explained by the fact that at times in which the attacker does not send any bogus 

message, the client's requests can be easily processed. We compare our results to 

analytical results for the delivery probability under DoS attacks. Figure 13(d) shows 

when the total sending rate (attacker + client) is k  times the server’s capacity, the 

delivery probability is 1/ k . The theoretical analysis assumes the attacker’s sending 

rates are uniformly distributed, and thus the results shown in this figure can be 

compared to Figure 13(a). Indeed, we can see that the actual measurements closely 

match the theoretical analysis. 

 

(a)  Delivery probability. 

 

(b)  Latency (RTT). 

 

(c)  Delivery probability, bursty attacker. 

 

(d)  Theoretical values 

Figure 13: Dos Attacks on IPSec with and without Φ-Hopper (UDP). 



- 29 - 

6.3 TCP Results 

6.3.1 TCP socket connection establishment 
 

The purpose of this simulation was to see the influence of the attacking power on the 

average time for establishing a TCP socket connection (TCP’s 3-way handshake) and 

on the percentage of connections that are successfully established. 

 

A client tries to establish TCP socket connection with server 1000 times for each 

attacking power (in thousands of requests per second) in each simulation for scenarios 

(2) - (5). In scenario (1), when the server has no DoS protection at all, it crashes even 

when the attack is very weak (10,000 requests per second), reducing delivery 

probability to 0. 

 

From Figure 14(a) we can see that when the gateways run IPSec in Encapsulating 

Security Payload (ESP) mode without encryption (authentication only), and the 

attacker knows the SPI used (IPSec - valid SPI), at a rate equal to 80,000 messages 

per second, the percentage of connections established falls by about 5%. In all other 

experiments, 100% of sessions are established. 

 

From Figure 14(b) we can see that when the gateways run IPSec in Encapsulating 

Security Payload (ESP) mode without encryption (authentication only), and the 

attacker knows the SPI used (IPSec - valid SPI), at a rate equal to 80,000 messages 

per second the average time for establishing a connection is about 7 seconds. 

 

Figure 14(c) zooms in on lower attack rates. We can see that when the gateways run 

IPSec in Encapsulating Security Payload (ESP) mode without encryption 

(authentication only), and the attacker knows the SPI used (IPSec - valid SPI), already 

at the rate of 30,000 messages per second, the average time for establishing a 

connection starts growing. We see that the overhead of SPI hopping is negligible as 

the graph of IPSec with an invalid (unknown) SPI coincides with the graph of          

Φ-Hopper. On the other hand, we see that when authentication is not performed, and 

protection relies only on SPI hopping, the latency is lower. 

 

 



- 30 - 

 

 

(a)  Percentage of connections established. 

 

(b)  Average time for establishing a connection. 

 

(c)  Average time for establishing a connection 

(zoomed in). 

Figure 14: TCP socket connection establishment, with and without Φ-Hopper. 

 

6.3.2 An attempt to break TCP communication 
 

The purpose of this simulation was to check the ability of attacker to break the TCP 

communication between a client and the server. 

 

We used our simulation attacker, which can construct TCP, UDP, ESP, and AH 

packets and send them to the destination. In order to break a communication, an 

attacker sends TCP packet with the TH_RST flag enabled. Upon receiving a packet 

with this flag, the receiver should close the TCP communication according to the TCP 

protocol. 

 

Our experiments show that when the server has no DoS protection at all (TCP 

communication), an attacker causes the server to close the communication with the 

client without too much effort. The attacker only needs to know the IP address and 



- 31 - 

port of the server, the IP address and port of the client, and the IP addresses of the 

client’s and server’s gateways (if they exists) in order to encapsulate the packet. In 

addition, the adversary needs to discover or guess the sequence numbers used in TCP, 

but this can be done easily by sending many packets with increasing sequence 

numbers. 

 

In case the gateways run IPSec in Encapsulating Security Payload (ESP) mode 

without encryption (authentication only), it becomes hard to break the communication, 

because the attacker needs to add authentication information on the sent packet 

exactly the same way the client does and this is almost impossible. We did not 

succeed to break the communication in that case, even when an attacker knows the 

SPI used. 

 

6.3.3 Receiving a response to the single request 
 

The purpose of this simulation was to see the influence of the attacking power on the 

average time for getting a response and on the percentage of successful responses 

received in communication in an on-going TCP session. A single request was sent 

from a client to the server 100 times (1 request per second) for each attacking power 

(in thousands of requests per second) in each simulation. Every request was sent only 

after receiving a response to the previously sent request, or after timeout was occurred. 

 

Using TCP with no IPSec protection is problematic for two reasons: First, if the 

adversary discovers or guesses the sequence numbers used in TCP, it can bring down 

the connection by sending a single RST packet (see section 6.3.2). The second 

problem when using TCP without client authentication is that bogus clients can 

connect and overload the server. Thus, for both reasons, TCP without authentication 

is insufficient. We therefore experiment with TCP over IPSec with ESP, as in our 

UDP setting. 

