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Abstract

Peer-to-peer (P2Pyystems are systems that rely primarily on the computing power and band-
width of the participating nodes (peers) rather than on a central infrastructure. Such systems are
scalable, robust, and can be easily deployed. Hence, P2P computing is a promising architecture for
deploying distributed services over the Internet, as well as in mobile ad-hoc networks (MANETS).
However, such an architecture also raises many research problems and challenges such as achieving
scalability while incurring small load on each node, coping efficiency with failures and dynamic
user behavior, and achieving fairness in a network with selfish users. In this dissertation, we review
these challenges, and present four P2P studies that address them in different settings.

In Chapter4, we introduce Araneola, a scalable reliablgplication-level multicast (ALM)
system for highly dynamic wide-area environments. Araneola supports multi-point to multi-point
reliable communication in a fully distributed manner while incurring constant load on each node.
For a tunable parametér> 3, Araneola constructs and dynamically maintain®aerlay network
structure in which each node’s degree is either £+ 1, and roughly0% of the nodes have degree
k. Empirical evaluation shows that Araneola’s basic overlay achieves three important mathematical
properties ofk-regular random graphs (i.e., random graphs in which each node has ekactly
neighbors) with/NV nodes: (i) its diameter grows logarithmically witk; (ii) it is generally k-
connected; and (iii) it remains highly connected following random removal of linear-size subsets
of edges or nodes. The overlay is constructed and maintained at a low cost: each join, leave, or
failure is handled locally, and entails the sending of only al3éunessages in total, independent
of N. Moreover, this cost decreases as the churn rate increases. Thorough evaluation of Araneola
running up tol0, 000 nodes on up td25 machines, in both LAN and WAN, shows that Araneola
successfully addresses the following challenges: (i) providing high reliability despite considerable
message loss and failure rates while incurgogstantoad on each node; (ii) incorporating joining
nodes and removing leaving (or failing) ones with a loenstantoverhead; and (iii) providing an
undisrupted service to nodes that are up despite node joins and leaves.

In Chapter5, we present EquiCast, a wide-area P2P multicast protocol for large groups of
selfish nodes. We tackle the problem of “freeloaders”, i.e., users who consume resources without
contributing anything in return. We take a game theoretic perspective by modeling the system as a
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non-cooperative game. We define a special s@ratfocol-obedient strategies (POSE)enerally
speaking, a strategy out of this set allows a node to determine how many connections to maintain
and how many packets to send on each connection though it does not allow users to hack the
protocol’s code or assume that others do so. We prove that if all nodes choose POSs, then each
node receives all the multicast packets. Moreover, in this case, no node can unilaterally reduce its
cost by changing its strategy to a non-POS. In addition, we prove that EquiCast incurs low constant
load on each node. We note that EquiCast iditiseP2P multicast protocol that fermally proven

to enforce cooperation iselfish environments

Next, we consider P2P communication in failure-prone MANETS: in Ch&)tere introduce
Octopus, a fault-tolerant and efficient routing protocol for MANETSs. Fault-tolerance is achieved by
employing redundancy, i.e., storing the location of each node at many other nodes, and by keeping
frequently refreshed soft state. At the same time, Octopus achieves a low location update overhead
by employing a novel aggregation technique, whereby a single packet updates the location of many
nodes at many other nodes. Octopus is highly scalable: for a fixed node density, the number of
location update packets sent does not grow with the network size. And when the density increases,
the overhead drops. Thorough empirical evaluation using the ns2 simulator with up to 675 mobile
nodes shows that Octopus achieves excellent fault-tolerance at a modest overhead: when all nodes
intermittently disconnect and reconnect, Octopus achieves the same high reliability as when all
nodes are constantly up.

Finally, in Chaptef7, we define metrics for evaluating unstructured overlay networks for P2P
lookup systems. These metrics capture the search dependability and efficiency, and the granularity
at which one can control the tradeoff between the two, as well as fairness. According to these
metrics, we evaluate different graphs and overlays, including a Gnutella graph, a power law random
graph, normal random graphs3aegular random graph, and3aAraneola overlay. Our study
shows that, according to our metrics3-#raneola overlay achieves the best results, and hence it
is an excellent solution for a flooding-based P2P lookup system.
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Notations and Abbreviations

aas
ALM

cg
DEC
fe
GLS
[ID
ISP
IP
LAN
b
MAC
MANET
P2pP
POS
RTT
TTL
UDP
WAN

asymptotically almost surely
Application Level Multicast
connectivity
coverage granularity
Dynamic EquiCast
flooding efficiency
The Grid Location Service protocol
Independent and Identically Distributed
Internet Service Provider
Internet Protocol
Local Area Network
load balancing
Media Access Control
Mobile Ad-hoc Network
Peer-to-Peer
Protocol-Obedient Strategy
Round Trip Time
Time To Leave
User Datagram Protocol
Wide Area Network
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Chapter 1

Introduction and Goals

A peer-to-peer (P2P¥ystem is a system that relies primarily on the computing power and band-
width of the participating nodes (peers) rather than on a central infrastructure. P2P systems are used
extensively over the Internet e.g., for file shari@)3, 36] and content distribution23, 29, 37].
Moreover, P2P protocols are employed for communication in wireless networks; such P2P wire-
less networks are calladobile ad-hoc networks (MANET$)2P systems are attractive for several
reasons. First, unlike centralized systems, P2P systems can be easily deployed and can grow
quickly, since such systems usually do not require any special administrative or financial arrange-
ments L6, 28, 67, 11€. Second, P2P systems achieve high scalability, since they make use of
the bandwidth, computation, and storage resources of the participating déflesrd third, P2P
systems are typically robust, due to their decentralized and distributed na6.B821[67]. In this
dissertation, we focus goure P2P systems, in which all the nodes have symmetric roles, and no
infrastructure or “super-peers” exist. We examine such systems over the Internet as well as in
MANETS.

In a P2P system, the nodes are typically organized intovanlay networkwhich is a virtual
network containing a subset of the connections of some underlying network, e.g., the Internet.
Each node typically communicates only with its overlay neighbors. In a structured overlay net-
work, nodes join the overlay according to a specific protocol, whereas in an unstructured one,
nodes join the overlay according to some loose constraints. Thanks to the lack of structure require-
ments, node join and leave events in unstructured overlays can be fast and incur small constant
load (independent of the overlay size). Hence, unstructured overlays are suitable for dynamic
networks B4).

While P2P computing is a promising architecture for deploying distributed services, it also
raises many research problems and challeritgls One of the major challenges is achieving scal-
ability, i.e, supporting many users, while incurring sntahstanioad on each node, regardless of
the number of nodes in the system. However, in most of the current P2P systems, e.g.1C¥ord [
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Pastry[L0g], Tapestry124], and CAN [104], the per-node overhead does increase with the number
of nodes.

Another challenge in P2P computing is achieving reliability and efficiency in dynamic failure-
prone networks like MANETs and the Internet. In such networks, nodes frequentl2Zhigind
the message loss rate may be higB][ In addition, studies have shown that, typically, users
frequently join and leave multicast and lookup sessions (such behavior iscalledl [11,12,13,

109. Similarly, in MANETS, it is common for mobile wireless nodes to intermittently disconnect
from the network, e.g., due to signal blockage. Hence, in both environments, P2P systems need to
cope efficiently with high failure and churn rates.

Finally, most of the currently deployed P2P systems do not motivate nodes to cooperate, e.g.,
contribute upload bandwidth, computation power, or disk space for some other users. Hence, such
systems suffer from the problem of “freeloaders”, i.e., users who consume resources without con-
tributing anything in return9, 59]. For example, in the Gnutella P2P file-sharing applicatjn [
nearly 70% of the users share no fil® [Therefore, current P2P systems, e.g., BitTorr&i},[
Avalanche 9], and Gnutella, typically rely on user altruisig, 5S]. For example, in BitTorrent
and Avalanche, a node is expected to upload data blocks to other nodes for no return whenever it
has available bandwidtl8¥, 49, and in Gnutella, nearly 50% of all responses are returned by the
top 1% of sharing hosts.

Nowadays, user altruism is common since most users are connected to the Internet using static
machines via ISPs with a flat pricing model, and hence sending a packet does not incur a cost on
its sender. However, these paradigms are changing. First, the increasing access to digital content
is expected to drive ISPs to implement a tiered pricing scheme, where high end pricing plans shall
allow unlimited downloads and uploads, while lower tier pricing plans shall limit traffic band-
width [107]. Second, wireless hotspots are proliferating in recent years, and users are increasingly
connecting to the Internet and downloading content to mobile devices such as laptops and cell
phones. In such networks, pricing is typically based on connection time or transmission volume.
Moreover, battery power is a critical resource for mobile devices. Hence, user altruism can hardly
be expected in future networks. Therefore, it is important to design P2P systems that work well
even when all users are selfish.

In this dissertation, we present four P2P studies addressing the above challenges in different
settings. Araneola (see Sectibrd and Chapted) is a scalable reliable application-level multicast
system for highly dynamic wide-area environments. EquiCast (see Sécfiand Chapteb) is a
wide-area P2P multicast protocol for large groups of selfish nodes. Octopus (see $&ictond
Chapterb) is a fault-tolerant routing protocol for MANETs. And finally, in Chapfé(see also
Sectionl.4), we define metrics for evaluating unstructured overlays for P2P lookup systems, and
evaluate different graphs and overlays according to these metrics.
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1.1 Araneola: A Scalable Reliable Multicast System for Dy-
namic Environments

In Chapted, we introduce Araneola, a scalable reliable application-level multicast (ALM) system
for highly dynamic wide-area environments. Araneola supports multi-point to multi-point reliable
communication in a fully distributed manner while incurring constant load on each node. Arane-
ola’s overlay approximates faregular random graphwith N nodes. Fork > 3, such a graph

is almost always a good expanddg], which implies that (i) its diameter grows logarithmically

with NV [127]; and (ii) it remains connected after random failures of a linear subset of its nodes
and/or edgesd(]. In addition, such a graph is generallyconnected, i.e., there akedisjoint

paths between every two nodes in the gfapRor a tunable parametér > 3, Araneola con-
structs and dynamically maintains a basic overlay structure in which each node’s degree is either
k or k + 1, and roughly90% of the nodes have degrée Empirically, we show that Araneola’s
overlay achieves the desired properties @égular random graphs, namely logarithmic diameter,
k-connectivity, and high robustness. In particular, we show that Araneola’s overlay has a similar
diameter and is as robust as graphs generated using a known centralized constructiegudr
random graphs. At the same time, Araneola’s overlay construction algorithm is fully distributed
and efficient, as each join or leave (or failure) incurs sending roughly eéldontessages in &-

degree overlay, regardless of the number of nodes. Remarkably, in dynamic settings, the cost of
handling a single join or leave operatidecreasess the churn rate increases. This is in contrast

to virtually all existing structured P2P overlays, with which the overhead for handling joins grows
at least logarithmically with the number of nodes.

The low degree of Araneola’s basic overlay structure allows for allocating plenty of additional
bandwidth for specific application needs. In Sec#of we give an example for such a need —
communicating with nearby nodes; we enhance the basic overlay with additional links chosen ac-
cording to geographic proximity and available bandwidth. We show that this approach reduces the
number of physical hops messages traverse without hurting the overlay’s robustness as compared
to completely random Araneola overlays with the same average degree.

Given Araneola’s overlay, we sketch out several message dissemination techniques that can
be implemented on top of this overlay. We present a full implementation and evaluation of a
gossip-based multicast scheme with up to 10,000 nodes. We show that compared to a standard
(non-overlay-based) gossip-based multicast protocol, gossiping over Araneola achieves substantial
improvements in load, reliability, and latency.

1A k-regular random graph witlv nodes is a graph chosen uniformly at random from the sktrefjular graphs
with N nodes
2The probability that &-regular random graph is nétconnected i€)(N2~*).
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In summary, Chaptet makes the following contributions:

e It presents the first efficient distributed algorithm for constructing and maintaining a graph
structure that resembleskaregular random graph and achieves its good properties in dy-
namic settings.

e Itintroduces an algorithm that constructs and maintains a richly-connected low degree over-
lay in which each join or leave operation incurs a constant overhead.

e It describes an overlay-based ALM system that provides an undisrupted multicast service in
highly dynamic settings while incurring constant load on each node.

o |t features a complete implementation and a thorough evaluation of Araneola running up to
10, 000 nodes on up t@25 machines, in both LAN and WAN, including extensive evaluation
of the impact of churn on an ALM system.

e Finally, it constructs an overlay that designates ample bandwidth for each node to commu-
nicate with nodes chosen according to application needs, e.g., proximate nodes.

The results of Chaptet appear in/93].

1.2 EquiCast: Scalable Multicast with Selfish Users

In Chapter5, we consider the problem of providing a multicast service in a network with self-
ish users like the Internet. In such a network, each user tries to minimize its selfish cost, and
hence it may not follow a protocol’s code. Therefore, in the absence of incentives for cooperation,
many users in such a network are “freeloaders”, i.e., they consume resources without contributing
anything in return.

In order to address this problem, we have designed EquiCast, a wide-area P2P multicast proto-
col for large groups of selfish nodes. EquiCast tackles the problem of “freeloaders” taking a game
theoretic perspective by modeling the system as@cooperative gamdn such a game, nodes
are selfish butational, i.e., each user chooses its ostnategyregarding its level of cooperation
SO as to minimize its own co<#§]. More specifically, the goal of each node is to receive all the
multicast packets while minimizing its sending rate.

We define a special set pfotocol-obedient strategies (POS§jenerally speaking, a strategy
out of this set allows a node to determine how many connections to maintain and how many packets
to send on each connection though it does not allow users to hack the protocol’s code or assume
that others do so. We believe that it is reasonable to assume that most nodes will run a protocol-
obedient strategy (POS), since users usually do not have the technical knowledge required in order
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to modify an application code. We prove that if all nodes choose POSs, then each node receives all
the multicast packets. Moreover, in this case, no node can unilaterally reduce its cost by changing
its strategy to a non-POS. That is, unilateral hacking of the protocol’s code cannot reduce a node’s
cost.

