
Scalable Services for Dynamic Wide-Area
Environments

Roie Melamed

Scalable Services for Dynamic Wide-Area Environments

Research Thesis
Submitted in Partial Fulfillment of the

Requirements for the
Degree of Doctor of Philosophy

Roie Melamed

Submitted to the Senate of
the Technion — Israel Institute of Technology

Tamuz, 5766 Haifa July 2006

2

The research thesis was done under the supervision of Dr. Idit Keidar
in the department of Computer Science.

The generous financial help of the Technion is gratefully acknowledged.

3

Acknowledgments

First and foremost, I am deeply grateful to my advisor Idit Keidar with who I had the pleasure to
work during the last four years. During these years, Idit shared with me her vast knowledge in
the area of distributed systems in her unique and graceful way. Idit always knew how to ask the
important questions and how to present complicated issues in a few short sentences. During my
Ph.D. studies, Idit always had the time to read the endless drafts I sent to her although she always
had many other obligations. It is not an exaggeration to say that Idit has been to me an inspiration
and an example to how to do things in the right way.

I also thank Ariel Orda with who I had the pleasure to work on the EquiCast protocol. During
our joint work, Ariel shared with me his vast knowledge in game theory. Ariel was always willing
to read the many drafts I sent to him, and he always had good comments and suggestions for
improving our paper.

During my graduate studies, I guided several undergraduate students in projects from which I
greatly benefited. I thank Ophir Ovadia for implementing the DSGraph tool that allowed me to
evaluate the performance of an Araneola overlay. Ophir also assisted in implementing part of Ara-
neola’s code. The Octopus ad-hoc routing protocol was implemented with the help of Yoav Barel,
Evgeny (Jenya) Gurevich, Lily Itkin, Yaron (Ronny) Lehman, and Inna Vaisband. I would also
like to thank Ilana David, the chief engineer of the software laboratory in the electrical engineering
department, for her assistance.

I have remarkably benefited from comments, suggestions, and discussions with Ziv Bar-Yossef,
Vadim Drabkin, Maxim Gurevich, Dahlia Malkhi, Amir Ronen, and Igor Yanover.

I am grateful to the Flux research group at the University of Utah, and especially Leigh Stoller
and Jay Lepreau, for allowing me to use their network emulation testbed and assisting me with my
experiments.

For the last five years, I had the pleasure to share an office with Harel Paz. Harel was and still
is a genuine friend, and I will also share an office with Harel at IBM Research Lab in Haifa.

Last but not least, I thank my family Mordechai (Moti), Dina, Ido, and Sharon Melamed who
always love and care for me, and for reminding me that there are important things beside my
research.

4

Contents

Notations and Abbreviations 13

1 Introduction and Goals 14
1.1 Araneola: A Scalable Reliable Multicast System for Dynamic Environments. . . . 16
1.2 EquiCast: Scalable Multicast with Selfish Users. 17
1.3 Octopus: A Fault-Tolerant and Efficient Ad-hoc Routing Protocol. 18
1.4 Evaluating Unstructured P2P Lookup Overlays. 19

2 Related Work 20
2.1 ALM Systems and Fault-Tolerant Overlay Networks and Graphs. 20

2.1.1 ALM Systems .20
2.1.2 Overlay Structures. .22
2.1.3 Centralized Constructions ofk-Regular Random Graphs. 23

2.2 P2P Multicast Protocols for Environments with Selfish Users and Incentive-Based
P2P Systems. .24

2.3 Ad-hoc Routing Protocols for MANETs. 25
2.4 P2P Lookup Systems. .27

3 Methodology 29
3.1 Methodology Used in Chapter4, Araneola: A Scalable Reliable Multicast System

for Dynamic Environments. .29
3.2 Methodology Used in Chapter5, EquiCast: Scalable Multicast with Selfish Users. 31
3.3 Methodology Used in Chapter6, Octopus: A Fault-Tolerant and Efficient Ad-hoc

Routing Protocol .31
3.4 Methodology used in Chapter7, Evaluating Unstructured P2P Lookup Overlays. . 32

4 Araneola: A Scalable Reliable Multicast System for Dynamic Environments 33
4.1 Introduction. .33
4.2 Design Goals. .36
4.3 Araneola’s Overlay. .37

4.3.1 The Membership Service. 38
4.3.2 Building and Maintaining the Overlay. 39
4.3.3 Maintenance Overhead. .45

4.4 Evaluation of Araneola’s Overlay. 47
4.4.1 Static Evaluation. .47
4.4.2 Fault-Tolerance and Graceful Degradation. 51
4.4.3 Dynamic Evaluation. .55
4.4.4 The Effect of the Membership Service on the Overlay. 57
4.4.5 Comparison withk-Regular Random Graphs. 58

4.5 Example of Application-Specific Extension: Exploiting Network Proximity and
Bandwidth Heterogeneity. .59

4.6 Multicasting over Araneola. .63
4.6.1 Gossip-Based Multicast. 64

5

4.7 Evaluation of Gossiping over Araneola. 67
4.7.1 Static Evaluation. .68
4.7.2 Dynamic Evaluation. .71
4.7.3 WAN Emulation .73

5 EquiCast: Scalable Multicast with Selfish Users 75
5.1 Introduction. .75
5.2 Model and Problem Statement. .77

5.2.1 Network and Timing Model. 77
5.2.2 The Game Formulation. .78
5.2.3 Problem Statement. .78

5.3 EquiCast. .79
5.3.1 Architecture. .79
5.3.2 Overview .79
5.3.3 Detailed Description. .81

5.4 Proof of Cooperation. .84
5.4.1 Basic Properties. .85
5.4.2 The Set of Protocol-Obedient Strategies (POSs). 88
5.4.3 Unilateral Defection from the Protocol. 90
5.4.4 Choosing H. .92

5.5 Dynamic Setting .92

6 Octopus: A Fault-Tolerant and Efficient Ad-hoc Routing Protocol 95
6.1 Introduction. .95
6.2 System Model. .97
6.3 Octopus. .98

6.3.1 Location Update. .99
6.3.2 Location Discovery. .102
6.3.3 Data Forwarding. .105

6.4 Analysis. .106
6.4.1 Scalability .107
6.4.2 Update/Query Propagation Reliability.108

6.5 Evaluation. .109
6.5.1 The Choice of Parameters. .110
6.5.2 Scalability .112
6.5.3 Data Forwarding. .113
6.5.4 Fault-Tolerance. .114
6.5.5 Comparison with GLS. .116

7 Evaluating Unstructured P2P Lookup Overlays 120
7.1 Introduction. .120
7.2 The Evaluated Overlays. .123
7.3 The Metrics .123

7.3.1 Connectivity .123
7.3.2 Flooding Efficiency. .124
7.3.3 The Coverage Granularity. .125
7.3.4 Load Balancing. .125

7.4 The Join Cost. .126

8 Discussion, Results, and Conclusions 129
8.1 Results of Chapter4, Araneola: A Scalable Reliable Multicast System for Dy-

namic Environments .130
8.1.1 High Reliability and Fault-Tolerance. .131
8.1.2 Low Latency with High Churn. .131
8.1.3 Low Constant Load on Each Node, as Well as Low Constant Cost for Han-

dling Joins and Failures. .131
8.1.4 Quick Failure Recovery and Prompt Incorporation of Joining Nodes. . . . 132

6

Contents (continued) 7

8.2 Results of Chapter5, EquiCast: Scalable Multicast with Selfish Users. 132
8.3 Results of Chapter6, Octopus: A Fault-Tolerant and Efficient Ad-hoc Routing

Protocol .133
8.4 Results of Chapter7, Evaluating Unstructured P2P Lookup Overlays. 134

List of Figures

4.1 Araneola’s data structures and parameters.. 39
4.2 Overlay construction: the connect task.. 41
4.3 Overlay construction: reducing node degrees.. 44
4.4 Degree distribution,8000 nodes. 49
4.5 Scalability of Araneola’s overlay.. 50
4.6 Resilience of Araneola’s overlay to edge removals,1000 nodes.. 52
4.7 Graceful degradation of Araneola’s overlay under edge removals,1000 nodes. . . . 52
4.8 Resilience of Araneola’s overlay to node removals,1000 nodes.. 53
4.9 Graceful degradation of Araneola’s overlay under node removals,1000 nodes.. . . 54
4.10 Average cost per join/leave with increasing churn rates for different group sizes,

L=5. .57
4.11 Robustness of Araneola versus centralized construction ofL-regular random graphs,

1000 nodes. .60
4.12 Removing edges, largest component,500 nodes.. 62
4.13 Removing nodes, largest component,500 nodes.. 62
4.14 Gossip-based multicast.. .65
4.15 Message propagation rates for different degree Araneola overlays.. 68
4.16 Araneola versus gossip,1000 nodes. 70
4.17 Average latencies for different churn rates,1000 nodes, L= 5. 72
4.18 Message propagation rates for WAN-like and LAN simulations.. 74

5.1 EquiCast’s data structures and parameters.. 82
5.2 Code for EquiCast node.. .83

6.1 NodeS’s neighbors and strips.A,B,C, andD are end nodes in the highlighted
strips. .98

6.2 Octopus’s types and data structures.. 99
6.3 The strip update protocol.. .100
6.4 A strip of widthw =

√
3r
2

. .102
6.5 The location discovery protocol.. .103
6.6 Successful query location.. .104
6.7 The forwarding protocol.. .105
6.8 Octopus’s forwarding protocol.. .106
6.9 NodeN has a forwarding hole in direction east if area A is uninhabited.. 108
6.10 Octopus’s query success rates for different strip widths..111
6.11 Octopus’s overhead for different strip widths..111
6.12 Octopus’s query success rates for different node densities..113
6.13 Octopus’s overhead for different node densities..114
6.14 Octopus’s data forwarding reliability.. .115
6.15 Octopus’s fault-tolerance: query success rate and data forwarding reliability are

virtually unaffected by the percentage of the unstable nodes..116
6.16 Octopus versus GLS: query success rates.. .117
6.17 Octopus versus GLS: overhead.. .118

8

List of Figures (continued) 9

6.18 Octopus versus GLS: data and protocol packets sent..119
6.19 Octopus versus GLS: fault-tolerance.. .119

7.1 Distribution of node degrees in four graphs. Note that we use log scale for the
power-law random and Gnutella graphs, while for the normal random graphs we
use a linear scale.. .122

7.2 Flooding efficiency: for effective TTLs, a3-Araneola overlay and a3-regular ran-
dom graph achieve a near to perfect search efficiency. Other graphs achieve much
lower search efficiency.. .125

7.3 Coverage versus TTL.. .126
7.4 Coverage granularity: a3-Araneola overlay and a3-regular random graph achieve

a goodcg value for all TTLs. In the rest of the graphs,cg(i) is very high for
small (effective) TTLs and low for high (ineffective) TTLs, in which the flooding
efficiency is poor. .127

List of Tables

4.1 The impact of L on Araneola’s diameter versus Wormald’s formula,8000 nodes.. . 48
4.2 The number of join and leave events in experiments with2000 nodes. 56
4.3 The effect of an initially skewed distribution of membership views on the overlay.. 58
4.4 Araneola versus a centralized construction ofL-regular random graphs,1000 nodes. 59
4.5 Hop-count statistics with different selections of〈L,NB〉. 62
4.6 Links loss rate and RTT.. .73

7.1 Connectivity: A3-regular random graph and a3-Araneola overlay has a connec-
tivity of 3. The rest of the graphs have a connectivity of1 or 0.124

7.2 Load balancing: a3-regular random graph achieves perfect load balancing of1. A
3-Araneola overlay achieves a good load balancing of4

3
. The rest of the graphs

achieves poor load balancing.. .126
7.3 The join cost: A3-Araneola overlay achieves the lowest join cost.. 128

10

Abstract

Peer-to-peer (P2P)systems are systems that rely primarily on the computing power and band-

width of the participating nodes (peers) rather than on a central infrastructure. Such systems are

scalable, robust, and can be easily deployed. Hence, P2P computing is a promising architecture for

deploying distributed services over the Internet, as well as in mobile ad-hoc networks (MANETs).

However, such an architecture also raises many research problems and challenges such as achieving

scalability while incurring small load on each node, coping efficiency with failures and dynamic

user behavior, and achieving fairness in a network with selfish users. In this dissertation, we review

these challenges, and present four P2P studies that address them in different settings.

In Chapter4, we introduce Araneola, a scalable reliableapplication-level multicast (ALM)

system for highly dynamic wide-area environments. Araneola supports multi-point to multi-point

reliable communication in a fully distributed manner while incurring constant load on each node.

For a tunable parameterk ≥ 3, Araneola constructs and dynamically maintains anoverlay network

structure in which each node’s degree is eitherk ork+1, and roughly90% of the nodes have degree

k. Empirical evaluation shows that Araneola’s basic overlay achieves three important mathematical

properties ofk-regular random graphs (i.e., random graphs in which each node has exactlyk

neighbors) withN nodes: (i) its diameter grows logarithmically withN ; (ii) it is generallyk-

connected; and (iii) it remains highly connected following random removal of linear-size subsets

of edges or nodes. The overlay is constructed and maintained at a low cost: each join, leave, or

failure is handled locally, and entails the sending of only about3k messages in total, independent

of N . Moreover, this cost decreases as the churn rate increases. Thorough evaluation of Araneola

running up to10, 000 nodes on up to125 machines, in both LAN and WAN, shows that Araneola

successfully addresses the following challenges: (i) providing high reliability despite considerable

message loss and failure rates while incurringconstantload on each node; (ii) incorporating joining

nodes and removing leaving (or failing) ones with a lowconstantoverhead; and (iii) providing an

undisrupted service to nodes that are up despite node joins and leaves.

In Chapter5, we present EquiCast, a wide-area P2P multicast protocol for large groups of

selfish nodes. We tackle the problem of “freeloaders”, i.e., users who consume resources without

contributing anything in return. We take a game theoretic perspective by modeling the system as a

11

non-cooperative game. We define a special set ofprotocol-obedient strategies (POSs). Generally

speaking, a strategy out of this set allows a node to determine how many connections to maintain

and how many packets to send on each connection though it does not allow users to hack the

protocol’s code or assume that others do so. We prove that if all nodes choose POSs, then each

node receives all the multicast packets. Moreover, in this case, no node can unilaterally reduce its

cost by changing its strategy to a non-POS. In addition, we prove that EquiCast incurs low constant

load on each node. We note that EquiCast is thefirst P2P multicast protocol that isformally proven

to enforce cooperation inselfish environments.

Next, we consider P2P communication in failure-prone MANETs: in Chapter6, we introduce

Octopus, a fault-tolerant and efficient routing protocol for MANETs. Fault-tolerance is achieved by

employing redundancy, i.e., storing the location of each node at many other nodes, and by keeping

frequently refreshed soft state. At the same time, Octopus achieves a low location update overhead

by employing a novel aggregation technique, whereby a single packet updates the location of many

nodes at many other nodes. Octopus is highly scalable: for a fixed node density, the number of

location update packets sent does not grow with the network size. And when the density increases,

the overhead drops. Thorough empirical evaluation using the ns2 simulator with up to 675 mobile

nodes shows that Octopus achieves excellent fault-tolerance at a modest overhead: when all nodes

intermittently disconnect and reconnect, Octopus achieves the same high reliability as when all

nodes are constantly up.

Finally, in Chapter7, we define metrics for evaluating unstructured overlay networks for P2P

lookup systems. These metrics capture the search dependability and efficiency, and the granularity

at which one can control the tradeoff between the two, as well as fairness. According to these

metrics, we evaluate different graphs and overlays, including a Gnutella graph, a power law random

graph, normal random graphs, a3-regular random graph, and a3-Araneola overlay. Our study

shows that, according to our metrics, a3-Araneola overlay achieves the best results, and hence it

is an excellent solution for a flooding-based P2P lookup system.

12

Notations and Abbreviations

aas - asymptotically almost surely
ALM - Application Level Multicast

c - connectivity
cg - coverage granularity

DEC - Dynamic EquiCast
fe - flooding efficiency

GLS - The Grid Location Service protocol
IID - Independent and Identically Distributed
ISP - Internet Service Provider
IP - Internet Protocol

LAN - Local Area Network
lb - load balancing

MAC - Media Access Control
MANET - Mobile Ad-hoc Network

P2P - Peer-to-Peer
POS - Protocol-Obedient Strategy
RTT - Round Trip Time
TTL - Time To Leave
UDP - User Datagram Protocol
WAN - Wide Area Network

13

Chapter 1

Introduction and Goals

A peer-to-peer (P2P)system is a system that relies primarily on the computing power and band-

width of the participating nodes (peers) rather than on a central infrastructure. P2P systems are used

extensively over the Internet e.g., for file sharing [2, 3, 36] and content distribution [23, 29, 37].

Moreover, P2P protocols are employed for communication in wireless networks; such P2P wire-

less networks are calledmobile ad-hoc networks (MANETs). P2P systems are attractive for several

reasons. First, unlike centralized systems, P2P systems can be easily deployed and can grow

quickly, since such systems usually do not require any special administrative or financial arrange-

ments [16, 28, 67, 116]. Second, P2P systems achieve high scalability, since they make use of

the bandwidth, computation, and storage resources of the participating nodes [16]. And third, P2P

systems are typically robust, due to their decentralized and distributed nature [16, 34, 67]. In this

dissertation, we focus onpureP2P systems, in which all the nodes have symmetric roles, and no

infrastructure or “super-peers” exist. We examine such systems over the Internet as well as in

MANETs.

In a P2P system, the nodes are typically organized into anoverlay network, which is a virtual

network containing a subset of the connections of some underlying network, e.g., the Internet.

Each node typically communicates only with its overlay neighbors. In a structured overlay net-

work, nodes join the overlay according to a specific protocol, whereas in an unstructured one,

nodes join the overlay according to some loose constraints. Thanks to the lack of structure require-

ments, node join and leave events in unstructured overlays can be fast and incur small constant

load (independent of the overlay size). Hence, unstructured overlays are suitable for dynamic

networks [34].

While P2P computing is a promising architecture for deploying distributed services, it also

raises many research problems and challenges [16]. One of the major challenges is achieving scal-

ability, i.e, supporting many users, while incurring smallconstantload on each node, regardless of

the number of nodes in the system. However, in most of the current P2P systems, e.g., Chord [115],

14

Pastry [108], Tapestry [124], and CAN [104], the per-node overhead does increase with the number

of nodes.

Another challenge in P2P computing is achieving reliability and efficiency in dynamic failure-

prone networks like MANETs and the Internet. In such networks, nodes frequently fail [22], and

the message loss rate may be high [98]. In addition, studies have shown that, typically, users

frequently join and leave multicast and lookup sessions (such behavior is calledchurn) [11, 12, 13,

109]. Similarly, in MANETs, it is common for mobile wireless nodes to intermittently disconnect

from the network, e.g., due to signal blockage. Hence, in both environments, P2P systems need to

cope efficiently with high failure and churn rates.

Finally, most of the currently deployed P2P systems do not motivate nodes to cooperate, e.g.,

contribute upload bandwidth, computation power, or disk space for some other users. Hence, such

systems suffer from the problem of “freeloaders”, i.e., users who consume resources without con-

tributing anything in return [9, 59]. For example, in the Gnutella P2P file-sharing application [3],

nearly 70% of the users share no files [9]. Therefore, current P2P systems, e.g., BitTorrent [37],

Avalanche [49], and Gnutella, typically rely on user altruism [9, 59]. For example, in BitTorrent

and Avalanche, a node is expected to upload data blocks to other nodes for no return whenever it

has available bandwidth [37, 49], and in Gnutella, nearly 50% of all responses are returned by the

top 1% of sharing hosts.

Nowadays, user altruism is common since most users are connected to the Internet using static

machines via ISPs with a flat pricing model, and hence sending a packet does not incur a cost on

its sender. However, these paradigms are changing. First, the increasing access to digital content

is expected to drive ISPs to implement a tiered pricing scheme, where high end pricing plans shall

allow unlimited downloads and uploads, while lower tier pricing plans shall limit traffic band-

width [107]. Second, wireless hotspots are proliferating in recent years, and users are increasingly

connecting to the Internet and downloading content to mobile devices such as laptops and cell

phones. In such networks, pricing is typically based on connection time or transmission volume.

Moreover, battery power is a critical resource for mobile devices. Hence, user altruism can hardly

be expected in future networks. Therefore, it is important to design P2P systems that work well

even when all users are selfish.

In this dissertation, we present four P2P studies addressing the above challenges in different

settings. Araneola (see Section1.1and Chapter4) is a scalable reliable application-level multicast

system for highly dynamic wide-area environments. EquiCast (see Section1.2and Chapter5) is a

wide-area P2P multicast protocol for large groups of selfish nodes. Octopus (see Section1.3 and

Chapter6) is a fault-tolerant routing protocol for MANETs. And finally, in Chapter7 (see also

Section1.4), we define metrics for evaluating unstructured overlays for P2P lookup systems, and

evaluate different graphs and overlays according to these metrics.

15

1.1 Araneola: A Scalable Reliable Multicast System for Dy-
namic Environments

In Chapter4, we introduce Araneola, a scalable reliable application-level multicast (ALM) system

for highly dynamic wide-area environments. Araneola supports multi-point to multi-point reliable

communication in a fully distributed manner while incurring constant load on each node. Arane-

ola’s overlay approximates ak-regular random graph1 with N nodes. Fork ≥ 3, such a graph

is almost always a good expander [45], which implies that (i) its diameter grows logarithmically

with N [122]; and (ii) it remains connected after random failures of a linear subset of its nodes

and/or edges [50]. In addition, such a graph is generallyk-connected, i.e., there arek disjoint

paths between every two nodes in the graph2. For a tunable parameterk ≥ 3, Araneola con-

structs and dynamically maintains a basic overlay structure in which each node’s degree is either

k or k + 1, and roughly90% of the nodes have degreek. Empirically, we show that Araneola’s

overlay achieves the desired properties ofk regular random graphs, namely logarithmic diameter,

k-connectivity, and high robustness. In particular, we show that Araneola’s overlay has a similar

diameter and is as robust as graphs generated using a known centralized construction ofk-regular

random graphs. At the same time, Araneola’s overlay construction algorithm is fully distributed

and efficient, as each join or leave (or failure) incurs sending roughly about3k messages in ak-

degree overlay, regardless of the number of nodes. Remarkably, in dynamic settings, the cost of

handling a single join or leave operationdecreasesas the churn rate increases. This is in contrast

to virtually all existing structured P2P overlays, with which the overhead for handling joins grows

at least logarithmically with the number of nodes.

The low degree of Araneola’s basic overlay structure allows for allocating plenty of additional

bandwidth for specific application needs. In Section4.5, we give an example for such a need —

communicating with nearby nodes; we enhance the basic overlay with additional links chosen ac-

cording to geographic proximity and available bandwidth. We show that this approach reduces the

number of physical hops messages traverse without hurting the overlay’s robustness as compared

to completely random Araneola overlays with the same average degree.

Given Araneola’s overlay, we sketch out several message dissemination techniques that can

be implemented on top of this overlay. We present a full implementation and evaluation of a

gossip-based multicast scheme with up to 10,000 nodes. We show that compared to a standard

(non-overlay-based) gossip-based multicast protocol, gossiping over Araneola achieves substantial

improvements in load, reliability, and latency.

1A k-regular random graph withN nodes is a graph chosen uniformly at random from the set ofk-regular graphs
with N nodes

2The probability that ak-regular random graph is notk-connected isO(N2−k).

16

In summary, Chapter4 makes the following contributions:

• It presents the first efficient distributed algorithm for constructing and maintaining a graph

structure that resembles ak-regular random graph and achieves its good properties in dy-

namic settings.

• It introduces an algorithm that constructs and maintains a richly-connected low degree over-

lay in which each join or leave operation incurs a constant overhead.

• It describes an overlay-based ALM system that provides an undisrupted multicast service in

highly dynamic settings while incurring constant load on each node.

• It features a complete implementation and a thorough evaluation of Araneola running up to

10, 000 nodes on up to125 machines, in both LAN and WAN, including extensive evaluation

of the impact of churn on an ALM system.

• Finally, it constructs an overlay that designates ample bandwidth for each node to commu-

nicate with nodes chosen according to application needs, e.g., proximate nodes.

The results of Chapter4 appear in [93].

1.2 EquiCast: Scalable Multicast with Selfish Users

In Chapter5, we consider the problem of providing a multicast service in a network with self-

ish users like the Internet. In such a network, each user tries to minimize its selfish cost, and

hence it may not follow a protocol’s code. Therefore, in the absence of incentives for cooperation,

many users in such a network are “freeloaders”, i.e., they consume resources without contributing

anything in return.

In order to address this problem, we have designed EquiCast, a wide-area P2P multicast proto-

col for large groups of selfish nodes. EquiCast tackles the problem of “freeloaders” taking a game

theoretic perspective by modeling the system as anon-cooperative game. In such a game, nodes

are selfish butrational, i.e., each user chooses its ownstrategyregarding its level of cooperation

so as to minimize its own cost [46]. More specifically, the goal of each node is to receive all the

multicast packets while minimizing its sending rate.

We define a special set ofprotocol-obedient strategies (POSs). Generally speaking, a strategy

out of this set allows a node to determine how many connections to maintain and how many packets

to send on each connection though it does not allow users to hack the protocol’s code or assume

that others do so. We believe that it is reasonable to assume that most nodes will run a protocol-

obedient strategy (POS), since users usually do not have the technical knowledge required in order

17

to modify an application code. We prove that if all nodes choose POSs, then each node receives all

the multicast packets. Moreover, in this case, no node can unilaterally reduce its cost by changing

its strategy to a non-POS. That is, unilateral hacking of the protocol’s code cannot reduce a node’s

cost.

Finally, we prove that EquiCast incurs a low constant load on each node. We note that EquiCast

is thefirst P2P multicast protocol that isformally provento enforce cooperation inselfish environ-

ments.

The results of Chapter5 appear in [74].

1.3 Octopus: A Fault-Tolerant and Efficient Ad-hoc Routing
Protocol

In Chapter6, we consider the problem of fault-tolerant routing in mobile ad-hoc networks. Such

networks consist of mobile wireless nodes that communicate with each other in the absence of

infrastructure. In a mobile ad-hoc network, if several of the nodes have an Internet access, then

such a network is a wireless extension of the Internet. As opposed to the Internet, however, in a

mobile ad-hoc network routing is performed by the end nodes themselves. In addition, in such a

network, nodes often intermittently disconnect from the network, e.g., due to signal blockage [20,

84]. Hence, routing in such a network is a challenging task.

We focus onposition-based routing protocols, in which each node can determine its physical

location. Such protocols scale better than non-position-based ones [91]. Typically, the location of

each node is stored at some other nodes, which act aslocation serversfor that node [56, 91]. When

a node wishes to send packets to another node, it first issues alocation queryin order to discover

the target’s location, and thenforwardspackets to this location.

We present Octopus, a simple and efficient position-based routing protocol that employs syn-

chronized aggregation in order to achieve high fault-tolerance without incurring a high load. Oc-

topus divides the network area into horizontal and vertical strips, and stores the location of each

node at all the nodes residing in its horizontal and vertical strips. This approach naturally supports

synchronized aggregation: all the nodes in the same strip can learn each other’s locations through

the propagation of exactly two location update packets along the strip. Note that this location

update technique does not require nodes to synchronize their clocks: by knowing its immediate

neighbors’ locations, a node can determine whether it needs to initiate a strip update. Since syn-

chronized aggregation dramatically reduces the location update overhead, Octopus can update all

the location servers at the same high frequency, at a low cost.

On the one hand, Octopus enforces higher redundancy and more freshness of location informa-

18

tion than previously suggested position-based protocols [63, 83], and hence achieves much better

fault-tolerance. On the other hand, by aggregating node locations and synchronizing their propaga-

tion, Octopus incurs lower overhead than these protocols in typical scenarios. Moreover, Octopus

is highly scalable: for a fixed node density, the number of location update packets sent does not

grow with the network size, and when the density increases, the overhead drops.

Octopus has a third important advantage over most previous position-based routing protocols,

e.g., [63, 83]: in Octopus, the area in which nodes reside does not need to be pre-known or fixed; it

can change at run time. This feature is crucial for rescue missions and battle field environments, in

which the borders of the network are not known in advance and are constantly changing. Finally,

the redundancy of location information in Octopus has a fourth advantage: nodes use information

they have about strip neighbors in order to improve the forwarding reliability. Hence, we eliminate

the need to maintain designated information for improving the forwarding reliability.

Finally, we present a thorough empirical evaluation of Octopus using the ns2 simulator with

up to 675 mobile nodes. This evaluation shows that Octopus achieves excellent fault-tolerance at

a modest overhead: when all nodes intermittently disconnect and reconnect, Octopus achieves the

same high reliability as when all nodes are constantly up.

The results of Chapter6 appear in [94].

1.4 Evaluating Unstructured P2P Lookup Overlays

Unstructured overlay networks incur small constant overhead per single join or leave operation.

Hence, they are suitable for dynamic failure-prone environments like the Internet [34]. In addition,

lookup systems based on unstructured overlay networks can easily support keyword searches [34].

Therefore, virtually all the currently deployed P2P lookup systems are unstructured ones.

In Chapter7, we define metrics for evaluating unstructured overlay networks for P2P lookup

systems. The metrics we define capture the search dependability and efficiency, and the granularity

at which one can control the tradeoff between the two, as well as fairness. According to these

metrics, we evaluate different graphs and overlay networks, including a Gnutella graph, a power

law random graph, normal random graphs, a3-regular random graph, and a3-Araneola overlay.

Our study shows that, according to our metrics, a3-Araneola overlay achieves the best results, and

hence it is an excellent solution for flooding-based P2P lookup system.

The results of Chapter7 appear in [73].

19

Chapter 2

Related Work

In Section2.1, we review ALM Systems and fault-tolerant overlay networks and graphs. In Sec-

tion 2.2, we review P2P multicast protocols for environments with selfish users and incentive-based

P2P systems. In Section2.3, we discuss different ad-hoc routing approaches, and we review lead-

ing ad-hoc routing protocols for MANETs. Finally, in Section2.4, we review P2P lookup systems.

2.1 ALM Systems and Fault-Tolerant Overlay Networks and
Graphs

2.1.1 ALM Systems

In recent years, two leading approaches for supporting scalable ALM in dynamic failure-prone

networks have emerged: gossip-based (or epidemic) multicast protocols, e.g., [24, 39, 41, 52, 72,

75, 76], and dynamic overlay networks, e.g., [17, 31, 32, 33, 53, 61, 68, 99, 105, 114, 125].

Gossip-based protocols

With gossip-based protocols, each node periodically chooses other random nodes to propagate

the information to. Gossip-based protocols usually do not use any infrastructure. Such protocols

are highly robust in the presence of failures, and their reliability degrades gracefully as failures

amount [41, 85]. They can achieve an average latency ofO(log N) rounds [24, 41]. Moreover,

they achieve good reliability (close to 100%) even in dynamic failure-prone settings. However,

these protocols also have shortcomings. First, they generally require each node to send each mes-

sageO(log N) times [76, 85], which induces a high load. Second, their reliability guarantees

are probabilistic, and they generally provide less than 100% reliability even in static failure-free

settings [41, 85]. In Chapter4, we show that gossiping over Araneola eliminates these shortcom-

ings: it has each node send information onlyk or k+1 times, and guarantees 100% reliability. We

20

compare the performance of gossiping over Araneola with that of a standard gossip protocol in

Section4.7.1below, and show that Araneola achieves higher reliability than the gossip protocol

while incurring less overhead.

Tree/Mesh-based systems

Most overlay-based ALM systems are tree-based, e.g., [31, 33, 61, 68, 110]. With such systems,

no duplicate messages are sent. If the tree topology is mostly stable, and loss-rates are low, then

such systems can achieve great performance. However, in the presence of churn, the tree structure

frequently becomes partitioned, causing a significant portion of the multicast messages to be lost.

Therefore, in order to achieve reliability, such protocols need to detect message loss and recover

from it. This can cause recovered messages to be significantly delayed; can induce substantial

overhead, especially if failures are frequent; and can inhibit scalability. A second problem with

tree-based multicast is uneven load distribution: as recently argued in [30], inner nodes in the tree

carry almost all the burden for the multicast, whereas leaf nodes do not share the load.

Pbcast [24] combines best-effort tree-based dissemination, e.g., using IP Multicast, with gossip-

based recovery. This approach has the advantages of tree-based ALMs, including fast dissemina-

tion and no duplicates in failure-free cases, as well as the robustness of gossip-based protocols.

It is therefore effective if a stable tree-based multicast service is available. However, it is also

hampered by the difficulty of maintaining stable trees in the presence of high churn.

Mesh-based overlay systems can achieve load balancing and robustness to failures and mes-

sage loss by including multiple paths between every pair of nodes. SplitStream [30] constructs

and maintains a forest of multicast trees, and evenly distributes the forwarding load among all

participating nodes. In Bullet [81], nodes self-organize into an overlay mesh, and data packets are

distributed to strategic points in the overlay. Nodes are then responsible for locating and retrieving

the data packets. Whereas Araneola focuses on providing undisrupted service to nodes that are up

despite high churn rates and considerable message loss and failure rates, SplitStream and Bullet

are designed for content streaming. Therefore, neither SplitStream nor Bullet were evaluated un-

der the high churn rates we evaluate Araneola. These two systems can induce high overhead: in

SplitStream, each join event can incur sending(k + 1) log(N) messages wherek is the number of

trees in the forest, and in Bullet the average per-node control overhead is approximately 30 Kbps.

Moreover, in Bullet, roughly10% of received data packets are duplicates. In contrast, in Arane-

ola each join or leave operation incurs sending roughly3k messages, and no duplicates are sent.

Moreover, in order to achieve high reliability under high churn rates, these two systems need to ei-

ther use forward error correction techniques, which incur additional overhead, or to employ heavy

buffering, which incurs high delay and requires additional disk space. Finally, these two systems

21

are intended for single-source multimedia transfer and do not support multi-point to multi-point

reliable communication as Araneola does.

In the Yoid project [44], nodes auto-configure into two topologies: a shared tree topology for

efficient multicast, and a mesh topology for distributing membership information and application

content when the tree topology is partitioned. This solution has several limitations. First, the tree

configuration is fragile and the discovery of tree partitions may be slow. Second, Yoid trees can be

lop-sided, with longer-than-necessary diameters, thus causing high message latency. Finally, mem-

bership information is flooded to all the nodes in the system, and hence Yoid is only appropriate

for small multicast groups.

Snoeren et al. [112] construct an infrastructure of servers, and each node is connected tok

servers from which it receives duplicate packet streams. While this approach achieves high relia-

bility, it also incurs substantial overhead: each packet is sent to each node byk different servers. In

contrast, in the absence of packet loss, each Araneola node receives each packet from exactly one

node. In addition, Snoeren et al.’s solution is based on server infrastructure, which is not required

by Araneola.

ODRI [86] is a dynamic overlay based on de Bruijn graphs that preserves the properties of

these graphs namely an average constant in and out degree at each node, a diameter that grows

logarithmically with the number of nodes, and good resilience to node and link failures. Whereas

in a k-Araneola overlay each node is connected to eitherk or k+1 nodes, in ODRI, each node

hask incoming and betweenk andO(k ln N) outgoing links. Hence, Araneola achieves better

load balancing than ODRI. In addition, the join overhead in ODRI is logarithmic in the number of

nodes, whereas in Araneola the join cost is constant.

PRM (Probabilistic Resilient Multicast) [18] is a multicast data recovery scheme based on

randomized data forwarding. This recovery scheme incorporated into the NICE protocol [17]

achieves reliability of roughly97% in settings with message loss up to5% and with up to5 topology

changes per second [18]. In contrast, Araneola achieves full reliability under substantially higher

message loss and churn rates.

Finally, we are unaware of a previous P2P multicast system that provides full reliability of

message delivery in highly dynamic failure-prone environments. In addition, none of the afore-

mentioned multicast systems was evaluated under the high churn and failure rates that we evaluate

Araneola under.