 

Figure 15(a) shows the delivery probability of TCP traffic over IPSec, with and 

without Φ-Hopper. TCP's retransmission mechanism ensures that all messages 

eventually arrived to their destination. The figure shows the percentage of requests for 

which the client receives a response within 7 seconds of the moment the request was 

sent. As expected, when no protection is in use, the server crashes due to the heavy 

load. We can see that using Φ-Hopper provides better delivery probability compared 

to IPSec with a compromised SPI, for attacks stronger than 100,000 requests per 

second. For weaker attacks, all packets are delivered within 7 seconds in both 

scenarios. 

 

Figure 15(b) shows the cumulative distribution function (CDF) of TCP latencies 

(RTT) for Φ-Hopper and IPSec with a compromised SPI, for an attack power of 

100,000 requests per second. We can see that Φ-Hopper provides better RTTs than 

IPSec with a compromised SPI. While over 80% of the messages passing through    

Φ-Hopper had no latency penalty (cf. data point 0 in Figure 15(b)), IPSec managed to 

deliver only 60% of the messages with no delay. This corresponds to about 20% 

message loss in the first transmission when using Φ-Hopper, compared to about 40% 

message loss in the first transmission for IPSec with a known SPI (cf. Figure 15(a).) 

Furthermore, Φ-Hopper managed to deliver 99% of the messages within 250 msecs, 



- 32 - 

while IPSec delivered only about 82% of the messages by that time, and had overall 

delays of up to 3.5 seconds in delivery. We can clearly see TCP's exponential backoff 

in action - the probability for loss should be the same in every retransmission, 

therefore if the first bar is at 60%, the next should be at 60% + (60% * 40%) = 84%, 

as delays get about 2 times longer for each retransmission. 

 

Figure 15(c) shows the CDF of TCP latencies for a stronger attack, of 240,000 

requests per second. Notice that the latency in the figure is given in seconds, and not 

in msecs, as before. The figure clearly shows that Φ-Hopper provides reasonable 

latency for 85% to 90% of the messages, while IPSec's latency starts deteriorating at 

about 75% to 80%. Moreover, the delivery of some messages in IPSec takes over 20 

minutes - about 4.5 times worse than the longest delay in Φ-Hopper. Φ-Hopper 

degrades under strong attacks due to network congestion and not due to gateway CPU 

load - the network became overloaded by attacker’s requests. 

 

 

(a)  Delivery within 7 seconds. 

 

(b)  Latency - Attack 100,000 requests/sec. 

 

(c)  Latency - Attack 240,000 requests/sec. 

Figure 15: Dos Attacks on IPSec with and without Φ-Hopper (TCP). 

 

  



- 33 - 

6.3.4 File Transfer via TCP 
 

The purpose of this simulation was to see the influence of the attacking power on the 

average time for getting a response and on the percentage of successful responses 

received. A 100Kb file was sent from a client to the server 1000 times for each 

attacking power (in thousands of requests per second) in each simulation. Every file 

was sent only after receiving a response to the previously sent file, or after timeout 

was occurred. 

We measure the latency and probability of complete delivery of a 100Kb file over a 

TCP connection, in much the same way as an FTP transfer is performed. Figure 16(a) 

shows that all implementations manage to deliver the file to the destination when 

under a DoS attack. This is due to TCP's retransmission mechanism. However, Figure 

16(b) shows that the latency measured when using IPSec with a known SPI is as large 

as 25 seconds, as opposed to a latency of a few milliseconds, exhibited by the other 

protocols. Moreover, all other protocols maintain roughly the same latency as the one 

measured when there is no attack at all. Figure 16(c) is the first part of Figure 16(b). 

The figure shows that even for milder attacks, IPSec with a known SPI entails latency 

5 times larger than the latency measured using the other protocols. 

 

(a)  Probability to complete transfer. 

 

(b)  Latency of transfer. 

 

(c)  Latency of transfer (zoomed in). 

Figure 16: TCP 100KB file transfer over IPSec, with and without Φ-Hopper. 



- 34 - 

6.4 Rate Limiting 

6.4.1 Sending Rates 
 

We experimented with three sending patterns: 

 

 Constant rate: 

The delay between two message transmissions is constant and calculated as 

follows: 

exp _ _delay ected time actual time 
 

Where  

 

 

 

 Poisson rate: 

If the delay time is distributed exponentially, then the rate of sending messages is 

a Poisson process. Therefore, the delay between sending every two messages is 

calculated as follows: 

 
1

*log 1 48()
_ _ _ _ _ _ _sec

delay drand
average number of requests to send per ond

 
 

Where drand48() - function that generates uniformly distributed pseudo-random 

numbers. 

 

 Bursty rate: 

The messages are not sent at constant intervals, but rather at bursts. The delay 

between sending bursts is calculated as follows: 

 

_ ( _ _ )delay bursty period current time start time    

 

If the calculated delay is negative, which can be caused by OS timing, two packets are 

sent one after another without any delay between them. That way, it is ensured that on 

average, with high probability, the messages are sent at the needed rate. 