Finally, we prove that EquiCast incurs a low constant load on each node. We note that EquiCast
is thefirst P2P multicast protocol that fermally provento enforce cooperation iselfish environ-
ments

The results of Chaptd& appear in[T4].

1.3 Octopus: A Fault-Tolerant and Efficient Ad-hoc Routing
Protocol

In Chapter6, we consider the problem of fault-tolerant routing in mobile ad-hoc networks. Such
networks consist of mobile wireless nodes that communicate with each other in the absence of
infrastructure. In a mobile ad-hoc network, if several of the nodes have an Internet access, then
such a network is a wireless extension of the Internet. As opposed to the Internet, however, in a
mobile ad-hoc network routing is performed by the end nodes themselves. In addition, in such a
network, nodes often intermittently disconnect from the network, e.g., due to signal blo@dage [
84]. Hence, routing in such a network is a challenging task.

We focus orposition-based routing protocqlén which each node can determine its physical
location. Such protocols scale better than non-position-based ®tjeJypically, the location of
each node is stored at some other nodes, which dotason servergor that node b6, 91]. When
a node wishes to send packets to another node, it first isdoeatéon queryin order to discover
the target’s location, and théarwardspackets to this location.

We present Octopus, a simple and efficient position-based routing protocol that employs syn-
chronized aggregation in order to achieve high fault-tolerance without incurring a high load. Oc-
topus divides the network area into horizontal and vertical strips, and stores the location of each
node at all the nodes residing in its horizontal and vertical strips. This approach naturally supports
synchronized aggregation: all the nodes in the same strip can learn each other’s locations through
the propagation of exactly two location update packets along the strip. Note that this location
update technique does not require nodes to synchronize their clocks: by knowing its immediate
neighbors’ locations, a node can determine whether it needs to initiate a strip update. Since syn-
chronized aggregation dramatically reduces the location update overhead, Octopus can update all
the location servers at the same high frequency, at a low cost.

On the one hand, Octopus enforces higher redundancy and more freshness of location informa-
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tion than previously suggested position-based proto&3sg93], and hence achieves much better
fault-tolerance. On the other hand, by aggregating node locations and synchronizing their propaga-
tion, Octopus incurs lower overhead than these protocols in typical scenarios. Moreover, Octopus
is highly scalable: for a fixed node density, the number of location update packets sent does not
grow with the network size, and when the density increases, the overhead drops.

Octopus has a third important advantage over most previous position-based routing protocols,
e.g., 63,183]: in Octopus, the area in which nodes reside does not need to be pre-known or fixed; it
can change at run time. This feature is crucial for rescue missions and battle field environments, in
which the borders of the network are not known in advance and are constantly changing. Finally,
the redundancy of location information in Octopus has a fourth advantage: nodes use information
they have about strip neighbors in order to improve the forwarding reliability. Hence, we eliminate
the need to maintain designated information for improving the forwarding reliability.

Finally, we present a thorough empirical evaluation of Octopus using the ns2 simulator with
up to 675 mobile nodes. This evaluation shows that Octopus achieves excellent fault-tolerance at
a modest overhead: when all nodes intermittently disconnect and reconnect, Octopus achieves the
same high reliability as when all nodes are constantly up.

The results of Chapt& appear in94].

1.4 Evaluating Unstructured P2P Lookup Overlays

Unstructured overlay networks incur small constant overhead per single join or leave operation.
Hence, they are suitable for dynamic failure-prone environments like the Int8djelri addition,

lookup systems based on unstructured overlay networks can easily support keyword s@diches [
Therefore, virtually all the currently deployed P2P lookup systems are unstructured ones.

In Chapter7, we define metrics for evaluating unstructured overlay networks for P2P lookup
systems. The metrics we define capture the search dependability and efficiency, and the granularity
at which one can control the tradeoff between the two, as well as fairness. According to these
metrics, we evaluate different graphs and overlay networks, including a Gnutella graph, a power
law random graph, normal random graphs-eegular random graph, and3aAraneola overlay.

Our study shows that, according to our metric8;Araneola overlay achieves the best results, and
hence it is an excellent solution for flooding-based P2P lookup system.

The results of Chaptét appear in73].

19



Chapter 2
Related Work

In Section2.1, we review ALM Systems and fault-tolerant overlay networks and graphs. In Sec-
tion2.2, we review P2P multicast protocols for environments with selfish users and incentive-based
P2P systems. In Secti@h3, we discuss different ad-hoc routing approaches, and we review lead-
ing ad-hoc routing protocols for MANETS. Finally, in Secti@rl, we review P2P lookup systems.

2.1 ALM Systems and Fault-Tolerant Overlay Networks and
Graphs

2.1.1 ALM Systems

In recent years, two leading approaches for supporting scalable ALM in dynamic failure-prone
networks have emerged: gossip-based (or epidemic) multicast protocols24,.89,[41, 52, 72,
75,'76], and dynamic overlay networks, e.dl,7['31,'32,133,53,161, 68,199, 105 114, 125.

Gossip-based protocols

With gossip-based protocols, each node periodically chooses other random nodes to propagate
the information to. Gossip-based protocols usually do not use any infrastructure. Such protocols
are highly robust in the presence of failures, and their reliability degrades gracefully as failures
amount 41, 85]. They can achieve an average latency(gfog V) rounds P4, 41]. Moreover,

they achieve good reliability (close to 100%) even in dynamic failure-prone settings. However,
these protocols also have shortcomings. First, they generally require each node to send each mes-
sageO(log N) times [76, 85], which induces a high load. Second, their reliability guarantees

are probabilistic, and they generally provide less than 100% reliability even in static failure-free
settings 41, 185]. In Chaptei4, we show that gossiping over Araneola eliminates these shortcom-
ings: it has each node send information ohlgr £+1 times, and guarantees 100% reliability. We
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compare the performance of gossiping over Araneola with that of a standard gossip protocol in
Section4.7.1below, and show that Araneola achieves higher reliability than the gossip protocol
while incurring less overhead.

Tree/Mesh-based systems

Most overlay-based ALM systems are tree-based, 8, 33,161, 68, 11(. With such systems,

no duplicate messages are sent. If the tree topology is mostly stable, and loss-rates are low, then
such systems can achieve great performance. However, in the presence of churn, the tree structure
frequently becomes patrtitioned, causing a significant portion of the multicast messages to be lost.
Therefore, in order to achieve reliability, such protocols need to detect message loss and recover
from it. This can cause recovered messages to be significantly delayed; can induce substantial
overhead, especially if failures are frequent; and can inhibit scalability. A second problem with
tree-based multicast is uneven load distribution: as recently argu&djinriner nodes in the tree

carry almost all the burden for the multicast, whereas leaf nodes do not share the load.

Pbcast24] combines best-effort tree-based dissemination, e.g., using IP Multicast, with gossip-
based recovery. This approach has the advantages of tree-based ALMs, including fast dissemina-
tion and no duplicates in failure-free cases, as well as the robustness of gossip-based protocols.
It is therefore effective if a stable tree-based multicast service is available. However, it is also
hampered by the difficulty of maintaining stable trees in the presence of high churn.

Mesh-based overlay systems can achieve load balancing and robustness to failures and mes-
sage loss by including multiple paths between every pair of nodes. SplitStB&hrmonstructs
and maintains a forest of multicast trees, and evenly distributes the forwarding load among all
participating nodes. In BulleBll], nodes self-organize into an overlay mesh, and data packets are
distributed to strategic points in the overlay. Nodes are then responsible for locating and retrieving
the data packets. Whereas Araneola focuses on providing undisrupted service to nodes that are up
despite high churn rates and considerable message loss and failure rates, SplitStream and Bullet
are designed for content streaming. Therefore, neither SplitStream nor Bullet were evaluated un-
der the high churn rates we evaluate Araneola. These two systems can induce high overhead: in
SplitStream, each join event can incur sendihg- 1) log(N) messages wheteis the number of
trees in the forest, and in Bullet the average per-node control overhead is approximately 30 Kbps.
Moreover, in Bullet, roughlyl0% of received data packets are duplicates. In contrast, in Arane-
ola each join or leave operation incurs sending rougtlynessages, and no duplicates are sent.
Moreover, in order to achieve high reliability under high churn rates, these two systems need to ei-
ther use forward error correction techniques, which incur additional overhead, or to employ heavy
buffering, which incurs high delay and requires additional disk space. Finally, these two systems
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are intended for single-source multimedia transfer and do not support multi-point to multi-point
reliable communication as Araneola does.

In the Yoid project#4], nodes auto-configure into two topologies: a shared tree topology for
efficient multicast, and a mesh topology for distributing membership information and application
content when the tree topology is partitioned. This solution has several limitations. First, the tree
configuration is fragile and the discovery of tree partitions may be slow. Second, Yoid trees can be
lop-sided, with longer-than-necessary diameters, thus causing high message latency. Finally, mem-
bership information is flooded to all the nodes in the system, and hence Yoid is only appropriate
for small multicast groups.

Snoeren et al.117] construct an infrastructure of servers, and each node is connected to
servers from which it receives duplicate packet streams. While this approach achieves high relia-
bility, it also incurs substantial overhead: each packet is sent to each nadfigrent servers. In
contrast, in the absence of packet loss, each Araneola node receives each packet from exactly one
node. In addition, Snoeren et al.’s solution is based on server infrastructure, which is not required
by Araneola.

ODRI [86] is a dynamic overlay based on de Bruijn graphs that preserves the properties of
these graphs namely an average constant in and out degree at each node, a diameter that grows
logarithmically with the number of nodes, and good resilience to node and link failures. Whereas
in a k-Araneola overlay each node is connected to either k+1 nodes, in ODRI, each node
hask incoming and betweeh and O(kIn N) outgoing links. Hence, Araneola achieves better
load balancing than ODRI. In addition, the join overhead in ODRI is logarithmic in the number of
nodes, whereas in Araneola the join cost is constant.

PRM (Probabilistic Resilient Multicast)LB] is a multicast data recovery scheme based on
randomized data forwarding. This recovery scheme incorporated into the NICE proi@tol [
achieves reliability of roughl97% in settings with message loss upté and with up td topology
changes per secondd]. In contrast, Araneola achieves full reliability under substantially higher
message loss and churn rates.

Finally, we are unaware of a previous P2P multicast system that provides full reliability of
message delivery in highly dynamic failure-prone environments. In addition, none of the afore-
mentioned multicast systems was evaluated under the high churn and failure rates that we evaluate
Araneola under.

2.1.2 Overlay Structures

Lin et al. [85] construct a statié-Harary graph/6Q]; such a graph has a logarithmic diameter, a
degree ofk, and a connectivity level of, and is therefore an attractive structure for supporting
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reliable multicast. Lin et al. study the tradeoffs between a gossip protocol and flooding messages
on a static overlay structured likedaHarary graph in small fixed networks. Their measurements
show that at moderate failure rates, flooding a small overlay achieves the same reliability with a
substantially smaller overhead than a gossip protocol. As the failure rate increases, however, the
overlay can become partitioned, and the gossip protocol exhibits a much more graceful degrada-
tion. This motivates a solution like Araneola, based on a dynamic overlay that detects failures and
continuously heals itself.

Recently, several dynamic P2P overlays with logarithmic diameters and bounded node de-
grees have been suggested, e.g., emulating the Buti@®flyde Bruijn graphs7Q], Small Worlds
graphs79], or random expander graphs with degrees [82]. However, none of these systems
can guarantee, with high probability, a lower cost tli&tog N') messages and time for handling
joins, since a joining node must search and locate its (random or hashed) joining location prior to
joining the system. Chawathe et @4[ have argued that this logarithmic cost inhibits the scalabil-
ity of such systems assuming the churn rates measured in Gnutella and Na@SteMoreover,
the algorithm in 89] is complicated, and the overlay i82] does not support many concurrent
leave operations as Araneola does.

Several overlay structures, e.®0[ 110, reduce message delivery latency and communication
costs by incorporating links between nearby nodes in addition to the random links required for
achieving a good overlay. Other overlays, e.g., PastB&[and Tapestry/124], achieve local
routing by selecting nearby nodes among a large collection of random ones. L8ndsKup
algorithm achieves a worst case stretch bound fe by adding local links that increase node
degrees by a constant expected factor.

Although adding links to proximate nodes has many benefits, we believe that proximity re-
quirements vary among applications. We therefore advocate a separation of concerns between
such specific application needs and generic requirements of wide-area applications. The basic
overlay of Araneola addresses the generic needs while incurring a low load, and thus leaves ample
bandwidth for the application to address additional needs such as proximity, bandwidth hetero-
geneity, and so forth. We illustrate this approach in Sedidhby extending Araneola’s basic
overlay with links chosen according to network proximity in order to reduce the latency of mes-
sage delivery and communication costs. The resulting extended overlay achieves a smaller average
degree thardg, 110 and better load balancing thebl{.

