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Abstract
Transactional data structure libraries (TDSL) combine the
ease-of-programming of transactions with the high perfor-
mance and scalability of custom-tailored concurrent data
structures. They can be very efficient thanks to their abil-
ity to exploit data structure semantics in order to reduce
overhead, aborts, and wasted work compared to general-
purpose software transactional memory. However, TDSLs
were not previously used for complex use-cases involving
long transactions and a variety of data structures.
In this work, we boost the performance and usability of

a TDSL, allowing it to support complex applications. A key
idea is nesting. Nested transactions create checkpoints within
a longer transaction, so as to limit the scope of abort, without
changing the semantics of the original transaction. We build
a Java TDSL with built-in support for nesting in a number
of data structures. We conduct a case study of a complex
network intrusion detection system that invests a significant
amount of work to process each packet. Our study shows that
our library outperforms TL2 twofold without nesting, and
by up to 16x when nesting is used. Finally, we discuss cross-
library nesting, namely dynamic composition of transactions
from multiple libraries.
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1 Introduction
1.1 Transactional Libraries
The concept of memory transactions is broadly considered
to be a programmer-friendly paradigm for writing concur-
rent code. A transaction spans multiple operations, which
appear to execute atomically and in isolation, meaning that
either all operations commit and affect the shared state or the
transaction aborts. Either way, no partial effects of on-going
transactions are observed.
Despite their appealing ease-of-programming, software

transactionalmemory (STM) toolkits [3] are seldomdeployed
in real systems due to their huge performance overhead [2].
The source of this overhead is twofold. First, an STM needs
to monitor all random memory accesses made in the course
of a transaction , and second, STMs abort transactions due
to conflicts. Instead, programmers widely use concurrent
data structure libraries which are much faster but guarantee
atomicity only at the level of a single operation on a single
data structure.
To mitigate this tradeoff, Spiegelman et al. [9] have pro-

posed transactional data structure libraries (TDSL). In a nut-
shell, the idea is to trade generality for performance. A TDSL
restricts transactional access to a pre-defined set of data
structures rather than arbitrary memory locations, which
eliminates the need for instrumentation and allows it to
exploit the data structures’ semantics and structure to get
efficient transactions bundling a sequence of data structure
operations. A TDSL can mange aborts on a semantic level,
e.g., two concurrent transactions can simultaneously change
two different locations in the same list without aborting.

Since its publication, quite a few works have used and ex-
tended the TDSL approach [5, 11]. These efforts have shown
good performance for fairly short transactions on a small
number of data structures. Yet, despite their improved scala-
bility compared to general purpose STMs, TDSLs have not
been applied to long transactions or complex use-cases. A
key challenge arising in long transactions is the high poten-
tial for aborts along with the large penalty that such aborts
induce as much work is wasted.
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Algorithm 1 Transaction flow with nesting
1: TXbegin()
2: [Parent code] ◃ On abort – retry parent
3: nTXbegin() ◃ Begin child transaction
4: [Child code] ◃ On abort – retry child or parent
5: nTXend() ◃ On commit – migrate changes to parent
6: [Parent code] ◃ On abort – retry parent
7: TXend() ◃ On commit – apply changes to thread state

1.2 Our Contribution
Transactional nesting. This work pushes the limits of the
TDSL concept in an attempt to make it more broadly appli-
cable. Our main contribution is facilitating long transactions
via nesting [7]. Nesting allows the programmer to define
nested child transactions as self-contained parts of larger
parent transactions. This controls the program flow by cre-
ating checkpoints; upon abort of a nested child transaction,
the checkpoint enables retrying only the child’s part and not
the preceding code of the parent. This reduces wasted work,
improves performance and reduces energy consumption.

We focus on closed nesting [10], which, in contrast to flat
nesting, limits the scope of aborts, and unlike open nest-
ing [8], is generic and does not require semantic constructs.
Nesting does not relax consistency or isolation, and ensures
that the entire parent transaction is executed atomically.

The flow of nesting is shown in Algorithm 1. When a child
commits, its local state is migrated to the parent but is not
yet reflected in shared memory. If the child aborts, then the
parent transaction is checked for conflicts. And if the parent
incurs no conflicts in its part of the code, then only the child
transaction retries. Otherwise, the entire transaction does.
It is important to note that the semantics provided by the
parent transaction are not altered by nesting. Rather, nesting
allows programmers to identify parts of the code that are
more likely to cause aborts and encapsulate them in child
transactions in order to reduce the abort rate of the parent.
Yet nesting induces an overhead which is not always off-

set by its benefits . We investigate this tradeoff using mi-
crobenchmarks. We find that nesting is helpful for highly
contended operations that are likely to succeed if retried.

NIDS benchmark. We introduce a new benchmark of a net-
work intrusion detection system (NIDS), which invests a fair
amount of work to process each packet. It features a pipelined
architecture with long transactions, a variety of data struc-
tures, and multiple points of contention. It follows one of
the designs suggested in [4] and executes significant com-
putational operations within transactions, making it more
realistic than existing IDS benchmarks (e.g., [6]).

Enriching the library. In order to support complex applica-
tions like NIDS, and more generally, to increase the usability
of TDSLs, we enrich our transactional library with additional

data structures – producer-consumer pool, log, and stack –
all of which support nesting. The TDSL framework allows us
to custom-tailor to each data structure its own concurrency
control mechanism. We mix optimism and pessimism (e.g.,
stack operations are optimistic as long as a child has popped
no more than it pushed, and then they become pessimistic),
and also fine tune the granularity of locks (e.g., one lock per
stack versus one per slot in the producer-consumer pool).

Evaluation. We evaluate our NIDS application.We find that
nesting can improve performance by up to 8x.Moreover, nest-
ing improves scalability, reaching peak performance with as
many as 40 threads as opposed to 28 without nesting.

Composition. While most of this work considers nesting
in the context of a single library, programmers often wish
to access data structures from multiple libraries within the
same atomic transaction. We discusses dynamic composition
of nested transactions from distinct libraries.
A full version of this work is available via [1].
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