 

_ _ _
exp _

_ _ _ _ _ _ _sec

number of sent messages
ected time

average number of requests to send per ond


 _ _ _actual time current time start time 



- 35 - 

6.4.2 Experimenting Results 
 

We first study the effect of rate-limiting on one valid client, when the server is 

overloaded by one compromised client (see Figure 17). 

 

The valid client sends requests at a constant rate of 10 requests per second. The 

compromised client tries to load the server by sending requests at rates between        

0-1000 requests per second. The purpose of this experiment is to measure the delivery 

probability and the average time for getting a response at the valid client as a function 

of the rate of requests sent by the compromised client. 

 

Gateway A Gateway B

Network

IPSec Channel

IPSec Channel

Server

Valid Client

Compromised 

Client

Switch

 

Figure 17: FQ rate-limiting - valid and compromised clients experiment. 

 

 

Figure 18 shows the effect of FQ rate-limiting on the delivery probability. It can be 

seen that when rate-limiting is not enforced, the delivery probability drops rapidly due 

to the load on the server. Limiting the rate of each client to at most 12 requests per 

second suffices to ensure a delivery probability of 1. 

 

 

 

Figure 18: FQ rate-limiting (delivery probability) - 1 compromised / 1 valid client (IPSec). 

 



- 36 - 

Next, we study the impact of different rate-limiting schemes on valid clients in the 

absence of on attack. Three valid clients participate in this experiment. Each valid 

client sends requests with an average rate of 100 requests per second.  

 

Gateway A Gateway B

Network

IPSec Channel

IPSec Channel

Server

Valid Client 1

Valid Client 2

Valid Client 3

Switch

 

Figure 19: Rate Limiting - 3 valid clients experiment - a general scheme. 

 

The purpose of this simulation was to compare the fixed-quota (FQ) rate-limiting to 

the Round-Robin-based (RR) rate-limiting algorithm. We examine the average time 

for getting a response and the percentage of successful responses received. 

 

All clients send their messages either at constant intervals, or as a Poisson process, or 

as bursts. 1000 requests were sent from client to server in each simulation for each 

sending rate and for each rate-limiting algorithm. 

 

The effectiveness of the FQ rate-limiting and the RR rate-limiting techniques are 

measured in these 3 scenarios (Constant rate, Poisson rate, Bursty rate), for a total of 6 

experiments.  

 

The total rate allowed by the server is set to 315 messages per second. When using 

FQ rate-limiting, we allow each client a rate of 105 messages per second. For RR 

rate-limiting, we give each session a queue of 300 messages, and wake the RR 

dispatcher every 100 msec. The dispatcher sends messages from the queues in a cyclic 

fashion, and goes back to sleep after sending roughly 30 messages, or when all the 

queues are empty. 

 

  Constant rate Poisson rate Bursty rate 

Fixed-Quota 

Rate Limiting 

Client 1 0.001127 0.001100 0.003060 

Client 2 0.000925 0.000883 0.002997 

Client 3 0.000919 0.000887 0.002496 

Average 0.000990 0.000957 0.002851 

Round-Robin 

Rate Limiting 

Client 1 0.157834 0.150451 0.632827 

Client 2 0.149934 0.150326 0.617601 

Client 3 0.148824 0.149161 0.641877 

Average 0.152197 0.149979 0.630768 

Table 1: Rate Limiting - Average time from sending a request until getting a response [seconds]. 

 



- 37 - 

 

  Constant rate Poisson rate Bursty rate 

Fixed-Quota 

Rate Limiting 

Client 1 100% 100% 11% 

Client 2 100% 100% 11% 

Client 3 100% 100% 11% 

Average 100% 100% 11% 

Round-Robin 

Rate Limiting 

Client 1 100% 100% 100% 

Client 2 100% 100% 100% 

Client 3 100% 100% 100% 

Average 100% 100% 100% 

Table 2: Rate Limiting - Percentage of Responses received. 

 

Table 1 and Table 2 show the average times from sending a request until getting 

response and the percentage of responses received respectively. We can see that, 

although RR rate-limiting imposes a higher average time from sending a request 

until getting a response due to its periodic and cyclic nature, it handles bursty 

traffic much better than FQ rate-limiting. While the delivery probability drops 

down to 11% (110 out of 1000 responses are received) for FQ rate-limiting in 

conjunction with bursty traffic, RR rate-limiting manages to deliver all messages 

contained in the bursts. RR rate-limiting’s superiority is achieved because RR 

allows all queues to share a single pool of resources, and so if one queue is empty, 

the other flows gain better maximum rates. 

 

Our rate-limiting experiments show the flexibility and modularity of Φ-Hopper.        

Φ-Hopper can work well with different rate-limiting approaches suitable for 

various systems. 

  



- 38 - 

7. Summary 
 

We performed an empirical evaluation of two techniques that mitigate the effects of 

DoS attacks on client-server communication: per-packet authentication, and FI 

hopping. We presented Φ-Hopper, a FI hopping protocol that supports client-server 

communication, and measured its resilience to DoS attacks compared to a per-packet 

authentication protocol, IPSec. Our empirical results provide insights to the efficiency 

of various client-server DoS protection schemes. For example, they show that using 

IPSec alone helps to some extent, but is insufficient when dealing with DoS attacks of 

at least moderate strength, or with corrupted clients. 