2.1.3 Centralized Constructions oft-Regular Random Graphs

Araneola builds an overlay structure that approximatésragular random graph using a dis-
tributed protocol in dynamic environments. Previous algorithms for genertregular random
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graphs were centralized and static. For example, Bollabgdsahd Bender and Canfiel21] give
a centralized construction of faregular random graph ofV vertices, which works roughly as
follows: it duplicates each verteéxtimes and creates a uniform random perfect matéhimghese
NE copies of vertices. The resulting graph contains an edge between two veraces), if the
matching contains an edge between copiesasfdj. The resulting graph may not be simple, i.e.,
it may contain self-loops and/or parallel edges. It has been shit@¢hthat the probability of such
a graph being simple isxp(—%?/4), and the expected time to obtain a simpteegular random
graph with this algorithm iQ(Nkek2/4). McKay and Wormald92] improve this expected time
to O(N?k*) using a simple algorithm, and to( Nk?) using a complicated and hard to implement
algorithm.
Steger and Wormaldl[LJ propose a faster algorithm based on Bolloba&4 jand Bender
and Canfield’s21] constructions. This algorithm creates a perfect matching that does not contain
self-loops and parallel edges, and hence the resulting graph is always simple. The running time of
this algorithm isO(N'k?). Steger and Wormald prove thatkif= o( N'/?®) then the distribution of
the generated graphs is asymptotically unifariRecently, Kim and VuT7] have proven that the
distribution of graphs generated using this algorithm is asymptotically uniforminignto N'/3.
Araneola is the first distributed and efficient approximation éfregular random graph that
we are aware of. As opposed to the centralized constructions mentioned above, in which each
addition or removal of a single vertex or edge from the graph requires the reconstruction of the
graph from scratch, Araneola incrementally incorporates joining nodes and removes leaving ones
from the graph, while sending only abatt messages for each such change. In Seatidit
we show that the overlays generated by Araneola have the same diameter and are as robust as the
graphs generated using the centralized constructicAHfL 3.

2.2 P2P Multicast Protocols for Environments with Selfish Users
and Incentive-Based P2P Systems

EquiCast is the first P2P multicast protocol that is formally proven to enforce cooperation in en-
vironments with selfish users. We are familiar with only two previous P2P multicast protocols for
environments with selfish userS§, 96]. Ngan et al. 96] propose an incentive-based multicast
protocol based on detection of selfish nodes and periodic reconstruction of multicast trees that
exclude previously misbehaving nodes. However, this protocol induces high overhead. For ex-
ample, with500 nodes, the trees’ reconstruction requires each node to2@nwbntrol messages

1A matching on a graph G is a set of vertex-disjoint edges of G. A perfect matching is a matching that covers alll
vertices.
2The distribution of the generated graphs approaches a uniform distributién-ass.
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every two minutes; and when the group size(90 nodes, each node sends neally control
messages every two minutes, in addition to data messages. Habib and Ch@lgmppose an
incentive-based protocol for media streaming, in which cooperative nodes receive high quality of
service whereas “freeloaders” receive low quality streaming. While this protocol rewards cooper-
ation to some extent, it does not solve the problem of “freeloaders”. These two solutions, however,
consider a different model, in which only a fraction of the nodes are selfish. Moreover, neither is
formally proven to enforce cooperation.

Several previous distributed Internet services such as content distrikBiTi@He], storage/88],
and lookup 84] reward cooperation to some extent by incentivizing cooperative behavior. The
BitTorrent [37] and Avalanche49] content distribution systems support the tit-for-tat strategy, in
which a user preferentially uploads blocks of information to users from which it is also download-
ing blocks. But these systems rely on user altruism, and hence they do not purport to work in a
selfish environment where all users are rational and selfish, and every packet incurs a cost on its
sender. In the SAMSARA storage syste®8], each node is required to contribute as much disk
space to the system as it is using, and in the GIA lookup sys&dhthe quality of service expe-
rienced by a node is proportional to its contribution to the system. None of the aforementioned
services, however, models the system as a non-cooperative game or formally proves cooperation
as we do.

In P2P protocols based on a centralizeputation systepe.g., eMule?] and 25], each node
sends to and requests from the system reports about the level of cooperation of other nodes. Hence,
a node is motivated to collaborate with other nodes. However, this approach achieves limited
scalability 5], since the reputation system continuously communicates with all the nodes.

The BAR-B backup servicéll] can tolerate both Byzantine nodes and an unbounded number
of selfish nodes by using asynchronous replicated state machine. The replicated state machine
approach, however, can support only a limited number of nodes. In addition, this service relies on
public key cryptography, which further limits the scalability of this service.

Finally, cost-sharingmulticast solutions e.g.4p], consider a different model, in which mul-
ticast is provided over a dedicated infrastructure, and the infrastructure cost is shared among all
nodes. Such an approach, however, is not applicable to P2P systems.

2.3 Ad-hoc Routing Protocols for MANETS

Existing ad-hoc routing approaches can be roughly divided into two categtosiogy-based
andposition-based91]. Topology-based protocols do not assume that each node can determine its
position. Such protocols usually employ global flooding to distribute either topology information
(e.g., DSDV [L0Q) or queries (e.g., AODV101], DSR [69], TORA [97], and ZRP 67]), and
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hence suffer from limited scalabilityB, 91].

By assuming that each node can determine its location, position-based protocols achieve better
efficiency and scalability than topology-based orf&H.[ Position-based protocols can be classi-
fied according to how many nodes act as location servers and how many locations each of them
holds B1]. In theall-for-all approach used by DREAMLB)], every node acts as a location server
for all nodes. This approach is fault-tolerant, and is practical in small networks. However, it has
been argued that the overhead of this approach is prohibitive in large networks, since location
updates are floode®%, 83).

In the some-for-som¢56] and some-for-allapproaches<dg, 120, some dedicated nodes act
as location servers for some or all other nodes. These approaches are appropriate for failure-
free networks, or for settings in which there are reliable servers. However, such approaches are
problematic in failure-prone networks, since they are vulnerable to the movement or failure of a
single dedicated location server (as explaine®Bj)|

Octopus employs thall-for-someapproach, in which each node acts as a location server for
some other nodes. Li et aBJ] have shown that this approach can achieve a good tradeoff between
reliability and load, and can scale well up to at leé3 nodes. All-for-some-based protocols
include GLS B3], GRSS b3], Homezonel48,117], and [11§. Of these, GLS and GRSS are the
only ones that were extensively evaluated in simulations with mobile nodes. Moreover, only GLS
was evaluated in settings in which nodes intermittently disconnect from the network, and this study
was only conducted in a small network.

Stojmenovic et al.11§ suggest a routing scheme in which each node periodically propagates
its position in the north and south directions, and location queries are sent in the east and west
directions. Similar approaches were also suggested for efficient content lo¢kti€in rhatch-
making in sensor networkd4], and as a general scheme for implementing ad-hoc sen@&ks |
However, unlike Octopus, none of these previous works aggregate updates, and they thus miss
Octopus’s important performance advantage; individually updating so many nodes is bound to
induce a prohibitively high overhead,[88]. Moreover, of these works, onld 19 was evaluated
with mobile nodes, and none was evaluated in fault-prone settings. Another difference between
Octopus and11§] is that Octopus employs more redundancy by storing node locations at both
their horizontal and vertical strips. This additional redundancy yields a quadratic decrease in the
probability for query failures. Finally/1[1§ does not make additional use of the stored location
information in order to improve the reliability of forwarding. In fact, we are not aware of any
previous ad-hoc routing protocol that exploits location information for more effective forwarding.

The most thoroughly studied position-based protocol thus far, @BE partitions the world
into a hierarchy of grids with squares of doubling edge sizes. In each level of the hierarchy, the
location of each node is stored at three location servers, for a tota{log V) location servers

26



under uniformity and fixed density assumptions. Under the same assumptions, Octopus stores the
location of each node & (+/N) location servers (see Sectiér). In contrast to Octopus, in GLS
remote location servers are updated less frequently than close ones. Thanks to the use of more
location servers and fresher information, Octopus achieves much higher fault-tolerance than GLS.
Thanks to aggregation, Octopus achieves this while incurring lower overhead. Moreover, Octopus
is a simpler protocol than GLS.

Although Octopus requires more memory than GLS for storing location information, Octopus’s
memory requirements are quite reasonable: in our largest experiment;Witihodes, location
information consumes less thakB of memory at each node. Note that in wireless networks,
reducing the number of transmissions is most crucial, and 1KB of memory overhead is a small
price to pay for the significant reduction in message overhead that Octopus achieves.

In almost all the previous location-based routing protocols, each location update packet in-
cludes the location of a single node and updates a single location server. The only exception we
are familiar with is GRSSG3]. However, in contrast to Octopus, in GRSS location updates are not
synchronized, i.e., several nodes in the same region can initiate a location update simultaneously,
thus causing many duplicate packets to be sent. Consequently, as sh®&8j) ®RSS often fails
to achieve lower overhead than GLS. Moreover, as opposed to Octopus, in which each location
update packet contains identities@f+/N) nodes (assuming the system model described in Sec-
tion6.2), in GRSS, a location update packet can conti?V) node identities. In order to reduce
the packet size, GRSS uses Bloom filters. However, this technique may lead to incorrect routing
due to false positive$Q].

In LAR [80], each node knows only the locations of its immediate neighbors. This approach is
efficient when the number of location queries is low. However, when location queries are frequent,
this approach is not practical, as location queries may be globally flo@3gd [

Finally, some ad-hoc protocols, e.g., Spaf|[and GAF [123, reduce energy consumption by
allowing nodes to sleep for extensive periods, leaving a minimal set of nodes awake to perform
routing. Such an approach employs no redundancy, and hence is inherently not fault-tolerant.

2.4 P2P Lookup Systems

Structured lookup systems, e.g., Chotd ] and Pastry10§, can achieve perfect search reliabil-

ity, and incur the sending of onl§ (log V) messages per search operation. However, such systems
incur high joining overhead ad (M log(/N)) messages, wher¥ is the number of objects held by

the joining node. Assuming/ = 30,000 andM = 90 as in Gnutella9], a single join operation
incurs a prohibitive overhead of more thar300 messages. In addition, structured lookup systems
do not support keyword searches, which are highly popular.
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Partially structured lookup systems, e.g., KaZaA, usually rely on some infrastructure, e.g.,
“super-peers”. Therefore, such systems can achieve higher scalability compared to pure unstruc-
tured lookup systems. However, the infrastructure can be expensive to construct and maintain.
Moreover, “super-peers” have high bandwidth consumption. In addition, infrastructure-based sys-
tems are much more vulnerable to malicious attacks than pure P2P systems. Moreover, in this
chapter, we show that the major problems of pure P2P unstructured lookup systems, e.g., low
search efficiency resulting in a high search overhead, which lead to abandoning the pure P2P
model for “super-peers”, can be eliminated with the use of a good overlay.

Unstructured lookup systems such as Gnutella can scale up to tens of thousands of users, with-
out relying on any infrastructuré84]. In such systems, the search may fail. However, queries
usually succeed in locating files due to natural file redunde®dly fhat is, popular files are held
by many nodes. Search algorithms typically used in unstructured lookup systems are based on
flooding and/or random walks87]. In a random walk, a query is forwarded to a randomly chosen
neighbor at each step, until the object is found. While this search technique can incur smaller
overhead than flooding, it also dramatically increases the search latency. In addition, in typical
dynamic wide-area environments, a random walk usually fails to achieve a similar search reliabil-
ity to that achieved by flooding. Therefore, most currently deployed P2P lookup systems employ
flooding as their search algorithm. In this chapter, we focus on improving the flooding efficiency
in unstructured lookup systems.

Lv et al. [87], propose a search algorithm based on multiple random walks, which resolves
gueries for popular objects almost as quickly as flooding, while reducing the network traffic. How-
ever, this search technique is not feasible for low-replicated objects or for failure-prone settings.
In addition, Lv et al. evaluate the efficiency of flooding over several graph structures. Their re-
sults show that flooding over a normal random graph achieves the best efficiency among the tested
graphs. Lv et al., however, do not examine low-degree balanced graphs suckhregudar ran-
dom graph. In this chapter, we show that flooding over such a graph (or an approximation of such
a graph) achieves much higher efficiency than flooding over normal random graphs. Moreover,
we show that a limited flooding over3aregular random graph achieves similar efficiency to that
achieved by random walks, while achieving higher reliability and incurring lower latency.
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Chapter 3

Methodology

Most of the dissertation (Chaptes6, and7), focuses on systems, which are mainly evaluated
empirically. We evaluate the properties of the different systems using extensive measurements in
large-scale environments, such as a large cluster, an emulated environment, or a network simulator.
We focus on failure-prone dynamic settings with node and link failures as well as join and leave
events.

Chaptei5 includes a theoretical study. The protocol is evaluated using formal proofs. Specif-
ically, the system is modeled as a non-cooperative game, and game theoretic techniques are em-
ployed.

We now review the different methodologies we use in each of our studies.

3.1 Methodology Used in Chapted, Araneola: A Scalable Re-
liable Multicast System for Dynamic Environments

The study in Chapted is an empirical one, and is based on evaluation of Araneola in a LAN, as
well as over the Internet. We also run Araneola on top of a WAN emulation.

Implementation language and transport protocol. We have implemented Araneola in Java
using UDP/IP. No retransmissions are sent, and therefore we do not increase the network load at
times of congestion, i.e., when there is high message loss. We use the standard UDP protocol
without over-saturating the network.

Evaluation settings. We evaluate Araneola in three environments: (i) in a single LAN in Netb2d] [
running up to 10,000 nodes on uplt&h machines; (ii) over the Internet using PlanetLab nod@g]|
running500 nodes or20 machines; and (iif) WAN emulations over a single LAN in Netbed, run-
ning up to 8,000 nodes on up t00 machines. Our emulated network is based on measurements
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of upload bandwidth of P2P client4d(9 and measurements of loss rates and RTTs (round trip
time) of Internet links/64].

Measurements of fault-tolerance. We study the fault-tolerance and robustness of the Araneola
overlay by considering two kinds of failures: communication link failures and node failures. We do
so using an offline analysis of overlay snapshots obtained at the end of static experimeh@®ivith
and2000 nodes. To study communication failures, we remove random subsets of edges from the
overlay graph and analyze the resulting graphs. This allows us to predict Araneola’s reliability and
latency in the presence of message loss. Similarly, we study Araneola’s resistance to node failures
by removing random subsets of nodes. In this analysis, no dynamic repairs are made, i.e., after
the initial construction of the overlay, no links are added as a result of a node or link failure. Such
repairs would have further increased the measured fault-tolerance. As in most previous studies,
e.g., B1, 85, 111€, we model node and edge failuresiadependent and identically distributed
(D).