2.1.2 Overlay Structures

Lin et al. [85] construct a statick-Harary graph [60]; such a graph has a logarithmic diameter, a

degree ofk, and a connectivity level ofk, and is therefore an attractive structure for supporting

22

reliable multicast. Lin et al. study the tradeoffs between a gossip protocol and flooding messages

on a static overlay structured like a4-Harary graph in small fixed networks. Their measurements

show that at moderate failure rates, flooding a small overlay achieves the same reliability with a

substantially smaller overhead than a gossip protocol. As the failure rate increases, however, the

overlay can become partitioned, and the gossip protocol exhibits a much more graceful degrada-

tion. This motivates a solution like Araneola, based on a dynamic overlay that detects failures and

continuously heals itself.

Recently, several dynamic P2P overlays with logarithmic diameters and bounded node de-

grees have been suggested, e.g., emulating the Butterfly [89], de Bruijn graphs [70], Small Worlds

graphs [79], or random expander graphs with degrees≥ 8 [82]. However, none of these systems

can guarantee, with high probability, a lower cost thanO(log N) messages and time for handling

joins, since a joining node must search and locate its (random or hashed) joining location prior to

joining the system. Chawathe et al. [34] have argued that this logarithmic cost inhibits the scalabil-

ity of such systems assuming the churn rates measured in Gnutella and Napster [109]. Moreover,

the algorithm in [89] is complicated, and the overlay in [82] does not support many concurrent

leave operations as Araneola does.

Several overlay structures, e.g., [90, 110], reduce message delivery latency and communication

costs by incorporating links between nearby nodes in addition to the random links required for

achieving a good overlay. Other overlays, e.g., Pastry [108] and Tapestry [124], achieve local

routing by selecting nearby nodes among a large collection of random ones. Land’s [8] lookup

algorithm achieves a worst case stretch bound of1 + ε by adding local links that increase node

degrees by a constant expected factor.

Although adding links to proximate nodes has many benefits, we believe that proximity re-

quirements vary among applications. We therefore advocate a separation of concerns between

such specific application needs and generic requirements of wide-area applications. The basic

overlay of Araneola addresses the generic needs while incurring a low load, and thus leaves ample

bandwidth for the application to address additional needs such as proximity, bandwidth hetero-

geneity, and so forth. We illustrate this approach in Section4.5 by extending Araneola’s basic

overlay with links chosen according to network proximity in order to reduce the latency of mes-

sage delivery and communication costs. The resulting extended overlay achieves a smaller average

degree than [90, 110] and better load balancing than [110].

2.1.3 Centralized Constructions ofk-Regular Random Graphs

Araneola builds an overlay structure that approximates ak-regular random graph using a dis-

tributed protocol in dynamic environments. Previous algorithms for generatingk-regular random

23

graphs were centralized and static. For example, Bollobas [27] and Bender and Canfield [21] give

a centralized construction of ak-regular random graph onN vertices, which works roughly as

follows: it duplicates each vertexk times and creates a uniform random perfect matching1 on these

Nk copies of vertices. The resulting graph contains an edge between two vertices,i andj, if the

matching contains an edge between copies ofi andj. The resulting graph may not be simple, i.e.,

it may contain self-loops and/or parallel edges. It has been shown [122] that the probability of such

a graph being simple isexp(−k2/4), and the expected time to obtain a simplek-regular random

graph with this algorithm isO(Nkek2/4). McKay and Wormald [92] improve this expected time

to O(N2k4) using a simple algorithm, and toO(Nk3) using a complicated and hard to implement

algorithm.

Steger and Wormald [113] propose a faster algorithm based on Bollobas’s [27] and Bender

and Canfield’s [21] constructions. This algorithm creates a perfect matching that does not contain

self-loops and parallel edges, and hence the resulting graph is always simple. The running time of

this algorithm isO(Nk2). Steger and Wormald prove that ifk = o(N1/28) then the distribution of

the generated graphs is asymptotically uniform2. Recently, Kim and Vu [77] have proven that the

distribution of graphs generated using this algorithm is asymptotically uniform withk up toN1/3.

Araneola is the first distributed and efficient approximation of ak-regular random graph that

we are aware of. As opposed to the centralized constructions mentioned above, in which each

addition or removal of a single vertex or edge from the graph requires the reconstruction of the

graph from scratch, Araneola incrementally incorporates joining nodes and removes leaving ones

from the graph, while sending only about3k messages for each such change. In Section4.4.5,

we show that the overlays generated by Araneola have the same diameter and are as robust as the

graphs generated using the centralized construction of [77, 113].

2.2 P2P Multicast Protocols for Environments with Selfish Users
and Incentive-Based P2P Systems

EquiCast is the first P2P multicast protocol that is formally proven to enforce cooperation in en-

vironments with selfish users. We are familiar with only two previous P2P multicast protocols for

environments with selfish users [58, 96]. Ngan et al. [96] propose an incentive-based multicast

protocol based on detection of selfish nodes and periodic reconstruction of multicast trees that

exclude previously misbehaving nodes. However, this protocol induces high overhead. For ex-

ample, with500 nodes, the trees’ reconstruction requires each node to send256 control messages

1A matching on a graph G is a set of vertex-disjoint edges of G. A perfect matching is a matching that covers all
vertices.

2The distribution of the generated graphs approaches a uniform distribution asN →∞.

24

every two minutes; and when the group size is2000 nodes, each node sends nearly400 control

messages every two minutes, in addition to data messages. Habib and Chuang [58] propose an

incentive-based protocol for media streaming, in which cooperative nodes receive high quality of

service whereas “freeloaders” receive low quality streaming. While this protocol rewards cooper-

ation to some extent, it does not solve the problem of “freeloaders”. These two solutions, however,

consider a different model, in which only a fraction of the nodes are selfish. Moreover, neither is

formally proven to enforce cooperation.

Several previous distributed Internet services such as content distribution [37, 49], storage [38],

and lookup [34] reward cooperation to some extent by incentivizing cooperative behavior. The

BitTorrent [37] and Avalanche [49] content distribution systems support the tit-for-tat strategy, in

which a user preferentially uploads blocks of information to users from which it is also download-

ing blocks. But these systems rely on user altruism, and hence they do not purport to work in a

selfish environment where all users are rational and selfish, and every packet incurs a cost on its

sender. In the SAMSARA storage system [38], each node is required to contribute as much disk

space to the system as it is using, and in the GIA lookup system [34] the quality of service expe-

rienced by a node is proportional to its contribution to the system. None of the aforementioned

services, however, models the system as a non-cooperative game or formally proves cooperation

as we do.

In P2P protocols based on a centralizedreputation system, e.g., eMule [2] and [25], each node

sends to and requests from the system reports about the level of cooperation of other nodes. Hence,

a node is motivated to collaborate with other nodes. However, this approach achieves limited

scalability [25], since the reputation system continuously communicates with all the nodes.

The BAR-B backup service [10] can tolerate both Byzantine nodes and an unbounded number

of selfish nodes by using asynchronous replicated state machine. The replicated state machine

approach, however, can support only a limited number of nodes. In addition, this service relies on

public key cryptography, which further limits the scalability of this service.

Finally, cost-sharingmulticast solutions e.g., [42], consider a different model, in which mul-

ticast is provided over a dedicated infrastructure, and the infrastructure cost is shared among all

nodes. Such an approach, however, is not applicable to P2P systems.

2.3 Ad-hoc Routing Protocols for MANETs

Existing ad-hoc routing approaches can be roughly divided into two categories:topology-based

andposition-based[91]. Topology-based protocols do not assume that each node can determine its

position. Such protocols usually employ global flooding to distribute either topology information

(e.g., DSDV [100]) or queries (e.g., AODV [101], DSR [69], TORA [97], and ZRP [57]), and

25

hence suffer from limited scalability [83, 91].

By assuming that each node can determine its location, position-based protocols achieve better

efficiency and scalability than topology-based ones [91]. Position-based protocols can be classi-

fied according to how many nodes act as location servers and how many locations each of them

holds [91]. In theall-for-all approach used by DREAM [19], every node acts as a location server

for all nodes. This approach is fault-tolerant, and is practical in small networks. However, it has

been argued that the overhead of this approach is prohibitive in large networks, since location

updates are flooded [55, 83].

In the some-for-some[56] and some-for-allapproaches [56, 120], some dedicated nodes act

as location servers for some or all other nodes. These approaches are appropriate for failure-

free networks, or for settings in which there are reliable servers. However, such approaches are

problematic in failure-prone networks, since they are vulnerable to the movement or failure of a

single dedicated location server (as explained in [83]).

Octopus employs theall-for-someapproach, in which each node acts as a location server for

some other nodes. Li et al. [83] have shown that this approach can achieve a good tradeoff between

reliability and load, and can scale well up to at least600 nodes. All-for-some-based protocols

include GLS [83], GRSS [63], Homezone [48, 117], and [118]. Of these, GLS and GRSS are the

only ones that were extensively evaluated in simulations with mobile nodes. Moreover, only GLS

was evaluated in settings in which nodes intermittently disconnect from the network, and this study

was only conducted in a small network.

Stojmenovic et al. [118] suggest a routing scheme in which each node periodically propagates

its position in the north and south directions, and location queries are sent in the east and west

directions. Similar approaches were also suggested for efficient content location [119], match-

making in sensor networks [14], and as a general scheme for implementing ad-hoc services [95].

However, unlike Octopus, none of these previous works aggregate updates, and they thus miss

Octopus’s important performance advantage; individually updating so many nodes is bound to

induce a prohibitively high overhead [7, 88]. Moreover, of these works, only [119] was evaluated

with mobile nodes, and none was evaluated in fault-prone settings. Another difference between

Octopus and [118] is that Octopus employs more redundancy by storing node locations at both

their horizontal and vertical strips. This additional redundancy yields a quadratic decrease in the

probability for query failures. Finally, [118] does not make additional use of the stored location

information in order to improve the reliability of forwarding. In fact, we are not aware of any

previous ad-hoc routing protocol that exploits location information for more effective forwarding.

The most thoroughly studied position-based protocol thus far, GLS [83], partitions the world

into a hierarchy of grids with squares of doubling edge sizes. In each level of the hierarchy, the

location of each node is stored at three location servers, for a total ofO(log N) location servers

26

under uniformity and fixed density assumptions. Under the same assumptions, Octopus stores the

location of each node atO(
√

N) location servers (see Section6.4). In contrast to Octopus, in GLS

remote location servers are updated less frequently than close ones. Thanks to the use of more

location servers and fresher information, Octopus achieves much higher fault-tolerance than GLS.

Thanks to aggregation, Octopus achieves this while incurring lower overhead. Moreover, Octopus

is a simpler protocol than GLS.

Although Octopus requires more memory than GLS for storing location information, Octopus’s

memory requirements are quite reasonable: in our largest experiment, with675 nodes, location

information consumes less than1KB of memory at each node. Note that in wireless networks,

reducing the number of transmissions is most crucial, and 1KB of memory overhead is a small

price to pay for the significant reduction in message overhead that Octopus achieves.

In almost all the previous location-based routing protocols, each location update packet in-

cludes the location of a single node and updates a single location server. The only exception we

are familiar with is GRSS [63]. However, in contrast to Octopus, in GRSS location updates are not

synchronized, i.e., several nodes in the same region can initiate a location update simultaneously,

thus causing many duplicate packets to be sent. Consequently, as shown in [63], GRSS often fails

to achieve lower overhead than GLS. Moreover, as opposed to Octopus, in which each location

update packet contains identities ofO(
√

N) nodes (assuming the system model described in Sec-

tion 6.2), in GRSS, a location update packet can containO(N) node identities. In order to reduce

the packet size, GRSS uses Bloom filters. However, this technique may lead to incorrect routing

due to false positives [63].

In LAR [80], each node knows only the locations of its immediate neighbors. This approach is

efficient when the number of location queries is low. However, when location queries are frequent,

this approach is not practical, as location queries may be globally flooded [83].

Finally, some ad-hoc protocols, e.g., Span [35] and GAF [123], reduce energy consumption by

allowing nodes to sleep for extensive periods, leaving a minimal set of nodes awake to perform

routing. Such an approach employs no redundancy, and hence is inherently not fault-tolerant.

2.4 P2P Lookup Systems

Structured lookup systems, e.g., Chord [116] and Pastry [108], can achieve perfect search reliabil-

ity, and incur the sending of onlyO(log N) messages per search operation. However, such systems

incur high joining overhead ofO(M log(N)) messages, whereM is the number of objects held by

the joining node. AssumingN = 30, 000 andM = 90 as in Gnutella [9], a single join operation

incurs a prohibitive overhead of more than1, 300 messages. In addition, structured lookup systems

do not support keyword searches, which are highly popular.

27

Partially structured lookup systems, e.g., KaZaA, usually rely on some infrastructure, e.g.,

“super-peers”. Therefore, such systems can achieve higher scalability compared to pure unstruc-

tured lookup systems. However, the infrastructure can be expensive to construct and maintain.

Moreover, “super-peers” have high bandwidth consumption. In addition, infrastructure-based sys-

tems are much more vulnerable to malicious attacks than pure P2P systems. Moreover, in this

chapter, we show that the major problems of pure P2P unstructured lookup systems, e.g., low

search efficiency resulting in a high search overhead, which lead to abandoning the pure P2P

model for “super-peers”, can be eliminated with the use of a good overlay.

Unstructured lookup systems such as Gnutella can scale up to tens of thousands of users, with-

out relying on any infrastructure [34]. In such systems, the search may fail. However, queries

usually succeed in locating files due to natural file redundancy [34], that is, popular files are held

by many nodes. Search algorithms typically used in unstructured lookup systems are based on

flooding and/or random walks [87]. In a random walk, a query is forwarded to a randomly chosen

neighbor at each step, until the object is found. While this search technique can incur smaller

overhead than flooding, it also dramatically increases the search latency. In addition, in typical

dynamic wide-area environments, a random walk usually fails to achieve a similar search reliabil-

ity to that achieved by flooding. Therefore, most currently deployed P2P lookup systems employ

flooding as their search algorithm. In this chapter, we focus on improving the flooding efficiency

in unstructured lookup systems.

Lv et al. [87], propose a search algorithm based on multiple random walks, which resolves

queries for popular objects almost as quickly as flooding, while reducing the network traffic. How-

ever, this search technique is not feasible for low-replicated objects or for failure-prone settings.

In addition, Lv et al. evaluate the efficiency of flooding over several graph structures. Their re-

sults show that flooding over a normal random graph achieves the best efficiency among the tested

graphs. Lv et al., however, do not examine low-degree balanced graphs such as a3-regular ran-

dom graph. In this chapter, we show that flooding over such a graph (or an approximation of such

a graph) achieves much higher efficiency than flooding over normal random graphs. Moreover,

we show that a limited flooding over a3-regular random graph achieves similar efficiency to that

achieved by random walks, while achieving higher reliability and incurring lower latency.

28

Chapter 3

Methodology

Most of the dissertation (Chapters4, 6, and7), focuses on systems, which are mainly evaluated

empirically. We evaluate the properties of the different systems using extensive measurements in

large-scale environments, such as a large cluster, an emulated environment, or a network simulator.

We focus on failure-prone dynamic settings with node and link failures as well as join and leave

events.

Chapter5 includes a theoretical study. The protocol is evaluated using formal proofs. Specif-

ically, the system is modeled as a non-cooperative game, and game theoretic techniques are em-

ployed.

We now review the different methodologies we use in each of our studies.

3.1 Methodology Used in Chapter4, Araneola: A Scalable Re-
liable Multicast System for Dynamic Environments

The study in Chapter4 is an empirical one, and is based on evaluation of Araneola in a LAN, as

well as over the Internet. We also run Araneola on top of a WAN emulation.

Implementation language and transport protocol. We have implemented Araneola in Java

using UDP/IP. No retransmissions are sent, and therefore we do not increase the network load at

times of congestion, i.e., when there is high message loss. We use the standard UDP protocol

without over-saturating the network.

Evaluation settings. We evaluate Araneola in three environments: (i) in a single LAN in Netbed [121],

running up to 10,000 nodes on up to125 machines; (ii) over the Internet using PlanetLab nodes [102],

running500 nodes on20 machines; and (iii) WAN emulations over a single LAN in Netbed, run-

ning up to 8,000 nodes on up to100 machines. Our emulated network is based on measurements

29

of upload bandwidth of P2P clients [109] and measurements of loss rates and RTTs (round trip

time) of Internet links [64].

Measurements of fault-tolerance. We study the fault-tolerance and robustness of the Araneola

overlay by considering two kinds of failures: communication link failures and node failures. We do

so using an offline analysis of overlay snapshots obtained at the end of static experiments with1000

and2000 nodes. To study communication failures, we remove random subsets of edges from the

overlay graph and analyze the resulting graphs. This allows us to predict Araneola’s reliability and

latency in the presence of message loss. Similarly, we study Araneola’s resistance to node failures

by removing random subsets of nodes. In this analysis, no dynamic repairs are made, i.e., after

the initial construction of the overlay, no links are added as a result of a node or link failure. Such

repairs would have further increased the measured fault-tolerance. As in most previous studies,

e.g., [41, 85, 116], we model node and edge failures asindependent and identically distributed

(IID) .

Dynamic settings. Our model for dynamic evaluation is based on studies of user behavior in

multicast groups on the MBone [11, 12, 13], and in file sharing applications [109]. These studies

model the join and leave rates of most of the nodes using an exponential distribution. Moreover,

both studies observe that a small portion of the nodes have substantially longer life times than

others. Motivated by these studies, we designate a small subset (roughly7%) of the nodes as

perseverant. Perseverant nodes are created at the beginning of the experiment and remain active

throughout the experiment. Subsequently, every minute,50 additional (non-perseverant) nodes

are awaken, until all nodes (1000 or 2000) are up. Each non-perseverant awaken node joins the

multicast group (becomesactive) with probability0.5. Otherwise, the node remainsinactive. This

gradual joining is modeled after the Berkeley session in [12]. Throughout the experiment, each

non-perseverant node once a minute flips a coin with probabilityλ in order to decide whether to

change its state from active to inactive and vice versa. We experiment with values ofλ ranging from

0.01 (yielding a mean life time of100 minutes) to0.15 (giving a mean life time of6.7 minutes). As

a baseline, we also experiment withλ = 0, in which case nodes do not change their states. There

are roughlyN
2

nodes alive at the end of each experiment withN nodes, regardless ofλ, since the

join rate is equal to the leave rate.

30

3.2 Methodology Used in Chapter5, EquiCast: Scalable Mul-
ticast with Selfish Users

Chapter5 employs game theoretic analysis. We model the system as a non-cooperative game, in

which the players areN nodes. Each node chooses a strategy that dictates how it plays the game.

We define a special set ofprotocol-obedient strategies (POSs). Generally speaking, a strategy out

of this set must run the protocol as is and can only determine how many connections to maintain

and how many packets to send on each connection. Each node is selfish and rational, i.e., it chooses

a strategy that minimizes its individual cost, according to some cost function.

3.3 Methodology Used in Chapter6, Octopus: A Fault-Tolerant
and Efficient Ad-hoc Routing Protocol

The evaluation in Chapter6 uses the ns2 network simulator with CMU’s wireless extensions. We

run up to 675 mobile nodes. Each node uses the IEEE 802.11 radio and MAC model provided

by the CMU extensions, which simulates packet loss in typical MANETs. Each node has a radio

range of250 meters and a throughput of1Mb
sec

.

The nodes are initially placed uniformly at random in a square universe. In most of our simula-

tions, there are75 nodes per square kilometer. (Li et al. [83] have experimentally shown that such

a node density is required in order to achieve high forwarding reliability.) Each node moves using

the random waypoint model used in [83]: it chooses a random destination and moves toward it with

a constant speed chosen uniformly between zero and10 m
sec

. When a node reaches its destination,

it chooses a new destination and immediately begins moving toward it at the same speed.

For each set of parameters, we run five300 seconds long simulations, and in each simulation,

each node initiates an average of one location query a minute to random destinations, starting30

seconds into the simulation, and ending at270 seconds. Our values taken over the five simulations.

We also compute the95% confidence intervals, and show that they are very tight, i.e., the results

of the five simulations are very close to each other. This consistency is due to the large number of

events in each simulation.

In order to evaluate the reliability of Octopus’s forwarding sub-protocol, we run simulations

in which data traffic is sent. Our simulation scenario follows the one in [83]. Each node’s radio

bandwidth is2Mb
sec

. In each simulation, data traffic is generated by a number of constant bit rate

connections equal to half the number of nodes; no node is a source in more than one connection;

no node is a destination in more than three connections. Each source sends four128-byte data

packets per-second for20 seconds. Each simulation lasts300 seconds, and data packets are sent at

random times between30 and270 seconds into the simulation.

31

Finally, in order to evaluate the fault-tolerance of Octopus, we run simulations with connect

and disconnect events. We introduceunstablenodes, which alternate between being connected

and disconnected [83]. Each time an unstable node awakens, it remains connected for a time

interval chosen uniformly at random in the range[0, 120] seconds. And when it disconnects, it

remains disconnected for a time interval chosen uniformly at random in the range[0, 60] seconds.

Thus, at any given time, an average of2
3

of the unstable nodes are connected. We experiment

with a varying percentagep of unstablenodes. The remaining nodes are connected throughout the

simulation. We experiment in a fairly large grid of2.3km by 2.3km. In order to isolate the effect

of node disconnections without impacting the density, we fix the average number of connected

nodes at a given time at400. That is, we run 400
1−p+ 2

3
p

nodes (e.g.,480 nodes whenp = 0.5).

3.4 Methodology used in Chapter7, Evaluating Unstructured
P2P Lookup Overlays

In Chapter7, we define metrics for evaluating unstructured overlay networks for P2P lookup sys-

tems. We measure each of these metrics (using a serial program) on six undirected graph topolo-

gies. In each graph topology, there are 10,000 nodes, in order to allow for a fair comparison.

32

Chapter 4

Araneola: A Scalable Reliable Multicast
System for Dynamic Environments

4.1 Introduction

Our goal in this chapter is to provide a scalable multi-point to multi-point reliable multicast ser-

vice for large groups in wide-area networks. Examples to applications that require such a service

include publish-subscribe applications [23, 29], distributed parallel processing [62], and collabo-

ration applications such as shared document editing [47], whiteboards [66], chat, distributed in-

teractive simulations [65], and multi-player games [5] [103]. Traditionally, IP multicast [40] has

been advocated as a solution to scalable multicast. However, due to scalability, reliability, security,

and congestion and flow control problems, nowadays IP multicast is mostly unavailable over the

Internet [54, 81]. In recent years, Application Level Multicast (ALM) systems have emerged as a

promising alternative to IP multicast for scalable wide-area multicast [18, 24, 30, 31, 33, 41, 44,

54, 61, 68, 76, 81, 85, 86, 110, 112]. In such systems, the multicast is supported at the application

level, and hence these systems can be deployed over any network without requiring router support.

A protocol deployed in wide-area networks must be able to withstand frequent node failures as

well as non-negligible message loss rates [98]. Moreover, studies have shown that, typically, users

frequently join and leave multicast sessions [12]; such behavior is calledchurn. A major design

goal for our work is therefore coping efficiently with churn. Specifically, we address the following

challenges: (i) providing high reliability despite considerable message loss and failure rates while

incurring constant load on each node; (ii) incorporating joining nodes and removing leaving (or

failing) ones with a lowconstantoverhead; and (iii) providing an undisrupted service to nodes that

are up despite high churn rates.

We present Araneola, a scalable reliable ALM system for dynamic wide-area environments.

Araneola does not rely on any infrastructure such as dedicated servers nor requires router support.

Reliability is achieved by constructing a richly-connected overlay and disseminating pertinent in-

33

formation on multipledisjoint paths in this overlay. The number of paths in the overlay can be

tuned according to the expected failure and loss rates. Araneola is designed to incur small constant

load on each node. To this end, it builds a basic overlay in which each node’s degree is bounded

by a small constant. Then, this basic overlay can be extended with additional links according to

specific application needs, e.g., network proximity. This approach has three advantages: (i) all

nodes, including low bandwidth ones, are capable of participating in the basic overlay; (ii) the load

on all nodes is similar, so no user is required to contribute more bandwidth than its fair share for

the basic overlay; and (iii) nodes have ample remaining bandwidth for connecting to additional

nodes according to application needs.

Our search for a robust constant degree overlay leads us to considerk-regular random graphs.

A k-regular random graphwith N nodes is a graph chosen uniformly at random from the set of

k-regular graphs withN nodes. In contrast to a normal random graph [27], where node degrees

vary, in ak-regular graph, each node’s degree is exactlyk. Fork ≥ 3, ak-regular random graph

is almost always a good expander [45], which implies that (i) its diameter grows logarithmically

with N [122]; and (ii) it remains connected after random failures of a linear subset of its nodes

and/or edges [50]. In addition, such a graph is generallyk-connected, i.e., there arek disjointpaths

between every two nodes in the graph1. In contrast, in order for a normal random graph to be even

connected (with high probability), its average degree must be at least logarithmic inN [27]. Note

that the diameter, which increases logarithmically, is the only feature of ak-regular random graph

that depends on the system size. All the remaining characteristics ofk-regular random graphs

(connectivity, degree, robustness to random edge and node removals) are independent ofN .

We present for the first time an algorithm for constructing and maintaining an overlay that re-

sembles ak-regular random graph in a distributed and efficient manner in dynamic settings. For a

given parameterk ≥ 3, Araneola’s basic overlay converges to a graph in which each node has a

degree of eitherk or k + 1, and no two neighboring nodes have a degree ofk + 1. Empirically, we

show that Araneola’s overlay achieves the desired properties ofk regular random graphs, namely

logarithmic diameter,k-connectivity, and high robustness. In particular, we show that Araneola’s

overlay has a similar diameter and is as robust as graphs generated using a known centralized con-

struction ofk-regular random graphs. At the same time, Araneola’s overlay construction algorithm

is fully distributed and efficient, as each join or leave (or failure) incurs sending roughly about3k

messages in ak-degree overlay, regardless ofN . Remarkably, in dynamic settings, the cost of

handling a single join or leave operationdecreasesas the churn rate increases. This is in contrast

to virtually all existing structured P2P overlays, with which the overhead for handling joins grows

at least logarithmically with the number of nodes.

1The probability that ak-regular random graph is notk-connected isO(N2−k).

34

The low maintenance cost is achieved due to the facts that: (i) each join, leave, or failure is

handled locally; and (ii) the selection of random neighbors uses partial membership views main-

tained by a distributed low cost membership service similar to the ones in [41, 110]. The overhead

of the membership service is independent of the number of nodes and of the churn rate.

Many wide-area applications need low-diameter robust overlays. Beyond these general needs,

different applications have additional specific needs such as communication with near-by nodes,

proximity to content, and exploitation of bandwidth heterogeneity. We believe in separation of

concerns between generic requirements on one hand, and needs that vary from application to ap-

plication on the other. Araneola addresses the former using a low degree overlay, and thus leaves

ample bandwidth for applications to address the latter. We illustrate this approach by extending

Araneola’s basic overlay with links added according to geographical proximity. We show that with

this approach, the links in Araneola’s overlay traverse substantially fewer physical hops on aver-

age. Moreover, we show that if each node in the basic overlay is connected to as little as three

or four random nodes, extending the basic overlay with links chosen according to geographical

proximity creates an overlay that is as robust to random failures as a basic Araneola overlay with

the same average degree, in which all the links are random.

Given Araneola’s overlay, it is possible to multicast (broadcast) messages by simply flooding

the overlay [85]. This approach yields low latency but also incurs fairly high overhead, as several

duplicates of each message are sent to each node. This can be effective if data messages (i.e.,

payload messages sent by the application) are small, or if bandwidth is abundant, but otherwise,

it is wasteful. Alternatively, message identifiers can be flooded instead of the data messages, and

each node can request each message that it is missing from exactly one neighbor. This ensures

that, in the absence of message loss, each data message is sent exactlyN −1 times, although many

duplicate messages carrying its identifier are sent.

In order to reduce the number of messages sent, one can bundle message identifiers together:

each node can locally divide its time intogossip rounds, and send onegossip messageto each of its

neighbors in each round, where gossip messages include identifiers of recently received messages.

Nodes can then request missing messages from other nodes that have them. This approach is

appropriate for software update dissemination, video streaming, and file sharing applications like

BitTorrent [37]. Note that with all of the above dissemination techniques, Araneola achieves full

reliability of data delivery as long as there are no partitions in the overlay graph. Since, empirically,

Araneola’s overlay is an expander, Araneola achieves full reliability even under message loss and

churn rates that are substantial higher than the ones measured over the Internet.

We empirically evaluate Araneola with the latter (gossip-based) approach, and compare it to a

standard gossip-based scalable reliable multicast protocol. Gossiping with Araneola differs from

gossip protocols in that with a standard gossip protocol (e.g., [39, 85]), each node chooses different

35

random nodes to gossip with in each round, whereas in Araneola, each node always gossips with

its neighbors in the overlay structure. We show that this difference leads to substantial improve-

ments in load, reliability, and latency.

Contributions. In summary, this chapter makes the following contributions:

• It presents the first efficient distributed algorithm for constructing and maintaining a graph

structure that resembles ak-regular random graph and achieves its good properties in dy-

namic settings.

• It introduces an algorithm that constructs and maintains a richly-connected low degree over-

lay in which each join or leave operation incurs a constant overhead.

• It describes an overlay-based ALM system to provide an undisrupted multicast service in

highly dynamic settings while incurring constant load on each node.

• It features a complete implementation and a thorough evaluation of Araneola running up to

10, 000 nodes on up to125 machines, in both LAN and WAN, including extensive evaluation

of the impact of churn on an ALM system.

• Finally, it constructs an overlay that designates ample bandwidth for each node to commu-

nicate with nodes chosen according to application needs, e.g., proximate nodes.

Roadmap. This chapter proceeds as follows: In Section4.2, we summarize our design goals.

Section4.3presents the design and pseudo code of Araneola’s basic overlay, and Section4.4evalu-

ates this overlay. Section4.5gives an example how Araneola’s basic overlay can be enhanced with

additional links chosen according to geographic proximity in order to reduce communication costs,

and evaluates this extension over the Internet. Section4.6discusses multicasting over Araneola’s

overlay. Finally, Section4.7evaluates a gossip-based multicast implementation.

4.2 Design Goals

The purpose of Araneola is to support scalable reliable multi-point to multi-point communication

in dynamic wide-area settings where nodes frequently join and leave (or fail). We have set the

following requirements for our service:

• High reliability –100% reliability as long as the failure and message loss rates do not exceed

certain configurable thresholds, and graceful degradation in the face of increasing failure

36

rates. The reliability should be independent of the number of nodes, i.e., Araneola should

withstand a certain failure rate independent of the number of nodes in the system.

• Low latency, increasing at most likeO(log N); the latency should remain low while multiple

nodes are joining and leaving (or failing).

• Low constant load on each node, as well as low constant cost for handling joins and failures.

• Quick failure recovery and prompt incorporation of joining nodes.

In addition, Araneola is designed to be suitable for a variety of wide-area applications. We

believe that each application has its own considerations for link selection based on application-

defined proximity metrics and available bandwidth. Therefore, we construct a generic low-degree

overlay that incurs low load on each node, leaving ample bandwidth for each node for communi-

cation with additional nodes chosen in an application-specific manner.

Araneola is designed to achieve all the above goals without using any infrastructure, servers,

or any elaborate communication mechanism beyond point-to-point UDP communication between

pairs of nodes — we assume that every pair of nodes can communicate with each other.

In order to achieve these goals, Araneola strives to build a basic overlay structure with the

following characteristics: (i) multiple disjoint paths between every pair of nodes, where the number

of paths is a configurable parameterk; (ii) robustness to random removal of a certain percentage

of the nodes or edges; (iii) low diameter and average distance, increasing at most likeO(log N);

(iv) low bounded degree (3 or more), which leaves plenty of bandwidth for communication with

additional nodes according to application needs; and (v) support for local addition and removal of

nodes at a constant cost.

As we have seen,k-regular random graphs naturally achieve these goals fork ≥ 3. Therefore,

Araneola strives to construct and maintain an overlay that approximates ak-regular random graph.

As noted in Section2.1.3, creating a perfectk-regular random graph could be difficult and costly.

Instead, Araneola is designed to converge to a random graph in which each node has a degree of

eitherk or k + 1 and no two neighboring nodes have a degree ofk + 1. We show that the desirable

graph properties ofk-regular random graphs carry over to graphs with this structure.

4.3 Araneola’s Overlay

Araneola’s protocol has three components: one implements a randomized partial membership ser-

vice (see Section4.3.1), the second constructs and maintains the basic overlay (see Section4.3.2),

and the third implements the multicast service (see Section4.6). All Araneola nodes run these

three components. Araneola handles each multicast group independently, i.e., it builds an overlay

37

structure for each multicast group. Since each group is handled independently, we present the

protocol for a single group, and omit the group’s name.

4.3.1 The Membership Service

When joining the overlay, a node randomly selects several other nodes to connect to. This requires

each node to know some other nodes’ identities. To this end, we implement a scalable randomized

membership protocol similar to [110], where membership information is gossiped over the over-

lay’s links. Each node maintains a small set of node identities, called amembership view, which

evolves over time. The size of the membership viewS is a predefined parameter. Each node has

a log file that contains random node identities received in a previous session. When a new node

joins Araneola for the first time it can ask another node for its membership view, and use that as its

initial view.

Periodically, each node’s membership protocol piggybacks a small amount of membership in-

formation on messages sent to the node’s neighbors. Specifically, the node sends a certain number

of random node identities from its membership view to each neighbor. Upon receiving such mem-

bership information from a neighbor, the node adds these node identities to its membership view.

Then, if the membership view includes more thanS node identities, then random node identities

are removed from the membership view until it includes onlyS node identities.

Whereas in a gossip-based multicast protocol, e.g., Lpbcast [41], each node uses its member-

ship information in every round in order to disseminate multicast data, in Araneola, membership

information is used infrequently, only for overlay maintenance. Specifically, a node consults its

membership service only when its degree drops below a predefined threshold. Note that, similarly

to gossip-based protocols, we could have implemented a gossip-based multicast layer directly on

top of the membership service. However, as we explain in Section2.1.1and experimentally show

in Section4.7.1, gossiping over Araneola’s overlay eliminates the shortcomings of gossip-based

protocols, and further improves the scalability of these protocols. Since membership information

is used infrequently in Araneola, it can also be disseminated infrequently. Empirically, even under

churn rates exceeding those measured over the Internet [109] and the Mbone [12], disseminating

membership information once a minute suffices for creating a robust overlay and achieving full

reliability of message delivery (see Section4.7.2). In Section4.3.3, we calculate the overhead

incurred by the membership service. In a typical setting, the per-node membership overhead is300

bytes per-minute, regardless of the churn rate.

In Section4.4.4, we evaluate the effect of the membership service on the overlay. We show that

the initial distribution of the membership views has a small effect on the quality of the constructed

overlay: ak-Araneola overlay is at leastk−1-connected even when the initial distribution of the

38

membership views is skewed.

4.3.2 Building and Maintaining the Overlay

The protocol for constructing and maintaining the overlay is composed of three tasks: (i) thecon-

nect task(see Section4.3.2) adds new connections when a node’s degree is below a configurable

parameter called L, which determines the graph’s target degree (k); (ii) the disconnect task(see

Section4.3.2) tries to reduce a node’s degree if it is above L, without causing any node’s degree to

drop below L; and (iii) thefailure detectortask detects neighboring node failures. This task simply

generates an fdsuspect event when messages from a given neighbor fail to arrive for a certain

period of time. The failure detector is straightforward and we do not describe it in pseudo-code.