 

In contrast, Φ-Hopper protects the communication even for much stronger DoS 

attacks. Our work illustrates that Φ-Hopper is robust, efficient, and easy to implement 

and deploy. Moreover, it can be used in conjunction with IPSec, to improve IPSec's 

resilience to DoS attacks. 

 

Φ-Hopper without the authentication works better than Φ-Hopper with authentication 

(same DoS protection, less overhead) and thus if there is a need for DDoS protection 

only (not security), then the former should be used. The latter has better security 

properties in case a FI leaks and / or in case the authentication information is longer. 

 

We presented Beaver, a method and architecture to protect applications from DoS 

attacks. Beaver uses the following ideas to provide strong protection against DoS 

attacks: 

 An admission process that authorizes clients to communicate with the server. The 

server does not allocate resources for a client that was not authorized. The 

admission servers are a separate entity and so provide separation of “war zones” - 

attacking the admission servers does not harm ongoing client-server sessions. 

Additionally, having redundant admission servers makes it hard for the attacker to 

easily harm the admission process. 

 Filtering based on a pseudorandom number that is hard to guess, and changing the 

pseudorandom number periodically (“hopping”), so that even if a filter is revealed, 

it becomes irrelevant before the attacker has the opportunity to load the server 

with bogus requests. 

 Rate-limiting each authorized client to make sure compromised clients cannot 

consume much of the server’s resources, at the expense of other clients. 

 

Our results show that it is not enough to protect just the network layer from DoS 

attacks, but the application layer should also be protected. Additionally, we show that 

using authentication alone to mitigate the effects of DoS attacks is insufficient, and 

may effectively shift the DoS problem from the prospective target to the authenticator.  

 

We implemented and tested our system in real conditions, and provided 

measurements that show that indeed Beaver is a promising solution. 

 

  



- 39 - 

Bibliography 
 
 

[1] B. Adoba and W. Dixon, RFC 3715 – IPSec-Network Address Translation (NAT) 

Compatibility Requirements. Mar. 2004. 

[2] D. G. Andersen, "Mayday: Distributed filtering for Internet services," in 

Proceedings of the 4th USENIX Symposium on Internet Technologies and 

Systems (USITS), 2003. 

[3] R. Atkinson, Security Architecture for the Internet Protocol. IETF, 1998. 

[4] R. Atkinson. (1998) Encapsulating Security Payload (ESP). RFC 2406, IETF. 

[5] R. Atkinson. (1998) IP Authentication Header. RFC 2402, IETF. 

[6] G. Badishi, A. Herzberg, I. Keidar, O. Romanov, and A. Yachin, "Denial of 

Service? Leave it to the Beaver.," Technion TR CCIT 595, July 2006. 

[7] G. Badishi, A. Herzberg, and I. Keidar, "Keeping Denial-of-Service Attackers in 

the Dark," IEEE Transactions on Dependable and Secure Computing (TDSC), 

vol. 4, no. 3, pp. 191-204, Jul. 2007. 

[8] J. R. Chertov, S. Fahmy, and N. B. Shroff, "Emulation versus Simulation: A 

Case Study of TCP-Targeted Denial of Service Attacks," in International 

IEEE/CreateNet Conference on Testbeds and Research Infrastructures for the 

Development of Networks and Communities (TridentCom), Mar. 2006. 

[9] CSI/FBI, Computer Crime and Security Survey. 2003. 

[10] L. Garber, "Denial-of-service attacks rip the Internet," Computer, vol. 33, no. 4, 

pp. 12-17, 2000. 

[11] O. Goldreich, S. Goldwasser, and S. Micali, "How to construct random 

functions," Journal of the Association for Computing Machinery, vol. 33, no. 4, 

pp. 792-807, 1986. 

[12] N. M. Haller, "The S/KEY One-Time Password System," in the ISOC 

Symposium on Network and Distributed System Security, Feb. 1994. 

[13] G. Insolvibile, "The IP Security Protocol," Linux Journal 

(http://www.linuxjournal.com/article/6117), Sep. 2002. 

[14] IPSec_Tools. [Online].   HYPERLINK "http://ipsec-tools.sourceforge.net/"   

http://ipsec-tools.sourceforge.net/  

[15] A. D. Keromytis, V. Misra, and D. Rubenstein, "SOS: An Architecture for 

Mitigating DDoS Attacks," Journal on Selected Areas in Communications, vol. 

21, no. 1, pp. 176-188, 2004. 

[16] A. Kuzmanovic and E. W. Knightly, "Low-Rate TCP-Targeted Denial of Service 

Attacks (The Shrew vs. the Mice and Elephants)," in SIGCOMM, 2003. 

[17] H. C. J. Lee and V. L. L. Thing, "Port Hopping for Resilient Networks," in the 

60th IEEE Vehicular Technology Conference, Sep. 2004. 