Dynamic settings. Our model for dynamic evaluation is based on studies of user behavior in
multicast groups on the MBon@&1, 12, 13], and in file sharing applicationd09. These studies
model the join and leave rates of most of the nodes using an exponential distribution. Moreover,
both studies observe that a small portion of the nodes have substantially longer life times than
others. Motivated by these studies, we designate a small subset (ra¥ghlgf the nodes as
perseverant Perseverant nodes are created at the beginning of the experiment and remain active
throughout the experiment. Subsequently, every minkieadditional (non-perseverant) nodes

are awaken, until all nodeg{00 or 2000) are up. Each non-perseverant awaken node joins the
multicast group (becomexctive) with probability0.5. Otherwise, the node remaimsactive This
gradual joining is modeled after the Berkeley sessiorlR).[ Throughout the experiment, each
non-perseverant node once a minute flips a coin with probabilityorder to decide whether to
change its state from active to inactive and vice versa. We experiment with valuesrafing from

0.01 (yielding a mean life time of 00 minutes) ta).15 (giving a mean life time 06.7 minutes). As

a baseline, we also experiment with= 0, in which case nodes do not change their states. There
are roughly% nodes alive at the end of each experiment wittmodes, regardless of since the

join rate is equal to the leave rate.
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3.2 Methodology Used in Chapter5, EquiCast: Scalable Mul-
ticast with Selfish Users

ChaptelS employs game theoretic analysis. We model the system as a non-cooperative game, in
which the players aré&/ nodes. Each node chooses a strategy that dictates how it plays the game.
We define a special set pfotocol-obedient strategies (POS§)enerally speaking, a strategy out

of this set must run the protocol as is and can only determine how many connections to maintain
and how many packets to send on each connection. Each node is selfish and rational, i.e., it chooses
a strategy that minimizes its individual cost, according to some cost function.

3.3 Methodology Used in Chapte, Octopus: A Fault-Tolerant
and Efficient Ad-hoc Routing Protocol

The evaluation in Chapt& uses the ns2 network simulator with CMU’s wireless extensions. We
run up to 675 mobile nodes. Each node uses the IEEE 802.11 radio and MAC model provided
by the CMU extensions, which simulates packet loss in typical MANETs. Each node has a radio
range of250 meters and a throughput of22.

The nodes are initially placed uniformly at random in a square universe. In most of our simula-
tions, there ar&5 nodes per square kilometer. (Li et @3] have experimentally shown that such
a node density is required in order to achieve high forwarding reliability.) Each node moves using
the random waypoint model used B@]: it chooses a random destination and moves toward it with
a constant speed chosen uniformly between zerolagd. When a node reaches its destination,
it chooses a new destination and immediately begins moving toward it at the same speed.

For each set of parameters, we run f3¢® seconds long simulations, and in each simulation,
each node initiates an average of one location query a minute to random destinations, Hiarting
seconds into the simulation, and endin@#i seconds. Our values taken over the five simulations.
We also compute thg5% confidence intervals, and show that they are very tight, i.e., the results
of the five simulations are very close to each other. This consistency is due to the large number of
events in each simulation.

In order to evaluate the reliability of Octopus’s forwarding sub-protocol, we run simulations
in which data traffic is sent. Our simulation scenario follows the on&8h [Each node’s radio
bandwidth is2%’j. In each simulation, data traffic is generated by a number of constant bit rate
connections equal to half the number of nodes; no node is a source in more than one connection;
no node is a destination in more than three connections. Each source senti2sfbyte data
packets per-second faf seconds. Each simulation last®) seconds, and data packets are sent at
random times betwee3t) and270 seconds into the simulation.
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Finally, in order to evaluate the fault-tolerance of Octopus, we run simulations with connect
and disconnect events. We introdusestablenodes, which alternate between being connected
and disconnectedB]. Each time an unstable node awakens, it remains connected for a time
interval chosen uniformly at random in the ran@el120] seconds. And when it disconnects, it
remains disconnected for a time interval chosen uniformly at random in the [@rtigé seconds.

Thus, at any given time, an averagegobf the unstable nodes are connected. We experiment
with a varying percentageof unstablenodes. The remaining nodes are connected throughout the
simulation. We experiment in a fairly large grid @Bkm by 2.3km. In order to isolate the effect

of node disconnections without impacting the density, we fix the average number of connected
nodes at a given time d00. That is, we ruq_j;%f%p nodes (e.g480 nodes whem = 0.5).

3.4 Methodology used in Chapter7, Evaluating Unstructured
P2P Lookup Overlays

In Chapter7, we define metrics for evaluating unstructured overlay networks for P2P lookup sys-
tems. We measure each of these metrics (using a serial program) on six undirected graph topolo-
gies. In each graph topology, there are 10,000 nodes, in order to allow for a fair comparison.
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Chapter 4

Araneola: A Scalable Reliable Multicast
System for Dynamic Environments

4.1 Introduction

Our goal in this chapter is to provide a scalable multi-point to multi-point reliable multicast ser-
vice for large groups in wide-area networks. Examples to applications that require such a service
include publish-subscribe applicatiors3[ 29], distributed parallel processingZ], and collabo-
ration applications such as shared document edid@} Wwhiteboards66], chat, distributed in-
teractive simulationsgs], and multi-player game$] [103. Traditionally, IP multicast4Q] has
been advocated as a solution to scalable multicast. However, due to scalability, reliability, security,
and congestion and flow control problems, nowadays IP multicast is mostly unavailable over the
Internet b4, 81]. In recent years, Application Level Multicast (ALM) systems have emerged as a
promising alternative to IP multicast for scalable wide-area multic8;134, 30, 31, 33, 41, 44,
54,161,168, 76,81, 85,186,110,117. In such systems, the multicast is supported at the application
level, and hence these systems can be deployed over any network without requiring router support.

A protocol deployed in wide-area networks must be able to withstand frequent node failures as
well as non-negligible message loss ra&f).[Moreover, studies have shown that, typically, users
frequently join and leave multicast sessiofhg]{ such behavior is calledhurn A major design
goal for our work is therefore coping efficiently with churn. Specifically, we address the following
challenges: (i) providing high reliability despite considerable message loss and failure rates while
incurring constant load on each node; (ii) incorporating joining nodes and removing leaving (or
failing) ones with a lonconstantoverhead; and (iii) providing an undisrupted service to nodes that
are up despite high churn rates.

We present Araneola, a scalable reliable ALM system for dynamic wide-area environments.
Araneola does not rely on any infrastructure such as dedicated servers nor requires router support.
Reliability is achieved by constructing a richly-connected overlay and disseminating pertinent in-
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formation on multipledisjoint paths in this overlay. The number of paths in the overlay can be
tuned according to the expected failure and loss rates. Araneola is designed to incur small constant
load on each node. To this end, it builds a basic overlay in which each node’s degree is bounded
by a small constant. Then, this basic overlay can be extended with additional links according to
specific application needs, e.g., network proximity. This approach has three advantages: (i) all
nodes, including low bandwidth ones, are capable of participating in the basic overlay; (ii) the load
on all nodes is similar, so no user is required to contribute more bandwidth than its fair share for
the basic overlay; and (iii) nodes have ample remaining bandwidth for connecting to additional
nodes according to application needs.

Our search for a robust constant degree overlay leads us to cohsiegular random graphs.
A k-regular random graplwith N nodes is a graph chosen uniformly at random from the set of
k-regular graphs withV nodes. In contrast to a normal random gra@¥],| where node degrees
vary, in ak-regular graph, each node’s degree is exaktlyFor £ > 3, a k-regular random graph
is almost always a good expanddg], which implies that (i) its diameter grows logarithmically
with N [127]; and (ii) it remains connected after random failures of a linear subset of its nodes
and/or edge<d(Q]. In addition, such a graph is generakllyconnected, i.e., there akalisjoint paths
between every two nodes in the gréph contrast, in order for a normal random graph to be even
connected (with high probability), its average degree must be at least logarithii§a#]. Note
that the diameter, which increases logarithmically, is the only featuré:afgular random graph
that depends on the system size. All the remaining characteristiegagular random graphs
(connectivity, degree, robustness to random edge and node removals) are independent of

We present for the first time an algorithm for constructing and maintaining an overlay that re-
sembles &-regular random graph in a distributed and efficient manner in dynamic settings. For a
given parametek > 3, Araneola’s basic overlay converges to a graph in which each node has a
degree of eithek or k + 1, and no two neighboring nodes have a degrele-6fl. Empirically, we
show that Araneola’s overlay achieves the desired propertiegegular random graphs, namely
logarithmic diameterk-connectivity, and high robustness. In particular, we show that Araneola’s
overlay has a similar diameter and is as robust as graphs generated using a known centralized con-
struction ofk-regular random graphs. At the same time, Araneola’s overlay construction algorithm
is fully distributed and efficient, as each join or leave (or failure) incurs sending roughly about
messages in &-degree overlay, regardless 8f. Remarkably, in dynamic settings, the cost of
handling a single join or leave operatidacreasess the churn rate increases. This is in contrast
to virtually all existing structured P2P overlays, with which the overhead for handling joins grows
at least logarithmically with the number of nodes.

1The probability that &-regular random graph is nétconnected i€)(N2~F).
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The low maintenance cost is achieved due to the facts that: (i) each join, leave, or failure is
handled locally; and (ii) the selection of random neighbors uses partial membership views main-
tained by a distributed low cost membership service similar to the ond4,ia1(. The overhead
of the membership service is independent of the number of nodes and of the churn rate.

Many wide-area applications need low-diameter robust overlays. Beyond these general needs,
different applications have additional specific needs such as communication with near-by nodes,
proximity to content, and exploitation of bandwidth heterogeneity. We believe in separation of
concerns between generic requirements on one hand, and needs that vary from application to ap-
plication on the other. Araneola addresses the former using a low degree overlay, and thus leaves
ample bandwidth for applications to address the latter. We illustrate this approach by extending
Araneola’s basic overlay with links added according to geographical proximity. We show that with
this approach, the links in Araneola’s overlay traverse substantially fewer physical hops on aver-
age. Moreover, we show that if each node in the basic overlay is connected to as little as three
or four random nodes, extending the basic overlay with links chosen according to geographical
proximity creates an overlay that is as robust to random failures as a basic Araneola overlay with
the same average degree, in which all the links are random.

Given Araneola’s overlay, it is possible to multicast (broadcast) messages by simply flooding
the overlay 85]. This approach yields low latency but also incurs fairly high overhead, as several
duplicates of each message are sent to each node. This can be effective if data messages (i.e.,
payload messages sent by the application) are small, or if bandwidth is abundant, but otherwise,
it is wasteful. Alternatively, message identifiers can be flooded instead of the data messages, and
each node can request each message that it is missing from exactly one neighbor. This ensures
that, in the absence of message loss, each data message is sent'éxattiynes, although many
duplicate messages carrying its identifier are sent.

In order to reduce the number of messages sent, one can bundle message identifiers together:
each node can locally divide its time ingossip roundsand send ongossip message each of its
neighbors in each round, where gossip messages include identifiers of recently received messages.
Nodes can then request missing messages from other nodes that have them. This approach is
appropriate for software update dissemination, video streaming, and file sharing applications like
BitTorrent [37]. Note that with all of the above dissemination techniques, Araneola achieves full
reliability of data delivery as long as there are no partitions in the overlay graph. Since, empirically,
Araneola’s overlay is an expander, Araneola achieves full reliability even under message loss and
churn rates that are substantial higher than the ones measured over the Internet.

We empirically evaluate Araneola with the latter (gossip-based) approach, and compare it to a
standard gossip-based scalable reliable multicast protocol. Gossiping with Araneola differs from
gossip protocols in that with a standard gossip protocol (88,.85]), each node chooses different
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random nodes to gossip with in each round, whereas in Araneola, each node always gossips with
its neighbors in the overlay structure. We show that this difference leads to substantial improve-
ments in load, reliability, and latency.

Contributions. In summary, this chapter makes the following contributions:

e It presents the first efficient distributed algorithm for constructing and maintaining a graph
structure that resembleskaregular random graph and achieves its good properties in dy-
namic settings.

e Itintroduces an algorithm that constructs and maintains a richly-connected low degree over-
lay in which each join or leave operation incurs a constant overhead.

e It describes an overlay-based ALM system to provide an undisrupted multicast service in
highly dynamic settings while incurring constant load on each node.

e It features a complete implementation and a thorough evaluation of Araneola running up to
10, 000 nodes on up t@25 machines, in both LAN and WAN, including extensive evaluation
of the impact of churn on an ALM system.

e Finally, it constructs an overlay that designates ample bandwidth for each node to commu-
nicate with nodes chosen according to application needs, e.g., proximate nodes.

Roadmap. This chapter proceeds as follows: In Seci#bg, we summarize our design goals.
Sectiord.3presents the design and pseudo code of Araneola’s basic overlay, and 8elxhalu-
ates this overlay. SectighSgives an example how Araneola’s basic overlay can be enhanced with
additional links chosen according to geographic proximity in order to reduce communication costs,
and evaluates this extension over the Internet. Sedti®discusses multicasting over Araneola’s
overlay. Finally, Sectiod.7 evaluates a gossip-based multicast implementation.

4.2 Design Goals

The purpose of Araneola is to support scalable reliable multi-point to multi-point communication
in dynamic wide-area settings where nodes frequently join and leave (or fail). We have set the
following requirements for our service:

¢ High reliability —100% reliability as long as the failure and message loss rates do not exceed
certain configurable thresholds, and graceful degradation in the face of increasing failure
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rates. The reliability should be independent of the number of nodes, i.e., Araneola should
withstand a certain failure rate independent of the number of nodes in the system.

e Low latency, increasing at most like(log IV); the latency should remain low while multiple
nodes are joining and leaving (or failing).

e Low constant load on each node, as well as low constant cost for handling joins and failures.
e Quick failure recovery and prompt incorporation of joining nodes.