Araneola’s data structures are presented in Figure4.1. The setneighborsholds the node’s

current neighbors in the overlay, with their respective degrees. The degree of a node is the size of

its neighbors set, i.e.,|neighbors|. The setnext round connectcontains node identifiers received

from redirections of CONNECT requests as explained below. The current time can be read from

clock. The setconnectto nodeand the boolean flagrule2 flag are used by the reduction task (see

Figure4.3), and are explained below. The parameter L determines the graph’s target degree (k),

and the parameter H defines the maximum allowed degree for a node. These are configurable

parameters: L affects the connectivity and diameter of the overlay, while H affects the overhead of

constructing the overlay. A number of timeout values are defined in order to control the frequency

at which different events occur.

Data structures:
id – this node’s identifier.
neighbors– set of pairs〈id,degree〉, initially ∅.
next round connect– set of pairs〈id,degree〉, initially ∅.
clock– the current time.
connectto node– set of node identifiers, initially∅.
rule2 flag– a binary flag, initially 0.
Parameters:
L – target number of neighbors.
H – upper bound on the number of neighbors.
Timeouts: connecttimeout, disconnecttimeout.

Figure 4.1:Araneola’s data structures and parameters.

39

The connect task

When a node’s degree is below L, the connect task (see Figure4.2) periodically attempts to set

up as many new connections as it is missing to randomly chosen nodes (lines 1–10). The target

nodes are chosen either from the setnext round connector at random from the local membership

view. For each attempted connection, the node sends a CONNECT request (line 9). At bootstrap

time, the node issues CONNECT requests to L nodes, and then sleeps forconnecttimeout. It is

expected that during this period enough new connections will be formed, although since some of

the chosen nodes may be faulty or overloaded, there may be a need to attempt more connections

after the timer expires. The connect task can be awoken by other tasks before the timer expires

(line 35).

A node that receives a CONNECT request (line 11)acceptsit, by calling addconnection,

provided that the sum of the sizes of the setsneighborsandconnectto nodeis smaller than H,

and otherwise itredirectsthe request, as will be explained shortly. The procedure addconnection

adds the sender to neighbors (line 31) and responds with a CONNECTOK. Upon receiving the

CONNECTOK (line 18), the requester registers the new connection if either its degree is still

smaller than H, or the sender of the CONNECTOK message is inconnectto node. Otherwise,

the requester sends a LEAVE message to the sender (line 25). A LEAVE message causes its

receiver to remove its connection with the sender (lines 26–27), and wake up the connect task if

necessary (lines 34–35).

Redirecting is done by sending a REDIRECT message to the requester, naming the sender’s

lowest degree neighborl (line 15). This causes the requester to addl to its next round connectset

(line 17). The next time the requester’s connecttask will awaken, it will attempt to connect tol

rather than to a random node (line 5). CONNECT and CONNECTOK messages carry the sender’s

current degree for initializing thedegreein theneighborsdata structure. In addition, every node

periodically sends its degree to its neighbors, in order to keep the neighbors data structure up-to-

date (this is not shown in the code). A node that voluntarily leaves the system sends a LEAVE

message to all its neighbors. An involuntary failure of a neighbor is detected using the failure

detector, which generates an fdsuspect event (line 28). When a node detects a neighbor as faulty,

it sends that neighbor a LEAVE message and removes the connection by calling removeconnection

(line 30).

The disconnect task

With the connect task a node’s degree can be as high asH. The disconnect task (see Figure4.3),

which is composed of two rules (Rule 1andRule 2), reduces node degrees, so that, eventually,

each node’s degree is either L or L+1, and at most50% of the nodes have degree L+1.

40

Connect task:
1. loop forever
2. gap ← L − |neighbors|
3. for (i = 0; i < gap; i + +)
4. if |next round connect| 6= ∅ then
5. n ← element innext round connect
6. removen from next round connect
7. else
8. n ← random node from membership service
9. send〈CONNECT, |neighbors|〉 to n
10. sleep (connecttimeout)

Event handlers:
11. uponreceive〈CONNECT, d〉 from n do
12. if (|neighbors|+ |connect to node| < H) then
13. addconnection (n, d)
14. else
15. send〈REDIRECT, lowest degree neighbor〉 to n

16. uponreceive〈REDIRECT,n′〉 from n do
17. next round connect ← next round connect

⋃ {n′}

18. uponreceive〈CONNECTOK, d〉 from n do
19. if (|neighbors|+ |connect to node| < H ∨n ∈ connect to node) then
20. neighbors ← neighbors

⋃ {n, d}
21. if (n ∈ connect to node) then
22. rule2 flag ← false
23. removen from connect to node
24. else
25. send〈LEAVE〉 to n

26. uponreceive〈LEAVE〉 from n do
27. removeconnection(n)

28. uponfd suspect (nodeid n) do
29. send〈LEAVE〉 to n
30. removeconnection (n)

Procedures:
Procedureaddconnection (nodeid n, int d)
31. neighbors ← neighbors

⋃ {n, d}
32. send〈CONNECTOK, |neighbors|〉 to n

Procedureremoveconnection (noden)
33. removen from neighbors
34. if (|neighbors| < L) then
35. wake up connect task

Figure 4.2:Overlay construction: the connect task.

41

Rule 1. Rule 1removes the connection between a pair of nodes that both have degrees higher

than L (Figure4.3, lines 5–9). Specifically, if a noden’s degree isL+ i, thenn attempts to remove

i of its neighbors. Neighbors with degrees higher than L are candidates for removal; they are

inserted into the setcands(line 5). If candscontains more thani nodes, thei lowest identifier

ones are kept (line 6). Ifn has a higher id than a nodec in cands, thenn sends a DISCONNECT

message toc (line 9). Upon receiving this message (line 17), ifc’s degree is still higher than L and

n is in c’s candsset, it removes the connection withn, and sends a DISCONNECTOK message.

By checking thatn is in c’s candsset, we ensure that parallel invocations of Rule 1 will not drop

c’s degree below L. Upon receipt of a DISCONNECTOK (line 23), n removes the connection

with c.

Rule 1 ensures that if from some point onward no nodes join the overlay, then eventually there

are no two neighboring nodes that both have degrees higher that L. Everydisconnecttimeout, each

node’scandsset is set with thei lowest identifier neighbors of the node among the neighbors

with degrees higher than L. This ensures that as long as there are two neighboring nodes with

degrees>L, eachdisconnecttimeout there are at least two neighboring nodes,a and b, so that

a ∈ b.cands andb ∈ a.cands (e.g., whena is the lowest-identifier node with degree> L, and

b is its lowest-identifier neighbor with degree> L). Thus, until there are no two neighboring

nodes with degrees>L in the overlay, everydisconnecttimeoutat least one link between such two

neighboring nodes is removed from the overlay graph, although usually almost all such links will

be removed simultaneously. In any case, eventually all such links are removed.

Rule 2. With Rule 1 it is possible for a node to have degree H while all of its neighbors have

degree L. This case is solved byRule 2, which is invoked only at a noden when all ofn’s neighbors’

degrees are≤L. With Rule 2, noden chooses its two neighbors with the highest and lowest degrees,

h and l, respectively (lines 12–13). Ifn’s degree is at leastl.degree + 2 and it is not involved

in another invocation of Rule 2 (rule2 flag = false), thenn tries to causeh to shift one of its

connections fromn to l. But before removingh’s connection withn, we ensure thatl is willing to

accepth’s connection. Therefore,n contactsl (rather thanh) and asks it to try to connect toh, and

to askh to remove its connection withn. To this end,n sends a〈CONNECTTO,h〉 message to

l. If upon receiving this messagel’s degree is still≤L, and l’s rule2 flag is false (line 26), thenl

insertsh to connectto node, and sends it a CHANGECONNECTION message. The recipient,h,

connects tol by calling addconnection (line 33), provided that itsrule2 flag is false, and sends a

DISCONNECT message ton if its degree is higher than L (lines 34–35). Note thath’s CONNECT

request will be approved byl, since prior to sending the CHANGECONNECTION message to

h l insertsh to its connectto nodeset. This connection withh can increasel’s degree, but not

to become higher than L+1 sincel accepts a CONNECTTO request only if its degree≤L and its

42

rule2 flag is false. Moreover, note that ifl’s degree will become higher than L, andn’s degree

will remain above L, then Rule 1 will eventually reducel’s degree back to L. Finally, each node’s

rule2 flag andl’s connectto nodeset are set tofalseand∅, respectively, after each of them is no

longer involved in the current invocation of Rule 2 (Figure4.2 line 22 and Figure4.3 lines22 and

36). rule2 flag ensures that at any moment each node is involved in at most one invocation of Rule

2, and hence no deadlock situations are possible.

Proposition 1. If there is a time after which no nodes join, leave, fail, or are detected as faulty,

then each node’s degree is eventually either L or L+1, and at most50% of the nodes have degree

L+1.

Proof. Rule 1 removes connections between every pair of neighbors with degrees higher than L,

without adding new connections. Thus, Rule 1 ensures that eventually, no more than50% of the

nodes have degrees higher than L. Since nodes with degrees lower than H accept new connections,

all joining nodes eventually succeed in forming connections with at least L other neighbors. There-

fore, the connect task and Rule 1 ensure that eventually, each node’s degree is between L and H,

and no two neighboring nodes have degree>L. This implies that at least50% of the nodes have a

degree of L.

With Rule 1, it is still possible for a node to have a degree>L+1 when all ofn’s neighbors have

a degree of L. In this case, Rule 2 is invoked at noden, reducingn’s degree by one and increasing

the degree ofn’s lowest degree neighborl by one (in this casel is a random neighbor ofn) without

changing the rest ofn’s neighbors’ degrees. Now,l’s degree equals to L+1 and Rule 1 becomes

enabled again, disconnecting the connection betweenn and l. Thus, after activating Rule 2 and

Rule 1 consecutively,n’s degree is reduced by2 while the degrees of the rest ofn’s neighbors

remain L. Ifn’s degree still above L+1, further consecutive activations of the two reduction rules

reducen’s degree each time by2 until its degree becomes either L or L+1.

Although the worst-case convergence time can be linear inN , in practice, in all of our exper-

iments with up to 10,000 nodes, the overlay converged to a state in which each node’s degree is

either L or L+1 within less than 10 disconnect timeouts.

The probability for an overlay partition.

The probability that ak-regular random graph is notk-connected isO(N2−k) [122]. Empirically,

as we show in Section4.4.5, ak-Araneola overlay achieves a slightly better fault-tolerance to node

and link failures than ak-regular random graph. This is since in ak-Araneola overlay the degree

of each node is betweenk andk + 1 whereas in ak-regular random graph all the nodes have a

degree ofk. In addition, as we show in Section4.4.4, the initial distribution of the membership

43

Disconnect task:
1. loop forever
2. sleep (disconnecttimeout)
3. i ← |neighbors|− L
4. if (i > 0) then

/* Rule 1 */
5. cands ← {n ∈ neighbors : n.degree > L}
6. if (|cands| > i) then cands ← i elements ofcands with lowest identifiers
7. foreachc ∈ cands
8. if (c.id < id) then
9. send〈DISCONNECT〉 to c

/* Rule 2 */
10. if (cands = ∅ ∧ !rule2 flag) then
11. rule2 flag ← true
12. h ← random neighbor among the neighbors with the highest degree
13. l ← random neighbor among the neighbors with the lowest degree
14. if (|neighbors| ≥ l.degree + 2) then
15. cands ← cands

⋃ {h}
16. send〈CONNECTTO,h〉 to l

Event handlers:
17. uponreceive〈DISCONNECT〉 from n do
18. if (|neighbors| > L ∧ n ∈ cands) then
19. removeconnection(n)
20. send〈DISCONNECTOK〉 to n
21. if (n ∈ cands) then
22. rule2 flag ← false

23. uponreceive〈DISCONNECTOK〉 from n do
24. removeconnection(n)

25. uponreceive〈CONNECTTO, n′〉 from n do
26. if (|neighbors| ≤ L ∧ !rule2 flag) then
27. rule2 flag ← true
28. connect to node ← {n′}
29. send〈CHANGE CONNECTION,|neighbors|, n〉 to n′

30. uponreceive〈CHANGE CONNECTION,d, n′〉 from n do
31. if (|neighbors| < H ∧ !rule2 flag) then
32. rule2 flag ← true
33. addconnection (n)
34. if (|neighbors| > L) then
35. send〈DISCONNECT〉 to n′

36. rule2 flag ← false

Figure 4.3:Overlay construction: reducing node degrees.44

views has a small effect on the overlay’s fault-tolerance. In hundreds of runs, ak-Araneola overlay

was alwaysk−1 or k connected even when the initial distribution of the membership views was

skewed. Moreover, as we show in Section4.4.2, a 5-Araneola overlay is connected even after a

random removal of up to10% of its edges or after a random removal of up to15% of its nodes.

Therefore, fork≥5 andN≥1000, the probability that ak-Araneola overlay becomes partitioned is

negligible.

4.3.3 Maintenance Overhead

In Section4.3.3, we calculate the overhead incurred in a steady state, i.e., in the absence of churn.

In Sections4.3.3and 4.3.3, we calculate the overhead for the simple case where a single join or

leave, respectively, occurs when the system is stable, i.e., each node’s degree is either L or L+1,

and no two neighboring nodes have a degree of L+1. In Section4.4.3, we show that this analysis

gives a good estimation for dynamic settings in which the churn rate is low. When the churn rate

rises, the overhead decreases because when many join and leave events occur concurrently their

costs can be amortized. For example, a join event may increase a node’s degree while a leave event

is reducing it, eliminating the need for correcting the overlay.

In Sections4.3.3and4.3.3, we denote byp the probability that a node has a degree of L, and

the probability that a node has a degree of L+1 is 1− p = q.

Steady state and membership overhead

In a steady state, no control messages are sent. In this case, the overhead is composed out of the

membership overhead only. Recall that, every predefined period, each node’s membership protocol

piggybacks a small number of random node identities on messages sent to the node’s neighbors.

Specifically, in all of our experiments, every minute, the membership protocol sends10 random

node identities to each of the node’s neighbors. We represent each node identity as a6-cell byte

array. Assuming each node has5 neighbors, the per-node membership overhead is5·10·6=300

bytes per-minute. As explained in Section4.3.1, the per-node membership overhead is fixed, and

does not depend in the churn rate.

The overhead for join

We begin by calculating the expected overhead for a single CONNECT request. Assume that node

c issues a CONNECT request to nodet. We distinguish between three possible cases: (i)t and

all of its neighbors have a degree of L; (ii)t has a degree of L and at least one of its neighbors

has a degree of L+1; or (iii) t has a degree of L+1. In the latter case, all oft’s neighbors have a

45

degree of L. The probability for case (i) ispL+1, the probability for case (ii) isp(1 − pL), and the

probability for case (iii) is1− p = q.

In case (i),c sends one CONNECT message tot and in return,t sends one CONNECTOK

message toc, for a total of two messages. In case (ii), in addition to the CONNECT and CON-

NECT OK messages, two additional messages (DISCONNECT and DISCONNECTOK) are later

sent (by Rule 1) in order to reduce the degree oft and one of its neighbors from L+1 to L.

Thus, a total of four control messages are sent. In case (iii), after sending the CONNECT and

CONNECTOK messages,t’s degree becomes L+2 while the rest oft’s neighbors still have

degrees of L. In this case,t activates Rule 2. First,t sends to its lowest degree neighbor,l,

a CONNECTTO message with the identity of its highest degree neighbor,h. Then, l sends a

CHANGE CONNECTION message toh with t’s identity. In return,h sends a CONNECT mes-

sage tol and a DISCONNECT message tot. Finally, l sends a CONNECTOK message toh and

t sends a DISCONNECTOK message toh. Now, the degrees oft and l become L+1 and the

degree ofh remains L. In the next iteration of the reduce algorithm Rule 1 is applied and eithert

or l sends a DISCONNECT message to the other and the other replies with a DISCONNECTOK.

The total number of messages sent in case (iii) is thus ten.

The expected number of control messages sent for a single CONNECT request is therefore:

2pL+1 + 4p(1− pL) + 10q = 4p + 10q − 2pL+1.

Since a joining node sends L CONNECT messages, the expected overhead associated with a single

join operation during a stable period is:

L(4p + 10q − 2pL+1).

The above analysis of the join overhead ignores the possibility for cascading reconnections. In

Section4.4.3, we compare this analyzed join/leave overhead with the measured join/leave over-

head, and find that they are very close. That is, cascading reconnections do not have a significant

impact on the join overhead.

The overhead for leave

Assume that nodel sends a LEAVE message to nodet. There are two possible cases: either (i)t has

a degree of L; or (ii)t has a degree of L+1. The probability for case (i) isp, and the probability for

case (ii) isq. In the first case,l sends a LEAVE message tot. Subsequently,t sends a CONNECT

request to a random new node. We showed above that the expected overhead associated with a

CONNECT request is4p + 10q − 2pL+1. Thus, the expected number of messages sent in the first

case is1 + 4p + 10q− 2pL+1. In the second case,l sends a LEAVE message tot. However, in this

46

case,t does not send any messages as its degree becomes L. Thus, the total expected overhead for

sending a LEAVE message is:

p(1 + 4p + 10q − 2pL+1) + q.

The expected number of LEAVE messages a node sends upon leaving the system is:

pL + q(L + 1) = L + q.

Thus, the expected number of messages sent upon a node leaving the system is:

(L + q) ∗ [p(1 + 4p + 10q − 2pL+1) + q].

4.4 Evaluation of Araneola’s Overlay

We have implemented the code for constructing and maintaining Araneola’s overlay in Java using

UDP/IP. In our experiments, we set the connecttimeout to5 seconds and the disconnecttimeout

and the connectto timeout to30 seconds. Membership information is gossiped once a minute. At

bootstrap, each node’s membership view contains ten node identities chosen uniformly at random.

In this section, we evaluate Araneola’s overlay on a single LAN in Netbed [121]. In the next

section, where we extend Araneola to exploit network proximity, we evaluate Araneola’s overlay

also on a WAN. We begin our study, in Section4.4.1, by evaluating Araneola’s overlay in a static

setting; we study the impact of L and H on the overlay as well as the overlay’s scalability. In

Section4.4.2we study the overlay’s fault-tolerance. In Section4.4.3, we measure the join and

leave overhead in experiments with high churn. In Section4.4.4, we evaluate the effect of the

membership service on the overlay. Finally, in Section4.4.5, we compare Araneola’s overlay with

k-regular random graphs constructed using a centralized algorithm.

4.4.1 Static Evaluation

In our static evaluation, all the nodes are created simultaneously, and remain up throughout the

experiment. Each experiment lasts5 minutes. Empirically, we saw that within this time the overlay

converges to a stable state, in which each node’s degree is either L or L+1 and no two neighboring

nodes have a degree of L+1. Each experiment (with a given number of nodes and choice of

parameter settings) was run at least4 times, for a total of several dozens.

The impact of L

Araneola’s parameter L affects the load imposed on each node. In Section4.3.3above we have

shown that the join/leave overhead grows roughly linearly with L. Additionally, increasing L in-

creases the multicast overhead, since data or gossip messages are sent on all links.

47

Nevertheless, increasing L yields a number of benefits. First, it improves the overlay’s connec-

tivity and robustness. In Section4.4.2, we show that when L= 5, the overlay generally remains

connected after random removal of15% of its edges or nodes, while when L= 4, it remains con-

nected after the removal of only about10% of the edges or7% of the nodes. Second, increasing

L reduces the overlay’s diameter. Note that the connectivity and robustness of ak-regular random

graph with a givenk is independent of the number of nodes. Therefore, we can set the value of L

regardless of the number of nodes in the system. The value of L, however, has a small effect on

the overlay’s diameter. Below, we examine the relationship of Araneola’s overlay’s diameter with

that expected in ak-regular random graph for different group sizes.

Wormald [122] gives the following formula for the expected diameter of ak-regular random

graph: the diameterD asymptotically almost surely (aas)2 satisfies:

1 + blogk−1 Nc+ blogk−1(
(k − 2)

6k
log N)c ≤ D ≤ 1 + dlogk−1((2 + ε)kN log N)e.

To understand the impact of L, we experiment with8000 nodes (on100 Netbed machines) for

values of L ranging from3 to 10, and measure the diameter of each overlay. In Table4.1, we

report the highest overlay diameter measured for each value of L, and compare it to the formula

above. We see that the highest diameter of Araneola’s overlay occurs in the range predicted by the

formula.

Expected diameter range Highest measured
L in L-regular random graphs [122] Araneola diameter
3 13–19 13
4 9–13 9
5 7–11 8
6 6–9 7
7 6–9 6
8 5–8 6
9 5–8 6
10 5–8 6

Table 4.1:The impact of L on Araneola’s diameter versus Wormald’s formula,8000 nodes.

Increasing the value of L has a third benefit— it constructs an overlay that more closely ap-

proximates a regular graph, in that a higher percentage of the nodes have a degree of L, as shown

in Figure4.4.

In most of the experiments we present below, we set L to5. We chose this value because it

provides a good balance between the desired properties: the load imposed on each node is still

2A property holds aas if the probability that it holds approaches1 asN →∞.

48

3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

%
 n

od
es

L

degree=L
degree=L+1

Figure 4.4:Degree distribution,8000 nodes.

modest, and the overlay’s diameter is small. Moreover, as we shall see below, it yields a robust

overlay (twice as resilient to node failures as with L= 4) and achieves100% reliability at join and

leave rates exceeding those measured on the MBone [12].

The impact of H

Next, we examine the impact of the parameter H. Like L, the choice of H does not depend on the

system size. This is since the expected number of control messages received by each node does not

vary with the number of nodes. We experiment withN = 1000, L= 5, and different values of H.

We observe that in order to obtain a reasonable overhead, H needs to be at least L+5 = 10. When

H is lower than10, we get a high overhead— some nodes send hundreds of CONNECT requests

before finding a node with degree lower than H. This occurs since nodes run the reduce task only

once in30 seconds, in the interim, many node’s degrees can rise above L, especially in our static

experiments where all nodes are created simultaneously. When H is set to L+5 = 10, however,

this problem is eliminated and the average number of control messages received by each node is

between8 and9, independently ofN . The number of control messages received by each node is

normally distributed. We did not observe significant differences among values of H ranging from

10 to 20: for all values of H between10 and20, the average number of control messages received

was between8.3 and 8.6. Similar results were obtained forL equal to4 or 6. We therefore

henceforth fix the value of H to be L+5.

Overlay properties and scalability

In order to understand Araneola’s scalability, we varyN , the group size, from500 nodes (on

10 Netbed machines) to10, 000 nodes (on125 Netbed machines). L and H are set to5 and10,

respectively. At the end of each experiment, we take a snapshot of the overlay structure, and then

analyze its properties offline. We measure node degrees as well as the overlay’s diameter, average

49

distance, and connectivity. The results are summarized in Figure4.53. The first column in the table

shows the percentage of nodes whose degree is L (i.e.,5). The remaining nodes’ degrees are L+1.

For all group sizes, over90% of the nodes have degree L. The percentage of nodes with degree L

does not seem related toN .

% Nodes Measured Expected Avg
N degree=5 diameter diameter #paths

100 98 5 4–6 5.00
500 91.8 6–7 5–8 5.01
1000 91.4 7 5–8 5.01
2000 92 7–8 6–9 5.01
4000 91.45 8 6–9 5.01
6000 90.42 8–9 7–10 5.01
8000 90.33 9 7–10 5.01
10000 90.36 9 7–10 —

(a)
10

2
10

3
10

4
0

2

4

6

8

10

12

Number of nodes, log scale

Highest measuered diameter
Average distance
Expected diameter range

(b)

Figure 4.5:Scalability of Araneola’s overlay.

The second column presents the (smallest and largest) measured diameters for every value

of N . The top curve in the graph depicts the highest measured diameter for each value ofN ,

where thex axis is given in logarithmic scale. Note that this value does not necessarily increase

when we increase the group size, and hence there are plateaus in this curve. We observe that

Araneola’s diameter indeed grows logarithmically withN as Wormald’s formula predicts; in all

of our experiments, Araneola’s diameter occurs (again) in the expected range, which is listed in

the next column and depicted using range bars in the graph. When flooding multicast messages

over the overlay’s links, the diameter gives a measure for theworst caselatency (in the absence of

failures and message loss), whereas the average latency depends on the average distance between

two nodes in the overlay. This average is presented in the bottom curve in the graph, and we see

that it also increases logarithmically withN .

Finally, we measure the overlay’s connectivity. In over90% of our experiments, the overlay

is 5-connected, i.e., there are at least5 disjoint paths between every pair of nodes. In the few

cases where the connectivity was less than5, there were at most4 nodes with a connectivity of4,

whereas the rest of the nodes had a connectivity of5. The average number of node-disjoint paths

between every pair of nodes is presented in the last column in the table.

3We did not analyze the average distance and connectivity for the experiments withN = 10, 000.

50

4.4.2 Fault-Tolerance and Graceful Degradation

We now study the fault-tolerance and robustness of the Araneola overlay. We consider two kinds

of failures: communication link failures and node failures. We study the overlay’s robustness with

an offline analysis of the overlay snapshot obtained at the end of static experiments with1000

and2000 nodes. To study communication failures, we remove random subsets of edges from the

overlay graph and analyze the resulting graphs. This allows us to predict Araneola’s reliability and

latency in the presence of message loss. Similarly, we study Araneola’s resistance to node failures

by removing random subsets of nodes. Note that in the analysis in this section no dynamic repairs

are done, i.e., after the initial construction of the overlay no links are added as a result of a node or

link failure. Such repairs would have further increased the overlay’s fault-tolerance.

As in most previous studies, e.g., [41, 85, 116], we model node and edge failures asindependent

and identically distributed (IID). For node failures, the IID assumption has no significance since

the overlay structure is random. Moreover, Bhagwan et al. have found that host failures are indeed

independent [22]. For edge failures, the IID assumption fails to capture a situation in which some

nodes have poorer links than others. Nevertheless, we show in Section4.7.3that even in WAN-like

settings where some nodes have only poor links, Araneola exhibits similar performance as when

message loss is IID. Designing an overlay that explicitly withstands correlated edge failures can be

a consideration for application-specific extensions of Araneola, and it is beyond the scope of this

chapter.

Communication failures

We first analyze the impact of edge removals on the overlay with L= 5 andN = 1000. This

overlay has2547 edges. For each percentagep ≤ 50 of the edges, we remove10 different random

subsets consisting ofp% of the edges from the overlay graph. The overlay becomes partitioned for

the first time in one of the ten experiments removing 11% (280) of the edges, and then in one of the

experiments removing15% (380). In both cases, a single node became disconnected from the rest.

Figure4.6(a)shows how the removal of up to19% of the edges affects the overlay’s characteristics.

For eachp in this range, the overlay is partitioned in at most one out of ten experiments in which

p% of the edges are removed. We observe that the average diameter increases from7 to about

8 when5–10% of the edges are removed, and to9 when15% of the edges are removed. The

average distance increases more gradually, suggesting that message loss has a moderate effect on

the average latency. The average number of disjoint paths also decreases gradually with the failure

rate. The bottom curve illustrates the average connectivity. The bars around each data point show

the maximum and minimum connectivity observed in experiments with thisp; when the minimum

goes does to0, there was a partition in one of the10 experiments. We next experiment with L= 4

51

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11

% edges removed

diameter
avg distance
avg # of paths
connectivity

(a) L= 5.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

11

% edges removed

diameter
avg distance
avg # of paths
connectivity

(b) L= 4.

Figure 4.6:Resilience of Araneola’s overlay to edge removals,1000 nodes.

andN = 1000. The overlay is less robust in this case— it partitions in more than10% of the cases

wheneverp > 11%. Figure4.6(b)shows the overlay’s degradation when up to11% of the edges

are removed.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

%
 n

od
es

 in
 th

e
la

rg
es

t c
om

po
ne

nt

% edges removed

N=1000 L=6
N=1000 L=5
N=2000 L=5
N=1000 L=4

Figure 4.7:Graceful degradation of Araneola’s overlay under edge removals,1000 nodes.

We next examine how many of the nodes are still connected to each other, i.e., what is the size

of the largest connected component in the graph. Figure4.7depicts the average size of the largest

connected component after random edge removals for L= 4, 5, 6 with N = 1000 and for L= 5 with

N = 2000. We can clearly see that the overlay’s resilience to the removal of a given percentage

of its edges iscompletely independent ofN , as is expected ink-regular random graphs [50]: the

52

curves forN = 2000 andN = 1000 (both with L= 5) are not distinguishable. As expected,

the value of L does impact the overlay’s robustness, but the difference between L=5 and L=6 is

negligible. Remarkably, for L= 5, after the removal of up to38% of the edges,99% of the nodes

are still connected to each other, and only1% of the nodes are partitioned from the rest.

Node failures

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

% nodes removed

diameter
avg distance
avg # of paths
connectivity

(a) L= 5.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

% nodes removed

diameter
avg distance
avg # of paths
connectivity

(b) L= 4.

Figure 4.8:Resilience of Araneola’s overlay to node removals,1000 nodes.

We now turn our attention to node failures. Figure4.8(a)shows how node removals affect the

properties of an overlay with1000 nodes and L= 5 when up to15% of the nodes are removed.

None of the experiments with up to15% removed nodes resulted in partitions. The overlay be-

comes partitioned in two of the ten experiments in which16% (160) of the nodes are removed.

This suggests that even if15% of the nodes running Araneola fail during the brief time interval

that it takes to detect and recover from failures (e.g., one minute), Araneola can continue to de-

liver messages reliably to surviving nodes. As with edge removals, the overlay exhibits graceful

degradation: the diameter and average path length increase moderately, while the average number

of disjoint paths moderately decreases. When L= 4, the overlay is half as robust to node fail-

ures as with L= 5. It becomes partitioned in two of the ten runs with8% of the nodes removed.

Figure4.8(b)shows the overlay’s degradation when up to7.5% nodes are removed.

In Figure4.9, we examine the size of the largest connected component that survives following

node failures, for L= 4, 5, 6 with N = 1000 and for L= 5 with N = 2000. Again, the overlay’s

resilience shows exactly the same trend withN = 1000 as it does withN = 2000. This suggests

53

that Araneola’s resilience to simultaneous failures of a certain percentage of its nodes is also inde-

pendent ofN . When L= 5, the largest component still includes99% of the nodes following the

failure of up to38% of the nodes. When L= 4, 99% of the nodes are still connected following

the failure of28% of the nodes. When50% of the nodes fail, the largest component with L= 5

still includes over95% of the nodes, and with L= 4, it includes87%. As with edge removals,

increasing L from5 to 6 achieves only slightly better robustness to node removals when there is an

unrealistically high failure percentage.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

%
 n

on
−

re
m

ov
ed

 n
od

es
 in

 th
e

la
rg

es
t c

om
po

ne
nt

% nodes removed

N=1000 L=6
N=1000 L=5
N=2000 L=5
N=1000 L=4

Figure 4.9:Graceful degradation of Araneola’s overlay under node removals,1000 nodes.

Setting L

In Sections4.4.2and4.4.2, we showed for L equal to4/5/6 that Araneola’s overlay remains con-

nected if the failure-rate does not exceed a certain threshold. Assuming an upper bound on the

failure rate, one can choose the minimal value ofL that ensures a connected overlay. We note that

such a bound is not always known. However, as we show in Sections4.4.2and4.4.2, beyond the

failure threshold Araneola’s overlay exhibits graceful degradation in the face of increasing failure

rates, and therefore inaccurate setting ofL has a moderate effect on the overlay’s connectivity.

Moreover, in Sections4.4.3and4.7.3, we show that withL equal to5, Araneola’s overlay remains

connected despite churn rates exceeding the ones measured over the Internet and over the Mbone

and in a WAN-like setting, respectively. In this chapter, we do not deal with dynamically adapt-

ing L according to changing churn and failure rates. Note that this approach is also used in other

studies of scalable multicast, e.g., both the number of trees/stripes (k) in SplitSream [30] and the

number of nodes with which each node exchanges digests in Bullet [81] depend in the expected

failure rates.

54

4.4.3 Dynamic Evaluation

Methodology

Our model for this evaluation is based on studies of user behavior in multicast groups on the

MBone [12], and in file sharing applications [109]. These studies model the join and leave rates of

most of the nodes using an exponential distribution. Moreover, both studies observe that a small

portion of the nodes have substantially longer life times than others. However, these studies greatly

differ in the mean life times they measure: the mean life time measured on the MBone is generally

short, e.g.,7 minutes in a typical multicast session, whereas the average measured life time in a

file sharing application is roughly one hour.

Saroiu et al. [109] found that only20% of the nodes in a P2P lookup system have an uptime of

93% or more. Motivated by this study, we designate a small subset (roughly7%) of the nodes as

perseverant. Perseverant nodes are created at the beginning of the experiment and remain active

throughout the experiment. Subsequently, every minute,50 additional (non-perseverant) nodes

are awaken, until all nodes (1000 or 2000) are up. Each non-perseverant awaken node joins the

multicast group (becomesactive) with probability0.5. Otherwise, the node remainsinactive. This

gradual joining is modeled after the Berkeley session in [12]. Throughout the experiment, each

non-perseverant node once a minute flips a coin with probabilityλ in order to decide whether to

change its state from active to inactive and vice versa. We experiment with values ofλ ranging from

0.01 (yielding a mean life time of100 minutes) to0.15 (giving a mean life time of6.7 minutes). As

a baseline, we also experiment withλ = 0, in which case nodes do not change their states. There

are roughly1000 nodes alive at the end of each experiment withN = 2000, (and respectively,500

whenN = 1000), regardless ofλ, since the join rate is equal to the leave rate. In all the dynamic

experiments, we set L to5 and H to10.

Join/Leave overhead

We now examine the cost of constructing and maintaining the overlay. This overhead is composed

of control messages and membership overhead. The membership protocol piggybacks a small and

constant (and hence independent of the churn rate) number of bytes on messages sent to the node’s

neighbors, as calculated in Section4.3.3. In this section, we measure the join/leave overhead. The

size of control messages is fixed, and consists of less than ten bytes. Therefore, we measure the

cost of constructing and maintaining the overlay in terms of the number of control messages. We

count the total number of control messages received by all the nodes throughout the experiment,

and divide this number by the number of joins and leaves occurring in that experiment. We do not

separately measure the overhead for join and leave since we cannot fully distinguish between the

two. E.g., when a node receives a CONNECT message, we do not know whether to attribute this

55

message to a prior LEAVE event that reduced a node’s degree, or to a new node trying to join the

overlay. There are roughly1000 more join events than leave events in experiments withN = 2000

(respectively500 in experiments withN = 1000). Table4.2 shows the exact number of join and

leave events for experiments with2000 nodes.

λ # of join events # of leave events
0.01 1411 387
0.025 2005 955
0.05 2908 1872
0.075 3825 2768
0.1 4690 3650

0.125 5480 4495
0.15 7965 7029

Table 4.2:The number of join and leave events in experiments with2000 nodes.

Figure4.10shows the overhead measured for different values ofλ with N = 1000 andN =

2000. Remarkably, the overheaddecreasesas the rate of such events increases, the only exception

occurring whenλ increases from0 to 0.01. This rise is due to the facts that (i) whenλ = 0, no leave

events occur, and (ii) the overhead associated with a leave operation is bigger than the overhead

associated with a join operation (see Section4.3.3). But in general, the overhead associated with a

join or leave operation decreases as the churn rate rises because when many join and leave events

occur concurrently, their costs can be amortized. E.g., a join event may increase a node’s degree

while a leave event is reducing it, eliminating the need for correcting the overlay. Furthermore, we

observe that the overhead does not increase withN . This is especially impressive given that the

overhead for handling joins in structured overlays based on DHTs increases logarithmically with

the number of nodes.

Theory versus practice. In the Section4.3.3, we analyzed the expected number of control mes-

sages incurred by a single join or leave operation occurring after the system has stabilized. We

now compare this analyzed overhead to the above measured join/leave overhead.

We found out that the expected join and leave overhead during a stable period is:L(4p+10q−
2pL+1) and(L+q)∗ [p(1+4p+10q−2pL+1)+q], respectively, wherep is the percentage of nodes

with degree L andq = 1− p. Empirically, when the system is stable and L is set to 5, roughly92%

of nodes have a degree of L (see Figure4.5). Substituting5 for L, 0.92 for p, and0.08 for q, we

get that the expected join and leave overhead is16.3 and20.4 messages, respectively.