[18] J. Li, N. Li, X. Wang, and T. Yu, "Denial of Service Attacks and Defenses in 

Decentralized Trust Management," in The 2nd IEEE International Conference on 

Security and Privacy in Communication Networks (SecureComm), Aug. 2006, 

pp. 1-12. 

[19] D. McDonald, C. Metz, and B. Phan. (1998) PF_KEY Key Management API, 

Version 2. RFC 2367, IETF. 



- 40 - 

[20] D. Moore, G. Voelker, and S. Savage, "Inferring Internet denial-of-service 

activity," in 10th USENIX Security Symposium, August 2001, pp. 9-22. 

[21] National Institute for Standards and Technology, "Secure Hash Standard (SHS)," 

FIPS Publication 180-2, Aug. 2002. 

[22] Riverhead Networks (Cisco), Products Overview. 

[23] R. Spenneberg. (2003) IPsec HOWTO (http://www.ipsec-howto.org/). 

[24] S. Staniford, V. Paxson, and N. Weaver, "How to Own the Internet in Your Spare 

Time," in Proceedings of the 11th USENIX Security Symposium, Aug. 2002, pp. 

149-167. 

[25] A. Stavrou and A. D. Keromytis, "Countering DoS attacks with stateless 

multipath overlays," in CCS, Nov. 2005. 

[26] J. Wang, X. Liu, and A. A. Chien, "Empirical Study of Tolerating Denial-of-

Service Attacks with a Proxy Network," in Usenix Security, 2005. 

[27] P. Watson, "Slipping in the Window: TCP Reset Attacks," in CanSecWest, 2004. 

 

 

 

 
 

 



 

 
 
 
 

Beaver  מעלIPSec -  הגנה מפני
  התקפות מניעת שירות

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  אולג רומנוב
  
  
  
  
  
  



 



 

Beaver  מעלIPSec -  הגנה מפני
  התקפות מניעת שירות

  
  
  

  חיבור על עבודת גמר
  
  
  
  

  לשם מילוי חלקי של הדרישות לקבלת התואר
  מגיסטר למדעים בהנדסת חשמל

  
  
  
  
  

  אולג רומנוב
  
  
  
  
  

  מכון טכנולוגי לישראל -ט הטכניון הוגש לסנ
  
  
  
  
  
 

  2008 ספטמבר        חיפה      ח"תשס אלול



 



 

  עבודת גמר נעשתה בהנחיית
  פרופסור חבר עידית קידר
  .בפקולטה להנדסת חשמל

  
  
  
  
  

  הכרת תודה
  

על האפשרות לבצע את , ח עידית קידר"פרופ, למנחה שלי מקרב לבברצוני להודות 
  .הרבה לה זכיתיהתמיכה ועל , שלה המסורההמחקר הזה תחת ההנחיה 

  
 הרבה המותרהעל , ר גל בדישי"ח אמיר הרצברג וד"פרופ, מחקרלי ישותפאני מודה ל

  .האישי םמניסיונ
  

  .ר יצחק קסלסי על ההערות המועילות לעבודה זו"אני מודה לד
  

ולכל צוות המעבדה לתוכנה על  ,למר ויקטור קוליקוב, ר אילנה דוד"הרבה תודות לד
  .רה והתמיכה לה זכיתיהעז

  
  .אני רוצה להודות למשפחתי היקרה על התמיכה והעידוד התמידיים להם אני זוכה

  
  .תודה מיוחדת לארוסתי סבטלנה על התמיכה לאורך כל תקופת הלימודים שלי

  
  
  
  
  
  
  
  
  
  
  

  .אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי



 



 

  תוכן עניינים
  

 1 ................................................................................................................ תקציר באנגלית 

 2 .................................................................................................................. רשימת סמלים 

 3 ....................................................................................................................... מבוא  1.

 6 ........................................................................................................... מטרות המחקר 2.

 7 ........................................................................................................... עבודות בתחום 3.

 BEAVER ........................................................................................ 9-ארכיטקטורת ה 4.
 BEAVER ................................................................................................ 9 -ב שיחות 4.1
4.2 Φ-HOPPER ........................................................................................................ 10 

 Φ-Hopper  ......................................................................... 11הקצה הקדמי של  4.2.1
 Φ-Hopper   ....................................................................... 12הקצה האחורי של 4.2.2

 13 .................................................................................................................. מימוש  5.
5.1 Φ-HOPPER ........................................................................................................ 13 
 15 .................................................................................  התעבורה כמות הגבלת מנגנוני 5.2
 17 ................................................................................................................ שרתים 5.3

 17 ........................................................................................... שרת הסימולציה  5.3.1
 18 ............................................................................................... שרת הכניסה  5.3.2
 18 ............................................................................................. תהליך הכניסה  5.3.3

 23 ..................................................................................................  הסימולציה לקוח 5.4

 25 .................................................................................................................. ניסויים  6.
 26 .........................................................................................  הסימולציה תוקף מימוש 6.1
 UDP .................................................................... 27 פרוטוקול עם הסימולציות תוצאות 6.2

 27 ........................................................................... קבלת תשובה לבקשה בודדת  6.2.1
 TCP ....................................................................... 29 פרוטוקול עם הסימלציה תוצאות 6.3

 TCP ......................................................................................... 29שיחת יצירת  6.3.1
 30 ............................................................ בין שרת ללקוח  TCP שיחתניסיון לנתק  6.3.2
 31 ........................................................................... קבלת תשובה לבקשה בודדת  6.3.3
 TCP .......................................................................... 33 שיחתהעברת קובץ דרך  6.3.4

 34 .......................................................  התעבורה כמות הגבלת מנגנוני סימולציות תוצאות 6.4
 34 ......................................................................................... מהירויות השליחה  6.4.1
 35 ........................................................................................... תוצאות הניסויים  6.4.2

 38 .................................................................................................................... סיכום  7.