In addition, Araneola is designed to be suitable for a variety of wide-area applications. We
believe that each application has its own considerations for link selection based on application-
defined proximity metrics and available bandwidth. Therefore, we construct a generic low-degree
overlay that incurs low load on each node, leaving ample bandwidth for each node for communi-
cation with additional nodes chosen in an application-specific manner.

Araneola is designed to achieve all the above goals without using any infrastructure, servers,
or any elaborate communication mechanism beyond point-to-point UDP communication between
pairs of nodes — we assume that every pair of nodes can communicate with each other.

In order to achieve these goals, Araneola strives to build a basic overlay structure with the
following characteristics: (i) multiple disjoint paths between every pair of nodes, where the number
of paths is a configurable parameter(ii) robustness to random removal of a certain percentage
of the nodes or edges; (iii) low diameter and average distance, increasing at mastltigeV );

(iv) low bounded degree (3 or more), which leaves plenty of bandwidth for communication with
additional nodes according to application needs; and (v) support for local addition and removal of
nodes at a constant cost.

As we have seerk-regular random graphs naturally achieve these goalk for3. Therefore,
Araneola strives to construct and maintain an overlay that approximatesgular random graph.

As noted in Sectio2.1.3 creating a perfecdt-regular random graph could be difficult and costly.
Instead, Araneola is designed to converge to a random graph in which each node has a degree of
eitherk or k£ + 1 and no two neighboring nodes have a degreke-6fl. We show that the desirable

graph properties of-regular random graphs carry over to graphs with this structure.

4.3 Araneola’s Overlay

Araneola’s protocol has three components: one implements a randomized partial membership ser-
vice (see Sectiod.3.]), the second constructs and maintains the basic overlay (see Séc3idh

and the third implements the multicast service (see Sedtin All Araneola nodes run these

three components. Araneola handles each multicast group independently, i.e., it builds an overlay
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structure for each multicast group. Since each group is handled independently, we present the
protocol for a single group, and omit the group’s hame.

4.3.1 The Membership Service

When joining the overlay, a node randomly selects several other nodes to connect to. This requires
each node to know some other nodes’ identities. To this end, we implement a scalable randomized
membership protocol similar tdL(, where membership information is gossiped over the over-
lay’s links. Each node maintains a small set of node identities, calladrabership vieswwhich

evolves over time. The size of the membership views a predefined parameter. Each node has

a log file that contains random node identities received in a previous session. When a new node
joins Araneola for the first time it can ask another node for its membership view, and use that as its
initial view.

Periodically, each node’s membership protocol piggybacks a small amount of membership in-
formation on messages sent to the node’s neighbors. Specifically, the node sends a certain number
of random node identities from its membership view to each neighbor. Upon receiving such mem-
bership information from a neighbor, the node adds these node identities to its membership view.
Then, if the membership view includes more thtanode identities, then random node identities
are removed from the membership view until it includes olyode identities.

Whereas in a gossip-based multicast protocol, e.g., Lpkbddktdach node uses its member-
ship information in every round in order to disseminate multicast data, in Araneola, membership
information is used infrequently, only for overlay maintenance. Specifically, a node consults its
membership service only when its degree drops below a predefined threshold. Note that, similarly
to gossip-based protocols, we could have implemented a gossip-based multicast layer directly on
top of the membership service. However, as we explain in Se2tibd and experimentally show
in Section4.7.], gossiping over Araneola’s overlay eliminates the shortcomings of gossip-based
protocols, and further improves the scalability of these protocols. Since membership information
is used infrequently in Araneola, it can also be disseminated infrequently. Empirically, even under
churn rates exceeding those measured over the Inté@€itand the Mbonel12], disseminating
membership information once a minute suffices for creating a robust overlay and achieving full
reliability of message delivery (see Sectidry.2). In Section4.3.3 we calculate the overhead
incurred by the membership service. In a typical setting, the per-node membership oveftgad is
bytes per-minute, regardless of the churn rate.

In Sectiord.4.4 we evaluate the effect of the membership service on the overlay. We show that
the initial distribution of the membership views has a small effect on the quality of the constructed
overlay: ak-Araneola overlay is at leagt—1-connected even when the initial distribution of the
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membership views is skewed.

4.3.2 Building and Maintaining the Overlay

The protocol for constructing and maintaining the overlay is composed of three tasks:qonthe
nect task(see Sectio.3.2) adds new connections when a node’s degree is below a configurable
parameter called L, which determines the graph’s target degjediij the disconnect tasksee
Sectiord.3.2) tries to reduce a node’s degree if it is above L, without causing any node’s degree to
drop below L; and (iii) thdailure detectottask detects neighboring node failures. This task simply
generates an fduspect event when messages from a given neighbor fail to arrive for a certain
period of time. The failure detector is straightforward and we do not describe it in pseudo-code.
Araneola’s data structures are presented in Figute The setneighborsholds the node’s

current neighbors in the overlay, with their respective degrees. The degree of a node is the size of
its neighbors set, i.e|neighbors. The setextround.connectcontains node identifiers received
from redirections of CONNECT requests as explained below. The current time can be read from
clock The settonnectto_nodeand the boolean flagile2 flag are used by the reduction task (see
Figure4.3), and are explained below. The parameter L determines the graph’s target dggree (
and the parameter H defines the maximum allowed degree for a node. These are configurable
parameters: L affects the connectivity and diameter of the overlay, while H affects the overhead of
constructing the overlay. A number of timeout values are defined in order to control the frequency
at which different events occur.

Data structures:

id — this node’s identifier.

neighbors- set of pairgid,degreg, initially (.

nextround connect- set of pairgid,degree, initially (.

clock— the current time.

connectto_node— set of node identifiers, initiall§.

rule2 flag— a binary flag, initially 0.

Parameters:

L — target number of neighbors.

H — upper bound on the number of neighbors.
Timeouts: connectimeout, disconnectimeout.

Figure 4.1:Araneola’s data structures and parameters.
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The connect task

When a node’s degree is below L, the connect task (see FdByeeriodically attempts to set
up as many new connections as it is missing to randomly chosen nodes (lines 1-10). The target
nodes are chosen either from the sextround.connector at random from the local membership
view. For each attempted connection, the node sends a CONNECT request (line 9). At bootstrap
time, the node issues CONNECT requests to L nodes, and then sleemf@citimeout It is
expected that during this period enough new connections will be formed, although since some of
the chosen nodes may be faulty or overloaded, there may be a need to attempt more connections
after the timer expires. The connect task can be awoken by other tasks before the timer expires
(line 35).

A node that receives a CONNECT request (line atyeptsit, by calling addconnection,
provided that the sum of the sizes of the satsghborsand connectto_nodeis smaller than H,
and otherwise itedirectsthe request, as will be explained shortly. The procedurecashection
adds the sender to neighbors (line 31) and responds with a CONNECTUpon receiving the
CONNECTOK (line 18), the requester registers the new connection if either its degree is still
smaller than H, or the sender of the CONNEOK message is iconnectto_node Otherwise,
the requester sends a LEAVE message to the sender (line 25). A LEAVE message causes its
receiver to remove its connection with the sender (lines 26—-27), and wake up the connect task if
necessary (lines 34-35).

Redirecting is done by sending a REDIRECT message to the requester, naming the sender’s
lowest degree neighbadrline 15). This causes the requester to atlalits nextround.connectset
(line 17). The next time the requester’'s connesk will awaken, it will attempt to connect o
rather than to a random node (line 5). CONNECT and CONNEIXImessages carry the sender’s
current degree for initializing thdegreein the neighborsdata structure. In addition, every node
periodically sends its degree to its neighbors, in order to keep the neighbors data structure up-to-
date (this is not shown in the code). A node that voluntarily leaves the system sends a LEAVE
message to all its neighbors. An involuntary failure of a neighbor is detected using the failure
detector, which generates anddspect event (line 28). When a node detects a neighbor as faulty,
it sends that neighbor a LEAVE message and removes the connection by calling reomontion
(line 30).

The disconnect task

With the connect task a node’s degree can be as hidh. aBhe disconnect task (see Fig#€),
which is composed of two rulefR(le 1andRule 2, reduces node degrees, so that, eventually,
each node’s degree is either L o#IL, and at mos50% of the nodes have degree-L.
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Connect task
1. loop forever
2. gap — L — |neighbors|
for (i = 0;i < gap;i + +)
if [next_round_connect| # () then

n «— element imezt_round_connect

else

n « random node from membership service

send(CONNECT, |neighbors|) ton

3

4

5.

6. removen from next_round_connect
7

8

9

10.  sleep (connectimeout)

Event handlers:
11. uponreceive(CONNECT, d) from n do

12. if (|neighbors| + |connect_to_node| < H) then
13. add.connection 1, d)

14. else

15. send(REDIRECT, lowest degree neighbdo n

16. uponreceive(REDIRECT,»') from n do

17. next_round_connect < next_round_connect | J {n'}

18. uponreceive(CONNECT.OK, d) from n do

19. if (|neighbors| + |connect_to_node| < H Vn € connect_to_node) then
20. neighbors < neighbors | J {n, d}

21. if (n € connect_to_node) then

22. rule2_flag < false

23. removen from connect_to_node

24. else

25. send(LEAVE) ton

26. uponreceive(LEAVE) fromn do
27. removeconnectiong)

28. uponfd_suspect (nodéd n) do

29. send(LEAVE) ton
30. removeconnection )
Procedures:

Procedureaddconnection (noded n, int d)
31. neighbors <« neighbors | {n,d}
32. send(CONNECTOK, |neighbors|) ton

Procedureremoveconnection (node)
33. removen from neighbors
34. if(Jneighbors| < L) then
35. wake up connect task

Figure 4.2:0verlay construction: the connect task.



Rule 1. Rule 1removes the connection between a pair of nodes that both have degrees higher
than L (Figured.3, lines 5-9). Specifically, if a node€s degree ig. + ¢, thenn attempts to remove

1 of its neighbors. Neighbors with degrees higher than L are candidates for removal; they are
inserted into the satands(line 5). If candscontains more than nodes, the lowest identifier

ones are kept (line 6). I has a higher id than a noden cands thenn sends a DISCONNECT
message to (line 9). Upon receiving this message (line 17);’sdegree is still higher than L and

n IS in ¢'s candsset, it removes the connection with and sends a DISCONNECOK message.

By checking that: is in ¢'s candsset, we ensure that parallel invocations of Rule 1 will not drop

c’s degree below L. Upon receipt of a DISCONNE®@IK (line 23), n removes the connection

with c.

Rule 1 ensures that if from some point onward no nodes join the overlay, then eventually there
are no two neighboring nodes that both have degrees higher that L. @iseonnectimeout each
node’scandsset is set with the lowest identifier neighbors of the node among the neighbors
with degrees higher than L. This ensures that as long as there are two neighboring nodes with
degreesL, eachdisconnectimeoutthere are at least two neighboring nodesandb, so that
a € b.cands andb € a.cands (e.g., whena is the lowest-identifier node with degree L, and
b is its lowest-identifier neighbor with degree L). Thus, until there are no two neighboring
nodes with degreesd. in the overlay, everglisconnectimeoutat least one link between such two
neighboring nodes is removed from the overlay graph, although usually almost all such links will
be removed simultaneously. In any case, eventually all such links are removed.

Rule 2. With Rule 1 it is possible for a node to have degree H while all of its neighbors have
degree L. This case is solved Byle 2 which is invoked only at a nodewhen all ofn’s neighbors’
degrees arg L. With Rule 2, node: chooses its two neighbors with the highest and lowest degrees,
h andl, respectively (lines 12-13). H’s degree is at leastdegree + 2 and it is not involved

in another invocation of Rule Z({le2 flag = false, thenn tries to cause: to shift one of its
connections fromn to [. But before removing’s connection withn, we ensure thatis willing to
accepth’s connection. Therefore, contactd (rather tharh) and asks it to try to connect tg and

to askh to remove its connection with. To this end;» sends 8 CONNECT.TO,.) message to

[. If upon receiving this messadis degree is stilkL, and/’s rule2 flag is false (line 26), ther
insertsh to connectto_node and sends it a CHANGEONNECTION message. The recipieht,
connects td by calling addconnection (line 33), provided that itale2 flag is false and sends a
DISCONNECT message toif its degree is higher than L (lines 34—-35). Note thgtCONNECT
request will be approved bl since prior to sending the CHANGEONNECTION message to

h 1 insertsh to its connectto_nodeset. This connection with can increasé’s degree, but not

to become higher than-1 sincel accepts a CONNECTO request only if its degre€l and its
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rule2 flag is false Moreover, note that if’'s degree will become higher than L, an& degree

will remain above L, then Rule 1 will eventually redute degree back to L. Finally, each node’s
rule2 flag andi’s connectto_nodeset are set téalseand(), respectively, after each of them is no
longer involved in the current invocation of Rule 2 (Fig4r€ line 22 and Figured.3lines22 and

36 ). rule2flag ensures that at any moment each node is involved in at most one invocation of Rule
2, and hence no deadlock situations are possible.

Proposition 1. If there is a time after which no nodes join, leave, fail, or are detected as faulty,
then each node’s degree is eventually either L e1llL.and at most0% of the nodes have degree
L+1.

Proof. Rule 1 removes connections between every pair of neighbors with degrees higher than L,
without adding new connections. Thus, Rule 1 ensures that eventually, no morg#%sanf the
nodes have degrees higher than L. Since nodes with degrees lower than H accept new connections,
all joining nodes eventually succeed in forming connections with at least L other neighbors. There-
fore, the connect task and Rule 1 ensure that eventually, each node’s degree is between L and H,
and no two neighboring nodes have degrkeThis implies that at leasi0% of the nodes have a
degree of L.