Whenλ = 0, no leave events occur. The measured average cost per join operation in this

case is15.6, which is close to the expected overhead (16.3). The difference between the expected

56

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
12

13

14

15

16

17

18

19

co
nt

ro
l m

es
sa

ge
s

join/leave rate (λ)

N=1000
N=2000

Figure 4.10:Average cost per join/leave with increasing churn rates for different group sizes, L=5.

overhead and the measured one stems from the fact that in a static experiment (whenλ = 0), a

node with a degree lower than L may receive a CONNECT request from some other node, reducing

the number of CONNECT requests it needs to issue itself.

Whenλ = 0.01, the system is similar to a stable system, as the rate of join and leave operations

is low. In an experiment withN = 2000 andλ = 0.01 there were 1411 join events and 387 leave

events. Thus, the expected overhead for a join/leave operation in this experiment is:(1411∗16.3+

387∗20.4)/1798 ≈ 17.2. Indeed, the measured overhead in this case, 18.2, is close to the expected

one.

4.4.4 The Effect of the Membership Service on the Overlay

In order to evaluate the effect of the membership service on the overlay, we run an experiment with

1000 nodes using the setting of Section4.4.1with the exception that in this experiment the initial

distribution of the membership views is skewed as follows: at bootstrap, each node’s (including a

node that is inactive at bootstrap) membership view contains ten node identities chosen uniformly

at random out of a set that including only10% of the nodes, that is, only10% of the nodes appear

in the initial views.

We run this experiment five times in a static setting and five times in a dynamic setting ac-

cording to the methodology described in Section4.4.3. We compare these overlays to1000-node

overlays obtained using the setting of Section4.4.1, where each node’s initial view including ten

node identities chosen uniformly at random among all1000 nodes. In all of these experiments,L

andH are set to5 and10, respectively. We summarize our results in Table4.3.

As the table shows, in static experiments, the initially skewed distribution of the membership

57

Initial distribution of membership views Static/Dynamic Diameter Connectivity
skewed static 7–8 4–5
uniform static 7 5
skewed dynamic 7 5
uniform dynamic 7 5

Table 4.3:The effect of an initially skewed distribution of membership views on the overlay.

views has a small effect on the overlay: whereas all the overlays obtained using an initially uniform

distribution are5-connected and have a diameter of7, the overlays obtained using a skewed initial

distribution have a connectivity of4 or 5 and a diameter of7 or 8. In dynamic settings, the initial

distribution of membership views has no effect on the properties of the overlay. Below, we explain

these results.

In an experiment with an initially skewed distribution, all the nodes’ initialL connect requests

are sent to10% of the nodes. However, each of the nodes in this set can maintain only up to

H connections. Upon refusing to accept a connection (due to a high degree), the target noden

sends its membership view to the noden̂ that issued the connect request, and also addsn̂ to its

membership view. Assume now that another noden′ sends a connect request ton. n rejects this

request (due to its high degree), and sends its membership view ton′. Now,n′ can send a connect

request tôn, andn̂ will accept this request. Hence, by limiting each node’s degree and by sending

the membership view upon a rejection of a connect request, our construction protocol overcomes

an initially skewed distribution of the membership views.

In a dynamic setting, an initially skewed distribution of the membership views affects only

on the first join operation of each node. Since i) empirically, the views’ distribution becomes

uniform over time; and ii) prior to leaving the overlay each node saves its membership view to a

log file, subsequent join operations will create random links. In addition, leave operations lead to

the destruction of non-random links, which are replaced by random links created by subsequent

join operations. Therefore, in a dynamic setting, join and leave operations “heal” the overlay, and

hence the initial distribution of the membership views has no effect on the overlay’s properties.

4.4.5 Comparison withk-Regular Random Graphs

We have observed that Araneola’s basic overlay achieves the important mathematical properties

of k-regular random graphs, namely logarithmic diameter,k-connectivity, and high robustness.

In this section, we compare these properties of Araneola overlays to those measured in centrally

constructedk-regular random graphs. Specifically, we compare Araneola overlays toL-regular

random graphs created by the algorithm of [77, 113] (as described in Section2.1), for N = 1000

58

and L =4, 5, and6. We summarize our results in Table4.4.

Note that an Araneola overlay contains slightly more edges than the correspondingL-regular

random graph, since in Araneola roughly90% of the nodes have a degree of L, and the rest have

a degree of L+1. E.g., when L= 4, 5, and6, an Araneola overlay with1000 nodes contains

on average49, 43, and38 (respectively) more edges than anL-regular random graph with1000

vertices.

Overlay Highest diameter Avg distance Avg # of disjoint paths
4-regular random graph 11 5.63 4
Araneola, L=4 11 5.49 4.01
5-regular random graph 7 4.71 5
Araneola, L=5 7 4.69 5.01
6-regular random graph 6 4.18 6
Araneola, L=6 6 4.16 6.01

Table 4.4:Araneola versus a centralized construction ofL-regular random graphs,1000 nodes.

The first column in Table4.4 shows the highest diameter measured for each type of overlay.

In all of our experiments, the diameter of the Araneola overlay is identical to the corresponding

L-regular random graph. The next column presents the average distance between two nodes in

the overlay. In all of our experiments, this distance is slightly smaller in Araneola than in the

L-regular graph. The average distance between two nodes in the overlay determines the average

latency in which multicast messages are received, and hence this parameter is important. An

even more important parameter is the average number of disjoint paths between two nodes in the

overlay, presented in the last column of the table. This number determines the robustness of the

overlay/graph. In all of our experiments, Araneola contains on average slightly more disjoint paths

than theL-regular random graph, again, this is due to the slightly larger number of Araneola edges.

In order to further compare the robustness of Araneola to that ofL-regular random graphs, we

remove random subsets of edges/nodes from the different Araneola overlays andL-regular random

graphs and analyze the resulting graphs. We present our results in Figure4.11. As the figure shows,

in all of our experiments, Araneola achieves the same robustness as theL-regular random graph or

slightly better.

4.5 Example of Application-Specific Extension: Exploiting Net-
work Proximity and Bandwidth Heterogeneity

Araneola’s basic overlay, like many P2P systems, treats all nodes and all communication links

equally: all nodes have almost the same degree, and all links have an equal likelihood of being

59

0 5 10 15 20 25 30 35 40 45 50
84

86

88

90

92

94

96

98

100
%

 n
od

es
 in

 th
e

la
rg

es
t c

om
po

ne
nt

% edges removed

Araneola, L=6
6−regular random graph
Araneola, L=5
5−regular random graph
Araneola, L=4
4−regular random graph

(a) Removing edges, largest component.

0 5 10 15 20 25 30 35 40 45 50
84

86

88

90

92

94

96

98

100

%
 n

on
−

re
m

ov
ed

 n
od

es
 in

 th
e

la
rg

es
t c

om
po

ne
nt

% nodes removed

Araneola, L=6
6−regular random graph
Araneola, L=5
5−regular random graph
Araneola, L=4
4−regular random graph

(b) Removing nodes, largest component.

Figure 4.11:Robustness of Araneola versus centralized construction ofL-regular random graphs,
1000 nodes.

used. In reality, however, node capabilities and communication channels are diverse. A wide-area

network is typically structured as a collection of LANs, where communication in each LAN is

orders of magnitude faster and cheaper than inter-LAN communication.

This section presets an extension to Araneola’s basic overlay that exploits network proximity

and bandwidth heterogeneity by incorporating additional links between nearby nodes. This ex-

tension runs in parallel with and independently of the basic overlay construction and maintenance

code presented in Section4.3. The extension code has two components: (i) a mechanism for lo-

cating nearby nodes; and (ii) a connectnearby task. The first component discovers nearby nodes

and stores them in a set namednearby cand. The second component uses this set.

Generally speaking, Araneola can use a variety of mechanisms for locating nearby nodes. Our

implementation does this as follows: at bootstrap time, each noden measures the network-level

hop-count distances to the nodes in its local view using the UNIX tracepath utility, and inserts them

to thenearby cand set in an ascending order of their network-level hop-count distances fromn.

The connectnearby task closely resembles the connect task presented in Section4.3, except

that no reduction rules are applied and no REDIRECT messages are sent. Specifically, there are

three control messages: CONNECTNEARBY, CONNECTOK NEARBY, and LEAVE NEARBY,

which correspond to CONNECT, CONNECTOK, and LEAVE. In addition, both L and H are re-

placed by the parameter NB, which is the maximum number of nearby neighbors the node is

willing to be connected to, and theneighbors set is replaced by thenearby neighbors set, which

holds the node’s current nearby neighbors. Note that every node can set its own NB parameter to

60

reflect its available bandwidth. Each CONNECTNEARBY request is issued to the closest node

in nearby cand, rather than to a random node from the local view.

We evaluate this mechanism over the Internet, running500 nodes over25 Planet Lab [102]

physical machines, with no two machines at the same site. Out of the25 Planet Lab physical

machines,10 are located in North America,10 are located in Europe, and5 are located in Asia. In

all the experiments presented in this section, all the nodes are created simultaneously, and remain

up throughout the experiment. Although in principal, each node can choose its own NB parameter,

in our experiments, we use the same value of NB for all nodes. We denote an experiment in which

each node chooses L random neighbors and NB nearby neighbors as〈L,NB〉.
It is known that in order to achieve the good properties ofk-regular graphs, each node should

choose at least three random neighbor [122]. Thus, we run experiments in which each node chooses

three random neighbors and three nearby neighbors (〈3,3〉). We contrast these experiments against

experiments in which each node chooses six random neighbors (〈6,0〉), and against experiments in

which each node chooses six nearby neighbors (〈0,6〉). In addition, we run experiments in which

the each node’s degree is roughly eight (〈3,5〉, and〈5,3〉). Note that all the overlays we experiment

with have a low degree, of either6 or 8, compared to those used in previous systems, e.g., in

SplitStream [30], Bullet [81], and Saxsons [110], the maximal node’s degree is16, 10, and16,

respectively. For each selection of〈L,NB〉, we run three experiments. In all our experiments, more

than97% of the nodes end up with NB nearby neighbors, and more than90% of the nodes have

exactly L random neighbors; the overall average node degrees in experiments with〈3,3〉, 〈6,0〉,
and〈0,6〉 are almost identical as are those of experiments with〈3,5〉 and〈5,3〉.

We quantify the effectiveness of our approach by measuring the average number of physical

hops that links in the extended overlay traverse. This metric is significant because a smaller hop-

count distance implies reduced communication latencies as well as less stress on physical links.

The results are summarized in Table4.5. The first column shows the percentage of links between

two nodes running on the same machine. The second column shows the percentage of short links

with a hop-count distance of3. These are Internet2 links between machines deployed at different

sites belonging to the same enterprise. Finally, the third column shows the average hop-count in

the overlay. Clearly, as NB is increased at the expense of L, there are more local and short links

and the average number of physical hops that each link traverses is reduced.

Having verified that this mechanism achieves its goal, we next check its impact on the overlay’s

robustness. We repeat the experiments of Section4.4.2, i.e., we remove random subsets of edges

and nodes from the overlay graphs and measure the sizes of the largest remaining components.

The top two curves in Figure4.12and Figure4.13are for experiments with〈5,3〉 and〈3,5〉. These

curves are indistinguishable. Slightly below these are the curves for experiments with〈6,0〉 and

〈3,3〉, which are also conjoined. The bottom curve in both figures is for experiments with〈0,6〉.

61

〈L,NB〉 % of links on % of short links Avg hop count
the same machine

〈3,3〉 34.43 15.27 5.21
〈6,0〉 4.97 6.93 8.69
〈0,6〉 74.23 3.4 1.88
〈3,5〉 51.18 12.25 3.82
〈5,3〉 35.6 10.46 5.54

Table 4.5:Hop-count statistics with different selections of〈L,NB〉.

Remarkably, the robustness of an overlay with〈5,3〉 is almost identical to that with〈3,5〉, and the

robustness of an overlay with〈6,0〉 is virtually identical to that with〈3,3〉. We believe that this

stems from the fact that there is sufficient randomness in the choice of links since: (i) the nodes in

nearb cand are chosen from the randomized local view; and (ii) each node is connected to at least

3 random neighbors.

0 5 10 15 20 25 30 35 40 45 50
82

84

86

88

90

92

94

96

98

100

%
 n

od
es

% edges removed

(5,3)
(3,5)
(6,0)
(3,3)
(0,6)

Figure 4.12:Removing edges, largest com-
ponent,500 nodes.

0 5 10 15 20 25 30 35 40 45 50
60

65

70

75

80

85

90

95

100
%

 n
on

−
re

m
ov

ed
 n

od
es

 in
 th

e
la

rg
es

t c
om

po
ne

nt

% nodes removed

(5,3)
(3,5)
(6,0)
(3,3)
(0,6)

Figure 4.13:Removing nodes, largest com-
ponent,500 nodes.

The curves for experiments with〈0,6〉 show why it is important to choose random nodes as

neighbors: in all these experiments, the overlay is partitioned even before we remove any edge

or node. Moreover, as the percentage of removed edges or nodes increases, the robustness of the

overlay deteriorates much quicker than when random edges are used.

We conclude from the experiments in this section that it is preferable for each node to have

three random neighbors, and to allocate the rest of its available bandwidth for communication with

nearby nodes or other nodes chosen according to application-specific needs.

62

4.6 Multicasting over Araneola

Given Araneola’s overlay, it is possible to disseminate data messages by flooding the overlay, as

done, for example, in [85]. Using this approach, messages propagate quickly to all the nodes. The

price of using this approach is high bandwidth consumption due to the large number of duplicates

sent: Each message is sent at least once on each link in the overlay, i.e., at leastNL/2 times. Some

of the messages may be sent simultaneously by both of the nodes that share the link, but only in

case this is not the first time each node receives the message. Thus, when the average degree in the

overlay is bounded byL + 0.5 (as is guaranteed at static times), a flooded message is sent at most

N(L− 1
2
) + 1 times. This approach is appropriate for use in low-degree overlays when bandwidth

is not a concern (i.e., there is much more available bandwidth than the application needs), and

where low latency and reliability are of essence. For example, it is suitable for instant messaging

and chat applications, in which payload messages are typically small.

If the multicast payload consists of large messages, it is possible to flood message identifiers

on the overlay in lieu of actual messages, and have nodes request missing messages. Although

this approach increases the number ofmessagessent, it can dramatically reduce the bandwidth

consumption when payload messages are large. The penalty for using this approach instead of

flooding is increasing the message latency by a factor of three. Such a penalty is acceptable for

numerous non-real-time applications, for example, file sharing applications like BitTorrent [37],

software update dissemination, and video streaming. Many scalable ALM systems are geared

towards such applications: virtually all overlay-based and gossip-based ALMs have non-optimal

message delays since messages traverse a number of hops that do not necessarily bring the packet

closer to its destination. Furthermore, a number of ALMs, like Bullet [81] and Overcast [68],

exploit the freedom to delay messages in order to achieve a more bandwidth-efficient system design

(using large caches at intermediate nodes in Overcast, and obtaining packets on-demand from

nodes that have them in Bullet).

If payload messages are large and are not sent frequently, then flooding message identifiers

can be effective. However, if many payload messages are sent, then flooding each identifier in a

separate message can induce a high load. In order to overcome such situations, one can bundle

a number of messages identifiers together, and periodically send this bundle in agossip message.

This is a generalization of the identifier-flooding approach, where the system designer can control

the tradeoff between delay and overhead according to specific application needs and traffic charac-

teristics: by sending gossip messages more frequently, one reduces the delay, and by sending them

less frequently, one reduces the overhead. For example, by setting gossip rounds to2 seconds as

in [41], in a large group of10, 000 nodes in an overlay with L= 5, we get an average (worst-case,

respectively) latency of roughly7 (18, respectively) seconds. We now describe this gossip-based

63

approach in more detail.

4.6.1 Gossip-Based Multicast

Each node locally divides its time intogossip rounds. A gossip round consists of two phases: in

the first phase, each node gossips about recent message identifiers and requests missing messages

from its neighbors (thegossip task), and in the second, the corresponding missing messages are

sent.

The gossip-based implementation is presented in Figure4.14. messagesis a FIFO queue of

recently received messages. The setmissingmsgholds identifiers of messages that the node heard

of but did not receive. A functionheard from maps each identifier in this set to nodes from which

it was heard.recentmidsholds identifiers of messages received in the latest gossip round along

with the identities of the nodes from which they were received.

Every gossipround timeout, a node sends a gossip message to each of its neighbors. A gossip

messagem sent by a nodea to its neighborn is identified by a message identifier,m.id, which

includesa’s identifier (e.g., IP address and port) and a one byte serial number (cyclic counter). The

field m.degree holdsa’s current degree (line 5). The setm.ids includes recent message identifiers

thata has received in the last gossip round, and has not heard about fromn (line 6). In addition,

Araneola piggybacks message requests on gossip messages instead of sending them in separate

request messages. Therefore,m includes a setm.reqs of message identifiers thata is requesting

from n. These are messages thata is missing, and has heard their identifiers first fromn (line 7).

Note thata sends a different gossip message to each of its neighbors. After sending the gossip

messages, the first element in eachheard from list is moved to the end of that list (line 9) in order

to vary the node from which the message is requested, andrecentmidsis reset (line 10) so as not

to gossip about the same identifiers again.

When nodea receives a gossip messagem from neighborn, for each identifierid in m.ids such

that a message with this identifier is not in themessagesbuffer, id is inserted intomissingmsgs

(line 14) andn is appended toheard from(id) (line 15). In addition,a sends ton all the messages

requested inm.reqs. When a data message arrives, it is enqueued inmessages, removed from

missingmsgs, and its identifier and sender are inserted intorecentmids(lines 19–21).

Periodically, old messages are purged frommessagesandmissingmsgs. This garbage collec-

tion mechanism is straightforward, and is omitted from the pseudo code.

Load balancing for single-source multicast

Although Araneola is intended for multi-point to multi-point communication, it can also be used

for point to multi-point multicast. When the multicast has multiple uniformly distributed sources,

64

Data structures:
messages– queue of messages tagged withm.id, initially empty.
missingmsg– set of messages identifiers, initially∅.
heard from:missingmsgs−→ list of nodes.
recentmids– set of pairs〈id, from〉, initially ∅.
Parameters:
Timeout: gossipround timeout.

Gossip task:
1. loop forever
2. sleep (gossipround timeout)

/* Send gossip messages to neighbors */
3. foreachn ∈ neighbors
4. create new gossip messagem, with newm.id
5. m.degree ← |neighbors|
6. m.ids ← {i.id : i ∈ recent mids ∧ i.from 6= n}
7. m.reqs ← {i ∈ missingmsgs: heard from(i).first= n}
8. send〈GOSSIP,m〉 to n

/* Update data structures */
9. move 1st element of eachheard from(mid)list to end
10. recentmids← ∅

Event handlers:
11. uponreceive〈GOSSIP,m〉 from n do
12. neighbor(n).degree ← m.degree
13. foreachid ∈ m.ids ∧ id /∈ messages
14. missingmsgs← missingmsgs∪{id}
15. appendn to heard from(id)

/* Send requested messages ton */
16. foreachr ∈ reqs
17. send〈DATA,message with identifier =r.id〉 to n

18. uponreceive〈DATA,m〉 from n do
19. messages.enqueue(m)
20. missingmsgs.remove(m.id)
21. recentmids← recentmids∪{〈m.id, n〉}

Figure 4.14:Gossip-based multicast.

65

the load on Araneola nodes is naturally balanced: each node sends the same number of gossip

messages per round, and each nodes handles roughly the same number of message requests on

average. However, if the multicast would be initiated at a single source, then the message requests

would most often be sent on a spanning tree of the overlay rooted at the source. This can result in

a higher load on inner nodes of the spanning tree.

We propose the following simple solution to this difficulty: Let noden be the single-source

in a multicast session. Whenever a new data message is created atn, n sends the message to a

random set of nodes instead of sending it to its neighbors. A different set of nodes is chosen each

time. This simulates a situation in which messages are created by multiple uniformly distributed

sources, and the message requests follow many different spanning trees.

The multicast and management overhead

In this section, we assume that each node is connected toL nodes, there is no packet loss, and the

load on Araneola nodes is balanced as described in the previous section. We denote the multicast

rate asp data packets pergossipround timeout.

The multicast overhead. In Araneola, as opposed to other multicast protocols, e.g., Lpbcast [41]

and Bullet [81], no duplicate data packets are sent. Whereas in Lpbcast, on average, each node

receiveslog N copies of each data packet, and in Bullet [81], roughly10% of received data packets

are duplicates, in Araneola, each node receives one copy of each data packet. Since the load

on Araneola nodes is balanced, on average, each node forwards each data packet to one of its

neighbors. Hence, the per-node multicast load isp data packets pergossipround timeout, which

is the multicast rate.

The management overhead. In addition to data packets, everygossipround timeout, each node

sends a gossip message to each of its neighbors. Assuming each node is connected toL nodes, the

per-node management overhead isL gossip messages pergossipround timeout. A gossip message

sent from a noden to one of its neighborŝn contains an one-byte serial number,n’s identifier (6-

bytes),n’s degree (one byte), identifiers of recent messages thatn has received in the last gossip

round whose source is notn̂, andn’s message requests from̂n. Both a message identifier and a

message request are represented by eight bytes. Below, we calculate the average size of a gossip

message.

Each node sends each message identifier toL−1 nodes, and, in the absence of message loss,

requests each message from one of its neighbors. Therefore, on average, each gossip message

containspL−1
L

message identifiers andp
L

message requests (recall that the multicast rate isp data

packets pergossipround timeout). Hence, the average size of a gossip message is1 + 6 + 1 +

66

8(pL−1
L

+ p
L
) = 8(1+p) bytes. Therefore, the per-node management overhead is 1

gossip round timeout
·

8(1+p) = 8(1+p)
gossip round timeout

bytes per-second. For example, if the multicast rate is10 data packets

per-second and thegossipround timeoutis 5 seconds, then the per-node management overhead is

less than18 bytes per-second.

4.7 Evaluation of Gossiping over Araneola

We implement the gossip-based multicast module on top of the code for constructing and maintain-

ing the basic Araneola overlay, described in Section4.3. In order to run large scale simulations, we

run most of our experiments on a LAN [121]. In Section4.7.3, we also run WAN-like simulations

of Araneola.

We use the standard UDP protocol as the multicast module’s transport protocol. With this

approach, no retransmissions are sent, and therefore we do not increase the network load at times

of congestion, i.e., when there is high message loss. Even without retransmissions, as we show in

this section, Araneola achieves full reliability of data delivery despite high churn and message loss

rates by disseminating message identifiers on multiple disjoint paths in Araneola’s overlay. We use

the standard UDP protocol at the available bandwidth rate of each machine. In particular, we never

over saturate the network. Designing a flow control mechanism to adjust this rate is orthogonal

to our study. For example, the TFRC transport protocol [43] adjusts its transmission rate on a

per-connection basis based on prevailing network conditions [81].

We run multiple Araneola nodes per machine, and therefore need to space the gossip rounds

sufficiently so as to allow all the nodes running on the same machine to complete their gossip

operation during a round. Thus, we chose a fairly large round duration of5 seconds. When there

is only one node per machine, the round duration can be an order of magnitude smaller. In order

to construct and maintain Araneola’s overlay we used the code described in Section4.3.2with the

parameters and timeouts described in Section4.4. Throughput this section, we measure the rate at

which messages propagate on the overlay in terms of an overlay-level hop count— each message

is tagged with a counter, and every node that receives the message increases the counter. We use

this approach in order to allow a fair comparison between Araneola and a standard gossip-based

multicast protocol, in which the latency is measured in terms of gossip rounds (see Section4.7.1).

The actual propagation rate is the propagation rate in terms of an overlay-level hop count multiplied

by the round duration.

In Section4.7.1we evaluate the performance of the multicast layer in static settings, and in

Section4.7.2, we consider high churn. Finally, in Section4.7.3, we evaluate the performance of

the multicast layer in a WAN-like setting.

67

4.7.1 Static Evaluation

In our static evaluation, all the nodes are created simultaneously, and remain up throughout the

experiment. In each round, a single data message is injected into the system (by the application),

each time from a different machine. At least200 data messages are sent in each experiment, and

each experiment (with a given number of nodes and choice of parameter settings) is repeated at

least twice.

Scalability

We first examine the impact of number of nodesN on the rate at which messages propagate on the

overlay. Figure4.15(a)depicts the message propagation rates measured for values ofN ranging

from 500 to 10, 000. L and H are set to 5 and 10, respectively. For each number of hopsx,

the curves depict the average percentage of nodes that receive a message withinx hops. AsN

increases, messages take longer to propagate, but the slow-down is gradual. The average latency

in each of our experiments was close to the average distance between two nodes in the overlay

presented in Figure4.5. For eachN , an average of over99% of the nodes receive a message within

a number of hops equal to the overlay’s diameter. On rare occasions, messages were propagated

in more hops than the graph’s diameter if they reached their destination on a “longer” path before

reaching it on the shortest path between the source and destination.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

%
 n

od
es

hops

N=500
N=1000
N=2000
N=4000
N=6000
N=8000
N=10000

(a) L= 5.

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

%
 n

od
es

hops

L=3
L=4
L=5
L=6
L=7
L=8
L=9
L=10

(b) 8000 nodes.

Figure 4.15:Message propagation rates for different degree Araneola overlays.

68

The impact of L

Araneola’s parameter L affects the overlay’s diameter, and hence affects the latency of message

delivery. We study the impact of this parameter in runs with8000 nodes (on100 Netbed machines)

and values of L ranging from3 to 10. In each experiment, H was set to be L+5. Increasing

the value of L increases the load, since a node with degreek sendsk gossip messages in each

gossip round, and sends each message identifierk − 1 times (once to each downstream neighbor).

However, such increase also reduces the message latency, as shown in Figure4.15(b). Each curve

in the figure depicts the message propagation rate for a given value of L (in experiments with8000

nodes). The figure shows that the latency decreases as L increases. When L= 3, messages reach

99.94% of the nodes within14 hops, and100% of the nodes within15 hops; when L= 4, messages

reach99.97% of the nodes within10 hops, and100% of the nodes within11; while when L= 5,

messages reach99.3% of the nodes in8 hops and all the nodes in9. The improvement becomes

less dramatic as L increases beyond5.

Comparison with gossip protocol

We now compare Araneola to a standard gossip-based multicast protocol (as described in [85]).

Similarly to Araneola, such a protocol supports dynamic user behavior: the reliability of a gossip-

based protocol gracefully degrades with the churn rate, and each join or leave operation incurs a

small overhead. In contrast, as explained in Section2.1, tree-based overlays like SplitStream [30]

and Bullet [81], which are designed for content streaming, do not strive to achieve full reliability

under high churn rates and induce higher join/leave overhead than the join/leave overhead incurred

by Araneola and a gossip-based multicast protocol.

We have implemented the gossip protocol based on Araneola’s gossip-based multicast module.

The gossip protocol takes a parameterF , which is its fan-out. Where an Araneola node sends gos-

sip messages to its neighbors, the gossip protocol sends gossip messages toF randomly selected

nodes from its membership view. Whereas Araneola sends each message identifier downstream

only, the gossip protocol sends all itsrecentmidsto all the chosen targets. Thus, the gossip proto-

col instantiated with a fan-out ofF sends information as many times as Araneola with L= F + 1.

With the gossip protocol, message requests are sent immediately upon receipt of a gossip message,

and re-sent periodically in case the requested message is not recovered.

We experiment with1000 nodes on20 Netbed machines. In each experiment,400 messages are

sent. Figure4.16(a)compares the average message propagation rates of Araneola with L= 5 and6

to those of the gossip protocol with the corresponding fan-outs –F = 4 and5. Evidently, Araneola

propagates information much more effectively than the gossip protocol. Initially, the propagation

rates are similar, but after about6 hops, Araneola continues to effectively propagate the message,

69

while the gossip protocol tapers off. Araneola succeeds in disseminating all the messages to100%

of the nodes in7 hops with L= 5, and in6 hops with L= 6. In contrast, the gossip protocol only

reaches95.91% of the nodes on average withF = 4, and97.69% with F = 5. Indeed a fan-out

of 5 does not suffice for the gossip protocol with1000 nodes. According to previous studies [76],

a fan-out of14 is required. This is due to the fact that with the gossip protocol only the out-degree

(fan-out) is balanced, while the in-degree (fan-in) may be unbalanced. In contrast, Araneola’s in-

degrees and out-degrees are balanced as all links in the overlay are bi-directional. As more nodes

have a given message, the gossip protocol is more likely than Araneola to “waste” its gossip on

nodes that already have the message, and therefore is less effective at spreading the information to

additional nodes.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

%
 n

od
es

rounds

Araneola L=5
Araneola L=6
Gossip F=4
Gossip F=5

(a) Comprable fan-outs for Araneola and gossip.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

%
 n

od
es

hops

Araneola L=5
Gossip F=10
Gossip F=15

(b) Larger fan-outs for gossip.

Figure 4.16:Araneola versus gossip,1000 nodes.

The second plot in Figure4.16shows the propagation rate of gossip with fan-outs of10, and

15 as compared to Araneola with L= 5. The gossip protocol’s propagation rate with the large

fan-outs is initially much more rapid than that of Araneola with L= 5, but after about6 hops,

Araneola already succeeds to reach more nodes than the gossip protocol. While Araneola succeeds

in delivering all the messages to all the nodes, the gossip protocol withF = 15 fails to do so; it

reaches only99.12% of the nodes on average. WithF = 10, it reaches98.97% of the nodes on

average.

Our measurements of the gossip protocol are close to those reported in [76] although not identi-

cal to them. Whereas [76] reports of100% reliability with F = 14, we measure99.12% reliability

with F = 15. We believe that this slight discrepancy stems from differences in the evaluation

methodology. First, the evaluation in [76] uses simulations; it sends a single data message at a

70

time; and it assumes that nodes are never over-loaded and no messages are lost. In contrast, we run

multiple nodes on each machine, the nodes communicate over a real network, and multiple data

messages diffuse through the system concurrently. Therefore, we do experience some scheduling

delays and message loss, although not often. Second, the system of [76] uses servers in order to

have the membership views perfectly uniformly distributed. Since our evaluation does not do so,

our membership views are less perfectly “random”. Since Araneola is evaluated using exactly the

same methodology, our comparison is fair.

4.7.2 Dynamic Evaluation

One of Araneola’s major design goals is to provide an undisrupted multicast service to nodes that

are up despite node and link failures and high churn rates. As long as the overlay contains only one

connected component, Araneola’s multicast module achieves full reliability of message delivery

as it floods message identifiers over the overlay’s links. In Section4.4.2, we studied the fault-

tolerance and robustness of the Araneola overlay in static settings and saw that Araneola’s overlay

remains connected following massive random node and link failures. In this section, we study the

performance of the multicast layer under high churn rates using the dynamic simulation scenarios

used in Section4.4.3. An application message was injected into the system by one of the machines

in each round. Between433 and476 messages were sent in each experiment. The parameters L

and H were set to5 and10 respectively.

In each dynamic experiment, for each messagem, we definenodes that are up duringm’s

transmissionto be nodes that have joined Araneola’s overlay at least12 rounds beforem’s trans-

mission, and did not leave at least12 rounds after the transmission. We chose12 as a gross

over-estimate. In fact, as we show below, nodes can normally begin to receive messages reliably

immediately upon requesting to join. However, since we run50 Araneola nodes on each physical

machine, which due to contention at the network interface may cause a joining node’s messages

to be delayed for several rounds, we have chosen to wait additional rounds before considering the

node to be up.

In all of our dynamic experiments, each message was received by100% of the nodes that

were up during its transmission. Moreover, messages were delivered withthe same latency as in

static runs. We illustrate this in Figure4.17 for N = 1000; similar results were obtained with

N = 2000. The bottom curve depicts the average latency with which messages are delivered for

different values ofλ. It shows that the latency is unaffected by the join/leave rate. The middle

curve shows that, for all values ofλ, the average number of hops it takes a given multicast message

to reach at least99% of the live nodes is6. We did, however, observe a small difference in the

message propagation rate: for values ofλ up to0.1, messages reach over99.9% of the nodes within

71

6 hops, whereas withλ = 0.125 andλ = 0.15, they reach only99.5% of the nodes within6 hops.

The top curve shows that regardless ofλ, it takes7 hops for messages to reach all the nodes. All

the latencies are roughly the same as in static runs with500 nodes, which is the average number of

live nodes in a dynamic experiment withN = 1000.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1

2

3

4

5

6

7

ho
ps

join/leave rate (λ)

avg time to reach all nodes
avg time to reach at least 99% of the nodes
avg latency

Figure 4.17:Average latencies for different churn rates,1000 nodes, L= 5.

Comparison with gossip protocol. Churn has little effect on the performance of a gossip-based

multicast protocol [15]. In this section, we showed that churn has virtually no effect on the perfor-

mance of Araneola. Moreover, as the simulations in Sections4.7.1and4.7.2show, under churn,

Araneola achieves higher reliability than the reliability achieved by a classic gossip protocol in a

static failure-free setting, while incurring smaller delay and overhead.

Fast join. The final aspect of the multicast layer we evaluate is how fast it allows joining nodes

to begin to receive messages reliably. In order to avoid scheduling race conditions and contention

at the network interface, we ran100 nodes on a single machine, with L= 5 and H= 10. Our

measurements show that a joining node not only receives all the messages sent after its creation,

but actually receives100% of the messages sent up to6 rounds before its join. This occurs because

it usually takes5 hops for a message to propagate to all of the new node’s neighbors. If any of the

new node’s neighbors receives the message in5 hops, then the new node will receive this message

in the next round, as the6th hop. We conclude that Araneola incorporates joining nodes into the

multicast group without delay.

72

4.7.3 WAN Emulation

In this section, we report about simulations of Araneola’s gossip-based multicast module in a

WAN-like setting. We run these simulations in order to evaluate the performance of Araneola

in a wide-area setting, in which the message loss rates and delays are much higher than in a

LAN setting. Our WAN-like setting is motivated by measurements of upload bandwidth of P2P

clients [109] and measurements of loss rates and RTTs (round trip time) of Internet links [64].

For simplicity, in our WAN-like simulation, we use5 types of links (see Table4.6). In order to

measure the worst case reliability in such a setting, a given node’s links are all of the same type;

this simulates the node’s worst link.

Link Type Loss Rates RTTs % of Nodes
Excellent < 0.1% 0 0.1%
Good 0.1%–1% < 62.5ms 4.9%
Acceptable 1%–2.5% 62.5ms–125ms 30%
Poor 2.5%–5% 125ms–250ms 45%
Very Poor 5%–12% 250ms–500ms 20%

Table 4.6:Links loss rate and RTT.

We use the setting of Section4.7.1for two group size:1000 and8000 nodes. L and H are set to

5 and 10, respectively. In Fig.4.18, we compare the message propagation in WAN-like simulations

with the message propagation in LAN simulations. As the figure shows, the differences between a

WAN-like setting and a LAN setting are small. Below, we explain these results.

We first note that link latency neither reduces the reliability of message delivery nor increases

the latency of message propagation. This is since we measure the message propagation in rounds,

and a round duration is an order of magnitude longer than a link latency. The message loss does

reduce the reliability. However, as opposed to tree-based multicast systems, in Araneola, as long

as the message loss does not exceed a certain threshold (see Section4.4.2), failures do not reduce

Araneola’s reliability. This is since there are L disjoint paths between each pair of nodes in the

overlay, and hence each message can be retrieved from L different neighbors. In our WAN-like

setting, the failure rates do not exceed the above threshold, and therefore Araneola achieves full

reliability in this setting. The message loss, however, does slightly increase the latency, since

several messages are received not through the shortest path. However, as the figure shows, this

increase is small, since the average link loss is small.

73

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

%
 n

od
es

hops

LAN
WAN EMULATION

(a)1000 nodes.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

%
 n

od
es

hops

LAN
WAN EMULATION

(b) 8000 nodes.