  39 ................................................................................................................רשימת מקורות

  I ............................................................................................................................. תקציר 



 



- I - 

  תקציר
  

. (DoS - Denial of Service)לקוח באינטרנט רגישות להתקפות מניעת שרות - הרבה מערכות שרת
ישנן הרבה . י המחשב המותקף"בהתקפות מסוג זה מטרת התוקף היא למנוע מתן שרות חלקי או מלא ע

מות גדולה של בקשות מזויפות למחשב אנחנו התרכזנו במקרה בו התוקף שולח כ, דרכים לעשות זאת
כוללת מספר רב של מחשבים עליהם התוקף  DoSהתקפת , בדרך כלל. י כך מעמיס אותו"המותקף וע

והתוקף משתמש בהם על מנת להפעיל התקפה  ,"זומבים"מחשבים אלו מכונים . מבעוד מועדהשתלט 
  .ף הבודדמתואמת כנגד מטרה כלשהי בעוצמה הרבה יותר גדולה מעוצמת התוק

  
. סינון הודעות והגבלת קצב התעבורה הנכנסת הינן דוגמאות לשיטות ההגנה מפני התקפות מניעת שרות

וכל פעם שמגיעה ) כתובת השולח, למשל(מראש  יםסינון הודעות מסתמך על ערכים מסוימים שנקבע
אם . ראשהמסנן משווה בין השדה הספציפי בכותרת ההודעה לבין הערך שנקבע מ, הודעה כלשהי
הגבלת קצב התעבורה הנכנסת אינה . ההודעה נזרקת, אחרת, ההודעה ממשיכה ליעדה -הערכים זהים 

הודעות הטובות יכולות להיזרק ולא להגיע הכך ש, מבדילה בין ההודעות המזויפות לבין ההודעות הטובות
ולשים שם את הערך , בפרט את כותרת ההודעה, התוקף יכול לבנות את החבילות המזויפות בעצמו. ליעדן
אם האפליקציה , יתרה מכך. מחפש המסנן ובכך לגרום למסנן להעביר את ההודעות המזויפות ליעדןאותו 

אזי התוקף , או הצפנה עבור כל הודעה שמתקבלת/פענוח ו מבצעתבמחשב היעד שהחבילות מגיעות אליה 
  .יס את הרשתי שליחת הבקשות בקצב שאינו מעמ"יכול לגרום לה למיצוי משאבים ע

  
. י שימוש באימות קריפטוגרפי של כל חבילה שעוברת ברשת"ניתן להגן מפני התקפות מניעת שרות ע

                   IPאוסף פרוטוקולים עבור הגנה על תקשורת  - IPSec (IP Security)אחת הדוגמאות הוא 
(Internet Protocol) או הצפנה של כל חבילת /י אימות ו"עIP מנגנון . אשר עוברת בערוץ התקשורת

כיוון שהחבילות המזויפות לא יכולות לעבור את , DoSמגן על אפליקציה מפני התקפות  IPSec-ה
פה וממצה את משאביו לכן המאמת נחשף להתק, פעולת האימות היא יקרה יחסית. המחשב המאמת

החבילות הטובות יכולות להיזרק עקב , תוך כדי אימות החבילות המזויפות. באימות החבילות המזויפות
בלבד אינו מספיק  IPSec-השימוש ב, כפי שאנו מראים בעבודה זו, לכן. חוסר משאבים לטיפול בהן

  .לצורך טיפול יעיל בהתקפות מניעת שרות
  

הוא למעשה  יהקצב המקסימאל. היא שהתוקף מוגבל בקצב שליחת ההודעותהעבודה שלנו מהנחות אחת 
התוקף יכול ליצור כל הודעה . סכום הקצבים בהם יכולים לשלוח הודעות המחשבים שעליהם הוא שולט

אך התוקף אינו מסוגל ליצור חבילה מזויפת שתעבור אימות , עם כל כותרת אפשרית, אפשרית
דרוש לו פרק זמן אך , קף יכול לראות כל החבילות העוברות ברשתהתו. קריפטוגרפי במחשב המאמת

 מחייבוזאת כיוון ששינוי ההתקפה  ,לשנות את התקפתו כתוצאה מניתוח החבילות העוברות ברשת מסוים
  .מתן פקודות למחשבים הנשלטים וזה לוקח זמן