With Rule 1, it is still possible for a node to have a degree 1l when all ofn’s neighbors have
a degree of L. In this case, Rule 2 is invoked at nadeeducingn’s degree by one and increasing
the degree of’s lowest degree neighboby one (in this caséis a random neighbor af) without
changing the rest af’s neighbors’ degrees. Nows degree equals to+1 and Rule 1 becomes
enabled again, disconnecting the connection betweand!. Thus, after activating Rule 2 and
Rule 1 consecutivelyp's degree is reduced ¥ while the degrees of the rest afs neighbors
remain L. Ifn’s degree still above 1, further consecutive activations of the two reduction rules
reducen’s degree each time Wy until its degree becomes either L o#L. O

Although the worst-case convergence time can be linedf,im practice, in all of our exper-
iments with up to 10,000 nodes, the overlay converged to a state in which each node’s degree is
either L or L+1 within less than 10 disconnect timeouts.

The probability for an overlay partition.

The probability that &-regular random graph is nétconnected i$)(N?~*) [122). Empirically,

as we show in Sectich. 4.5 ak-Araneola overlay achieves a slightly better fault-tolerance to node
and link failures than &-regular random graph. This is since irt8Araneola overlay the degree
of each node is betwednandk + 1 whereas in &-regular random graph all the nodes have a
degree ofk. In addition, as we show in Secti@h4.4 the initial distribution of the membership
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Disconnect task:

1.
2.
3.
4.

©o~No O

10.
11.
12.
13.
14.
15.
16.

loop forever
sleep (disconnedimeout)
i < |neighbors|— L
if ( > 0) then
[* Rule 1 */
cands «— {n € neighbors : n.degree > L}
if (|cands| > i) then cands < i elements ofands with lowest identifiers
foreachc € cands
if (c.id < id) then
send(DISCONNECT) to ¢
[* Rule 2 */
if (cands = 0 A lrule2_flag) then
rule2_flag < true
h «— random neighbor among the neighbors with the highest degree
[ — random neighbor among the neighbors with the lowest degree
if (lneighbors| > l.degree + 2) then
cands < cands | J {h}
send(CONNECT.TO,h) tol

Event handlers:

17.
18.
19.
20.
21.
22.

23.
24.

25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.

uponreceive(DISCONNECT) from n do
if (lneighbors| > L A n € cands) then
removeconnectionf)
send(DISCONNECTOK) to n
if (n € cands) then
rule2_flag < false

uponreceive(DISCONNECTOK) from n do
removeconnectiong)

uponreceive(CONNECT.TO, n’) fromn do
if (|Ineighbors| <L Alrule2_flag) then
rule2_flag «— true
connect_to_node «— {n'}

send(CHANGE_CONNECTION|neighbors|,n) ton’

uponreceive(CHANGE_ CONNECTION, n’) fromn do
if (|neighbors| < H A lrule2_flag) then
rule2_flag < true
add.connection#)
if (jneighbors| > L) then
send(DISCONNECT) to n’/
rule2_flag < false

Figure 4.3:Overlay constagtion: reducing node degrees.



views has a small effect on the overlay’s fault-tolerance. In hundreds of rér&raneola overlay
was alwaysk—1 or k connected even when the initial distribution of the membership views was
skewed. Moreover, as we show in Sectd.2, a 5-Araneola overlay is connected even after a
random removal of up ta0% of its edges or after a random removal of uplt¥% of its nodes.
Therefore, fork>5 and N >1000, the probability that &-Araneola overlay becomes partitioned is
negligible.

4.3.3 Maintenance Overhead

In Sectior4.3.3 we calculate the overhead incurred in a steady state, i.e., in the absence of churn.
In Section4.3.3and 4.3.3 we calculate the overhead for the simple case where a single join or
leave, respectively, occurs when the system is stable, i.e., each node’s degree is eitherll. or L
and no two neighboring nodes have a degree-pf LIn Sectiord.4.3 we show that this analysis
gives a good estimation for dynamic settings in which the churn rate is low. When the churn rate
rises, the overhead decreases because when many join and leave events occur concurrently their
costs can be amortized. For example, a join event may increase a node’s degree while a leave event
is reducing it, eliminating the need for correcting the overlay.

In Sections4.3.3and4.3.3 we denote by the probability that a node has a degree of L, and
the probability that a node has a degree efllis1 — p = gq.

Steady state and membership overhead

In a steady state, no control messages are sent. In this case, the overhead is composed out of the
membership overhead only. Recall that, every predefined period, each node’s membership protocol
piggybacks a small number of random node identities on messages sent to the node’s neighbors.
Specifically, in all of our experiments, every minute, the membership protocol $éndsmdom

node identities to each of the node’s neighbors. We represent each node identiycal layte

array. Assuming each node haseighbors, the per-node membership overhedd1is6=300

bytes per-minute. As explained in Secti:3.], the per-node membership overhead is fixed, and
does not depend in the churn rate.

The overhead for join

We begin by calculating the expected overhead for a single CONNECT request. Assume that node
c issues a CONNECT request to nodeWe distinguish between three possible casest &nd

all of its neighbors have a degree of L; (lihas a degree of L and at least one of its neighbors
has a degree of+1; or (iii) ¢t has a degree of-k1. In the latter case, all ofs neighbors have a
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degree of L. The probability for case (i), the probability for case (ii) is(1 — p”), and the
probability for case (iii) isl — p = g.

In case (i),c sends one CONNECT messagettand in returnt sends one CONNECDK
message te, for a total of two messages. In case (ii), in addition to the CONNECT and CON-
NECT_OK messages, two additional messages (DISCONNECT and DISCONNBEQ&re later
sent (by Rule 1) in order to reduce the degree @nd one of its neighbors from+t1 to L.
Thus, a total of four control messages are sent. In case (iii), after sending the CONNECT and
CONNECTOK messagest's degree becomes+2 while the rest oft’s neighbors still have
degrees of L. In this case, activates Rule 2. First; sends to its lowest degree neighbagr,
a CONNECTTO message with the identity of its highest degree neighborThen,/ sends a
CHANGE_CONNECTION message th with ¢'s identity. In return,h sends a CONNECT mes-
sage td and a DISCONNECT messagettoFinally, [ sends a CONNECDK message ta and
t sends a DISCONNECDK message tad. Now, the degrees af and/ become L1 and the
degree ofh remains L. In the next iteration of the reduce algorithm Rule 1 is applied and eéither
or/ sends a DISCONNECT message to the other and the other replies with a DISCONNECT
The total number of messages sent in case (iii) is thus ten.

The expected number of control messages sent for a single CONNECT request is therefore:

2p" T 4+ 4p(1 — p*) 4 10q = 4p + 10q — 2p™ .

Since a joining node sends L CONNECT messages, the expected overhead associated with a single
join operation during a stable period is:

L(4p + 10q — 2p=*1).

The above analysis of the join overhead ignores the possibility for cascading reconnections. In
Section4.4.3 we compare this analyzed join/leave overhead with the measured join/leave over-
head, and find that they are very close. That is, cascading reconnections do not have a significant
impact on the join overhead.

The overhead for leave

Assume that nodesends a LEAVE message to nadd here are two possible cases: eithet [ias

a degree of L; or (iiy has a degree of-£1. The probability for case (i) is, and the probability for

case (ii) isq. In the first casel, sends a LEAVE message toSubsequently, sends a CONNECT

request to a random new node. We showed above that the expected overhead associated with a
CONNECT request igp + 10q — 2p~*!. Thus, the expected number of messages sent in the first
case isl + 4p + 10q — 2p**. In the second casésends a LEAVE message toHowever, in this
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caset does not send any messages as its degree becomes L. Thus, the total expected overhead for
sending a LEAVE message is:

p(1 +4p + 10q — 2p* ™) + ¢.
The expected number of LEAVE messages a node sends upon leaving the system is:
pL+q(L+1)=L+q.
Thus, the expected number of messages sent upon a node leaving the system is:

(L +q) * [p(1 + 4p + 10q — 2p*™) +q].

4.4 Evaluation of Araneola’s Overlay

We have implemented the code for constructing and maintaining Araneola’s overlay in Java using
UDP/IP. In our experiments, we set the connitteout to5 seconds and the disconndtheout

and the conned_timeout to30 seconds. Membership information is gossiped once a minute. At
bootstrap, each node’s membership view contains ten node identities chosen uniformly at random.
In this section, we evaluate Araneola’s overlay on a single LAN in NetB&d][ In the next
section, where we extend Araneola to exploit network proximity, we evaluate Araneola’s overlay
also on a WAN. We begin our study, in Sectié.], by evaluating Araneola’s overlay in a static
setting; we study the impact of L and H on the overlay as well as the overlay’s scalability. In
Section4.4.2we study the overlay’s fault-tolerance. In Sectd.3 we measure the join and
leave overhead in experiments with high churn. In Secigh4 we evaluate the effect of the
membership service on the overlay. Finally, in Secdoh5 we compare Araneola’s overlay with
k-regular random graphs constructed using a centralized algorithm.

4.4.1 Static Evaluation

In our static evaluation, all the nodes are created simultaneously, and remain up throughout the
experiment. Each experiment lastsinutes. Empirically, we saw that within this time the overlay
converges to a stable state, in which each node’s degree is either{laand no two neighboring
nodes have a degree oftll. Each experiment (with a given number of nodes and choice of
parameter settings) was run at leasimes, for a total of several dozens.

The impact of L

Araneola’s parameter L affects the load imposed on each node. In Sdc3iGabove we have
shown that the join/leave overhead grows roughly linearly with L. Additionally, increasing L in-
creases the multicast overhead, since data or gossip messages are sent on all links.
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Nevertheless, increasing L yields a number of benefits. First, it improves the overlay’s connec-
tivity and robustness. In Secti@h4.2, we show that when £ 5, the overlay generally remains
connected after random removal 6% of its edges or nodes, while wher-=L4, it remains con-
nected after the removal of only abolit% of the edges or% of the nodes. Second, increasing
L reduces the overlay’s diameter. Note that the connectivity and robustnegsrefjalar random
graph with a giverk is independent of the number of nodes. Therefore, we can set the value of L
regardless of the number of nodes in the system. The value of L, however, has a small effect on
the overlay’s diameter. Below, we examine the relationship of Araneola’s overlay’s diameter with
that expected in &-regular random graph for different group sizes.

Wormald [122] gives the following formula for the expected diameter of-eegular random
graph: the diameteD asymptotically almost surely (ag&9atisfies:

(k—2)

1+ [logy_y N] + [log;_y (= 1log N)] < D < 1+ [log;_,((2 + €)kN log N)1.

To understand the impact of L, we experiment witid0 nodes (onl00 Netbed machines) for
values of L ranging fronB to 10, and measure the diameter of each overlay. In Tdbhlewe
report the highest overlay diameter measured for each value of L, and compare it to the formula
above. We see that the highest diameter of Araneola’s overlay occurs in the range predicted by the
formula.

Expected diameter range Highest measured
L || in L-regular random graph422] | Araneola diameter
3 13-19 13
4 9-13 9
5 7-11 8
6 6-9 7
7 6-9 6
8 5-8 6
9 5-8 6
10 5-8 6

Table 4.1:The impact of L on Araneola’s diameter versus Wormald'’s formg0a) nodes.

Increasing the value of L has a third benefit— it constructs an overlay that more closely ap-
proximates a regular graph, in that a higher percentage of the nodes have a degree of L, as shown
in Figure4.4.

In most of the experiments we present below, we set L.t&Ve chose this value because it
provides a good balance between the desired properties: the load imposed on each node is still

2A property holds aas if the probability that it holds approachas N — oo.
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Figure 4.4:Degree distribution3000 nodes.

modest, and the overlay’s diameter is small. Moreover, as we shall see below, it yields a robust
overlay (twice as resilient to node failures as witk ) and achieve3$00% reliability at join and
leave rates exceeding those measured on the MBdije [

The impact of H

Next, we examine the impact of the parameter H. Like L, the choice of H does not depend on the
system size. This is since the expected number of control messages received by each node does not
vary with the number of nodes. We experiment wh= 1000, L= 5, and different values of H.

We observe that in order to obtain a reasonable overhead, H needs to be atleastiD. When

H is lower thanl0, we get a high overhead— some nodes send hundreds of CONNECT requests
before finding a node with degree lower than H. This occurs since nodes run the reduce task only
once in30 seconds, in the interim, many node’s degrees can rise above L, especially in our static
experiments where all nodes are created simultaneously. When H is sebte-L10, however,

this problem is eliminated and the average number of control messages received by each node is
betweer8 and9, independently ofV. The number of control messages received by each node is
normally distributed. We did not observe significant differences among values of H ranging from
10 to 20: for all values of H betweem0 and20, the average number of control messages received
was betweer8.3 and 8.6. Similar results were obtained fdr equal to4 or 6. We therefore
henceforth fix the value of H to be5.

Overlay properties and scalability

In order to understand Araneola’s scalability, we va¥y the group size, from»00 nodes (on

10 Netbed machines) tb0, 000 nodes (onl25 Netbed machines). L and H are setst@and 10,
respectively. At the end of each experiment, we take a snapshot of the overlay structure, and then
analyze its properties offline. We measure node degrees as well as the overlay’s diameter, average

49



distance, and connectivity. The results are summarized in FfaE¥eThe first column in the table
shows the percentage of nodes whose degree is LH).€lhe remaining nodes’ degrees are L.

For all group sizes, ovel0% of the nodes have degree L. The percentage of nodes with degree L
does not seem related 1o.