Figure 4.18:Message propagation rates for WAN-like and LAN simulations.

74

Chapter 5

EquiCast: Scalable Multicast with Selfish
Users

5.1 Introduction

P2P networks can distribute digital content to a large number of users over the Internet by dis-

tributing the load among the peers [37, 107]. However, these networks suffer from the problem of

“freeloaders”, i.e., users who consume resources without contributing their fair share [25]. In order

to discourage “freeloaders”, some P2P systems employ incentives to motivate users to cooperate,

e.g., contribute upload bandwidth or disk space for some other users. However, while current

incentive-based P2P systems reward cooperation to some extent, no existing protocol has been

proven to enforce cooperation in selfish environments. Moreover, such systems, e.g., [37, 49],

typically rely on user altruism. For example, a node is expected to upload data blocks to other

nodes for no return whenever it has available bandwidth [37, 49]. Hence, current incentive-based

P2P systems do not solve the problem of “freeloaders” [59], and would not have worked well at

all if users would have behaved selfishly, e.g, leaving a content distribution system after they have

finished downloading the file [49, 59].

Nowadays, user altruism is common since most users are connected to the Internet using static

machines via ISPs with a flat pricing model, and hence sending a packet does not incur a cost

on its sender. However, these paradigms are changing. First, the increasing access to digital

content is expected to drive ISPs to implement a tiered pricing scheme, where high end pricing

plans shall allow unlimited downloads and uploads, while lower tier pricing plans shall limit traffic

bandwidth [107]. With such a pricing scheme, users will most likely cease to be altruistic [107].

This may lead to low P2P system availability [59, 71] or even system collapse [25, 96]. Second,

wireless hotspots are proliferating in recent years, and users are increasingly connecting to the

Internet and downloading content to mobile devices such as laptops and cell phones. In such

networks, pricing is typically based on connection time or transmission volume. Moreover, battery

75

power is a critical resource for mobile devices. Hence, user altruism can hardly be expected in

such networks. Therefore, we believe that it is important to design P2P systems that work well

even when all users are selfish.

In this chapter, we address this challenge. We introduceEquiCast, a wide-area P2P multicast

protocol for distributing content to large groups of selfish nodes. We treat the problem of freeload-

ing from a game theoretic perspective, and we model the system as anon-cooperative game. In

such a game, nodes are selfish butrational, i.e., each user chooses its ownstrategyregarding its

level of cooperation so as to minimize its own cost [46]. More specifically, the goal of each node

is to receive all the multicast packets while minimizing its sending rate. We define a special set of

protocol-obedient strategies (POSs). Generally speaking, a strategy out of this set allows a node

to determine how many connections to maintain and how many packets to send on each connec-

tion though it does not allow to hack the protocol’s code or assume that others do so. We believe

that it is reasonable to assume that most nodes will run a protocol-obedient strategy (POS), since

users usually do not have the technical knowledge required in order to modify an application code.

We prove that if all nodes choose POSs, then each node receives all the multicast packets and,

moreover, no node can unilaterally reduce its cost by changing its strategy to a non-POS. That is,

unilateral hacking of the protocol’s code cannot reduce a node’s cost. Our formal model and cost

function are presented in Section5.2, and in Section5.4.2we formally define the set of POSs.

In EquiCast, a single distribution serverS (which can be implemented by multiple machines

acting as one logical server) organizes the nodes into a staticoverlay network. We divide the time

into rounds, and in each round,S injects new data packets to a small random subset of the nodes

in the overlay. Nodes, then, communicate with their overlay neighbors in order to retrieve missing

data packets.Salso provides a “safety net” for a node whose data receiving rate is lower than the

multicast rate, by sending data packets to either the node or its neighbors. This additional overhead

incurred onSis modest, since most of the nodes are expected to receive most if not all the multicast

packets from their overlay neighbors.

EquiCast enforces cooperation through two mechanisms. The first is amonitoring mechanism,

whereby each node monitors the sending rate of each of its neighbors. Specifically, for each

neighborn̂, each noden maintainsn̂’s balance, which is the difference between the number of

data packetŝn has sent ton so far and the expected per-link throughput. As long asn̂’s balance is

greater than or equal to a predefined negative thresholdL, n̂ is considered to be cooperative, andn

continues to send data packets ton̂. Otherwise,n terminates its connection witĥn. Note, however,

that it is always possible for cooperative nodes to have a balance greater than or equal toL with

respect to all of their neighbors.

The second mechanism is a per-linkpenalty mechanism, which further motivates nodes to ad-

here to the expected link throughput. It charges a neighbor with one additionalfinepacket for every

76

round the neighbor has a negative balance, where a fine packet is a dummy packet that has the same

size as a data packet. Fine packets, as opposed to data packets, do not affect the node’s balance.

Therefore, a node is motivated to achieve a non-negative balance, whenever possible. Note that

the multicast rate is tens of data packets per round, and hence the penalty mechanism incurs a

modest overhead. In general, in EquiCast, each node is required to have an upload bandwidth that

is slightly higher, e.g., by10%, than the multicast rate. Note that similar requirements are also

assumed by multicast systems for cooperative environments [30].

In Section5.4, we prove that, in environments in which all the nodes are selfish, if all the nodes

choose POSs, then EquiCast disseminates all the multicast packets to all the nodes. Additionally,

every POS in which a node exclusively cooperates with all its neighborsstrictly dominatesevery

POS in which it does not. This means that the cost incurred on a “freeloader” node is strictly

higher than the cost incurred on a cooperative node, and hence all nodes are expected to follow

the protocol out of their own selfish interests. Finally, we prove that if all the nodes choose POSs,

then no node can unilaterally reduce its cost by changing its strategy to a non-POS. Moreover, we

show that this result holds under some milder conditions, where some of the nodes might adopt

non-POSs or even be non-rational. We are unaware of any previous P2P multicast protocol that

was formally proven to enforce cooperation in environments in whichall nodes are selfish.

Finally, for simplicity, throughout most of the chapter we describe only a static version of

EquiCast, in which no node joins or leaves the service. In Section5.5, we sketch out a dynamic

version of EquiCast that supports node joins and leaves.

5.2 Model and Problem Statement

We consider a large static collection ofN nodesn1, n2, ..., nN . A single distribution serverS

distributesP data packets to the nodes, whereP is a random variable distributed exponentially

with a large expectation, e.g., larger than10,000. S knows all the node identities, e.g., by each

node registering itself atS.

5.2.1 Network and Timing Model

Each node can directly communicate with every other node and withS. The multicast rate isp

data packets perδ time units. Each node has an upload bandwidth of at mostp+kc packets perδ

time units, wherek andc are small constants such thatk≥3, c≥4, andp%k=0. In addition, we

require that(k2−k)(c−3)<p andk2(c−2)−2k<p, in order to prove that every POS in which a

node exclusively cooperates with all its neighbors strictly dominates every POS in which it does

not. There is a bound of∆ time units on packet delay, and sending a packet incurs zero delay on

77

the sender. Local computations also incur zero delay. Finally, for simplicity, we assume no packet

loss.

5.2.2 The Game Formulation

We model the system as anon-cooperative game, in which theplayersare theN nodes. Each node

chooses astrategythat dictates how it plays the game. Astrategy profileis a vector ofN strategies,

one for each node. Astrategy spaceis the set of strategies available to each node. In this chapter,

the strategy space consists of the set of all the strategies that send no more thanp+kc packets per

δ time units.

We define a special set ofprotocol-obedient strategies (POSs). Generally speaking, a strategy

out of this set must run the protocol as is and can only determine how many connections to maintain

and how many packets to send on each connection. We defer the precise definition of this set to

Section5.4.2, since it relies on the protocol’s code described in Section5.3.3.

Each node is selfish andrational, i.e., ni chooses a strategysti that minimizes its individual

cost as defined below. A strategyst strictly dominatesanother strategyst′ if choosingst always

incurs a lower cost than choosingst′, regardless of the strategies chosen by other nodes. Astrongly

dominating strategystrictly dominates all other strategies. AlthoughSis not one of the players, we

model its random injections of data packets as its strategyst0, and hence our proof of cooperation is

valid regardless ofS’s random choices. Note thatst0 does not determine the length of the session,

i.e., P . Denote byri the total number of data packets received byni throughout the multicast

session, and bysi the total number of packets sent byni throughout the multicast session. Then,

the cost function for a nodeni is defined as:

fi(st0, st1, ..., stN) =

{ ∞ if ri < P
si if ri = P .

That is, if ni receives all the multicast packets, then its cost is the number of packets it has sent

during the multicast session. Otherwise,ni’s cost is infinite.

5.2.3 Problem Statement

Our goal is to design a scalable P2P multicast protocol, in which if all nodes choose POSs, then

(i) each node receives all the multicast packets; and (ii) no node can reduce its cost by unilaterally

changing its strategy to a non-POS. A second goal is efficiency. The maximal total receiving and

sending overhead incurred on each node throughput the entire multicast session isP (1+ak
p

) and

P (1+ak
p

)+Hk packets, respectively, wherea is a small constant andH is a non-negative constant

determined by each node.

78

5.3 EquiCast

Section5.3.1describes EquiCast’s architecture. Section5.3.2provides a high-level description of

EquiCast’s cooperation enforcement scheme, and Section5.3.3describes the protocol in detail.

5.3.1 Architecture

S organizes the nodes into a static overlay that satisfies the following properties: (KRRG1) each

node in the overlay has exactlyk neighbors for some parameterk; (KRRG2) the overlay’s diameter

is logarithmic inN ; and (KRRG3) the expected distance between a given node and a random node

in the overlay equals the average distance between a pair of nodes in the overlay. Fork≥3, a k-

regular random graph1 satisfies these properties with high probability [45, 78, 122]. Sconstructs

the overlay, e.g., using one of the constructions in [122], and sends to each node the identities

of its overlay neighbors, henceforth, simply calledneighbors. Note that since the construction is

centralized, no node cooperation is required.

In the next section, we show that, under our model assumptions, for each node, maintaining

connections with itsk neighbors is a dominating strategy. Hence, connections are expected to

persist. However, if a given connection is terminated, e.g., due to a node failure, then a noden can

end up with less thank neighbors. In such cases,n contactsS, andS emulates a selfish rational

EquiCast nodên, and a new connection is formed betweenn andn̂. n̂’s interface is identical to

the interface of each EquiCast node with the following two exceptions: i)n’s balance with respect

to n̂ is initialized to the lowest possible balance, i.e.,L; and ii) in each round,n must send a fine

packet tôn regardless of its balance with respect ton̂, otherwisên terminates its connection withn.

Hence, as we show in Section5.4.2, a node prefers to maintain a connection with a non-emulated

node over an emulated one.

5.3.2 Overview

We divide the time intoR=dP
p
e rounds. Every round,Screatesp new data packets, and for each

noden, Ssends all the copies of thesep packets ton with a probability of k
N

, so that, on average,

each data packet is sent tok nodes.

In each round, every noden gossips with its neighbors about new data packets it has received

in the previous round, i.e., for each neighbor,n sends a gossip packet containing the identities of

all the data packets it has received in the previous round. After receiving gossip packets from its

neighbors,n requests from each of its neighbors data packets that the neighbor has and were not

1A k-regular random graphwith N nodes is a graph chosen uniformly at random from the set ofk-regular graphs
with N nodes.

79

previously received byn. If a given packet is available at more than one neighbor, thenn randomly

picks one of those neighbors to request the packet from. Finally,n sends its neighbors the data

packets they requested from it.

We note that since a given packet is sent byS to each of the nodes with equal probability and

since the expected distance between a random node and a given node equals the average distance

between a pair of nodes in the overlay (KRRG3), if all the nodes comply with the protocol, then the

average latency with which nodes receive data packets is identical for all nodes, and the expected

throughput isp
k

data packets per-round on every overlay link. In a previous study [93], we used a

similar technique in order to support reliable multicast in cooperative environments. The aim of

this study is achieving similar results in a non-cooperative environment.

In order to motivate cooperation, we introduce amonitoring mechanism, whereby each noden

monitors the sending rate of each of its neighbors. For each neighborn̂, n maintainsn.neighbor-

balance[̂n] , which is the difference between the number of data packetsn̂ has sent so far and the

expected per-link throughput ofp
k

data packets per-round. Note that, in a given round,n̂ may have

less thanp
k

new data packets that have not yet been received atn, whereas in another round it may

have more thanp
k

data packets forn. Therefore, we allow for some slack in the balance. The

allowed imbalance is captured by a negative thresholdL. As long aŝn’s balance with respect ton

is greater than or equal toL, n̂ is considered to be cooperative byn. But if n̂’s balance with respect

to n drops belowL, thenn terminates the connection witĥn. Note that, as long aŝn’s balance

with respect ton is greater than or equal toL, the uploading rate fromn to n̂ is unaffected by the

downloading rate from̂n to n. This independence is required in order to prove cooperation.

In order to further motivate nodes to adhere to the expected throughput, we introduce a per-

link penalty mechanismthat charges a neighbor with one additionalfine packet for every round

the neighbor has a negative balance with respect to the node, where a fine packet contains no

useful data but has the same size as a data packet. If the node does not receive a fine packet from a

neighbor with a negative balance, then it terminates its connection with that neighbor. Fine packets,

as opposed to data packets, do not affect the node’s balance. Therefore, a node is motivated to

achieve a non-negative balance, where all sent packets contribute to its balance. Moreover, it is

beneficial for nodes to have a strictly positive balance whenever possible. This is because there is

no guarantee that a given neighbor will request at leastp
k

packets from the node in forthcoming

rounds. If a neighbor requests fewer thanp
k

packets when the node’s balance toward it is zero, then

the balance becomes negative, and the node pays the fine. Each node chooses its maximal balance

with respect to a given neighbor. This maximal balance is captured by the non-negative threshold

H. As long as the node’s balance with respect to a given neighborn̂ does not exceedH the node

sends all the data packets thatn̂ requests from it, yet it refrains from sending data packets that

would increase its balance with respect ton̂ beyondH. Note that a node cannot optimize the value

80

of H according to the session duration, asP is a random variable distributed exponentially. Note

also that the penalty mechanism does not eliminate the need forL, since without this threshold, a

selfish node could have sent only fine packets.

Although nodes are motivated to have a non-negative balance, due to randomness, a noden may

have an insufficient number of new packets for a given neighbor in order to be able to maintain

a balance greater than or equal toL. In order to avoid a disconnection in such a scenario,n can

askS to send up top
k

new data packets on behalf of it to a given neighborn̂ in return for sending

the same number of fine packets toS. n̂ countsS’s packets towardsn’s balance only if ignoring

these packets would dropn’s balance with respect tôn belowL. Hence,n contactsSonly when its

balance with respect tôn drops belowL. In addition, after the end of the multicast session,n can

askS to send to it up to|L|k data packets in return for sending the same number of fine packets to

S.

On the one hand, the allowed imbalance should be large enough to reduce the probability of a

cooperative node reachingL, in order to avoid overloadingS. On the other hand, a high imbalance

allows a selfish node to receive many data packets, i.e.,|L|k, without sending any data packets in

return. Hence, there is an inherent tradeoff between the overhead incurred onSand the number of

data packets a node can receive for free. For example, settingL to−200 is a good tradeoff between

the two opposite requirements. On the one hand, ifk=3, then a node can get only600 data packets

without contributing anything in return to the system. Since we assume that the multicast session

is significantly longer, including at least10,000 packets, it seems like users will not be satisfied

with getting a mere600 packets and will therefore be motivated to contribute. On the other hand,

such a bound is expected to incur a modest overhead onS. Note that the value ofL is independent

of all the other system parameters.

5.3.3 Detailed Description

The source protocol

On each round,Screatesp new data packets, and for each noden it sends all the copies of these

packets ton with a probability of k
N

. In the rare case in which, at a given round, no node is chosen

to receive all the copies of thep new data packets,Srestarts the round. Note that this does not add

to the round duration, since computation time is zero.

Upon receiving a request from a noden to sendx data packets to another noden̂, S verifies

that: (i)x≤ p
k
; (ii) this request is followed by the sending ofx fine packets fromn; (iii) n andn̂ are

neighbors; (iv) neithern nor n̂ has askedS to replace the other node with an emulated node; and

(v) n is not pretending to be another node (IP-spoofing). The latter is checked, e.g., by sending a

random string ton thatn should send back toS in one of the fine packets. Ifn passes the checks,

81

Data structures:
neighbors– set of the overlay neighboring nodes.
my balance[k]– outgoing balance, initially∀n ∈ neighbors, my balance[n] = 0.
neighborbalance[k]– incoming balance, initially∀n ∈ neighbors, neighbor balance[n] = 0.
H – an upper bound on the balance, chosen by the node.
ids– set of data packet identifiers that the node has not yet received, initially∅.
reqs[n] – a set of data packets identifiers to ask from neighborn, initially ∀n ∈ neighbors, req[n] = ∅.
Parameters:
L – a lower bound on the balance (a negative number).

Figure 5.1:EquiCast’s data structures and parameters.

thenSsends tôn copies ofx new data packets that it intends to distribute in the next round. If two

or more ofn̂’s neighbors askS to send data packets tôn, thenS sends tôn different packets on

behalf of each neighbor. We neglect the possibility that in the next roundn̂ will be chosen byS to

receive data packets from it, as the probability for this scenario isk
N

.2

After the end of the multicast session,Sprovides a “safety net” for cooperative nodes that did

not receive all theP multicast packets. Specifically, upon receivingx fine packets from a node

n, Ssendsx data packets ton, for x≤|L|k. In order to avoid server overloading in the end of the

multicast session, we use the randomized back-off strategy described in [111].

The node protocol

Figure5.1 presents the data structures and parameters maintained by an EquiCast node. The set

neighborsholds the node’s neighbors. The arraymy balanceholds the node’s balance with respect

to each of its neighbors, and the arrayneighborbalanceholds the neighbors’ balances with respect

to the node. The setids contains identifiers of data packets that the node heard about (from one

or more of its neighbors) but has not yet received. The arrayreqsholds identifiers of data packets

that the node asks its neighbors to send to it. The (negative) thresholdL determines the minimal

allowed balance. Finally, each node chooses its own upper boundH on its balance with respect to

a given neighbor, which defines its level of cooperation.

The pseudo-code of the node’s protocol is presented is Figure5.2. It consists of four phases,

which are executed sequentially.

In the first phase, which lasts∆ time units, a node sends to its neighbors identifiers of data

packets it received in the previous round (lines 1–5).

In the second phase, which also lasts∆ time units, if the node does not receive a gossip packet

from some neighbor, then the node replaces its connection with that neighbor with a connection

with an emulated node by calling to the procedure replaceneighbor (lines 6–7). Then, the node

2In this case, if̂n is chosen bySto receive data packets in roundt, thenScan send data packets ton̂ in roundt+1.

82

upon bootstrap:neighbors ←
identities of nodes received fromS

Procedurereplaceneighbor (noden)
neighbors ← neighbors \ {n}
contactSand ask for an emulated neighborn̂
neighbors ← neighbors

⋃{n̂}

Phase I (gossip)
1. /* Send gossip packets to neighbors */
2. foreachn ∈ neighbors
3. create new gossip packetp with all the data

packet identifiers received in the last round
4. send〈GOSSIP,p〉 to n
5. wait ∆ time

Phase II (process gossip, send requests)
6. foreachn ∈ neighbors from which no GOSSIP

packet arrived
7. replaceneighbor (n)
8. ids ← set of identifiers received in gossip packets,

whose corresponding data packets were
not received yet

9. foreachn ∈ neighbors reqs[n] ← ∅
10. foreachid ∈ ids
11. id set ← set of neighbors that gossiped

aboutid
12. ne ← a random neighbor fromid set so that

|reqs[ne]|< p
k+c−3

13. if there is no suchne then continue
14. reqs[ne] ← reqs[ne] ∪ {id}
15. foreachn ∈ neighbors
16. send〈REQUEST,reqs[n]〉 to n
17. wait ∆ time

Phase III (send data)
18. foreachn ∈ neighbors from which

no REQUEST packet arrived
19. replaceneighbor (n)
20. /* Send data packets */
21. send up tox data packets ton according ton’s

request, where
x = min(H+ p

k−my balance[n], p
k+c−3)

22. my balance[n] ← my balance[n]+x− p
k

23. if my balance[n]<L then
24. w ← min(p

k+c−(x+3),p
k)

25. sendSw fine packets and ask
it to sendw data packets ton

26. my balance[n] ← my balance[n]+w
27. wait δ − 3∆ time

Phase IV (update data structures, pay fine)
28. foreachneighborn
29. d ← number of data packets that I

askedn to send me in phase II and
were received fromn in this round

30. if neighbor balance[n]<L+ p
k and I

received in this roundm data packets
from Son behalf ofn then

31. d ← d + m
32. neighbor balance[n] ← neighbor balance[n]

+d− p
k

33. /* Send a fine packet (if needed) */
34. foreachneighborn
35. if my balance[n] < 0 then
36. send a FINE packet ton
37. wait ∆ time
38. foreachneighborn
39. /* Check if neighbor is OK */
40. if neighbor balance[n] < L or

neighbor balance[n] < 0 andn did not
send me a FINE packet in this roundthen

41. replaceneighbor (n)

Figure 5.2:Code for EquiCast node.

processes gossip packets it has received from its neighbors. For each identifier inids, the setid set

holds all the neighbors that have the corresponding data packet. One such neighborn is randomly

chosen from this set, and the node asksn to send it the corresponding data packet by appending

the identifier toreqs[n].

In the third phase, which lastsδ−3∆ time units, if the node does not receive a request packet

from some neighbor, then the node replaces its connection with that neighbor with a connection

with an emulated node by calling to the procedure replaceneighbor (lines 18–19). Then, the node

sends data packets to each of its neighbors. Note that, according to the model (see Section5.2),

each node has an upload bandwidth of at mostp+kc packets perδ time units. Therefore, in the

third phase, the node sends up tox= p
k
+c−3 data packets to a given neighborn, as long as its

83

balance with respect ton does not exceedH (line 21). Additionally, the node increases its balance

with respect ton by x. If the node’s balance with respect ton is smaller thanL, then the node asks

S to send ton sufficiently many packets so that in the end of the current round the node will have

a balance that is equal to or larger thanL with respect ton (lines 23–25).

In the fourth phase, which lasts∆ time units, the node updates each neighbor’s balance ac-

cording to the number of data packets it received from the neighbor and fromS on behalf of the

neighbor in the previous phase (lines 28–32). Note that the node does not accept unsolicited data

packets from its neighbors. Likewise, the node accepts data packets fromS on behalf of some

neighborn only if, in the beginning of the fourth phase,n has a balance lower thanL+ p
k

with

respect to the node. Then, if the node has a negative balance with respect ton, then it sends one

fine packet ton. Finally, if n either has a balance lower thanL or did not send the fine packet it

was required to, then the node terminates its connection withn.

5.4 Proof of Cooperation

Recall thatP , the number of data packets in a session, is a random variable distributed exponen-

tially with a large expectation, at least an order of magnitude larger than|L|k. Hence, in every

round,S is expected to create more than|L|k new data packets in the future. In this section, we

neglect the probability that, starting from some roundt, Swill create less than|L|k new data pack-

ets, and hence we assume that, in every round, the probability thatSwill create more that|L|k data

packets in the future is1. Moreover, for every constantconst, const
R

is negligible (recall thatR = P
p

is the total number of rounds in the multicast session), and for simplicity is assumed to be0.

We say that a noden maintainsa connection with another nodên in some phasez of some

roundt if, in phasez of roundt, n runs the protocol’s code (described in Figure5.2) with respect

to n̂ without changing any of the protocol’s parameters exceptH. Note thatn̂ can be either a

real node or a node emulated byS. We say thatn maintains a connection witĥn throughout the

multicast session ifn maintains a connection witĥn in every phase of each of the firstR rounds of

the multicast session (i.e., in every round in whichScreates new data packets).

Throughout this section, we use the following notations related to a noden and a given neighbor

n̂ of n: bt(n, n̂) is n’s balance towardŝn after t rounds as stored inn.my balance[n̂]. xt(n, n̂) is

the number of data packetsn (or S on behalf ofn) sends tôn during roundt, andXt(n, n̂) =∑i=t
i=0 xt(n, n̂).

In Section5.4.1, we prove several basic (technical) properties of the protocol. In Section5.4.2,

we define the set ofprotocol-obedient strategies (POSs), and we prove that every POS in which

a node cooperates with all its neighbors strictly dominates every POS in which it does not. In

addition, we prove that if all the nodes choose POSs, then each node receives all the multicast

84

packets. In Section5.4.3, we prove that if all the nodes choose POSs, then no node can unilaterally

reduce its cost by changing its strategy to a non-POS. In addition, we prove that, in this case, all the

nodes receive all the multicast packets. Finally, in Section5.4.4, we prove that each node chooses

a non-negativeH parameter.

5.4.1 Basic Properties

Lemma 1. For every two neighboring nodesn and n̂, if, starting from the initialization of the

connection between them, bothn and n̂ maintain the connection between them in every phase of

the firstt rounds, thenn.my balance[n̂] = n̂.neighbor balance[n] in the end of roundt′, for every

t′ ≤ t.

Proof. By induction on the round number.

Base: There are two cases. In the first case, bothn andn̂ are not emulated nodes. In this case, the

connection between the two nodes is initialized in the beginning of the multicast session (i.e.,

in the end of round “0”), and, upon the initialization of the connection,n.my balance[n̂] =

n̂.neighbor balance[n] = 0. In the second case, eithern or n̂ is an emulated node. Without

loss of generality, assume thatn̂ is an emulated node, and thatn receives the identity of̂n from

S during roundr, for somer ≥ 0. In this case, the connection between the two nodes is initial-

ized in roundr, andn.my balance[n̂] = n̂.neighbor balance[n] = L upon the initialization of

the connection. We note that, in roundr, n andn̂ do not send data packets to each other; this is

since the connection is initialized after the end of the first (gossip) phase of roundr, and hence,

in roundr, no gossip packets are sent on the connection between these two nodes, and therefore,

in this round, no data packets are sent on this connection either. Therefore, in the end of roundr,

n.my balance[n̂] = n̂.neighbor balance[n] = L.

Step: Assume that, in the end of roundt, n.my balance[n̂] = n̂.neighbor balance[n]. We will

prove that, in the end of roundt+1, n.my balance[n̂] = n̂.neighbor balance[n].

In roundt+1, bothn.my balance[n̂] and n̂.neighbor balance[n] are reduced byp
k

(see Fig-

ure5.2, lines 22 and 32). In addition, in roundt+1, n.my balance[n̂] andn̂.neighbor balance[n]

are increased upon the sending of data packets fromn and fromS on behalf ofn to n̂ (see Fig-

ure5.2, lines 22, 26, and 32).

Whenn sendsx new data packets tôn, n.my balance[n̂] is increased byx (see Figure5.2, line

22). Since there is no packet loss, these packets are received atn̂. We note thatn sends tôn only

data packets that̂n requested from it in phase II of roundt+1; this is sincên ignores unsolicited

data packets, as it maintains the connection withn (see Figure5.2, line 29). Therefore, upon

receiving thex data packets,̂n increaseŝn.neighbor balance[n] by x.

If n.my balance[n̂] drops belowL during phase III of roundt+1, thenn sendsw fine packets to

85

Sand it asksSto sendw data packets on behalf of it tôn (see Figure5.2, lines 23–25). Additionally,

n.my balance[n̂] is increased byw (see Figure5.2, line 26). We note thatn does not request from

S to send ton̂ more thanp
k

data packets, asS ignores such requests (see Section5.3.3). Hence,

upon receiving the request fromn, S sendsw data packets on behalf ofn to n̂. Since there is

no packet loss, these packets are received atn̂. According to the induction assumption and since

n and n̂ maintain the connection between them,n̂.neighbor balance[n]<L+ p
k

in the beginning

of phase IV of roundt+1. Hence,n̂ accepts the data packets received fromS, and it increases

n̂.neighbor balance[n] by w (see Figure5.2, lines 30–32). Finally, we note that ifn asksSto send

data packets tôn whenn.my balance[n̂]≥L, thenn̂ ignores these data packets (see Figure5.2,

line 30), since in this casên.neighbor balance[n]≥L+ p
k
, and hencen asksS to send data packets

to n̂ only if n.my balance[n̂]<L during phase III of a given round.

Lemma 2. For every two neighboring nodesn and n̂, if, starting from the initialization of the

connection between them, bothn and n̂ maintain the connection between them in every phase of

the firstt rounds, then this connection is not terminated in the firstt rounds.

Proof. Without loss of generality, we will prove that̂n does not terminate the connection with

n (i.e., n̂ does not call to the procedure replaceneighbor withn’s identity) in roundt′, for ev-

ery t′ ≤ t. Since n̂ maintains the connection withn, then it terminates the connection with

n in round t′ only if one (or more) of the following situations occurs: (i) it does not receive a

gossip packet fromn in phase I of roundt′; or if (ii) it does not receive a request packet from

n in phase II of roundt′; or if (iii) either n̂ is an emulated node or, in the end of roundt′,

n̂.neighbor balance[n]<0, andn̂ does not receive a fine packet fromn in roundt′; or if (iv) in

the end of roundt′, n̂.neighbor balance[n]<L.

Sincen maintains the connection withn, then (i), (ii), and (iii) do not happen. In addition, we

note thatn can ensure that, in the end of each round,n.my balance[n̂]≥L by askingSto send data

packets tôn whenn.my balance[n̂]<L (during phase III of a given round). Hence, according to

Lemma1, (iv) does not happen either.

Lemma 3. If a noden maintains a connection with another noden̂ through the firstt rounds of

the multicast session, thenXt(n, n̂)= tp
k
+bt(n, n̂).

Proof. By induction.

Base: t = 0.X0(n, n̂) = b0(n, n̂) = 0. Therefore,X0(n, n̂) = tp
k

+ b0(n, n̂).

Step: AssumeXt(n, n̂) = tp
k

+ bt(n, n̂). We will prove thatXt+1(n, n̂) = (t+1)p
k

+ bt+1(n, n̂).

Xt+1(n, n̂) = Xt(n, n̂) + xt+1(n, n̂) = tp
k

+ bt(n, n̂) + xt+1(n, n̂). Sincen maintains the

connection witĥn, we know thatbt+1(n, n̂) = bt(n, n̂)+xt+1(n, n̂)− p
k

(see Figure5.2, lines 22 and

26). Therefore,bt(n, n̂)+xt+1(n, n̂) = bt+1(n, n̂)+ p
k
. Hence,Xt+1(n, n̂) = (t+1)p

k
+bt+1(n, n̂).

86

Lemma 4. If k neighbors of a noden maintain a connection with it throughout the multicast

session, thenn receives from its neighbors and from S on behalf of its neighbors at leastP+Lk

data packets3.

Proof. By Lemma3, for every neighbor̂n of n, XR(n̂, n) = Rp
k

+ bR(n̂, n). Recall thatbR(n, n̂) ≥
L andR = P

p
. Hence, from all itsk neighbors,n receives at leastRp + Lk = P + Lk data

packets.

Lemma 5. The per-round overhead of maintaining a connection over the entire multicast session

is at leastp
k
+2 packets and at mostp

k
+c packets.

Proof. The overhead incurred on a noden for maintaining a connection with another noden̂ con-

sists of: (i) data overhead (XR), i.e., packets that contribute ton’s balance with respect tôn, (ii)

gossip/request packets, and (iii) penalty packets.

The maximum data overhead incurred by maintaining the connection withn̂ is p
k

+ c− 3 data

packets per-round (see Figure5.2, lines 21–25). By Lemma3, and sinceL is fixed, XR(n,n̂)
R

=
p
k

+ bR(n,n̂)
R

≥ p
k

+ L
R

= p
k
. The gossip/request overhead is fixed, namely: two packets per-round.

The penalty on either a negative balance or on maintaining a connection with an emulated node

is one fine packet per round, and zero otherwise. Hence, the minimal and maximal per-round

overheads arep
k
+2 and p

k
+c packets, respectively.

Lemma 6. If a noden maintains connections with at most k-1 nodes throughout the multicast

session and in addition, it communicates with a bounded number of nodes throughout a bounded

number of rounds, thenfn=∞.

Proof. We first note that, during the multicast session,n cannot request fromS to send it data

packets. From at mostk−1 neighbors with whichn maintains connections throughout the multi-

cast session (and fromSon behalf of these neighbors),n can receive at mostx=(k−1)(p
k
+c−3)

data packets per round. Recall that(k2−k)(c−3)<p. Hence,x<p. We note thatx<p even if

n communicates with an additional bounded number of nodes throughout a bounded number of

rounds. This is sincen receives a bounded number, denoted asnum, of data packets from these

nodes, and hencexR+num
R

=x< p. Finally, if n receives up to|L|k data packets fromSafter the end

of the multicast session, then it still cannot receive all theP multicast packets, sincexR+|L|k
R

=x< p.

Hence,fn=∞.

Lemma 7. If a noden maintains connections withk nodes that also maintain a connection with it

throughout the multicast session, thenfn<∞ and fn

R
≤p+kc.

3Recall thatL is negative.

87

Proof. By Lemma4, if n maintains connections withk nodes that also maintain connections with

it throughout the multicast session, thenn receives at leastP+Lk data packets from its neighbors

and fromS on behalf of its neighbors. In addition, after the end of the multicast session,n can

receive up to|L|k data packets fromS (in return for sendingSa fine packet for each data packet),

and hencefn=sn<∞.

By Lemma5, maintainingk connections incurs sending at mostp+kc packets per-round. In

addition, since|L|k
R

=0 (L andk are fixed), sending at most|L|k fine packets in the end of the

multicast session does not increase the per-round overhead. Thus,fn

R
≤p+kc.

We now discuss the case in which a noden maintains connections with more thank nodes

throughout the multicast session. Note that by Lemma5 and due to bandwidth limitations,n

cannot maintain more thanbp+kc
p
k
+2
c connections. Below, we prove that maintaining connections

with k + 1 or more nodes incurs a higher cost than maintaining connections withk nodes.

Lemma 8. Every strategy in which a noden exclusively maintains connections withk nodes (i.e.,n

communicates only with thesek nodes) throughout the multicast session incurs a lower cost than

every strategy in whichn maintains connections withj nodes throughout the multicast session,

wherej>k.

Proof. By Lemma5, if n maintains connections withk+1 or more nodes throughout the multi-

cast session, thensn

R
≥(k+1)(p

k
+2), i.e., fn

R
≥(k+1)(p

k
+2). By Lemma7, if n exclusively main-

tains connections withk nodes throughout the multicast session, thenfn

R
≤p+kc. Recall that

k2(c−2)−2k<p. Hence,p+kc<(k+1)(p
k
+2).

5.4.2 The Set of Protocol-Obedient Strategies (POSs)

We now define the set of POSs. Roughly speaking, a node that chooses a POS can choose

which connections to maintain among those allowed by the protocol, and it doesn’t communi-

cate with anyone with which it does not maintain a connection. In this section, we prove that, if all

nodes choose dominating POSs, then each node maintains connections with its initialk neighbors

throughout the entire multicast session and it receives all the multicast packets.

Definition 1 (Protocol-obedient strategy (POS)).A node’s strategy is protocol-obedientif:

POS 1. In the beginning of the multicast session,n chooses some subset of the initialk nodes given

to it by S to be connected to.

POS 2. In the beginning of every phase of every round,n chooses for each node that it is connected to

whether to disconnect from it or to remain connected to it, and moreover,n chooses whether

88

to ask S for any number of new emulated nodes to connect to as long asn does not maintain

connections with more thank emulated nodes.

POS 3.For each nodên, n communicates witĥn in some phasez of some roundt if and only ifn is

connected tôn in phasez of roundt according to the choices above, and moreover, in this

case,n maintains the connection witĥn in phasez of roundt.

POS 4.For any nodên, if n̂ does not maintain the connection withn in phasez of roundt, thenn

terminates its connection witĥn (according to the protocol) in phasez + 1 of roundt, and it

does not further communicate witĥn starting from this phase.