 
מטרתה . יעת שרותלקוח שחסינה נגד התקפות מנ- ארכיטקטורת שרת -  Beaver ה אתמציג עבודה זו

במיוחד מפני הצפת השרת , לקוח מפני התקפות מניעת שרות- העיקרית היא להגן על תקשורת שרת
  .בין אם הן מזויפות ובין אם הן טובות, בהודעות

 
Beaver לקוחות י "יצירת שיחות עאחד עבור : מפעיל שני מנגנוני הגנה נגד התקפות מניעת שרות
המנגנון הראשון משתמש בשרתי בקרת כניסה . ולקוח שנוצר- שרתיחות שעבור הגנה על והשני  ,חדשים

(ADMs) השימוש בשרתי בקרת כניסה מוריד את העומס מהשרת שיכול להיווצר תוך כדי . מיוחדים
המנגנון .  כך שהשרת לא מודאג מהתקפות מניעת שרות של הלקוחות הרוצים להיכנס למערכת, הכניסה

. י סינון חבילות"צדדי אשר מגן מהתקפות מניעת שרות ע- ול תקשורת דופרוטוק -  Φ-Hopperהוא השני 
, אבל לא מאמת תקשורת בעצמו, לקוח מהתקפות מניעת שרות-שרת שיחתמגן על  Φ-Hopper-מנגנון ה

Φ-Hopper ביחד. רק מספק סינון דינמי ומגביל את כמות התעבורה ,ADMs ו- Φ-Hopper  מאוד
  .יעילים נגד התקפות מניעת שרות



- II  - 

מנגנון        . משתמש במפתחות משותפים סודיים IPSec, על מנת לספק אימות עבור כל חבילה בנפרד
כ מבצעים הרבה יותר עבודה "כיוון שהשרתים בד, מקטין את האפקט של התקפת מניעת שרות IPSec-ה

פשוט שלא מוגן  HTTPכי שרת , אנחנו מראיםבניסויים שלנו . במהלך אימות ההודעה IPSecמאשר 
כאשר . ההודעות לשניי 10,000מתמוטט כאשר מתבצעת עליו התקפה בקצב , כלל DoSמפני התקפות 

IPSec  המערכת יכולה להתמודד עם התקפה של כמעט , התקשורת הנכנסתשל אימות ומבצע מותקן
  .י הלקוחות"ע תשנשלחוהודעות לשנייה ועדיין לענות לכל ההודעות הטובות  30,000

  
העיקרי שלו הוא שחישוב המידע עבור  ןהחיסרו, עוזר להגנה נגד התקפות בקצב בינוני IPSec-למרות ש

יכול להזיז את בעיית , ואפילו, האימות דורש חלק ניכר מכוח המאבד עבור כמות גדולה של התעבורה
ומבצע מותקן  IPSecכאשר , נובניסויים של, לדוגמה. מניעת שרות מהשרת לכיוון המחשב המאמת

השרת מצליח , הודעות לשנייה 80,000ומתבצעת עליו התקפה בקצב  ,התקשורת הנכנסתשל אימות 
נסתמת כאשר מתבצעת  Mbit 100הרשת בקצב , בנוסף. ההודעות הטובות למכ 45%- לענות רק על כ

  .הודעות לשנייה 150,000-בה  התקפה בקצב של כ
  

-תרת של כל הודעה נכנסת מכילה גם כותרת השייכת לאחד מפרוטוקולי הכוה, מותקן IPSecכאשר 
IPSec , ביט הנקרא  32והיא מכילה שדה בגודלSPI (Security Parameter Index) .ל "ערך השדה הנ

חבילה ואילו , נזרקת תקיןשלה אינו  SPI-חבילה שערך הכל . שיחה בין שרת ללקוח הינו ייחודי עבור כל
אנו  זו עבודהב. במידה והוא מופעל IPSec-הנכון מועברת דרך מנגנון האימות של ה שמכילה את הערך

 SPIי שימוש בערך "כנגד התקפות מניעת שרות ע IPSec-תו של הואת עמידלהגביר  ניתןמראים ש
להקטין משמעותית את כמות הפעולות הקריפטוגרפיות הנעשות , ובצורה זאת ,אקראי ולא ידוע לתוקף

מספק רק הגנה זמנית כל עוד  SPI-אפילו השימוש בערך אקראי של ה, למרות  זאת. ותבתהליך האימ
י "ע SPI-התוקפים יכולים לגלות את ערך ה, במציאות. IPSec-השיחת הינו קבוע למשך כל  SPI-ערך ה

הצליחה  DoSהתקפת , למשל(י תגובה לפעולות כלשהן שיזמו "ניתוח ההודעות העוברות ברשת או ע
  ).הנכון SPI-ש הכאשר נוח

  
קבוע ועדיין להוריד את כמות הפעולות הקריפטוגרפיות במהלך התקפות  SPI-כדי להימנע משימוש ב

כל חבילה מכילה . אנחנו מציעים להפעיל על כל חבילה מידע מאומת שמשתנה עם הזמן, כבדות במיוחד
filtering identifier (FI) דועה רק לצדדים המתקשריםאשר י, אקראית-ושנלקח מסדרה סודית פסיאוד .