12—

(@)

% Nodes| Measured Expected| Avg
N degree=5 diameter | diameter| #paths| ™|
100 98 5 4-6 5.00
500 91.8 6-7 5-8 501 |°
1000 91.4 7 5-8 5.01
2000 92 7-8 6-9 501 |°
4000 91.45 8 6-9 5.01 [
6000 | 90.42 8-9 7-10 | 501 |
8000 90.33 9 7-10 5.01 | |
10000| 90.36 9 7-10 —

-x- Average distance
—— Expected diameter range

-¢ - Highest measuered diameter

10°

5
10
Number of nodes, log scale

(b)

Figure 4.5:Scalability of Araneola’s overlay.

10*

The second column presents the (smallest and largest) measured diameters for every value
of N. The top curve in the graph depicts the highest measured diameter for each valye of
where ther axis is given in logarithmic scale. Note that this value does not necessarily increase
when we increase the group size, and hence there are plateaus in this curve. We observe that
Araneola’s diameter indeed grows logarithmically withas Wormald’s formula predicts; in all
of our experiments, Araneola’s diameter occurs (again) in the expected range, which is listed in
the next column and depicted using range bars in the graph. When flooding multicast messages
over the overlay’s links, the diameter gives a measure fombrst casdatency (in the absence of
failures and message loss), whereas the average latency depends on the average distance between
two nodes in the overlay. This average is presented in the bottom curve in the graph, and we see
that it also increases logarithmically wiffi.

Finally, we measure the overlay’s connectivity. In 096f6 of our experiments, the overlay
is 5-connected, i.e., there are at leadstlisjoint paths between every pair of nodes. In the few
cases where the connectivity was less thatiere were at mosit nodes with a connectivity of,
whereas the rest of the nodes had a connectivity. Gthe average number of node-disjoint paths
between every pair of nodes is presented in the last column in the table.

3We did not analyze the average distance and connectivity for the experiment¥ with0, 000.
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4.4.2 Fault-Tolerance and Graceful Degradation

We now study the fault-tolerance and robustness of the Araneola overlay. We consider two kinds
of failures: communication link failures and node failures. We study the overlay’s robustness with
an offline analysis of the overlay snapshot obtained at the end of static experiment)®dth
and2000 nodes. To study communication failures, we remove random subsets of edges from the
overlay graph and analyze the resulting graphs. This allows us to predict Araneola’s reliability and
latency in the presence of message loss. Similarly, we study Araneola’s resistance to node failures
by removing random subsets of nodes. Note that in the analysis in this section no dynamic repairs
are done, i.e., after the initial construction of the overlay no links are added as a result of a node or
link failure. Such repairs would have further increased the overlay’s fault-tolerance.

As in most previous studies, e.¢41]/85,11€], we model node and edge failuresiadependent
and identically distributed (11D)For node failures, the IID assumption has no significance since
the overlay structure is random. Moreover, Bhagwan et al. have found that host failures are indeed
independent22]. For edge failures, the IID assumption fails to capture a situation in which some
nodes have poorer links than others. Nevertheless, we show in Sédtiéthat even in WAN-like
settings where some nodes have only poor links, Araneola exhibits similar performance as when
message loss is 1ID. Designing an overlay that explicitly withstands correlated edge failures can be
a consideration for application-specific extensions of Araneola, and it is beyond the scope of this
chapter.

Communication failures

We first analyze the impact of edge removals on the overlay withdLand N = 1000. This

overlay ha547 edges. For each percentage 50 of the edges, we remowvé different random
subsets consisting @Po of the edges from the overlay graph. The overlay becomes partitioned for
the first time in one of the ten experiments removing 1280) of the edges, and then in one of the
experiments removing% (380). In both cases, a single node became disconnected from the rest.
Figure4.6(a)shows how the removal of up 1®% of the edges affects the overlay’s characteristics.

For eaclp in this range, the overlay is partitioned in at most one out of ten experiments in which
p% of the edges are removed. We observe that the average diameter increasésdrabout

8 when5-10% of the edges are removed, anddtevhen 15% of the edges are removed. The
average distance increases more gradually, suggesting that message loss has a moderate effect on
the average latency. The average number of disjoint paths also decreases gradually with the failure
rate. The bottom curve illustrates the average connectivity. The bars around each data point show
the maximum and minimum connectivity observed in experiments wittpthidien the minimum

goes does t0, there was a partition in one of tHé experiments. We next experiment witk-L4
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Figure 4.6:Resilience of Araneola’s overlay to edge removais)0 nodes.

and/N = 1000. The overlay is less robust in this case— it partitions in more 1lté&f of the cases
whenevep > 11%. Figure4.6(b)shows the overlay’s degradation when up 186 of the edges
are removed.
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Figure 4.7:Graceful degradation of Araneola’s overlay under edge remoM)§,nodes.

We next examine how many of the nodes are still connected to each other, i.e., what is the size
of the largest connected component in the graph. Fidutdepicts the average size of the largest
connected component after random edge removals$ot L5, 6 with N = 1000 and for L= 5 with
N = 2000. We can clearly see that the overlay’s resilience to the removal of a given percentage
of its edges ixompletely independent of, as is expected ik-regular random graph®(]: the
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curves forN = 2000 and N = 1000 (both with L= 5) are not distinguishable. As expected,
the value of L does impact the overlay’s robustness, but the difference betwéesnd==6 is
negligible. Remarkably, for £ 5, after the removal of up t88% of the edges)9% of the nodes
are still connected to each other, and oiffy of the nodes are partitioned from the rest.

Node failures

10 T T T T T T T 10

Ela @ [l o a =]

i o diameter
: ; : : o diameter I ° -v - avg distance ||
B v - avg distance -0 - avg # of paths
(i — [ 2 o p |
-0— avg # of paths connectivity
5 : —— connectivity || 6L

| | | | | | | | | | | | | |
0 2 4 6 8 10 12 14 16 0 1 2 3 4 5 6 7 8
% nodes removed % nodes removed

(a) L= 5. (b) L= 4.

Figure 4.8:Resilience of Araneola’s overlay to node removal¥)0 nodes.

We now turn our attention to node failures. Figdr8(a)shows how node removals affect the
properties of an overlay with000 nodes and & 5 when up to15% of the nodes are removed.
None of the experiments with up % removed nodes resulted in partitions. The overlay be-
comes partitioned in two of the ten experiments in whiéBo (160) of the nodes are removed.

This suggests that even 6% of the nodes running Araneola fail during the brief time interval

that it takes to detect and recover from failures (e.g., one minute), Araneola can continue to de-
liver messages reliably to surviving nodes. As with edge removals, the overlay exhibits graceful
degradation: the diameter and average path length increase moderately, while the average number
of disjoint paths moderately decreases. When 4, the overlay is half as robust to node fail-

ures as with & 5. It becomes partitioned in two of the ten runs wab of the nodes removed.
Figure4.8(b)shows the overlay’s degradation when ufy @ nodes are removed.

In Figure4.S, we examine the size of the largest connected component that survives following
node failures, for & 4,5,6 with N = 1000 and for L= 5 with N = 2000. Again, the overlay’s
resilience shows exactly the same trend with= 1000 as it does withV = 2000. This suggests
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that Araneola’s resilience to simultaneous failures of a certain percentage of its nodes is also inde-
pendent ofN. When L= 5, the largest component still includés% of the nodes following the
failure of up t038% of the nodes. When<= 4, 99% of the nodes are still connected following

the failure 0f28% of the nodes. Wheh0% of the nodes fail, the largest component witk 5

still includes over95% of the nodes, and with+£ 4, it includes87%. As with edge removals,
increasing L fronb to 6 achieves only slightly better robustness to node removals when there is an
unrealistically high failure percentage.
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Figure 4.9:Graceful degradation of Araneola’s overlay under node remow@l$, nodes.

Setting L

In Section4.4.2and4.4.2, we showed for L equal td/5/6 that Araneola’s overlay remains con-
nected if the failure-rate does not exceed a certain threshold. Assuming an upper bound on the
failure rate, one can choose the minimal valud.dhat ensures a connected overlay. We note that
such a bound is not always known. However, as we show in Sedidriand4.4.2, beyond the

failure threshold Araneola’s overlay exhibits graceful degradation in the face of increasing failure
rates, and therefore inaccurate settinglofias a moderate effect on the overlay’s connectivity.
Moreover, in Sectiond.4.3and4.7.3 we show that withl, equal to5, Araneola’s overlay remains
connected despite churn rates exceeding the ones measured over the Internet and over the Mbone
and in a WAN-like setting, respectively. In this chapter, we do not deal with dynamically adapt-
ing L according to changing churn and failure rates. Note that this approach is also used in other
studies of scalable multicast, e.g., both the number of trees/sthipas $plitSream8(] and the
number of nodes with which each node exchanges digests in E8lpti¢pend in the expected
failure rates.
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4.4.3 Dynamic Evaluation

Methodology

Our model for this evaluation is based on studies of user behavior in multicast groups on the
MBone 12], and in file sharing applicationd09. These studies model the join and leave rates of
most of the nodes using an exponential distribution. Moreover, both studies observe that a small
portion of the nodes have substantially longer life times than others. However, these studies greatly
differ in the mean life times they measure: the mean life time measured on the MBone is generally
short, e.g.,7 minutes in a typical multicast session, whereas the average measured life time in a
file sharing application is roughly one hour.

Saroiu et al. 109 found that only20% of the nodes in a P2P lookup system have an uptime of
93% or more. Motivated by this study, we designate a small subset (roagh)yof the nodes as
perseverant Perseverant nodes are created at the beginning of the experiment and remain active
throughout the experiment. Subsequently, every minkieadditional (non-perseverant) nodes
are awaken, until all nodeg{00 or 2000) are up. Each non-perseverant awaken node joins the
multicast group (becomexctive) with probability0.5. Otherwise, the node remaimsctive This
gradual joining is modeled after the Berkeley sessiorlR).[ Throughout the experiment, each
non-perseverant node once a minute flips a coin with probabilityorder to decide whether to
change its state from active to inactive and vice versa. We experiment with valuesrafing from
0.01 (yielding a mean life time of 00 minutes) ta).15 (giving a mean life time 06.7 minutes). As
a baseline, we also experiment with= 0, in which case nodes do not change their states. There
are roughlyl000 nodes alive at the end of each experiment wth= 2000, (and respectively;00
when N = 1000), regardless oA, since the join rate is equal to the leave rate. In all the dynamic
experiments, we set L toand H to10.

Join/Leave overhead

We now examine the cost of constructing and maintaining the overlay. This overhead is composed
of control messages and membership overhead. The membership protocol piggybacks a small and
constant (and hence independent of the churn rate) number of bytes on messages sent to the node’s
neighbors, as calculated in Secti3.3 In this section, we measure the join/leave overhead. The

size of control messages is fixed, and consists of less than ten bytes. Therefore, we measure the
cost of constructing and maintaining the overlay in terms of the number of control messages. We
count the total number of control messages received by all the nodes throughout the experiment,
and divide this number by the number of joins and leaves occurring in that experiment. We do not
separately measure the overhead for join and leave since we cannot fully distinguish between the
two. E.g., when a node receives a CONNECT message, we do not know whether to attribute this
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message to a prior LEAVE event that reduced a node’s degree, or to a new node trying to join the
overlay. There are roughly000 more join events than leave events in experiments Witk 2000
(respectivelyb00 in experiments withV = 1000). Table4.2 shows the exact number of join and
leave events for experiments wi2h00 nodes.

A # of join events| # of leave events
0.01 1411 387
0.025 2005 955
0.05 2908 1872
0.075 3825 2768
0.1 4690 3650
0.125 5480 4495
0.15 7965 7029

Table 4.2:The number of join and leave events in experiments Rih0 nodes.

Figure4.10shows the overhead measured for different values wfth N = 1000 and N =
2000. Remarkably, the overheatkcreasess the rate of such events increases, the only exception
occurring when\ increases from to 0.01. This rise is due to the facts that (i) wh&r= 0, no leave
events occur, and (ii) the overhead associated with a leave operation is bigger than the overhead
associated with a join operation (see Sectldh 3. But in general, the overhead associated with a
join or leave operation decreases as the churn rate rises because when many join and leave events
occur concurrently, their costs can be amortized. E.g., a join event may increase a node’s degree
while a leave event is reducing it, eliminating the need for correcting the overlay. Furthermore, we
observe that the overhead does not increase WithThis is especially impressive given that the
overhead for handling joins in structured overlays based on DHTs increases logarithmically with
the number of nodes.

Theory versus practice. Inthe Sectiod.3.3 we analyzed the expected number of control mes-
sages incurred by a single join or leave operation occurring after the system has stabilized. We
now compare this analyzed overhead to the above measured join/leave overhead.

We found out that the expected join and leave overhead during a stable petiddyis: 10q —
2pt ) and(L +q) x [p(1+4p+10q —2p~ 1) + ¢|, respectively, wherg is the percentage of nodes
with degree L ang = 1 — p. Empirically, when the system is stable and L is set to 5, roug?i}y
of nodes have a degree of L (see Figdrg). Substitutings for L, 0.92 for p, and0.08 for ¢, we
get that the expected join and leave overhedd i3 and20.4 messages, respectively.

When A = 0, no leave events occur. The measured average cost per join operation in this
case isl5.6, which is close to the expected overhea6@.§). The difference between the expected
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Figure 4.10:Average cost per join/leave with increasing churn rates for different group sizés, L=

overhead and the measured one stems from the fact that in a static experiment\(whe) a
node with a degree lower than L may receive a CONNECT request from some other node, reducing
the number of CONNECT requests it needs to issue itself.

When\ = 0.01, the system is similar to a stable system, as the rate of join and leave operations
is low. In an experiment witlV. = 2000 and X = 0.01 there were 1411 join events and 387 leave
events. Thus, the expected overhead for a join/leave operation in this experinfént is: 16.3 +
387%20.4)/1798 ~ 17.2. Indeed, the measured overhead in this case, 18.2, is close to the expected
one.