Note that, in particular, following the protocol (see Figure5.2) is a POS.

We believe that it is reasonable to assume that most users will run POSs, since the typical user

usually does not have the technical knowledge to modify an application code. In addition, in many

P2P applications, a node communicates with nodes whose identities are received from a centralized

server. For example, in BitTorrent, a node locates other nodes by contacting a “tracker”, which is a

centralized process that keeps track of all nodes interested in a specific file [37, 59]. Moreover, in

the next section, we prove that for each noden, if all the nodes thatn communicates with choose

POSs, thenn also chooses a POS. That is, hacking the protocol’s code cannot reducen’s cost if

neither at least one ofn’s initial neighbors also hacked the protocol’s code norn succeeds to locate

by itself identities of nodes that also hacked the protocol’s code.

Definition 2 (k-protocol-obedient strategy (k-POS)).A POS in which a node maintains exactly

k connections throughout the entire multicast session is called a k-POS.

We note that a k-POS is always feasible, since a node can always maintain connections with

k emulated nodes that will also maintain connections with it. The following lemma shows that a

k-POS is a dominating POS.

Lemma 9. A k-POS strictly dominates every POS in whichn maintains connections withj nodes,

wherej 6=k.

Proof. We first note thatn can communicate only with either the initialk neighbors given to it by

S or with up tok emulated nodes; this is sincen chooses a POS. We also note that maintaining

a connection for a bounded number of rounds cannot reducen’s cost, since from this connection

n receives a bounded number of data packets, denoted asnum, and num
R

=0. Hence, the lemma

follows from Lemmas6, 7, and8.

We next show that, if all nodes choose POSs, then a node benefits more from connections with

its originalk neighbors than from connections with emulated ones.

89

Lemma 10. Assume that (i) all nodes choose POSs; (ii) a noden maintains a connection with a

non-emulated nodên in some phasez of some roundt; and (iii) n̂ also maintains a connection

with n in phasez of roundt. Then,n does not replace its connection withn̂ with a connection with

an emulated nodee.

Proof. Recall thate’s interface is identical tôn’s interface with the following two exceptions: i)n’s

balance with respect toe is initialized to the lowest possible balance, i.e.,L; and ii) in each round,

n must send a fine packet toe, regardless of its balance with respect toe, otherwisee terminates

its connection withn. Hence, there is no difference between the data receiving rate fromn̂ and the

data receiving rate frome.

The overhead of maintaining a connection with eithern̂ or e is composed of: (i) data overhead,

(ii) gossip/request packets, and (iii) penalty packets. The gossip/request overhead is fixed. The

data sending rate toe is larger than or equal to the data sending rate ton̂, sincen’s balance with

respect toe is initialized to the lowest possible balance, i.e.,L. The penalty overhead incurred

by maintaining a connection withe is larger than or equal to the penalty overhead incurred by

maintaining a connection witĥn, since, at each round,n is required to send a penalty packet toe,

regardless of its balance with respect toe. Finally, in order to maintain a connection withe, n needs

to send a join message toS. Hence, the overhead of maintaining a connection withe is larger than

the overhead of maintaining a connection withn̂. Therefore, since there is no difference between

the data receiving rate from̂n and the data receiving rate frome, n does not replace its connection

with n̂ with a connection withe.

Theorem 1. If all nodes choose strongly dominating strategies out of the set of POSs, then every

noden exclusively maintains connections with its initialk neighbors throughout the multicast

session, and it receives all the multicast packets.

Proof. By Lemmas9 and10, n’s strategy is to exclusively maintain connections with its initial

k neighbors throughout the multicast session. By Lemma2, these connections are maintained.

Hence,n exclusively maintains connections with its initialk neighbors throughout the multicast

session. Finally, by Lemma7, n receives all the multicast packets.

5.4.3 Unilateral Defection from the Protocol

In this section, we prove that if all the nodes, except for one noden, choose a strategy out of the set

of possible POSs, thenn’s cost is minimized by choosing a k-POS. In other words, if all the nodes

choose POSs, then no node can reduce its cost by unilaterally changing its strategy to a non-POS.

Furthermore, we show that, in this case, all the nodes receive all the multicast packets.

90

Theorem 2. If all the nodes, except for one (rational) noden, choose a strategy out of the set of

possible POSs, thenn also chooses a POS.

Proof. We shall prove thatn complies with statements POS 1– POS 4, which together comprise

the definition of a POS (see Section5.4.2).

We first note that each node, includingn, complies with POS 1, since, in the beginning of

the multicast session, each node receives fromS identities ofk nodes, and each node can choose

whether to connect to each of its initialk neighbors.

Throughout the entire multicast session,n benefits nothing from sending packets to nodes that

their identities were not received fromS, since these nodes send no packets ton; this is since

these nodes choose POSs which prohibit communication with nodes whose identities were not

received fromS. In addition, we note that if a connection betweenn and one of its neighborŝn is

terminated, then̂n refuses to communicate (i.e., to send packets) withn, sincen̂ chooses a POS

which replaces a neighbor that does not maintain a connection with an emulated neighbor. Hence,

starting from the second round,n adds connections to emulated nodes only. Finally, we note thatn

cannot be connected to more thank emulated nodes, sinceSdoes not allow such a case. Therefore,

n complies with POS 2.

We note thatn does not communicate with any noden̂ is some phasez of some roundt if it

does not maintain a connection witĥn in this phase; this is sincên chooses a POS that dictates

terminating the connection withn in phasez + 1 of roundt if n does not maintain the connection

with n̂ in phasez of roundt, and thereforen benefits nothing from communication witĥn in phase

z of roundt if this communication is not according to the protocol. Hence,n complies with POS

3.

Sincen is rational, we note thatn terminates a connection with a neighborn̂ if n̂ does not

maintain the connection withn; this is sincen̂ chooses a POS, and hence eithern̂ maintains

the connection withn or it does not send any packets ton, and hencen benefits nothing from

maintaining a connection witĥn if n̂ does not maintain a connection withn. Hence,n complies

with POS 4.

Note that Theorem2 holds even if all the nodes, except forn, are not rational.

Next, we establish that hacking the protocol’s code cannot reduce a node’s cost if neither at

least one of the node’s initial neighbors also hacked the protocol’s code nor the node’s succeeds to

locate by itself identities of nodes that also hacked the protocol’s code.

Theorem 3. If all of a node’sn’s initial k neighbors are rational and choose POSs andn cannot

locate an identity of a node that does not choose a POS, thenn exclusively maintains connec-

tions with its initialk neighbors throughout the multicast session, and it receives all the multicast

packets.

91

Proof. The theorem follows directly from Theorems1 and2.

5.4.4 Choosing H

Next, we prove that each node chooses a non-negativeH parameter.

Lemma 11. Assume that a noden maintains connections withk nodes throughout the multicast

session. Assume also that some neighborn̂ of n requests fromn to send to itq≤ p
k
+c−3 data

packets in some roundr, and in the beginning of roundr, n has a negative balance ofb with

respect tôn. Then, in roundr, n sendsmin(|b|, q) data packets tôn.

Proof. We first note that, in the end of each roundt, bt(n, n̂)≥L, sincen maintains the connection

with n̂. Thus, the sending rate tôn does not affect the data receiving rate fromn̂, and hencen can

minimize its sending rate tôn in order to minimize its cost.

The per-round overhead incurred by maintaining the connection withn̂ consists of: (i) data

overhead (XR

R
), (ii) gossip/request packets, and (iii) penalty packets. The gossip/request overhead

is fixed. Hence,n tries to minimize the data and penalty overheads.

By Lemma3, XR(n,n̂)
R

= p
k
+ bR(n,n̂)

R
. The per-round data overhead is bounded from below by

p
k
+L

R
. SinceL is a constant that does not depend onR, we can neglectL

R
, i.e., assume it is zero.

The per-round penalty overhead is the percentage of rounds in which the balance is negative. Recall

that, in each round, the probability thatSwill create more that|L|k data packets in the future is1.

Hence, the overall cost is lower ifn maintains a zero balance with respect ton̂ in the end of each

round when this is possible. Therefore,n sendsmin(|b|, q) data packets tôn in roundr.

5.5 Dynamic Setting

We now describe in a nutshell a dynamic version of EquiCast, calledDEC (Dynamic EquiCast),

in which nodes can join and leave the protocol during its execution. Below, we detail only the

differences between the two versions.

Architecture

DEC is deployed on top of a dynamic overlay that supports node joins and leaves. For example,

we can use the overlay in [82], which is a dynamically maintainedk-regular graph composed ofk
2

Hamiltonian cycles.

92

The cost function

DEC’s cost function is obtained from EquiCast’s cost function by replacing the requirement to

receive all theP multicast packets with the requirement to receivem·p data packets, wherem is

the number of rounds during which the node is connected to the overlay.

A join operation

A joining noden sends ajoin message toS. Upon receiving this request,S incorporatesn into the

overlay, e.g., by insertingn betweenk
2

pairs of neighboring nodes [82]. For example, assume that

nodesn1 andn2 are connected to the overlay prior ton’s joining, andn becomesn1’s neighbor

instead ofn2. We describe howS setsn’s andn1’s incoming (neighbor balance) and outgoing

(my balance) balances with respect to each other.

Prior to incorporatingn into the overlay,Sasks bothn1 andn2 for their incoming and outgoing

balances with respect to each other. If these balances do not match, thenSdisconnects bothn1 and

n2 from the overlay by sending an appropriate message to all their neighbors. Hence, since bothn1

andn2 are rational, they could be expected to correctly report about their incoming and outgoing

balances with respect to each other.

Denoten1’s outgoing and incoming balances with respect ton2 in the end of roundt asB12

andB21, respectively. We would like to ensure thatn1’s cost will not increase due ton’s joining.

Therefore, in the beginning of roundt+1, bothn1’s outgoing balance with respect ton andn’s

incoming balance with respect ton1 are set toB12. Additionally, in the beginning of roundt+1,

bothn1’s incoming balance with respect ton andn’s outgoing balance with respect ton1 are set

to max(B21, 0). This is to ensure thatn will not pay a fine forn2’s negative outgoing balance with

respect ton1. Finally, if B21<0, thenSsends|B21| new data packets ton1, in order to ensure that it

receives at leastm·p data packets, wherem is the number of rounds during whichn1 is connected

to the overlay. Similarly, ifB12>0, thenSsendsB12 new data packets ton.

A leave operation

A leaving noden sends aleavemessage toS. Upon receiving this request,S removesn from the

overlay, e.g., by connecting each pair ofn’s neighbors with each other [82]. For example, assume

that, prior ton’s leave,n was connected to nodesn1 andn2, andn1 andn2 become neighbors after

n’s leave. We describe howSsetsn1’s andn2’s incoming and outgoing balances with respect to

each other.

Prior to leaving the overlay,n sends toS its incoming and outgoing balances with respect to

bothn1 andn2. Note thatn cannot gain anything from reporting about false balances, and hence

n could be expected to correctly report about its balances with respect ton1 andn2.

93

Denoten1’s andn2’s outgoing balances with respect ton in the end of roundt asB1n and

B2n, respectively. We would like to ensure thatn1’s andn2’s cost will not increase due ton’s

leave. Therefore, in the beginning of roundt+1, n1’s andn2’s outgoing balances with respect to

each other are set toB1n andB2n, respectively. Additionally, in order to ensure the protocol’s

correctness, in the beginning of roundt+1, n1’s andn2’s incoming balances with respect to each

other are set toB2n andB1n, respectively.

Denoten1’s andn2’s incoming balances with respect ton in the end of roundt asBn1 andBn2,

respectively. IfB2n>Bn1, thenn1 may not receivem·p data packets, wherem is the number of

rounds during whichn1 is connected to the overlay. Hence, in such a case,SsendsB2n−Bn1 new

data packets ton1. Similarly, if B1n>Bn2, thenSsendsB1n−Bn2 new data packets ton2.

Finally, a noden′ that is connected to the overlay form rounds may receive less thanm·p data

packets if it has negative incoming balances with respect to its neighbors on leave time. Hence,

after it leaves the overlay,n′ can receive up to|L|k data packets fromS in return for sendingSa

fine packet for each data packet.

94

Chapter 6

Octopus: A Fault-Tolerant and Efficient
Ad-hoc Routing Protocol

6.1 Introduction

MANETs consist of mobile wireless nodes that communicate with each other without relying on

any infrastructure. Therefore, routing in MANETs is performed by the mobile nodes themselves.

Such nodes often intermittently disconnect from the network due to signal blockage [20, 84]. Thus,

an important challenge that ad-hoc routing protocols should address is coping with such failures

(or disconnections) without incurring high overhead. Our goal is to providefault-tolerance, i.e.,

high routing reliability when many nodes frequently disconnect and reconnect, without sacrificing

efficiency in routing in large MANETs consisting of hundreds of mobile nodes.

We considerposition-based routing protocols, in which each node can determine its physical

location. Such protocols scale better than non-position-based ones [91]. Typically, the location of

each node is stored at some other nodes, which act aslocation serversfor that node [56, 91]. When

a node wishes to send packets to another node, it first issues alocation queryin order to discover the

target’s location, and thenforwardspackets to this location. In position-based protocols, reliability

is measured as the success rate of location queries [83].

Position-based protocols differ from each other mainly in how many location servers store each

node’s location [91]. E.g., in DREAM [19], each node acts as a location server for all nodes, and

in LAR [80], each node is a location server for its one-hop neighbors only. It has been argued [83]

that neither of these extreme approaches is appropriate for large networks, since they both use

flooding to disseminate either position information (DREAM) or location queries (LAR). Li et

al. [83] have proposed the Grid Location Service (GLS), which stores each node’s location at small

number of nodes. They have shown that this approach, calledall-for-some[91], achieves good

tradeoff between reliability and load: each node updates its location at small number of nodes

without flooding the network, and location queries incur a reasonable overhead. Li et al. have

95

further shown that in a small network, GLS tolerates intermittent node disconnections well [83].

However, as we show in Section6.5.4, in large networks, GLS’s fault-tolerance greatly degrades.

For example, in a grid of2.3km by 2.3km, with an average of400 nodes connected to the network

at a given time, when half the nodes intermittently disconnect and reconnect, GLS’s query success

rate is only65%; when all the nodes intermittently disconnect and reconnect, it drops to53%.

There is an inherent tradeoff between fault-tolerance and load in all-for-some protocols, since

fault-tolerance is achieved by constantly updating the location of each node at multiple location

servers, which in typical all-for-some protocols [83, 63] are far from each other (in order to allow

for quick location discovery). Thus, each node updates each of its location servers separately,

causing the load to increase with the level of redundancy. Moreover, a location update packet is

typically relayed several times before it reaches the appropriate location server, and the average

number of relays increases with the network area. In order to reduce the location update overhead,

in most all-for-some routing protocols, e.g., [83, 63], remote location servers are updated less

frequently than close ones. In Section6.5.4, we show that in large networks this approach greatly

degrades the fault-tolerance as routing often uses stale information.

In order to achieve a better tradeoff between load and fault-tolerance, we introduce a new lo-

cation update technique calledsynchronized aggregation. In this technique, each location update

packet includes the locations of several nodes and updates many location servers. Moreover, up-

dates are synchronized in the sense that only one node initiates the propagation of an aggregate

update from a given region, and hence no duplicate updates are sent. It is worth noting that such a

synchronized aggregation technique is not feasible in existing all-for-some protocols, e.g, [83, 63],

in which the locations of nearby nodes are stored at non-adjacent location servers.

In Section6.3, we present Octopus, a simple and efficient all-for-some routing protocol that

employs synchronized aggregation in order to achieve high fault-tolerance without incurring a high

load. Octopus divides the network area into horizontal and vertical strips, and stores the location

of each node at all the nodes residing in its horizontal and vertical strips. This approach naturally

supports synchronized aggregation: all the nodes in the same strip can learn each other’s loca-

tions through the propagation of exactly two location update packets along the strip. Note that this

location update technique does not require nodes to synchronize their clocks: by knowing its im-

mediate neighbors’ locations, a node can determine whether it needs to initiate a strip update. The

propagation of a strip update packet does not require synchronization at all. Since synchronized

aggregation dramatically reduces the location update overhead, Octopus can update all the location

servers at the same high frequency- at a low cost.

On the one hand, Octopus enforces higher redundancy and more freshness of location infor-

mation than previously suggested all-for-some protocols [63, 83], and hence achieves much better

fault-tolerance. On the other hand, by aggregating node locations and synchronizing their propa-

96

gation, Octopus incurs lower overhead than these protocols in typical scenarios.

Octopus has a third important advantage over most previous all-for-some protocols, e.g., [63,

83]: In Octopus, the area in which nodes reside does not need to be pre-known or fixed; it can

change at run time. This feature is crucial for rescue missions and battle field environments, in

which the borders of the network are not known in advance and are constantly changing.

Finally, the redundancy of location information in Octopus has a fourth advantage: nodes use

information they have about strip neighbors in order to improve the forwarding reliability. Hence,

we eliminate the need to maintain designated information (for example, two-hop neighbor lists as

in [83]) for improving the forwarding reliability.

In Section6.4, we analyze Octopus’s scalability: we prove that under a fixed node density, the

number of location update packets per node per seconds is constant, and the byte complexity grows

asO(
√

N) with the number of nodesN . We also analyze the probability for update and query

propagation failures in Octopus’s horizontal and vertical strips, and show that under reasonable

density assumptions, the probability for holes is very small.

In Section6.5, we evaluate Octopus’s performance using extensive ns2 simulations with up to

675 mobile nodes. Our results show that Octopus achieves high routing reliability, low overhead,

good scalability, and excellent fault-tolerance. For example, in a grid of2.3km by 2.3km with

nodes thatall intermittently disconnect and reconnect, and an average of400 connected nodes at

a given time, Octopus achieves a query success rate of95%, which is identical to the success rate

when all nodes are constantly up. We also compare Octopus to GLS, the position-based protocol

that achieved the best reliability-load tradeoff thus far. Our results indicate that in the absence of

failures, Octopus achieves slightly better reliability than GLS, at lower overhead (both packets and

bytes). In failure-prone settings, Octopus’s reliability is greatly superior to that of GLS.

6.2 System Model

The network consists of a collection of mobile nodes moving in a rectangular space. The set of

nodes can change over time as nodes connect and disconnect. The coordinates of the space can

also change over time. Each node can determine its own position, e.g., using GPS. Each node can

broadcast packets to all its neighbors within a certain radiusr called the radio range. Packets can

be lost due to MAC-level collisions or barriers.

In our simulations, we use the MAC layer provided by thens2 simulator, which simulates

packet loss in typical MANETs. As in other protocols [63, 83], a certain minimal node density

throughout the grid is required in order to ensure reliability. Thus, we assume that the number of

nodes grows proportionally with the area of the network. As in [63, 83], we assume that nodes are

uniformly distributed in the space.

97

Octopus divides the space into horizontal and vertical strips. The strip width,w, is constant

and known to all nodes. Knowingw, the zero longitude and latitude, and its current location, each

node can determine which horizontal and vertical strips it resides in at a given time. For example,

in Fig. 6.1, nodeS resides in the highlighted horizontal and vertical strips, and its radio range

neighbors are circled. Each strip has a unique identifier (of type StripID), identifying its location

relative to the global zero coordinates.

D

A

C

S
B

Figure 6.1: Node S’s neighbors and strips.
A,B, C, andD are end nodes in the highlighted
strips.

6.3 Octopus

Octopus is composed of three sub-protocols:location update, location discovery, andforwarding.

The location update protocol maintains each node’s location at its designated location servers, as

well as at its radio range neighbors. When a node wishes to send packets to another node, it first

issues alocation queryto the location discovery protocol in order to discover the target’s location,

and then uses the forwarding protocol to forward packets to this location. Sections6.3.1, 6.3.2,

and 6.3.3 present Octopus’s location update, location discovery, and forwarding sub-protocols,

respectively. The types and data structures used in the three sub-protocols are presented in Fig.6.2.

In all three sub-protocols, we use limited retransmissions in order to partially overcome packet

loss: Whenever a node A sends a packet to a node B, and B is expected to send a packet in return

(e.g., to propagate/forward the packet further or respond to a location query), node A waits to hear

the appropriate packet from B. If A does not hear B’s packet within aretransmissionstimeout, then

98

Types:
NodeID – a node identifier.
StripID – a strip identifier.
Direction – in{north= 0, south= 1, west= 2, east= 3}
Node –〈NodeIDid, Realx, Realy, Time time, StripID hid,

StripID vid, Realp x, Realp y, Timep time〉
Data structures
Nodethis – this node.
Set of Nodeneighbors, strip[4], recent locations.

Figure 6.2:Octopus’s types and data structures.

A chooses another nodeC, distinct fromB, and re-sends the packet toC. Up to two retransmission

attempts are made per packet.

6.3.1 Location Update

Octopus synchronizes location updates by having them initiated only by each strip’send nodes. A

north (south) end node is a node that has no neighbors in direction north (respectively, south) in its

vertical strip, and a west (east) end node is a one that has no neighbors to the west (respectively,

east) in its horizontal strip. For example, in Fig.6.1, A, B, C, andD are end nodes inS’s strips.

Periodically, an end node initiates a strip update packet, which propagates along the strip towards

the end node at the other side of the strip.

The location update protocol maintains two data structures at each node:neighbors– radio

range neighbors, andstrip[i] for i ∈ {north, south, west, east} – nodes residing in directioni in the

node’s strip. Each element in these sets is of type Node. As shown in Fig.6.2, this type is a tuple

including the following fields:id – the node’s identifier,x, y – the node’s last reported coordinates,

time – the time of the last received coordinates report,hid, vid – the node’s horizontal and vertical

StripIDs,p x, p y – the node’s previous coordinates, andp time – the time of the previous received

coordinates report.

Theneighborsset is updated upon receiving a short HELLO packet from another node. This

packet is broadcast by every node everyhello timeout seconds, and it contains the broadcast-

ing node’s identity and physical coordinates. If a node does not hear from some neighborn for

2hello timeout seconds, it removesn from neighbors.

The pseudo-code for maintainingstrip[*] is presented in Fig.6.3. The locations of all the nodes

in a given strip are propagated through the strip via the periodic diffusion of STRIPUPDATE pack-

ets initiated by the end nodes of the strip everystrip updatetimeout. An end node broadcasting a

STRIPUPDATE packet to directiond includes in the packet all itsneighborsthat are in the same

99

strip. A STRIPUPDATE packet also includes the strip identifier, the packet direction, and a target

node, which will forward this packet further. The target is chosen to be the farthest node in the

propagation direction.

1. loop forever
2. foreachDirectiond do
3. if (I have no neighbors in directiond) then
4. strip[d] ← ∅
5. StripID sid ← get strip id (d)
6. propagatepacket(sid, opposite direction tod)
7. sleep (stripupdatetimeout)

Event handler:
8. upon receive〈STRIPUPDATE,sid, d, set, next〉 do
9. if (sid = this.vid ∨ this.hid) then
10. strip[opposite direction tod] ← set
11. /* If I am the packet target */
12. if (this = next) then
13. propagatepacket (sid, d)

Procedures:
14. set of Nodeget nodesin strip (sid)
15. return{this} ∪ {n ∈ neighbors|n.hid = sid ∨ n.vid = sid}

16. StripID get strip id (d)
17. if d ∈ {north, south} then
18. returnthis.vid
19. returnthis.hid

20. voidpropagatepacket (sid, d)
21. set of Nodeset ← strip[opposite direction tod]

∪ get nodesin strip(sid)
22. Node next← farthest node in directiond in set
23. /* If propagation is not complete */
24. if (this 6= next) then
25. bcast〈STRIPUPDATE,sid, d, set, next〉

Figure 6.3:The strip update protocol.

Upon receiving a STRIPUPDATE packet, a node updates the appropriate entry instrip[*] . If

the node is designated as the packet target and is not the strip’s end-node, then it appends to the

packet all itsneighborsthat reside in the packet’s strip, chooses a new target, and broadcasts the

packet. The propagation of a STRIPUPDATE packet completes when it reaches an end node, i.e.,

when the farthest node in directiond is the current node (this = next). For example, in Fig.6.1, a

STRIPUPDATE packet with direction south begins at nodeC and propagates to the south-most

node of the strip,D.

100

Forwarding holes

We define aforwarding holeto be a situation in which a nodeX cannot forward a STRIPUPDATE

packet to directiond in a strips although there is another node ins that is in directiond of X.

For example, in Fig.6.1, there is a forwarding hole south of nodeB. In a typical scenario, the

probability for a forwarding hole is small (less than0.02, see Section6.4.2). Moreover, as we

describe in Section6.3.2, storing each node’s location at both the horizontal and vertical strips

quadratically decreases the probability for query failures due to forwarding holes.

Although the probability for a routing failure due to forwarding holes is small, we have imple-

mented a simple bypass mechanism in order to overcome such failures: in this mechanism, a node

that cannot forward a STRIPUPDATE packet to directiond in a strips forwards the packet to a

node that is in directiond of it and resides in an adjacent strip tos. Empirically, the additional

reliability achieved by this bypass mechanism is negligible (less than2%), since Octopus already

achieves high reliability without it. Therefore, for simplicity reasons, we present and evaluate

Octopus without the bypass mechanism.

Correctness

We now identify circumstances under which Octopus’s location update protocol achieves100%

reliability, i.e., correctly stores node locations at all of their designated location servers. We note,

however, that in the presence of failures, movements, packet loss, and uneven node distribution,

these ideal circumstances are not always achieved. Nevertheless, in Section6.5, we show that in

typical scenarios with frequent failures and movements, Octopus’s reliability is close to95%.

Lemma 12. In a run in which there are no node movements or failures and no packet loss, if the

strip widthw ≤
√

3
2

r and the bound on packet delay is less thanhello timeout, then in every seg-

ment of a strip in which there are no forwarding holes, every node eventually knows the identities

and locations of all the nodes that reside in this segment.

Proof. We first note that all the nodes’ neighbors’ sets are accurate, i.e., include exactly all the

nodes within their radio range, since there is no packet loss, the bound on packet delay is less

than hello timeout, and a node is removed from the current node’sneighborsset only if the

current node does not hear from this node for2hello timeout seconds. Therefore, after at most

2hello timeout seconds, only an end node initiates a propagation of a STRIPUPDATE packet.

Note also that in a segment of a strip with no holes, a propagation of a STRIPUPDATE packet

from one end node is guaranteed to eventually reach the other end node of the segment, since there

is no packet loss or failures.

Consider a segment of strips with no holes. Assume that the segment’s end nodeA sends a

STRIPUPDATE packetm1 to nodeB, and thenB sends a STRIPUPDATE packetm2 to node

101

C. Without loss of generality, assume thats is a horizontal strip. Consider a nodeN in s whosex

coordinate is betweenA’s andB’s, at distance∆x from A’s x coordinate. If∆x ≤ r
2
, thenN is in

A’s radio range, and hence it receivesm1. Sincew ≤
√

3
2

r andA’s neighborsset is accurate,m1

contains all the nodes ins within r
2

meters ofA in the direction ofm1, as all these nodes are within

A’s radio range (see Fig.6.4). Therefore, after receivingm1, N knows the identities and locations

of all the nodes between it andA. If ∆x > r
2
, thenN receivesm2 as it is inB’s radio range (see

Fig. 6.4). According to the protocol, sinceA’s andB’s neighborssets are accurate,m2 contains

all the nodes ins that are withinA’s andB’s radio ranges. Thus, in both cases, after the broadcast

of m2, N knows the identities and locations of all the nodes ins whosex coordinates are between

N ’s andA’s. Note that, since there are no movements or failures, and since only end nodes initiate

updates, parallel propagations of different STRIPUPDATE packets do no violate the protocol’s

correctness, as such packets contain the same information.

BA

rr

r/2r/2

w

Figure 6.4:A strip of widthw =
√

3r
2

.

By induction, we get that after propagating a STRIPUPDATE packet fromA to Z, the end

node at the other end of the segment, each node knows the identities and locations of all the nodes

in the segment between it andA. Likewise, after propagating a STRIPUPDATE packet fromZ to

A, each node knows the identities and locations of all the nodes ins between it andZ.

Although Lemma12requiresw ≤
√

3r
2

to ensure that nodes are not missed by a STRIPUPDATE

propagation, the simulations in Section6.5.1show that increasingw from
√

3r
2

to r does not hurt the

reliability, since increasingw also reduces the probability for forwarding holes (see Section6.4.2),

and hence may increase the reliability.

6.3.2 Location Discovery

The location discovery protocol uses the information stored instrip[*] andneighbors, as well as

the setrecentlocations, which is a cache of recently discovered target locations. The cache entries

expire afterstrip updateseconds. The location discovery protocol is presented in Fig.6.5.

The interface to the location discovery protocol consists of the functionlocate, which upon

success results in addition of its target to recentlocations. It first searches the target in one of

102

locate (NodeID tid)
1. Nodetarget ← searchlocally (tid)
2. if (target = null) then
3. searchlocation (this, tid, north)
4. searchlocation (this, tid, south)
5. sleep (discoverytimeout)
6. if (target /∈ recent locations) then
7. searchlocation (this, tid, west)
8. searchlocation (this, tid, east)

Event handlers:
9. upon receive〈QUERY,src, t id, d, next〉 do
10. if (next = this) then
11. Nodetarget ← searchlocally (t id)
12. if (target = null) then
13. searchlocation (src, t id, d)
14. else/* target found - send reply */
15. Directiond′ ← opposite direction tod
16. sendreply (src, target, d′)

17. uponreceive〈REPLY,src, target, d, next〉 do
18. recent locations ← recent locations ∪ {target}
19. if (next = this) then
20. sendreply (src, target, d)

Macro:
21. strip neighbors[d] , (neighbors ∩ strip[d]) ∪ {this}

Procedures:
22. Nodesearchlocally (target id)
23. if (∃n s.t. n ∈ neighbors ∪ strip[∗] ∪ recent locations
24. ∧n.id = target id) then
25. return n
26. return null

27. searchlocation (src, t id, d)
28. Nodenext ← farthest node in stripneighbors[d] in the
29. same square asthis or in an adjacent square
30. if (next 6= this) then
31. bcast〈QUERY,src, t id, d, next〉

32. sendreply (src, target, d)
33. Nodenext ← closest node tosrc in strip neighbors[d]
34. if (next 6= this) then
35. bcast〈REPLY,src, target, d, next〉

Figure 6.5:The location discovery protocol.103

the locally maintained sets (strip[*] , neighbors, andrecentlocations). If the target’s location is

not found in these sets, the protocol broadcasts two QUERY packets to the node’s north-most

and south-most neighbors in its square or in adjacent squares in its vertical strip. The recipient

of a QUERY packet continues the search in the same manner, forwarding the packet in the same

direction if needed. Once a QUERY packet reaches a node that knows the target, it broadcasts a

REPLY packet with its information about the target towards the source. Every node that receives

a REPLY packet adds the located target to itsrecentlocations. In rare cases in which no REPLY

packet is received withindiscoverytimeoutseconds, the search is repeated in the same manner in

a west-east directions.

IQ
U

E
R

Y
Q

U
E

R
YR

E
PL

Y
R

E
PL

Y

S

J T

b

a

Figure 6.6:Successful query location.

Fig. 6.6 depicts how nodeS discovers nodeT ’s location. S broadcasts QUERY packets to

the north and south. The next hop of the north-going packet isI. I fails to discoverT ’s location

locally, and forwards the packet to its north-most neighborJ . T is in J ’s strip[east]. Thus,J

broadcasts a REPLY packet containingT ’s location towardsS. This packet reachesI, which in

return broadcasts the packet toS.

Correctness

As in the previous section, we identify circumstances under which Octopus’s location discovery

service achieves100% reliability.

Lemma 13. Consider a run with no node movements, node disconnections, or packet loss, and

assume thatw ≤
√

3
2

r and the bound on packet delay is less thanhello timeout. Consider a

location query with nodesS andT as the query’s source and target, respectively. Let squarea (b)

be the intersection betweenS’s vertical (horizontal, respectively) strip andT ’s horizontal (vertical,

respectively) strip (see Fig.6.6). If there are no forwarding holes betweenS anda and between

T anda, or there are no holes betweenS and b and betweenT and b, thenS’s recentlocations

eventually includesT ’s location.

104

1. send (m, T)
2. spawn thread to runlocate(T)
3. wait until existsn ∈ recent locations s.t.n.id = T
4. forward (m, n)

5. forward (Packetp, Nodetarget)
6. updatecoordinates (target)
7. Nodenext ← closest node totarget in neighbors ∪ {this}
8. if (next = this) then
9. target′ ← closest node totarget in strip[∗]
10. updatecoordinates (target′)
11. next ← closest node totarget′ in neighbors
12. bcast〈FORWARD,p, target, next〉

Event handler:
13. uponreceive〈FORWARD,p, target, next〉 do
14. if (target = this) then
15. deliverp
16. else if(next = this) then
17. forward (p, target)

Procedure:
updatecoordinates (t)
18. Updatet.x, t.y, t.time according to the current time andt’s
19. direction of movement obtained fromt’s last two reported
20. coordinations. Store old values int.p x, t.p y, t.p time.

Figure 6.7:The forwarding protocol.

Proof. Without loss of generality, assume that there are no forwarding holes betweenS anda and

betweenT anda. Since QUERY packets never skip over squares (seesearchlocation in Fig. 6.5)

and there is no packet loss, a QUERY packet propagating along the strip reaches to some nodeN

that resides ina. By Lemma12, N knowsT ’s location. SinceN does not move or fail, it initiates

a REPLY packet. Since there are no holes or packet loss, this packet propagates back toS, andS

includesT in its recentlocationsset.

6.3.3 Data Forwarding

Fig.6.7describes the process of sending a data packetm from the current nodeS to a target nodeT .

First,S calls to the functionlocate (see Fig6.5) in a separate thread. WhenS’s recent locations

set containsT ’s location,S forwards the data packet toT using the interfaceforward of the

forwarding protocol.

Octopus employs geographic forwarding [91] in order to forward data packets to their desti-

nations. The basic version of geographic forwarding works as follows: each node has knowledge

105

of its one-hop neighbors and their locations. Each intermediate node forwards a data packet to its

neighbor that is geographically closest to the packet’s destination. This protocol is efficient, but it

may fail if an intermediate node is alocal maximum, i.e, it is closer to the destination than all of

its neighbors.

In case of a forwarding failure, Octopus chooses an alternative target,target′, which is the

closest node to the packet destination from the setsstrip[*] and forwards the packet to its neighbor

that is geographically closest totarget′. We illustrate this recovery technique in Fig.6.8, where

nodeS needs to forward a data packet to nodeT . S is closer toT than all of its radio range

neighbors.S chooses nodeE (the closest node toT from S’s strip[*]) as an alternative target, and

forwards the packet toA (S’s closest neighbor toE). Note that the packet’s ultimate destination

remains unchanged, and subsequent forwarding steps follow the basic geographic forwarding if

possible. In Section6.5, we show that this recovery technique is very effective, achieving the same

reliability as two-hop geographic forwarding as used in [83] .

T

S

AB

D

CE

Figure 6.8:Octopus’s forwarding protocol.

Since nodes continue to move while packets are en route to them, it is important to constantly

re-estimatethe target’s location. In each forwarding step, the forwarding node forwards the data

packet to the target’s estimated location. This location is calculated according to the target’s last

two reported coordinates, which are included in the Node data structure sent in REPLY and FOR-

WARD packets.

6.4 Analysis

In Section6.4.1, we analyze Octopus’s scalability, and in Section6.4.2we analyze the probability

for forwarding holes.

106

6.4.1 Scalability

The following lemma shows that the message complexity of Octopus’s location update protocol is

constant with respect to the network size.

Lemma 14. Assuming a fixed node densityρ, the per node per second packet complexity of the

location update protocol does not grow with the network size.

Proof. We first observe that the average distance that a STRIPUPDATE packet traverses each time

it is forwarded to a node that it is not at the end of a strip is independent of the network size: this

distance depends only on the radio range, the node density, and the strip width. Asymptotically,

when the grid is large, most of the nodes are not close to the ends of the grid. Hence, we neglect

the effect of the location of the forwarding node on the average propagation distance. Denote the

average propagation distance byδ.