י השרת והלקוח "אקראית נוצרת ע-והסדרה הפסיאוד. FIבתור  SPI-בשדה ה יםשתמשאנו מ, עבודה זוב
. כל לקוח משתף מפתח סודי שונה עם השרת). IPSec-כמו ב(בנפרד תוך שימוש במפתח סודי משותף 

משווה את ערך    , את החבילה הצד שמקבל. FI-המספר הבא בסדרה נבחר להיות ה, כל פרק זמן קבוע
      מנגנון  .FI-hoppingגישה זו נקראת . החבילה נזרקת, שונה FI-אם ערך ה. עם הערך הצפוי FI-ה
כמו בהתקפות (תעבורה דורש פחות זמן עיבוד כאשר עוסקים עם כמויות גדולות של  FI hopping-ה

DoS( ,מפני שצריך לחשב את ה-FI סוים מחדש רק פעם בפרק זמן מ)ולא ) שניות 5-פעם ב, למשל
ל "פרק הזמן הנ, ומצד שני, הרבה חבילות יכולות להישלח תוך אותו פרק זמן, בשיטה זו. חבילהעבור כל 

  .ולהגיב בהתקפה מתאימה FI-יכול להיות קצר מספיק כך שהתוקף לא יספיק לגלות את ערך ה
 

בתוך הגרעין של  IPSecל הרחבת המימוש כל. Φ-Hopper-תכננו ומימשנו את ה, בשלב הראשון
בתום המימוש נעשו ניסויים אשר חקרו את השפעת כוח ההתקפה על המערכת עם הפרוטוקולים . לינוקס

  .הלקוח והתוקף שמומשו על ידינו, הניסויים נעשו בעזרת השרת. המקוריים והמורחבים
  

בתוך הגרעין  IPSecהרחבת בשלב הבא תכננו ומימשנו את המנגנון הגבלת כמות התעבורה גם על ידי 
 .העבודה גם כללה תכנון ומימוש של שרת בקרת כניסה, זהבשלב . של לינוקס

  
והרצנו ניסוים בהם אנחנו מראים שהמערכת , י חיבור בין כל החלקים"בנינו את המערכת כולה ע, לסיום

 .תחסינה אפילו כאשר ישנן התקפות מניעת שרות וקיימים לקוחות אשר מעמיסים את הרש
  

ומדידות עבור העברת  UDPאו  TCPמעל תקשורת  HTTP-אנחנו מציגים מדידות עבור זרימת ה
אנחנו מציגים שהשרת מתמוטט אפילו כאשר קצב , כאשר התקשורת אינה מאומתת. TCPקבצים מעל 

     שיחתקל יחסית לגרום לשרת לסגור את , כאשר התקשורת אינה מאומתת, בנוסף. ההתקפה מאוד נמוך



- III - 

לבד יכול להגן נגד ההתקפות  IPSec-אנחנו מראים ש, עבור תקשורת מאומתת. שלו עם הלקוח TCP-ה
נותן הגנה כמעט מושלמת אפילו מפני התקפות החזקות  Φ-Hopperכאשר , מניעת שרות בצורה מוגבלת

הוא , נותן הגנה במובן של הסתברות הגעה IPSecאפילו כאשר , TCPעבור העברת קבצים דרך . 3פי 
יותר מאשר זמן  1,000- ל 5כאשר זמני ההעברה נעים בין פי , מגדיל בצורה חמורה את זמן ההעברה

 50,000- ל 30,000וזאת עבור ההתקפות שנעו בין , Φ-Hopper-י שימוש ב"ההעברה שהתקבל ע
שווה , Φ-Hopper-ב י שימוש"זמן ההעברה שהתקבל ע, עבור התקפות אלו. הודעות לשנייה בהתאם

  .ברה כאשר ההתקפה לא בוצעה כלללזמן ההע
  

  :להלן מספר מסקנות הנובעות מהמדידות שלנו
אפילו כאשר קצב ההתקפה מאוד  ,שלא מוגן כלל מפני התקפות מניעת שרות מתמוטטשרת  •

 .נמוך
אבל נכשל נגד התקפות בקצב גבוה , אימות פר חבילה הינו אפקטיבי נגד התקפות בקצב בינוני •

 .יותר
לצורך השגת . בסוד מפני התוקף IPSec-של ה SPI-כל הזמן את שדה החשוב מאוד לשמור  •

 .חייב להיות אקראי SPI-הערך ההתחלתי של ה, מטרה זו
יישאר בסוד מפני התוקף  IPSec-של ה SPI-יכול להבטיח ששדה ה FI hopping-מנגנון ה •

ר מפני מ לספק הגנה טובה יות"ע IPSec-בהסתברות גבוהה ולכן יכול לשדרג את יכולות ה
 .התקפות מניעת שרות

 .מנגנון הגבלת כמות התעבורה הינו חשוב אפילו כאשר מתבצע האימות •
 


	Final Paper (Oleg Romanov - English).pdf
	Final Paper (Oleg Romanov - Hebrew).pdf