Second, we observe that the probability for a forwarding hole at any particular point in the strip

is independent of the network size. Therefore, the average percentage of the strip in which there

are no forwarding holes is constant with respect to the network size. Denote this portion byα.

In a single iteration of the strip update protocol, the propagation of STRIPUPDATE packet(s)

along a strip with an edge length ofe requires an average ofαe
δ

transmissions in each direction.

Denoteσ = 1/strip updatetimeout. Then on average,2αeσ
δ

STRIPUPDATE packets per strip

are sent in a second. In order to obtain the average per node message complexity, we divide this

number by the expected number of nodes in a strip, which isρew, and multiply it by2 since

STRIPUPDATE packets are propagated in both horizontal and vertical strips. Therefore, on aver-

age, each node broadcasts4αeσ
δρew

= 4ασ
δρw

STRIPUPDATE packets per second, which is independent

of the network size.

In addition to STRIPUPDATE packets, the location update protocol also sends HELLO pack-

ets. Since each node broadcasts HELLO packets at a fixed frequency, the total per node per second

message complexity incurred by the location update protocol is constant with respect to the net-

work size.

The next lemma shows that the byte complexity of Octopus’s location update protocol withN

nodes isO(
√

N).

Lemma 15. Assuming a fixed node density, the per node per second byte complexity incurred by

the location update protocol withN nodes isO(
√

N).

Proof. Recall that in our model, we assume thatN nodes are uniformly distributed in the network

area. Therefore, assuming a fixed node density, when we increaseN , the network edge size,e,

increases byO(
√

N), and therefore, the number of nodes in each strip increases likeO(
√

N).

107

Thus, the number of bytes in STRIPUPDATE packets increases likeO(
√

N). The size of a

HELLO packet is constant.

From Lemma14, we get that the number of packets sent per node does not increase withN ,

and therefore the overall per node byte complexity of the location update protocol isO(
√

N).

6.4.2 Update/Query Propagation Reliability

Forwarding holes in strips may hamper Octopus’s reliability, as they may prevent location updates

from propagating in the entire strip. We now analyze the probability for forwarding holes. We

show that under reasonable density assumptions, this probability is very small, which explains

why Octopus achieves excellent reliability in the simulations below.

A forwarding hole occurs when a node has no radio range neighbors in the strip in the direction

the packet is going, i.e., when there are no nodes in the intersection between the forwarding node’s

radio range and the strip in the packet’s direction. For example, in Fig.6.9, a hole inN ’s east

direction occurs if there are no nodes in the area denoted by A. The size of this area depends onw,

r, and the node’s location relative to the strip boundaries. Without loss of generality, let us examine

a horizontal strip. Consider a node whosey coordinate is at distanced from the south boundary of

the strip. Using the equation for the area of a circular segment [1], we compute A as follows:

As(d) = r2 cos−1
(d

r

)
− d

√
r2 − d2

A (d) =
Πr2 − (As(d) + As(w − d))

2

r

As(d)

w−d

d

N

As(w−d)

A

Figure 6.9:NodeN has a forwarding hole in direction east if area A is uninhabited.

For an asymptotic analysis, we use a Poisson node distribution. Since the expected number of

nodes in an area of size A isρA, we get that the probability of no nodes residing in A is:

Prd = e−ρA(d)

108

Since this probability varies withd, in order to compute the average probability for a forwarding

hole we need to averagePrd for d’s in [0, w]. We observe thatPrd monotonically decreases when

d grows from0 to w/2 (as the area gets larger), and then symmetrically increases asd grows from

w/2 to w. The highest probability occurs whend = 0 or d = w. We compute a coarse lower bound

of the probability for holes by considering two cases: first, whend is betweenw/4 and3w/4, and

second whend is not in the middle half of the strip. We bound the probability for the first case

by looking at its minimum point, whered = w/4, and we bound the second case by looking at its

minimum point, whered = 0. We get the following:

Pr[hole] <
1

2
Prw/4 +

1

2
Pr0

When we instantiate the formula above withρ = 75, w = r = 0.25 (used in most of our

simulations), we get thatPr[hole] < 0.02. This explains why Octopus achieves high query success

rate in typical scenarios. With a strip width of0.2 = 4r
5

<
√

3r
2

, which ensures that location updates

and queries are received at all the nodes residing in segments of the strip they propagate through,

we get thatPr[hole] ≈ 0.0327. Hence, we see that two opposing tendencies affect the protocol’s

reliability: increasingw beyond
√

3r
2

reduces the probability for a forwarding hole, and hence

increases the reliability, but it also increases the probability that a location update or query will not

be received by all the nodes residing in segments of the strip it propagates through. Our simulations

in Section6.5.1show that these two strip widths achieve virtually the same reliability.

6.5 Evaluation

We now evaluate Octopus using simulations. Octopus is implemented inns2 [6] with CMU’s

wireless extensions. Each node uses the IEEE 802.11 radio and MAC model provided by the CMU

extensions, with a radio ranger of 250 meters and a throughput of1Mb
sec

. The nodes are initially

placed uniformly at random in a square universe. In most of our simulations, there are75 nodes

per square kilometer. (Li et al. [83] have experimentally shown that such a node density is required

in order to achieve high forwarding reliability.) Each node moves using the random waypoint

model used in [83]: it chooses a random destination and moves toward it with a constant speed

chosen uniformly between zero and10 m
sec

. When a node reaches its destination, it chooses a new

destination and immediately begins moving toward it at the same speed. For each set of parameters,

we run five300 seconds long simulations, and in each simulation, each node initiates an average

of one location query a minute to random destinations, starting30 seconds into the simulation, and

ending at270 seconds. In all of our experiments, the results of all the five simulations were very

close to each other. This consistency is due to the large number of events in each simulation.

109

In Section6.5.1, we discuss our choice of the protocol’s parameters. In Section6.5.2, we ex-

amine Octopus’s scalability as the number of nodes and network area increase. In Section6.5.3

we evaluate the reliability of Octopus’s forwarding sub-protocol and compare it with two-hop geo-

graphic forwarding. In Section6.5.4, we study Octopus’s fault-tolerance. Finally, in Section6.5.5,

we compare Octopus’s reliability, overhead, and fault-tolerance to those of GLS.

6.5.1 The Choice of Parameters

In the simulations reported below, each node broadcasts a HELLO packet every2 seconds, as was

done in GLS [83]. We chose this frequency in order to allow a fair comparison between the two

protocols. Nevertheless, we also ran experiments with ahello timeout of up to five seconds, and

the results were virtually identical. This occurs due to the nature of movement in the random

way point model, which allows a node to predict a neighbor’s location in the near future from the

neighbor’s last two reported coordinations.

We set thestrip updatetimeout to 10 seconds. Empirically, reducing this value, e.g., to5

seconds, results in a negligible increase in the protocol’s reliability. On the other hand, increasing

this timeout to20 seconds, decreases the reliability by5%−10%.

The retransmissionstimeoutand discoverytimeoutwere set to2 seconds each, as in other

protocols, e.g., LAR [80]. This timeout value was chosen since, in all our failure-free experiments,

more than95% of the successful queries are received at the source within two seconds from the

time they are issued. We allow up to two retransmissions per packet. Empirically, we observed

that increasing the number of retransmissions beyond two has a negligible effect of the protocol’s

reliability.

Finally, we examine the effect of the strip width on the protocol’s reliability and overhead. In

Section6.3.1, we proved that whenw ≤
√

3
2

r, location updates are guaranteed to cover all the nodes

residing in segments of the strip they propagate through. Increasingw beyond this threshold may

cause some nodes to be missed by location updates passing next to them. Nevertheless, increasing

w does not necessarily hamper Octopus’s reliability. This is so because it reduces the probability

for forwarding holes, as it increases the area of the intersection between nodes’ radio ranges and

their strips (see Section6.4.2), and thus reduces the probability that no nodes reside in this area.

Whenr = 250m,
√

3
2

r = 216m. We experiment with strip widths of200 and250 meters. In

order to ensure a fair comparison, we examine grid edge lengths that are divisible by both250 and

200. Fig. 6.10shows the query success rate as a function of the number of nodes and the grid’s

edge length for OCTOPUS-250 (wherew = 250) and OCTOPUS-200 (wherew = 200). The

95% confidence intervals for the results presented in this figure are very tight: up to±0.8% of the

average value. We see that the query success rate is very similar for both strip widths. We conclude

110

75 / 1 300 / 2 675 / 3
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Number of nodes / Grid edge length (km)

OCTOPUS−250
OCTOPUS−200

Figure 6.10: Octopus’s query success rates for
different strip widths.

that under a density of75 nodes per square kilometer, settingw = r does not reduce the reliability

compared to choosingw ≤
√

3
2

r.

75 / 1 300 / 2 675 / 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ac

ke
ts

 p
er

 n
od

e
pe

r
se

co
nd

Number of nodes / Grid edge length (km)

QUERY+REPLY
STRIP_UPDATE
HELLO

200

250

200

250

200

250

(a) packet overhead

75 / 1 300 / 2 675 / 3
0

10

20

30

40

50

60

70

80

90

100

B
yt

es
 p

er
 n

od
e

pe
r

se
co

nd

Number of nodes / Grid edge length (km)

MAC
QUERY+REPLY
STRIP_UPDATE
HELLO

200

250

200

250

200
250

(b) byte overhead

Figure 6.11:Octopus’s overhead for different strip widths.

At the same time, increasingw reduces the number of STRIPUPDATE packets sent, since

there are fewer strips. Although the size of each STRIPUPDATE packet increases as there are

more nodes in each strip, the total number of node locations sent in all STRIPUPDATE packets

does not change. Since each transmitted packet also includes a MAC header, sending the same

information in fewer packets reduces the total number of bytes sent by the protocol. Indeed,

Fig. 6.11(a) and Fig.6.11(b) show that increasing the strip width from200m to 250m reduces

111

the per node packet and byte complexities of Octopus. Fig.6.11(a) shows for each setting the

average number of packets of each type and Fig.6.11(b) shows the average number of protocol

bytes in each packet type as well as (in white) the average number of bytes in MAC headers. The

95% confidence intervals for the results presented in Fig.6.11(a) and Fig.6.11(b) are up to±0.01

packets and±0.1 bytes of the average value, respectively, indicating that the results are accurate.

Henceforth, we fix the strip width at250m.

6.5.2 Scalability

We now examine Octopus’s scalability. We first examine the impact of increasing the network size

while maintaining a fixed node density, and then focus on the effect of increasing the node density.

Increasing the network size

As the network area increases, the probability for forwarding holes in the update/query path in-

creases, and therefore, the reliability inevitably degrades. We observe that regardless of strip width

or density, this degradation is very gradual (see Fig.6.10).

Figure6.11examines the increase of Octopus’s overhead as the network size and the number

of nodes grow. Fig.6.11(a) shows that the number of location update packets sent by Octopus is

constant, matching the analysis in Section6.4.1. The overall packet overhead gradually increases

with the network size and the number of nodes. The moderate increase in the per query overhead

stems from the increased failure probability of the first discovery attempt (in the north-south direc-

tions), which leads to more cases in which locations are also searched in the east-west directions.

Nevertheless, this increase is gradual, because the failure probability is low even in large grids.

We note that similar phenomena occur in other all-for-some protocols [83, 63, 48, 117], where

the probability for query failures also increases with the network area. This, in turn, increases the

overhead due to query retries or trying alternative location servers.

Fig. 6.11(b) examines the increase in Octopus’s byte overhead as the network size and the

number of nodes grow. We note that the byte (and packet) overhead incurred by broadcasting

HELLO packets is constant with respect to the networks size. Although most of the broadcasted

packets are of type HELLO, their byte overhead is small, since these packets are very small. As

expected, the number of bytes in STRIPUPDATE packets increases with the network size (see

Section6.4.1). As explained above, the number of QUERY and REPLY packets also increases

with the network size (see Fig.6.11(a)), and hence the number of bytes in these two types of

packets also increases with the network size. However, this increase is negligible, as these packets

are very small.

112

The effect of node density

We now examine what happens when the node density increases from75 to 100 nodes per square

kilometer. Fig.6.12 shows that the query success rate remains similar. This occurs because of

two opposing tendencies: On the one hand, increasing the density reduces the probability for

forwarding holes, and thus improves reliability. On the other hand, as the node density increases,

the probability for MAC-level collisions increases, and therefore, more packets are lost, which

reduces the reliability. The95% confidence intervals for the results presented in Fig.6.12are up

to±1% of the average value.

75,100 / 1 169,225 / 1.5 300,400 / 2 469,625 / 2.5
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Number of Nodes / Grid edge length (km)

OCTOPUS−100
OCTOPUS−75

Figure 6.12: Octopus’s query success rates for
different node densities.

In Fig. 6.13(a) and Fig.6.13(b), we see that increasing the density reduces Octopus’s per

node message and byte complexity. The message complexity is reduced since the number of

STRIPUPDATE packets sent in each strip does not grow, while these packets are divided among

more nodes. Although the number of node locations sent in each STRIPUPDATE increases, send-

ing fewer packets per node reduces the MAC overhead, and the overall per node byte complexity

is therefore also reduced. The95% confidence intervals for the results presented in Fig.6.13(a)

and Fig.6.13(b) are up to±0.01 packets and±0.1 bytes of the average value, respectively.

6.5.3 Data Forwarding

In order to evaluate the reliability of Octopus’s forwarding sub-protocol, we run simulations in

which data traffic is sent. Our simulation scenario follows the one in [83]. Each node’s radio

bandwidth is2Mb
sec

. In each simulation, data traffic is generated by a number of constant bit rate

connections equal to half the number of nodes; no node is a source in more than one connection;

113

75,100 / 1 169,225 / 1.5 300,400 / 2 469,625 / 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
P

ac
ke

ts
 p

er
 n

od
e

pe
r

se
co

nd

Grid edge length / Grid edge length (km)

QUERY+REPLY
STRIP_UPDATE
HELLO

75

100

75
100

75

100

75

100

(a) packet overhead

75,100 / 1 169,225 / 1.5 300,400 / 2 469,625 / 2.5
0

10

20

30

40

50

60

70

80

90

100

B
yt

es
 p

er
 n

od
e

pe
r

se
co

nd

Number of nodes / Grid edge length (km)

MAC
QUERY+REPLY
STRIP_UPDATE
HELLO

75 100

75 100

75 100

75
100

(b) byte overhead

Figure 6.13:Octopus’s overhead for different node densities.

no node is a destination in more than three connections. Each source sends four128-byte data

packets each second for20 seconds. Each simulation lasts for300 seconds, and data packets are

sent at random times between30 and270 seconds into the simulation. All other parameters are as

in the simulations described above. We vary the number of nodes and the grid’s edge length, while

maintaining a node density of roughly75 nodes per square kilometer.

We compare the reliability of Octopus’s forwarding sub-protocol with that of two-hop geo-

graphic forwarding, which is employed, e.g., by GLS. For both protocols, target locations are

discovered using Octopus’s location discovery sub-protocol. Fig.6.14shows that the forwarding

reliability of the two protocols is virtually identical. The95% confidence intervals for the results

presented in this figure are up to±1%. We conclude that the high redundancy of Octopus’s location

information is an adequate substitute for storing dedicated information for increasing forwarding

reliability. Note that the additional overhead for maintaining the two-hop neighbor lists needed for

two-hop forwarding is substantial, and it grows with the node density.

6.5.4 Fault-Tolerance

Octopus’s main design goal was to provide high fault-tolerance in the presence of intermittently

disconnecting nodes. We now examine whether this design goal is met. To this end, we introduce

unstablenodes, which alternate between being connected and disconnected [83]. Each time an

unstable node awakens, it remains connected for a time interval chosen uniformly at random in the

range[0, 120] seconds. And when it disconnects, it remains disconnected for a time interval chosen

uniformly at random in the range[0, 60] seconds. Thus, at any given time, an average of2
3

of the

114

0 75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

0.2

0.4

0.6

0.8

1

F
or

w
ar

di
ng

 s
uc

ce
ss

 r
at

e

Number of nodes / Grid edge length (km)

OCTOPUS
TWO−HOP

Figure 6.14:Octopus’s data forwarding reliabil-
ity.

unstable nodes are connected. We experiment with a varying percentagep of unstablenodes. The

remaining nodes are connected throughout the simulation. We experiment in a fairly large grid

of 2.3km by 2.3km. In order to isolate the effect of node disconnections without impacting the

density, we fix the average number of connected nodes at a given time at400. That is, we run
400

1−p+ 2
3
p

nodes (e.g.,480 nodes whenp = 0.5). Note that although the average density of live nodes

at any given time is not reduced, it is still challenging to achieve high reliability, since part of the

global state is lost with each node disconnect, whereas new nodes connect without any location

information. Therefore, protocols that employ low redundancy, e.g., GLS, fail to achieve high

routing reliability in the face of disconnects (see Fig6.19).

Clearly, location queries for nodes that are disconnected during the location query or shortly

beforehand or afterwards are bound to fail. Likewise, nodes that disconnect shortly after issuing a

location query will inevitably not receive the query response. We therefore only take into account

queries whose target is connected during the interval[t− 10, t + 10] seconds, wheret is the query

issue time, and whose query source is connected during the interval[t, t + 10] (the same approach

was taken in [83]). Note that we only require the source and query target to remain connected–

all other nodes, including the target’s location servers and the nodes along the search path, can

disconnect at any time. A successful query location is followed by the transmission of one128-

byte data packet from the source to the target.

Fig. 6.15shows the query success rate and the overall data forwarding reliability as a function

of the percentage of unstable nodes. The95% confidence intervals for the results presented in

this figure are up to±1.4%. We see that Octopus achieves perfect fault-tolerance: its query and

115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Q
ue

ry
 s

uc
ce

ss
 r

at
e

an
d

fo
rw

ar
di

ng
 r

el
ia

bi
lit

y

Fraction of stable nodes

QUERY SUCCESS RATE
FORWARDING RELIABILITY

Figure 6.15:Octopus’s fault-tolerance: query success rate and data forwarding reliability are vir-
tually unaffected by the percentage of the unstable nodes.

forwarding success rates do not degrade at all as we increase the percentage of unstable nodes.

This impressive fault-tolerance is achieved thanks to the high level of redundancy in Octopus, and

the freshness of the redundant information: Consider a sourceS issuing a query for a targetT . The

query succeeds when it reaches a location server in the intersection ofS andT ’s strips. There are at

least two such squares (one inS’s horizontal strip, and one in its vertical strip). Every10 seconds,

T ’s location is stored at all the nodes residing in these two squares (sincestrip updatetimeout

is 10 seconds). Assuming there are no forwarding holes, as long as one of the nodes in these

squares remains connected during the10 seconds interval, the query should be successful. When

the node density is75, the average population of these two squares is9.375 nodes. Even when all

the nodes in the network are unstable, the probability of all these nodes failing within10 seconds is

negligible. Note also that the probability for holes does not increase when nodes are unstable, since

the average node density is fixed. Therefore, Octopus’s forwarding reliability does not degrade as

we increase the percentage of unstable nodes. This is due to the fact that forwarding failures

mainly occur due to holes. In addition, forwarding failures due to node disconnections are usually

overcome using retransmissions to alternative nodes.

6.5.5 Comparison with GLS

We now compare the reliability, overhead, and fault-tolerance of Octopus to those of GLS. We

use the ns2 implementation of GLS from MIT [4]. In these experiments, we use the grid sizes

and densities from GLS’s original evaluation [83], with one exception: in the smallest grid (1km

by 1km) we place75 nodes instead of100 in order to maintain a similar node density of roughly

116

75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Number of nodes / Grid edge length (km)

OCTOPUS
GLS−100
GLS−200

Figure 6.16:Octopus versus GLS: query success
rates.

75 nodes per square kilometer in all grid sizes. Note that these scenarios are not optimized for

Octopus, since most of the grid edge sizes are not multiples of Octopus’s strip width (250m).

Fig. 6.16shows the query success rates of Octopus and GLS. The95% confidence intervals for

the results presented in this figure are up to±0.8%. GLS-100 and GLS-200 are GLS simulations

with a location update threshold of100m and200m, respectively. In GLS-d, a node updates its

order-i location servers after each movement of2i−2d meters. We see that with either threshold,

Octopus achieves similar reliability to GLS in a small network, and better reliability than GLS

in medium and large networks. Octopus’s advantage is most notable in the largest grid, where

Octopus’s reliability is roughly4% and7% higher than GLS-100’s and GLS-200’s, respectively.

The reliability gap between Octopus and GLS increases with the grid size because of the lower

freshness of location information stored at GLS’s remote location servers. Whereas in Octopus,

a node updates all its location servers at the same high frequency (every10 seconds), in GLS,

the average frequency at which a node updates its location servers grows with the grid size. For

example, in the2.9km by 2.9km grid, a GLS-100 node updates its order-4 location servers only

after moving400 meters, and its order-5 location servers after a movement of800 meters. Thus, a

node moving at the average speed (5 m
sec

) updates its order-4 (order-5) location servers only every

80 (respectively,160) seconds.

Fig. 6.17compares Octopus’s overhead to that of GLS. The95% confidence intervals for the

results presented in Fig.6.17(a) and Fig.6.17(b) are up to±0.01 packets and0.1 bytes, respec-

tively. We observe that thanks to aggregation, Octopus sends a smaller number of packets than

GLS. Moreover, as the network size grows, GLS’s packet overhead increases drastically, while

Octopus’s packet overhead increases very moderately. This occurs since, as opposed to Octopus,

117

75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

0.5

1

1.5

2

2.5
P

ac
ke

ts
 p

er
 n

od
e

pe
r

se
co

nd

Number of nodes / Grid edge length (km)

OCTOPUS
GLS−200
GLS−100

(a) packet overhead

75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

20

40

60

80

100

120

B
yt

es
 p

er
 n

od
e

pe
r

se
co

nd

Number of nodes / Grid edge length (km)

OCTOPUS
GLS−200
GLS−100
MAC

(b) byte overhead

Figure 6.17:Octopus versus GLS: overhead.

GLS does not employ aggregation, and hence the number of location servers each node needs

to update grows with the network size. In addition, the average distance between a node and its

location servers also grows with the network size. Although Octopus’s location update packets

are larger than GLS’s, by sending fewer packets, Octopus reduces the number of bytes sent in

MAC-level headers. Therefore, overall, Octopus’s byte complexity is smaller than GLS’s (see

Fig. 6.17(b)). Although GLS’s overhead appears to grow more moderately in large networks, this

is simply because its reliability drops more sharply in such settings: e.g., in a2.9km by 2.9km

grid, GLS’s reliability drops to only85%, and therefore many location update and query packets

do not reach their destinations, and are hence relayed less times than needed.

Next, we consider simulations with data traffic. In Section6.5.3, we showed that the reliability

of Octopus’s forwarding sub-protocol is similar to the reliability achieved by the two-hop geo-

graphic forwarding protocol employed by GLS. We now compare their overhead. We measure the

total (data and protocol) packet overhead incurred by both protocols in the simulation scenario of

Section6.5.3. Fig.6.18shows the average per node per second number of packets sent by Octopus

and the more efficient version of GLS, GLS-200. The 95% confidence intervals for the results

presented this figure are up to±0.01 packets. We do not measure the byte overhead, because it

is dominated by the data traffic. As the figure shows, Octopus sends fewer packets than GLS. In

addition, Octopus’s overhead grows more moderately with the network size than GLS’s overhead.

Finally, Octopus’s greatest advantage over GLS is its fault-tolerance. In Fig.6.19, we contrast

Octopus’s fault-tolerance against that of the more reliable version of GLS, GLS-100. The 95%

confidence intervals for the results presented in both of these figures are up to±1.4%. As explained

in Section6.5.4, we experiment with an average of400 connected nodes at a time, on a2.3km by

118

75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0

0.5

1

1.5

2

2.5

3

D
at

a
an

d
pr

ot
oc

ol
 p

ac
ke

ts
 p

er
 n

od
e

pe
r

se
co

nd

Number of nodes / Grid edge length (km)

OCTOPUS
GLS−200

Figure 6.18:Octopus versus GLS: data and pro-
tocol packets sent.

2.3km grid. Whereas Octopus’s reliability does not degrade when the percentage of unstable nodes

increases, GLS’s reliability greatly degrades with the number of unstable nodes: when50% of the

nodes are unstable, GLS’s query success rate goes down to less than65%, and when all the nodes

are unstable, it drops to less than53%. GLS is less fault-tolerant than Octopus for two reasons:

first, GLS employs less redundancy, and second, in GLS, it takes reconnecting nodes a long time

to update their remote location servers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Q
ue

ry
 s

uc
ce

ss
 r

at
e

an
d

fo
rw

ar
di

ng
 r

el
ia

bi
lit

y

Fraction of stable nodes

OCTOPUS: QUERY SUCCESS RATE
OCTOPUS: FORWARDING RELIABILITY
GLS: QUERY SUCCESS RATE
GLS: FORWARDING RELIABILITY

Figure 6.19:Octopus versus GLS: fault-tolerance.

119

Chapter 7

Evaluating Unstructured P2P Lookup
Overlays

7.1 Introduction

In unstructured P2P lookup systems, peers self organize into unstructured overlay networks. Ex-

amples to such systems include eMule, Freenet, and Gnutella. Unstructured lookup systems in-

cur small constant overhead per single join or leave operation, and can easily support keyword

searches. Chawathe et al. [34] have argued that these two features of unstructured lookup systems

are highly important, as users frequently join and leave lookup sessions, and keyword searches are

more popular than exact-match queries. Indeed, most of the currently deployed lookup systems

are unstructured ones.

In unstructured lookup systems, the search is not structural and may fail. However, queries

usually succeed in locating files due to natural file redundancy [34], that is, popular files are held

by many nodes. Most unstructured P2P lookup systems and some partially-structured ones employ

flooding in order to locate a searched object, at least among a subset of the nodes, e.g., super-peers

in KaZaA. Due to the natural file redundancy, it is usually enough to limitedly flood the network

in order to locate a searched object [87]. The main reason for using flooding is due to the high

search reliability achieved by it. Nevertheless, as with all other search techniques, the dependabil-

ity of flood-based search depends on the robustness of the overlay: in a highly connected overlay,

flooding achieves high reliability, even in dynamic failure-prone environments, whereas in a dis-

connected overlay, it may fail to locate an object that is stored in the system. Flooding also incurs

low latency, and can locate many copies of a searched object. However, flooding is also inefficient,

as it creates a high number of duplicate search messages, i.e., multiple copies of a query may be

sent to a given node by its multiple neighbors. Another problem with flooding is the difficulty to

choose the appropriate TTL (Time-To-Live), which controls the flooding propagation. A high TTL

achieves high search reliability but also incurs high overhead. The flooding effectiveness versus

120

the overhead it incurs mainly depends on characteristics of the overlay. These characteristics also

determine how the flooding overhead is distributed among the different nodes, and the overlay’s

dependability. In this chapter, we define metrics capturing the above important overlay features

and evaluate a number of overlays according to these metrics.

Our first metric,c, is the overlay’s connectivity, i.e., the minimal number of disjoint paths

between a pair of nodes in the overlay. This metric measures the overlay’s fault-tolerance in the

presence of node failures and disconnections, and hence captures the search dependability.

The second metric,fe (flooding efficiency), evaluates the flooding coverage versus the overhead

it incurs. Assume a queryq is propagated from a random node with a TTL ofi. Then,fe(i) is

defined asNi

Mi
, whereNi is the expected number of nodes that receivesq andMi is the expected

number of copies ofq that are sent. A highfe value implies a small number of duplicates, and

hence high efficiency.

The third metric,cg (coverage granularity), measures the difference in the coverage when

increasing the TTL by one. A smallcg allows one to build an adaptive dependable lookup system

that adjusts to varying failure rates, where faults include node and link failures. For example, ifcg

is small, increasing the TTL by one upon multiple query failures will increase the search reliability

at the expense of a slightly higher overhead. Likewise, reducing the TTL by one upon succeeding

to locate many copies of searched objects will result in overhead reduction while achieving similar

search reliability. For a given TTLi, we definedcg(i)as Ni+1

Ni
, whereNi is as defined above.

Our final metric,lb (load balancing), evaluates how the flooding overhead is distributed among

the nodes. Assume a query is initiated from a random node with a certain TTL. In a random overlay,

the probability that a random node is requested to forward this query to its neighbors is proportional

to the node’s degree. Therefore, it is desirable that overlays would be degree-balanced, in order

to incur similar overhead on all nodes. This is becoming more important now, as many ISPs have

started to limit the maximal bandwidth consumption of every user. For random overlays, we define

lb as dmax

dmin
, wheredmax (dmin) is the maximal (minimal, respectively) node degree.

We evaluate different graphs and overlays according to the above four metrics. We start by

evaluating a Gnutella graph, which is a typical file sharing application graph. We proceed by

applying our metrics on several synthetic graph structures, including a power law graph, normal

random graphs, and a3-regular random graph (ak-regular random graphwith N nodes is a graph

chosen uniformly at random from the set ofk-regular graphs withN nodes). Finally, we evaluate

an Araneola’s overlay [93], which is a distributed approximation of ak-regular random graph. Our

results show that a3-regular random graph and a3-Araneola overlay achieve the best (virtually

identical) results.

In addition, we examine the join overhead in each of the graphs mentioned above. We observe

that a Gnutella graph and an Araneola overlay incur the lowest construction and maintenance

121

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

#l
in

ks
 (

lo
g

sc
al

e)

#nodes (log scale)

Gnutella Graph

(a) A Gnutella-like graph.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

#l
in

ks
 (

lo
g

sc
al

e)

#nodes (log scale)

Power−Law Graph

(b) A power-law random graph.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

#l
in

ks

#nodes

Normal Random Graph p=1/2000

(c) A normal random graph,p = 3
20000

.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

#l
in

ks

#nodes

Normal Random Graph p=3/20000

(d) A normal random graph,p = 1
2000

.

Figure 7.1:Distribution of node degrees in four graphs. Note that we use log scale for the power-
law random and Gnutella graphs, while for the normal random graphs we use a linear scale.

overhead: in these two graphs structures, each join (or leave) operation is handled locally and

entails the sending of a small constant number of messages. In normal random graph constructions,

a join or leave operation is also handled locally, though such operation incurs sendingO(log N)

messages, whereN is the number of nodes in the system. In a power law graph, some nodes

have a high degree, proportional to N, and hence joining/leaving of such nodes inevitably entails

high overhead. In contrast to the above four graph structures, there are no known distributed

constructions ofk-regular random graphs. Therefore, with this graph structure, a single join or

leave operation requires reconstructing the graph anew, and hence leads to an overhead ofΩ(N)

messages.

This chapter proceeds as follows: In Section7.2, we describe in detail the tested graphs, and in

Section7.3we evaluate these graphs according to our metrics. Finally, in Section7.4, we analyze

the join cost in each of the graphs.

122

7.2 The Evaluated Overlays

In our study, we use six undirected graph topologies. In all of the graphs, there are10, 000 nodes.

We start with a Gnutella-like graph. This graph was constructed using a node degree distribution

of a real Gnutella graph taken from [106]. In order to allow a fair comparison among all the six

topologies, we extrapolated the data from [106] in order to create a10, 000 node graph. We kept an

average of3.4 links per-node as in [106], and a node degree distribution similar to the one in [106].

In such a graph, there is a small number of highly-connected nodes, with100 or more links, and

the majority of the nodes have a degree between3 and10. Similar characteristics also occur in

other P2P file sharing applications [34, 51]. Fig 7.1(a) shows the node degree distribution of the

Gnutella-like graph. We compare this graph with a power-law random graph. In this graph, the

ith node choosesw
iα

other nodes as its neighbors, wherew = 500, α = 0.8, and1 ≤ i ≤ 10, 000.

We use this setting in order to achieve an average node degree of3.4 links per-node, as in the

Gnutella-like graph. Fig7.1(b) shows the node degree distribution of this graph.

Next, we use two normal random graphs, one withp = 3
20,000

and the second withp = 1
2000

,

in which a node creates a connection with a given other node with a probability of3
20,000

and
1

2,000
, (respectively). The resulting average node degrees are3 and 10, (respectively). We use

the first normal random graph in order to allow a fair comparison with the previous two graphs.

However, since such a graph is not connected (a normal random graph is connected if and only

if p = O(log N) [26]), we also use the second connected normal random graph. Fig7.1(c) and

Fig 7.1(d) show the node degree distributions of these two graphs.

Next, we use a3-regular random graph, in which each node is connected to three other random

nodes. Finally, we use a3-Araneola overlay [93], in which roughly90% of the nodes have a degree

of 3, while the rest have a degree of4, leading to an average node degree of roughly3.1.

7.3 The Metrics

7.3.1 Connectivity

Table7.1 presents the connectivity of the different graphs. Ak-regular random graph and ak-

Araneola graph are almost alwaysk connected [93, 122]. Therefore, such graphs achieve high

dependability even with high failure-rates, (includes node and link failures). A normal random

graph is connected with high probability ifp is at least logarithmic in the number of nodes [26].

Therefore, the first normal random graph is disconnected (connectivity 0). The second one has a

connectivity of1. The power-law random graph and the Gnutella-like graph have a connectivity of

1, as several nodes in these graphs have a degree of1. Such nodes are very likely to be disconnected

from the overlay graph. For a given number of links, we observe that a3-regular random graph

123

Graph Connectivity

3-regular random graph 3
3-Araneola overlay 3

Normal random graph(p = 3
20,000

) 0

Normal random graph(p = 1
2,000

) 1

Gnutella-like graph 1
Power-law random graph 1

Table 7.1:Connectivity: A3-regular random graph and a3-Araneola overlay has a connectivity of
3. The rest of the graphs have a connectivity of1 or 0.

and a3-Araneola overlay achieve much higher connectivity than a Gnutella graph, a power-law

random graph, and normal random graphs, due to their regular structure. In fact, a3-regular

random graph and a3-Araneola overlay, in which the average node degree is roughly3, achieve

higher connectivity than a normal random graph with an average node degree of10.

7.3.2 Flooding Efficiency

We now evaluate the flooding efficiency in all the graphs except the normal random graph with

p = 3
20,000

, as this graph is not connected. For each graph, we run the flooding protocol10, 000

times, one time from each node, and we calculated the average flooding efficiency. We report about

our results in Fig.7.2, and Fig.7.3shows the coverage achieved with each TTL.

In a power-law random graph and in a Gnutella-like graph, starting from a TTL of4, the

flooding efficiency, i.e., the coverage divided by the overhead, is poor. This is due to the presence of

high-degree nodes in both of the graphs, which create and receive many duplicate search messages.

A similar phenomenon occurs in the normal random graph withp = 1
2,000

, as the degrees in such a

graph range from1 to 23. In contrast, in low degree balanced graphs such as a3-Araneola overlay

and a3-regular random graph, the flooding efficiency is very high. For small TTLs (≤ 8), the

flooding efficiency of the3-regular random graph and the3-Araneola overlay is very close to one.

Hence, for such TTLs, flooding is as efficient as random walks. Fig.7.3shows that with a TTL of

7/8/9, flooding over a3-Araneola overlay and a3-regular random graph reaches, on average, to

485/989/1957 (roughly 4.85%/9.9%/20%) and376/739/1424 (roughly 3.8%/7.4%/14%) nodes,

respectively. Therefore, with a3-Araneola overlay and a3-regular random graph, it is possible to

reach any desired portion of the nodes efficiently; this is thanks to their good coverage granularity,

as discussed in the next section.

124

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

flo
od

in
g

ef
fic

ie
nc

y
(f

e(
i))

i

3−regular random
3−Araneola
Gnutella
Power−law random
Normal random

Figure 7.2: Flooding efficiency: for effective TTLs, a3-Araneola overlay and a3-regular ran-
dom graph achieve a near to perfect search efficiency. Other graphs achieve much lower search
efficiency.

7.3.3 The Coverage Granularity

Recall thatcg(i) is defined asNi+1

Ni
, whereNi is the expected number of nodes that receive a

query that originates from a random node with a TTL ofi. Fig. 7.4 showscg(i) for the five

graphs evaluated in the previous section. As the figure shows, a3-Araneola overlay and a3-regular

random graph have a low (virtually identical)cg(i) value for all TTLs. In addition, in these two

graphs,cg(i) is very similar for all the TTLs. This is due to the fact thatk-regular random graphs

are good expanders. Therefore, in these two graphs, one can adapt the search dependability and

overhead according to the failure rate. In contrast, in the rest of the graphs,cg(i) is very high for

small (effective) TTLs and low for high (ineffective) TTLs. In addition, in these graphs, the low

coverage granularity is achieved only when the flooding efficiency is poor (see Section7.3.2).

7.3.4 Load Balancing

It is desirable that the flooding overhead would be distributed equally among all nodes. Recall that

for a random overlay, we define the load balancing (lb) as dmax

dmin
, wheredmax (dmin) is the maximal

(minimal, respectively) node degree. In the normal random graph withp = 3
20,000

, we ignore nodes

with degree0, as they are not connected to the overlay. Table7.2shows thelb value of the different

graphs. The3-regular random graph achieves perfect load balancing, i.e.,1. Next, the3-Araneola

overlay achieves excellent load-balancing:4
3
. The two normal random graphs havelb values of

125

0 2 4 6 8 10 12 14 16 18
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

co
ve

ra
ge

 (
#n

od
es

)

TTL

Normal random
Power−law random
Gnutella
3−Araneola
3−regular random

Figure 7.3:Coverage versus TTL.

Graph lb = dmax

dmin

3-regular random graph 1
3-Araneola overlay 4/3

Normal random graph(p = 3
20,000

) 14/1

Normal random graph(p = 1
2,000

) 23/1

Gnutella-like graph 103/1
Power-law random graph 502/1

Table 7.2: Load balancing: a3-regular random graph achieves perfect load balancing of1. A
3-Araneola overlay achieves a good load balancing of4

3
. The rest of the graphs achieves poor load

balancing.

14
1

and 23
1

. In such graphs, assuming queries are distributed uniformly, the overhead incurred on a

highly-connected node may beO(log N) times the overhead incurred on a low-connected node, as

in such graphs a connected node’s degree is between1 andO(log N). In the Gnutella-like graph

and the power-law random graph the load balance is even worse, as the overhead incurred on a

highly-connected node can be two orders of magnitude greater than the overhead incurred on a

low-connected node.

7.4 The Join Cost

The results of Section7.3have shown that the3-regular random graph and the3-Araneola overlay

are the best overlays among the tested graphs. We now examine the cost/feasibility of distributed

126

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

co
ve

ra
ge

 g
ra

nu
la

rit
y

(c
g(

i))

i

Power−Law Random
Gnutella
Normal Random
3−Araneola
3−Regular Random

Figure 7.4:Coverage granularity: a3-Araneola overlay and a3-regular random graph achieve a
goodcg value for all TTLs. In the rest of the graphs,cg(i) is very high for small (effective) TTLs
and low for high (ineffective) TTLs, in which the flooding efficiency is poor.

constructions of the tested graphs. Specifically, we examine the join overhead in each of the graphs.

We evaluate this overhead in two ways. We first assume the existence of a membership service that

maintains at each node a small number of random node identities. Examples to such scalable

membership services can be found in [41, 93]. Next, we evaluate the join overhead without relying

on the existence of a membership service. In this case, we assume that a joining node knows the

identity of some other node that is currently in the system. We assume, however, in this case that

a random walk ofO(log N) steps from a given node reaches a random node. Law et al. [82] have

shown that this assumption is true for expander graphs. Note that a scalable membership service

amortizes the logarithmic cost of knowing a random node by aggregating membership information,

and hence it is more efficient than a random walk for retrieving random node identities.

Table7.3shows the join cost for each graph in both cases. In a3-Araneola overlay, a join op-

eration requires sending3k = 9 messages, assuming the existence of a membership service. In the

absence of such a service, connecting to a random node requires sendingO(3+log N) = O(log N)

messages. In a Gnutella graph, the overheads are similar to the overheads above. However, for a

high degree node, i.e., one that has100 or more links, the leave overhead is very high, as such a

node is connected to many other nodes.

In a normal random graph and in a power-law random graph, given a membership service, the

join cost is the node’s degree. In a connected normal random graph this degree is logarithmic in the

number of nodes in the system, and in a power-law random graph a node’s degree can beO(N).

127

Graph The join cost
(with membership service)

3-Araneola overlay 9
Gnutella-like graph constant

Normal random graph O(log N)
Power-law random graph O(N)
3-regular random graph Ω(N)

Graph The join cost
(without membership service)

3-Araneola overlay O(log N)
Gnutella-like graph O(log N)

Normal random graph O(log2 N)
Power-law random graph Ω(N)
3-regular random graph Ω(N)

Table 7.3:The join cost: A3-Araneola overlay achieves the lowest join cost.

Therefore, assuming the existence of a membership service, the joining overhead in a (connected)

normal random graph and in a power-law random graph isO(log N) and O(N), respectively.

In the absence of a membership service, these overheads need to be multiple byO(log N), the

overhead for retrieving a random node. Finally, in ak-regular random graph, since no distributed

constructions of such a graph are known, a join operation requires the reconstruction of the entire

graph, leading to a prohibitive overhead ofΩ(N) messages.

128

Chapter 8

Discussion, Results, and Conclusions

P2P systems achieve high scalability and robustness, and can be easily deployed. Hence, P2P

computing is a promising architecture for deploying distributed services. However, in order to

realize their full potential, P2P systems need to cope better with real-world problems like failures,

dynamic behavior, and selfishness. This dissertation has addressed these problems in two different

network settings: over the Internet and in MANETs. Although there are substantial differences

between these settings, we have seen that similar considerations and challenges arise in both.

Below, we review the challenges in P2P computing we have studied in this dissertation, and our

solutions to these challenges.

Fault-tolerance. Conventional wisdom suggests that failures are overcome using redundancy.

The challenge is doing so without creating unreasonably high load. We have presented techniques

for providing redundancy at a lower cost than previous work, thanks to the use of an optimal

overlay structure (in Araneola, as shown in Chapter4) and aggregation (in Octopus, as shown in

Chapter6).

Dynamic behavior. Dynamic behavior further emphasizes the need for allowing fast low-overhead

incorporation into the system. Araneola quickly incorporates joining nodes and removes leaving

(or failing) ones thanks to the use of an unstructured overlay network: in Araneola, a joining

node not only receives all the messages sent after its creation, but actually receives100% of the

messages sent up to6 rounds before its join. In addition, each join, leave, or failure is handled

locally, and entails the sending of only about3k messages in total, independent of the number of

nodes. Octopus achieves perfect fault-tolerance to node connections and disconnections thanks to

employing high level of redundancy, as well as the freshness of the redundant information. This

fault-tolerance is achieved without incurring high overhead thanks to aggregating node locations

and synchronizing their propagation.

129

Selfishness. P2P networks suffer from the problem of “freeloaders”, i.e., users who consume

resources without contributing anything in return. EquiCast enforces cooperation through two

mechanisms. The first is amonitoring mechanism, whereby each node monitors the sending rate

of each of its neighbors. The second mechanism is a per-linkpenalty mechanism, which further

motivates nodes to adhere to the expected link throughput.

We now review the main results in each chapter.

8.1 Results of Chapter4, Araneola: A Scalable Reliable Multi-
cast System for Dynamic Environments

In Chapter4, we have presented Araneola, a scalable reliable multi-point to multi-point application-

level multicast system for dynamic environments. We have evaluated Araneola over both a LAN

and a WAN, and have shown that Araneola is scalable. The only aspect of Araneola that varies

with the number of nodes is message latency, which increases logarithmically with the group size,

whereas Araneola’s load, reliability, resilience to message loss, resilience to simultaneous node

failures, and overhead for handling join and leave events are all independent of the group size.

Araneola can deliver messages with high reliability and predictable latency in the presence of siz-

able message loss rates, simultaneous failures of a certain percentage of the nodes, and high churn.

The failure rates that Araneola can withstand depend on a tunable parameter, L. As the failure rate

increases beyond its expectation, Araneola’s reliability degrades gracefully. We have also shown

how to extend Araneola to exploit available bandwidth for communication with nearby nodes.

Such an approach substantially reduces the communication costs and message latency without

hurting the overlay’s robustness to random failures.

Recall that we have set the following design goals for Araneola:

• High reliability –100% reliability as long as the failure and message loss rates do not exceed

certain configurable thresholds, and graceful degradation in the face of increasing failure

rates. The reliability should be independent of the number of nodes, i.e., Araneola should

withstand a certain failure rate independently of the number of nodes in the system.

• Low latency, increasing at most likeO(log N); the latency should remain low while multiple

nodes are joining and leaving (or failing).

• Low constant load on each node, as well as low constant cost for handling joins and failures.

• Quick failure recovery and prompt incorporation of joining nodes.

We now show that all these design goals are met.

130

8.1.1 High Reliability and Fault-Tolerance

Araneola achieves high reliability and fault-tolerance by constructing a richly-connected overlay

and disseminating pertinent information on multipledisjointpaths in this overlay. In Section4.4.2,

we studied the fault-tolerance and robustness of the Araneola overlay by removing random subsets

of edges and nodes from the overlay graph and analyzing the resulting graphs. This allows us to

predict Araneola’s reliability and latency in the presence of message loss (in case of edge removals)

and node failures (in case of node removals).

Our analysis has shown that Araneola achieves high fault-tolerance to node and link failures

(see Figures4.6(a), 4.7, 4.8(a), and4.9). This fault-tolerance isindependentof the number of

nodes. Araneola’s overlay becomes partitioned only if at least11% of the nodes or the edges

are randomly removed from the overlay graph. Moreover, remarkably, for L= 5, after a random

removal of roughly40% of the edges or the nodes,99% of the remaining nodes are still connected

to each other, and only1% of the remaining nodes are partitioned from the rest. Finally, the overlay

exhibits graceful degradation: as the failure rate increases, the diameter and average path length

increase moderately, while the average number of disjoint paths moderately decreases.

8.1.2 Low Latency with High Churn

In Figure4.15(a), we have shown that, in static setting, the message latency grow logarithmically

with the number of nodes. Moreover, the message latency does not increase with the churn rate.

As Figure4.17shows, in dynamic settings, each multicast message was received by100% of the

nodes that were up during its transmission, and messages were delivered withthe same latency as

in static runs. That is, Araneola provides an undisrupted service to nodes that are up despite high

churn rates exceeding the ones measured over the Internet and over the Mbone.

8.1.3 Low Constant Load on Each Node, as Well as Low Constant Cost for
Handling Joins and Failures

Each Araneola’s node communicates only with either L or L+1 nodes (its overlay neighbors).

Hence, Araneola incurs aconstantload on each node, regardless of the number of nodes. Araneola

also incorporates joining nodes and removes leaving (or failing) ones with a lowconstantoverhead

thanks to the use of an unstructured overlay network. In Section4.3.3, we calculated the join and

leave overheads for the simple case where a single join or leave, respectively, occurs when the

system is stable, i.e., each node’s degree is either L or L+1, and no two neighboring nodes have

a degree of L+1. We have shown that these overheads are small and independent of the number

of nodes. We have also verified our analysis through dynamic experiments, in which nodes join

131

and leave the overlay. Our empirical results, which are close to our analysis, have shown that each

join or leave operation incurs the sending of only about3k messages in total, independent of the

number of nodes.

8.1.4 Quick Failure Recovery and Prompt Incorporation of Joining Nodes

Araneola quickly incorporates joining nodes and removing leaving (failing) ones thanks to the use

of an unstructured overlay network, in which nodes join the overlay according to some loose con-

straints. In Section4.7.2, we evaluated how fast Araneola allows joining nodes to begin receiving

messages reliably. Our measurements have shown that a joining node not only receives all the

messages sent after its creation, but actually receives100% of the messages sent up to6 rounds

before its join.

8.2 Results of Chapter5, EquiCast: Scalable Multicast with
Selfish Users

In Chapter5, we have introduced EquiCast, a P2P multicast protocol for selfish environments. We

treated the problem of freeloading from a game theoretic perspective, and modeled the system as

a non-cooperative game. In such a game, nodes are selfish butrational, i.e., each user chooses

its own strategyregarding its level of cooperation so as to minimize its own cost [46]. More

specifically, the goal of each node is to receive all the multicast packets while minimizing its

sending rate.

We defined a special set ofprotocol-obedient strategies (POSs). Generally speaking, a strategy

out of this set allows a node to determine how many connections to maintain and how many pack-

ets to send on each connection though it does not allow users to hack the protocol’s code or assume

that others do so. In Theorem1, we have proved that, in EquiCast, if all nodes choose strongly

dominating strategies out of the set of POSs, then every node exclusively maintains connections

with its initial k neighbors throughout the multicast session, and it receives all the multicast pack-

ets. In this case, EquiCast incurs a constant load on each node, and hence it can support large

groups of users.

In Theorem2, we have proved that if all the nodes, except for one (rational) noden, choose a

strategy out of the set of possible POSs, thenn also chooses a POS.

In Theorem3, we have proved that if all of a node’sn’s initial k neighbors are rational and

choose POSs andn cannot locate an identity of a node that does not choose a POS, thenn exclu-

sively maintains connections with its initialk neighbors throughout the multicast session, and it

receives all the multicast packets. That is, unilateral hacking of the protocol’s code cannot reduce

132

a node’s cost.

Finally, we have described a dynamic version of EquiCast, which supports node joins and

leaves. We are unaware of any previous P2P multicast protocol that has been shown to enforce

cooperation in environments in which all the nodes are selfish.

8.3 Results of Chapter6, Octopus: A Fault-Tolerant and Effi-
cient Ad-hoc Routing Protocol

In Chapter6, we have presented Octopus, a simple, fault-tolerant, and efficient routing protocol for

large MANETs, which supports movement of the area in which nodes are located. We have proven

Octopus’s scalability: in Octopus, as opposed to other ad-hoc routing protocols, e.g., [63, 83], the

number of location update packets does not increase with the network size. The number of bytes in

such packets grows likeO(
√

N) with the number of nodesN (and the network size). Empirically,

this constitutes a smaller increase in the overhead than exhibited by previous protocols, e.g., [63,

83].

We have conducted thorough empirical evaluation of Octopus using the ns2 simulator with

up to 675 mobile nodes. Our extensive simulations have shown Octopus to be scalable, efficient,

and have illustrated Octopus’s perfect fault-tolerance: in a large grid with hundreds of nodes that

intermittently disconnect and reconnect, Octopus achieves the same high reliability as when all

nodes are constantly up. This impressive fault-tolerance is achieved thanks to the high level of

redundancy in Octopus, and the freshness of the redundant information. At the same time, Octo-

pus incurs less overhead than previous efficient position-based routing protocols. This is achieved

thanks to the use of synchronized aggregation. While we employed aggregation only in the context

of location discovery, we believe that similar aggregation can be used to improve the fault-tolerance

of various additional protocols and to reduce their overhead, e.g., by aggregating queries or infor-

mation about various searchable resources in resource location services [7].

We have also introduced a recovery technique that overcomes forwarding failures by using

information stored at the location servers. We have shown that the basic geographic forwarding

protocol combined with this recovery technique achieves similar reliability to two-hop geographic

forwarding, while incurring substantially less overhead.

133

8.4 Results of Chapter7, Evaluating Unstructured P2P Lookup
Overlays

In Chapter7, we have defined metrics for evaluating unstructured overlays for P2P lookup systems.

These metrics capture the search dependability and efficiency, the granularity at which one can

control the tradeoff between the two, and also the fairness. According to these metrics, we have

evaluated different graphs and overlays, including a Gnutella graph, a power law random graph,

normal random graphs, a3-regular random graph, and a3-Araneola overlay. Our results have

shown that a3-regular random graph and a3-Araneola overlay achieve the best results in term

of all four metrics. Moreover, using such overlays eliminates the main drawback due to which

unstructured overlays were abandoned, namely the search inefficiency. In fact, with such overlays,

one can reach up to20% of the nodes with almost perfect search efficiency.

As opposed to a3-regular random graph, a3-Araneola overlay supports dynamic user behavior.

In such an overlay, each single join or leave operation is handled locally, and incurs the sending

of only 9 messages on average (orO(log N) messages in the absence of a membership service).

Therefore, we conclude that a3-Araneola overlay is an excellent solution for a flooding-based P2P

lookup system.

134

Bibliography

[1] http://mathworld.wolfram.com/CircularSegment. html .

[2] EMULE-PROJECT.NET. eMule site. http://www.emule-project.net/.

[3] Gnutella. http://gnutella.wego.com.

[4] Grid modules for ns2.http://www.pdos.lcs.mit.edu/grid

[5] Microsoft Combat Flight Simulator 3. http://www.microsoft.com/games/combatfs3/.

[6] The network simulator - ns-2. www.isi.edu/nsnam/ns/.

[7] I. Abraham, D. Dolev, and D. Malkhi. Lls: a locality aware location service for mobile ad

hoc networks. InDIALM-POMC ’04: Proceedings of the 2004 joint workshop on Founda-

tions of mobile computing, pages 75–84, New York, NY, USA, 2004. ACM Press.

[8] I. Abraham, D. Malkhi, and O. Dobzinski. Land: stretch (1 + epsilon) locality-aware net-

works for dhts. InSODA ’04: Proceedings of the fifteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 550–559, Philadelphia, PA, USA, 2004. Society for Industrial

and Applied Mathematics.

[9] E. Adar and B. A. Huberman. Free riding on gnutella.First Monday, Sept. 2000.

[10] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth. Bar fault tolerance

for cooperative services. InSOSP ’05: Proceedings of the twentieth ACM symposium on

Operating systems principles, pages 45–58, New York, NY, USA, 2005. ACM Press.

[11] K. C. Almeroth and M. H. Ammar. Characterization of mbone session dynamics: Develop-

ing and applying a measurement tool. Technical Report GIT-CC-95/22, Georgia Institute of

Technology, June 1995.

[12] K. C. Almeroth and M. H. Ammar. Collecting and modeling the join/leave behavior of

multicast group members in the MBone. InHPDC, pages 209–216, 1996.

135

[13] K. C. Almeroth and M. H. Ammar. Multicast group behaviour in the Internet’s Multicast

Backbone (MBone).IEEE Communication Magazine, June 1997.

[14] I. Aydin and C. C. Shen. Facilitating match-making service in ad hoc and sensor networks

using pseudo quorum. InProceedings of 11th International Conference on Computer Com-

munications and Networks (ICCCN 2002), pages 4–9, 2002.

[15] G. Badishi, I. Keidar, and A. Sasson. Exposing and eliminating vulnerabilities to denial

of service attacks in secure gossip-based multicast.IEEE Transactions on Dependable and

Secure Computing (TDSC), 3:1, March 2006.

[16] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking up data in

p2p systems.Communications of the ACM, 46(2):43–48, February 2003.

[17] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast.

SIGCOMM Comput. Commun. Rev., 32(4):205–217, 2002.

[18] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient multicast using overlays.

SIGMETRICS Perform. Eval. Rev., 31(1):102–113, 2003.

[19] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward. A distance routing effect

algorithm for mobility (DREAM). InACM/IEEE MobiCom, pages 76–84, 1998.

[20] C. Basile, M.-O. Killijian, and D. Powell. A survey of dependability issues in mobile wire-

less networks. Technical report, LAAS CNRS, France, February 2003.

[21] E. Bender and R. Canfield. The asymptotic number of labeled graphs with given degree

sequences,J. Combinatorial Theory Ser.A 24 (1978), no. 3, 296–307.

[22] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In2nd International

Workshop on Peer-to-Peer Systems (IPTPS ’03), pages 256–267, 2003.

[23] K. P. Birman. The process group approach to reliable distributed computing.Communica-

tions of the ACM, 36(12):36–53, December 1993.

[24] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multi-

cast.ACM Trans. Comput. Syst., 17(2):41–88, 1999.

[25] A. Blanc, Y.-K. Liu, and A. Vahdat. Designing incentives for peer-to-peer routing. In

Proceedings of the IEEE Infocom Conference, pages 374–385, 2005.

[26] B. Bollobas. Random Graphs, Cambridge University Press.

136

[27] B. Bollobas. A probabilistic proofof an asymptotic formula for the number of labelled

regular graphs,European J. Combin.1 (1980), no. 4, 311316.

[28] c Net News. Napster among fastest-growing net technologies. October 2003.

http://news.com.com/2100-1023-246648.html.

[29] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area event

notification service.ACM Transactions on Computer Systems, 19(3):332–383, 2001.

[30] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-

stream: High-bandwidth multicast in a cooperative environment. InACM SIGOPS Sympo-

sium on Operating Systems Principles (SOSP), pages 298–313, October 2003.

[31] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE: a large-scale and

decentralized application-level multicast infrastructure.IEEE J. Selected Areas in Comm.

(JSAC), 20(8):1489–1499, 2002.

[32] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, and A. Wol-

man. An evaluation of scalable application-level multicast built using peer-to-peer overlays.

In IEEE INFOCOM, pages 1510–1520, April 2003.

[33] Y. Chawathe. Scattercast: An adaptable broadcast distribution framework.Special issue of

the ACM Multimedia Systems Journal on Multimedia Distribution, 9(1):104–118, 2003.

[34] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-like

p2p systems scalable. InACM SIGCOMM, pages 407–418, August 2003.

[35] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-efficient coordi-

nation algorithm for topology maintenance in ad hoc wireless networks. InProceedings of

the 7th ACM International Conference on Mobile Computing and Networking, pages 85–96,

Rome, Italy, July 2001.

[36] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous

information storage and retrieval system.Lecture Notes in Computer Science, 2009:46+,

2001.

[37] B. Cohen. Incentives build robustness in BitTorrent. In1st Workshop on the Economics of

Peer-to-Peer Systems, pages 251–260, 2003.

[38] L. Cox and B. Noble. Samsara: Honor among thieves in peer-to-peer storage. InACM

SIGOPS Symposium on Operating Systems Principles (SOSP), pages 120–132, 2003.

137

[39] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, Shenker, Stuygis, D. Swinehart, and

D. Terry. Epidemic algorithms for replicated database maintenance. In6th ACM Symposium

on Principles of Distributed Computing (PODC), pages 1–12, 1987.

[40] D. S. E. Multicast routing in a datagram internetwork. PhD thesis, Stanford University,

December 1991.

[41] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Kermarrec.

Lightweight probabilistic broadcast.ACM Trans. Comput. Syst., 21(4):341–374, 2003.

[42] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmis-

sions.Journal of Computer and System Sciences, 63(1):21–41, 2001.

[43] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion control for

unicast applications. InSIGCOMM 2000, pages 43–56, Stockholm, Sweden, August 2000.

[44] P. Francis. Yoid: Extending the internet multicast architecture. Technical Report, ICSI

Center for Internet Research, 2000.

[45] J. Friedman. On the second eigenvalue and random walks in random d-regular graphs.

Combinatorica, vol. 11, pp. 331-362, 1991.

[46] D. Fudenberg and J. Tirole.Game Theory. The MIT Press, 1991.

[47] J. Gemmell, J. Leibeherr, and D. Bassett. In search of an api for scalable reliable multicast.

TR MSR-TR-97-17, Jun 1997.

[48] S. Giordano and M. Hamdi. Mobility management: The virtual home region. Technical

Report SSC/1999/037, EPFL, Lausanne, Switzerland, 1999.

[49] C. Gkantsidis and P. R. Rodriguez. Network coding for large scale content distribution. In

Proceedings of the IEEE Infocom Conference, pages 2235–2245, 2005.

[50] A. Goerdt. The giant component threshold for random regular graphs with edge faults.

Theoretical Comput. Sci., 259(1-2):307–321, 2001.

[51] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan. Measurement,

modeling, and analysis of a peer-to-peer file-sharing workload. InSOSP, pages 314–329,

2003.

138

[52] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh. Efficient epidemic-style protocols for reli-

able and scalable multicast. In21st IEEE International Symposium on Reliable Distributed

Systems (SRDS), pages 180–189, October 2002.

[53] Y. h. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling conferencing applications on the

internet using an overlay multicast architecture. InACM SIGCOMM, pages 55–67, August

2001.

[54] Y. h. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system multicast.IEEE

Journal on Selected Areas in Communication (JSAC), Special Issue on Networking Support

for Multicast, 20(8), 2002.

[55] Z. J. Haas, J. Y. Halpern, and L. Li. Gossip-based ad hoc routing. InIEEE INFOCOM 2002,

pages 1707–1716, 2002.

[56] Z. J. Haas and B. Liang. Ad hoc mobility management with uniform quorum systems.

IEEE/ACM Trans. on Networking, vol. 7, no. 2, pp. 228–240, Apr 1999.

[57] Z. J. Haas and M. R. Pearlman. The performance of query control schemes for the zone

routing protocol. InSIGCOMM, pages 167–177, 1998.

[58] A. Habib and J. Chuang. Incentive mechanism for peer-to-peer media streaming. InInter-

national Workshop on Quality of Service (IWQoS ’04), pages 171–180, 2004.

[59] D. Hales and S. Patarin. How to cheat bittorrent and why nobody does. TR UBLCS-2005-

12, Department of Computer Science University of Bologna, May 2005.

[60] F. Harary. The maximum connectivity of a graph.The National Academy of Science,

48:1142–1146, 1962.

[61] D. A. Helder and S. Jamin. End-host multicast communication using switchtrees protocols.

In Global and Peer-to-Peer Computing on Large Scale Distributed Systems, 2002.

[62] M. Hofmann, T. Braun, and G. Carle. Multicast communication in large scale networks.

In Proceedings of Third IEEE Workshop on High Performance Communication Subsystems

(HPCS), Mystic, Connecticut, pages 147–150, Aug. 1995.

[63] P. H. Hsiao. Geographical region summary service for geographical routing. Mobile Com-

puting and Communications Review, vol. 5, no. 4, 2001.

[64] ICFA-SCIC Monitoring WG. January 2003 Report of the ICFA-SCIC Monitoring Working

Group. http://www.slac.stanford.edu/xorg/icfa/icfa-net-paper-dec02/.

139

[65] Instiute for Simulation and Training. Standard for distributed interactive simulation - appli-

cation protocols. TR IST-CR-94-50, University of Central Florida, Orlando, 1994.

[66] V. Jacobson and S. McCanne. Using the LBL network whiteboard. Lawrence Berkeley

Laboratory, University of California, Berkeley, 1994.

[67] K. Jain, L. Lovasz, and P. A. Chou. Building scalable and robust peer-to-peer overlay

networks for broadcasting using network coding. Inpodc, pages 51–59, July 2005.

[68] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and H. W. O. Jr. Overcast:

reliable multicasting with an overlay network. InSymp. Operating Systems Design and

Implementation (OSDI), pages 197–212, 2000.

[69] D. Johnson. Routing in ad hoc networks of mobile hosts. InWorkshop on Mobile Computing

Systems and Applications, pages 158–163, Santa Cruz, CA, U.S., 1994.

[70] F. Kaashoek and D. Karger. Koorde: A simple degree-optimal hash table. In2nd Intl.

Workshop on Peer-to-Peer Systems (IPTPS), pages 98–107, 2003.

[71] T. Karagiannis, P. Rodriguez, and D. Papagiannaki. Should isps fear peer-assisted content

distribution? InACM USENIX IMC, 2005.

[72] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized rumor spreading. In

IEEE Symposium on Foundations of Computer Science, pages 565–574, 2000.

[73] I. Keidar and R. Melamed. Evaluating Unstructured Peer-to-Peer Lookup Overlays. In

ACM Symposium on Applied Computing (SAC 2006), Dependable and Adaptive Distributed

Systems (DADS) Track, pages 675–679, 2006.

[74] I. Keidar, R. Melamed, and A. Orda. EquiCast: Scalable Multicast with Selfish Users. In

25th ACM Symposium on Principles of Distributed Computing (PODC), 2006.

[75] D. Kempe, J. Kleinberg, and A. Demers. Spatial gossip and resource location protocols. In

33rd ACM Symp. on Theory of Computing (STOC), pages 163–172, 2001.

[76] A.-M. Kermarrec, L. Massouli, and A. J. Ganesh. Probabilistic reliable dissemination in

large-scale systems.IEEE Transactions on Parallel and Distributed Systems, 14(3):248–

258, March 2003.

[77] J. H. Kim and V. H. Vu. Generating random regular graphs. InProceedings of the thirty-fifth

ACM symposium on Theory of computing, pages 213–222. ACM Press, 2003.

140

[78] M. Kim and M. Medard. Robustness in large-scale random networks. InProceedings of the

IEEE Infocom Conference, 2004.

[79] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In32nd ACM

Symp. on Theory of Computing (STOC), pages 163–170, 2000.

[80] Y.-B. Ko and N. H. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks. In

Mobile Computing and Networking, pages 66–75, 1998.

[81] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High bandwidth data dis-

semination using an overlay mesh. InACM SIGOPS Symposium on Operating Systems

Principles (SOSP), pages 282–297, October 2003.

[82] C. Law and K. Siu. Distributed construction of random expander networks. InIEEE Info-

com, pages 2133–2143, 2003.

[83] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location service for

geographic ad-hoc routing. InProceedings of the 6th ACM International Conference on

Mobile Computing and Networking (MobiCom ’00), pages 120–130, Aug. 2000.

[84] Q. Li and D. Rus. Communication in disconnected ad hoc networks using message relay.

Parallel Distrib. Comput., 63:75–86, 2003.

[85] M. J. Lin, K. Marzullo, and S. Masini. Gossip versus deterministically constrained flooding

on small networks. In14th International Symposium on DIStributed Computing (DISC),

pages 253–267, 2000.

[86] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic analysis of structured

peer-to-peer systems: Routing distances and fault resilience. InIn Proceedings of the ACM

SIGCOMM ’03 Conference, pages 395–406, 2003.

[87] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-

to-peer networks. InProceedings of the 16th international conference on Supercomputing,

pages 84–95. ACM Press, 2002.

[88] D. Malkhi. Locality-aware network solutions (a survey). TR 2004-6, School of Computer

Science and Engineering, The Hebrew University, 2004.

[89] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation of

the butterfly. InACM Symposium on Principles of Distributed Computing (PODC), pages

183–192, July 2002.

141

[90] L. Massoulie, A.-M. Kermarrec, and A. J. Ganesh. Network awareness and failure resilience

in self-organising overlay networks. In22nd IEEE International Symposium on Reliable

Distributed Systems (SRDS), pages 47–55, October 2003.

[91] M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in mobile ad

hoc networks.IEEE Network Magazine, 15(6):30–39, November 2001.

[92] B. D. McKay and N. C. Wormald. Uniform generation of random regular graphs of moderate

degree.Journal of Algorithms, 11:52–67, 1990.

[93] R. Melamed and I. Keidar. Araneola: A Scalable Reliable Multicast System for Dynamic

Environments. In3rd IEEE International Symposium on Network Computing and Applica-

tions (IEEE NCA), pages 5–14, 2004.

[94] R. Melamed, I. Keidar, and Y. Barel. Octopus: A Fault-Tolerant and Efficient Ad-hoc

Routing Protocol. In24th IEEE International Symposium on Reliable Distributed Systems

(SRDS), pages 39–49, 2005.

[95] B. Nath and D. Niculescu. Routing on a curve. InHotNets-I, Princeton, NJ, pages 155–160,

2002.

[96] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Incentives-compatible peer-to-peer multicast.

In 2nd Workshop on the Economics of Peer-to-Peer Systems, 2004.

[97] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile

wireless networks. InINFOCOM (3), pages 1405–1413, 1997.

[98] V. Paxson. End-to-end Internet packet dynamics. InACM SIGCOMM, pages 277–292,

September 1997.

[99] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An application level multicast

infrastructure. InProceedings of the 3rd USENIX Symposium on Internet Technologies and

Systems (USITS), pages 49–60, 2001.

[100] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector routing

(DSDV) for mobile computers. InACM SIGCOMM’94 Conference on Communications

Architectures, Protocols and Applications, pages 234–244, 1994.

[101] C. Perkins, E. Royer, and S. R. Das. Ad hoc on demand distance vector (aodv) rout-

ing. internet draft (work in progress), internet engineering task force, october 1999.

www.ietf.org/internet-drafts/ draft-ietf-manet-aodv-04.txt .

142

[102] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disruptive

technology into the internet. In Proceedings of ACM HotNets-I, October 2002.

[103] B. Quinn and K. Almeroth. IP Multicast Applications: Challenges and Solutions. RFC

3170, September 2001. Network Working Group.

[104] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content address-

able network. InProceedings of ACM SIGCOMM 2001, pages 161–172, 2001.

[105] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using

content-addressable networks. In3rd International Workshop on Networked Group Com-

munication (NGC), pages 14–29, November 2001.

[106] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella network: Properties of large-

scale peer-to-peer systems and implications for system design.IEEE Internet Computing

Journal, 6(1), 2002.

[107] P. Rodriguez, S.-M. Tan, and C. Gkantsidis. On the feasibility of commercial, legal p2p

content distribution. InACM/SIGCOMM CCR, pages 75–78, 2006.

[108] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing

for large-scale peer-to-peer systems.Lecture Notes in Computer Science, 2218:329–350,

2001.

[109] S. Saroiu, K. Gummadi, and S. Gribble. A measurement study of peer-to-peer file sharing

systems. InMultimedia Computing and Networking, pages 156–170, January 2002.

[110] K. Shen. Structure management for scalable overlay service construction. Inthe First

USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI’04),

San Francisco CA, pages 281–294, March 2004.

[111] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A cooperative bulk data transfer

protocol. InProceedings of IEEE INFOCOM, pages 941–951, 2004.

[112] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh based content routing using XML. In

18th ACM Symposium on Operating Systems Principles (SOSP ’01), pages 160–173, 2001.

[113] A. Steger and N. Wormald. Generating random regular graphs quickly.Combinatorics,

Probab. and Comput, 8:377–396, 1999.

[114] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection infrastruc-

ture. InSIGCOMM, pages 19–23, August 2002.

143

[115] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable

Peer-To-Peer lookup service for internet applications. InProceedings of the 2001 ACM

SIGCOMM Conference, pages 149–160, 2001.

[116] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for internet applications.IEEE

Transactions on Networking, 11, February 2003.

[117] I. Stojmenovic. Home agent based location update and destination search schemes in ad

hoc wireless networks. Technical Report TR-99-10, Computer science, SITE, University of

Ottawa, 1999.

[118] I. Stojmenovic and P. Pena. A scalable quorum based location update scheme for routing in

ad hoc wireless networks. TR 99-09, SITE, University of Ottawa, 1999.

[119] J. Tchakarov and N. Vaidya. Efficient Content Location in Wireless Ad Hoc Networks.

In Proceedings of IEEE International Conference on Mobile Data Management (MDM),

page 74, January 2004.

[120] P. Tsuchiya. The Landmark Hierarchy : A New Hierarchy for Routing in Very Large Net-

works. InACM Sigcomm, pages 35–42, 1998.

[121] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,

and A. Joglekar. An integrated experimental environment for distributed systems and net-

works. InSymp. Operating Systems Design and Implementation (OSDI), pages 255–270,

Boston, MA, Dec. 2002.

[122] N. Wormald. Models of random regular graphs.Surveys in Combinatorics, 276:239–298,

1999.

[123] Y. Xu, J. S. Heidemann, and D. Estrin. Geography-informed energy conservation for ad hoc

routing. InMobile Computing and Networking, pages 70–84, 2001.

[124] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.

Tapestry: A global-scale overlay for rapid service deployment.IEEE Journal on Selected

Areas in Communications, 22(1):41–53, 2003. Special Issue on Service Overlay Networks.

[125] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An architecture for

scalable and fault tolerant wide-area data dissemination. In11th International Workshop

Network and Operating System Support for Digital Audio and Video (NOSSDAV), pages

11–20, June 2001.

144