4.4.4 The Effect of the Membership Service on the Overlay

In order to evaluate the effect of the membership service on the overlay, we run an experiment with
1000 nodes using the setting of Sectidri.1with the exception that in this experiment the initial
distribution of the membership views is skewed as follows: at bootstrap, each node’s (including a
node that is inactive at bootstrap) membership view contains ten node identities chosen uniformly
at random out of a set that including onl§% of the nodes, that is, only0% of the nodes appear

in the initial views.

We run this experiment five times in a static setting and five times in a dynamic setting ac-
cording to the methodology described in Sec##.2 We compare these overlays1t000-node
overlays obtained using the setting of Seci#b#.1, where each node’s initial view including ten
node identities chosen uniformly at random amond @0 nodes. In all of these experiments,
andH are set td and10, respectively. We summarize our results in Tehlé

As the table shows, in static experiments, the initially skewed distribution of the membership
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Initial distribution of membership views Static/Dynamic| Diameter| Connectivity
skewed static 7-8 4-5
uniform static 7 5
skewed dynamic 7 5
uniform dynamic 7 5

Table 4.3:The effect of an initially skewed distribution of membership views on the overlay.

views has a small effect on the overlay: whereas all the overlays obtained using an initially uniform
distribution areb-connected and have a diametef7pthe overlays obtained using a skewed initial
distribution have a connectivity af or 5 and a diameter df or 8. In dynamic settings, the initial
distribution of membership views has no effect on the properties of the overlay. Below, we explain
these results.

In an experiment with an initially skewed distribution, all the nodes’ inifiadlonnect requests
are sent tol0% of the nodes. However, each of the nodes in this set can maintain only up to
H connections. Upon refusing to accept a connection (due to a high degree), the target node
sends its membership view to the no@le¢hat issued the connect request, and also adusits
membership view. Assume now that another natlsends a connect requestrton rejects this
request (due to its high degree), and sends its membership vie¢wNwow, n’ can send a connect
request tar, andn will accept this request. Hence, by limiting each node’s degree and by sending
the membership view upon a rejection of a connect request, our construction protocol overcomes
an initially skewed distribution of the membership views.

In a dynamic setting, an initially skewed distribution of the membership views affects only
on the first join operation of each node. Since i) empirically, the views’ distribution becomes
uniform over time; and ii) prior to leaving the overlay each node saves its membership view to a
log file, subsequent join operations will create random links. In addition, leave operations lead to
the destruction of non-random links, which are replaced by random links created by subsequent
join operations. Therefore, in a dynamic setting, join and leave operations “heal” the overlay, and
hence the initial distribution of the membership views has no effect on the overlay’s properties.

4.4.5 Comparison withk-Regular Random Graphs

We have observed that Araneola’s basic overlay achieves the important mathematical properties
of k-regular random graphs, namely logarithmic diameteconnectivity, and high robustness.

In this section, we compare these properties of Araneola overlays to those measured in centrally
constructedk-regular random graphs. Specifically, we compare Araneola overlaysrégular
random graphs created by the algorithm[6t,[113 (as described in Sectiahl), for N = 1000
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and L =4, 5, and6. We summarize our results in Talded.

Note that an Araneola overlay contains slightly more edges than the correspdncigglar
random graph, since in Araneola roughl§2o of the nodes have a degree of L, and the rest have
a degree of k-1. E.g., when k&= 4, 5, and6, an Araneola overlay witi000 nodes contains
on averagel9, 43, and38 (respectively) more edges than arregular random graph with000
vertices.

Overlay Highest diameter Avg distance| Avg # of disjoint paths
4-regular random graph 11 5.63 4

Araneola, L=4 11 5.49 4.01
5-regular random graph 7 4.71 5

Araneola, L=5 7 4.69 5.01
6-regular random graplh 6 4.18 6

Araneola, L=6 6 4.16 6.01

Table 4.4:Araneola versus a centralized constructiorLafegular random graph$000 nodes.

The first column in Tabl&.4 shows the highest diameter measured for each type of overlay.
In all of our experiments, the diameter of the Araneola overlay is identical to the corresponding
L-regular random graph. The next column presents the average distance between two nodes in
the overlay. In all of our experiments, this distance is slightly smaller in Araneola than in the
L-regular graph. The average distance between two nodes in the overlay determines the average
latency in which multicast messages are received, and hence this parameter is important. An
even more important parameter is the average number of disjoint paths between two nodes in the
overlay, presented in the last column of the table. This number determines the robustness of the
overlay/graph. In all of our experiments, Araneola contains on average slightly more disjoint paths
than theL-regular random graph, again, this is due to the slightly larger number of Araneola edges.
In order to further compare the robustness of Araneola to thatregular random graphs, we
remove random subsets of edges/nodes from the different Araneola overlas@gular random
graphs and analyze the resulting graphs. We present our results in &igiirds the figure shows,
in all of our experiments, Araneola achieves the same robustnessasegelar random graph or
slightly better.

4.5 Example of Application-Specific Extension: Exploiting Net-
work Proximity and Bandwidth Heterogeneity

Araneola’s basic overlay, like many P2P systems, treats all nodes and all communication links
equally: all nodes have almost the same degree, and all links have an equal likelihood of being

59



% nodes in the largest component

100;

98-

96

94

92r

90

88~

86

84
0

- —- Araneola, L=6
- = - 6-regular random graph
— Araneola, L=5
—— 5-regular random graph
- - Araneola, L=4
—~ - 4-regular random graph

% non-removed nodes in the largest component

100;

98-

96 -

94 -

92r

90~

88~

86

- —- Araneola, L=6
- = - 6-regular random graph
— Araneola, L=5
—— 5-regular random graph
- - Araneola, L=4
—~ - 4-regular random graph

I
5

| | | | |
10 15 20 25 30
% edges removed

I
35

I
40

I
45

84
0

I
5

| | | | |
10 15 20 25 30
% nodes removed

I
35

I
40

I
45

(a) Removing edges, largest component. (b) Removing nodes, largest component.

Figure 4.11:Robustness of Araneola versus centralized constructidrrefyular random graphs,
1000 nodes.

used. In reality, however, node capabilities and communication channels are diverse. A wide-area
network is typically structured as a collection of LANs, where communication in each LAN is
orders of magnitude faster and cheaper than inter-LAN communication.

This section presets an extension to Araneola’s basic overlay that exploits network proximity
and bandwidth heterogeneity by incorporating additional links between nearby nodes. This ex-
tension runs in parallel with and independently of the basic overlay construction and maintenance
code presented in Secti@dn3. The extension code has two components: (i) a mechanism for lo-
cating nearby nodes; and (ii) a conneetarby task. The first component discovers nearby nodes
and stores them in a set namedirby_cand. The second component uses this set.

Generally speaking, Araneola can use a variety of mechanisms for locating nearby nodes. Our
implementation does this as follows: at bootstrap time, each nadeasures the network-level
hop-count distances to the nodes in its local view using the UNIX tracepath utility, and inserts them
to thenearby_cand set in an ascending order of their network-level hop-count distancesifrom

The connechearby task closely resembles the connect task presented in Sé&i@xcept
that no reduction rules are applied and no REDIRECT messages are sent. Specifically, there are
three control messages: CONNEGIEARBY, CONNECT.OK_NEARBY, and LEAVE NEARBY,
which correspond to CONNECT, CONNEGJK, and LEAVE. In addition, both L and H are re-
placed by the parameter NB, which is the maximum number of nearby neighbors the node is
willing to be connected to, and theighbors set is replaced by theecarby_neighbors set, which
holds the node’s current nearby neighbors. Note that every node can set its own NB parameter to
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reflect its available bandwidth. Each CONNEGIEARBY request is issued to the closest node
in nearby_cand, rather than to a random node from the local view.

We evaluate this mechanism over the Internet, runiaiiignodes over5 Planet Lab107]
physical machines, with no two machines at the same site. Out dfstlidanet Lab physical
machines]0 are located in North Americaf are located in Europe, aridare located in Asia. In
all the experiments presented in this section, all the nodes are created simultaneously, and remain
up throughout the experiment. Although in principal, each node can choose its own NB parameter,
in our experiments, we use the same value of NB for all nodes. We denote an experiment in which
each node chooses L random neighbors and NB nearby neighbdrdNas .

It is known that in order to achieve the good propertieg-oégular graphs, each node should
choose at least three random neighld@Z]. Thus, we run experiments in which each node chooses
three random neighbors and three nearby neighld8(3)f. We contrast these experiments against
experiments in which each node chooses six random neigh{i@s)( and against experiments in
which each node chooses six nearby neighb@®)). In addition, we run experiments in which
the each node’s degree is roughly eigl®,§), and(5,3)). Note that all the overlays we experiment
with have a low degree, of eithéror 8, compared to those used in previous systems, e.g., in
SplitStream [8Q], Bullet [81], and Saxsons11(], the maximal node’s degree i$, 10, and 16,
respectively. For each selection(@fNB), we run three experiments. In all our experiments, more
than97% of the nodes end up with NB nearby neighbors, and more $hahof the nodes have
exactly L random neighbors; the overall average node degrees in experiment8)8ith(6,0),
and(0,6) are almost identical as are those of experiments V@t and(5,3).

We quantify the effectiveness of our approach by measuring the average number of physical
hops that links in the extended overlay traverse. This metric is significant because a smaller hop-
count distance implies reduced communication latencies as well as less stress on physical links.
The results are summarized in Taldl&. The first column shows the percentage of links between
two nodes running on the same machine. The second column shows the percentage of short links
with a hop-count distance &f These are Internet2 links between machines deployed at different
sites belonging to the same enterprise. Finally, the third column shows the average hop-count in
the overlay. Clearly, as NB is increased at the expense of L, there are more local and short links
and the average number of physical hops that each link traverses is reduced.

Having verified that this mechanism achieves its goal, we next check its impact on the overlay’s
robustness. We repeat the experiments of Se@tidr®, i.e., we remove random subsets of edges
and nodes from the overlay graphs and measure the sizes of the largest remaining components.
The top two curves in Figur4.12and Figured.13are for experiments witkb,3) and(3,5). These
curves are indistinguishable. Slightly below these are the curves for experiment&yditland
(3,3), which are also conjoined. The bottom curve in both figures is for experimentg Ovéh
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(L,NB) % of linkson | % of short links| Avg hop count
the same machinge

(3,3 34.43 15.27 5.21

(6,0 4.97 6.93 8.69

(0,6) 74.23 3.4 1.88

(3,5 51.18 12.25 3.82

(5,3 35.6 10.46 5.54

Table 4.5:Hop-count statistics with different selections(@fNB).

Remarkably, the robustness of an overlay wBtB) is almost identical to that witk3,5), and the
robustness of an overlay wit{6,0) is virtually identical to that with(3,3). We believe that this
stems from the fact that there is sufficient randomness in the choice of links since: (i) the nodes in
nearb_cand are chosen from the randomized local view; and (ii) each node is connected to at least
3 random neighbors.
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Figure 4.12:Removing edges, largest com-  Figure 4.13:Removing nodes, largest com-
ponent500 nodes. ponent,500 nodes.

The curves for experiments wit{®,6) show why it is important to choose random nodes as
neighbors: in all these experiments, the overlay is partitioned even before we remove any edge
or node. Moreover, as the percentage of removed edges or nodes increases, the robustness of the
overlay deteriorates much quicker than when random edges are used.

We conclude from the experiments in this section that it is preferable for each node to have
three random neighbors, and to allocate the rest of its available bandwidth for communication with
nearby nodes or other nodes chosen according to application-specific needs.
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4.6 Multicasting over Araneola

Given Araneola’s overlay, it is possible to disseminate data messages by flooding the overlay, as
done, for example, ind5]. Using this approach, messages propagate quickly to all the nodes. The
price of using this approach is high bandwidth consumption due to the large number of duplicates
sent: Each message is sent at least once on each link in the overlay, i.e., atl¢asimes. Some

of the messages may be sent simultaneously by both of the nodes that share the link, but only in
case this is not the first time each node receives the message. Thus, when the average degree in the
overlay is bounded by. + 0.5 (as is guaranteed at static times), a flooded message is sent at most
N(L — %) + 1 times. This approach is appropriate for use in low-degree overlays when bandwidth
is not a concern (i.e., there is much more available bandwidth than the application needs), and
where low latency and reliability are of essence. For example, it is suitable for instant messaging
and chat applications, in which payload messages are typically small.

If the multicast payload consists of large messages, it is possible to flood message identifiers
on the overlay in lieu of actual messages, and have nodes request missing messages. Although
this approach increases the numbemudssagesent, it can dramatically reduce the bandwidth
consumption when payload messages are large. The penalty for using this approach instead of
flooding is increasing the message latency by a factor of three. Such a penalty is acceptable for
numerous non-real-time applications, for example, file sharing applications like BitTc&#nt [
software update dissemination, and video streaming. Many scalable ALM systems are geared
towards such applications: virtually all overlay-based and gossip-based ALMs have non-optimal
message delays since messages traverse a number of hops that do not necessarily bring the packet
closer to its destination. Furthermore, a number of ALMs, like Bulsd] and Overcast@§g],
exploit the freedom to delay messages in order to achieve a more bandwidth-efficient system design
(using large caches at intermediate nodes in Overcast, and obtaining packets on-demand from
nodes that have them in Bullet).

If payload messages are large and are not sent frequently, then flooding message identifiers
can be effective. However, if many payload messages are sent, then flooding each identifier in a
separate message can induce a high load. In order to overcome such situations, one can bundle
a number of messages identifiers together, and periodically send this bundjessip message
This is a generalization of the identifier-flooding approach, where the system designer can control
the tradeoff between delay and overhead according to specific application needs and traffic charac-
teristics: by sending gossip messages more frequently, one reduces the delay, and by sending them
less frequently, one reduces the overhead. For example, by setting gossip roRrsgsomds as
in [41], in a large group ol 0, 000 nodes in an overlay with+ 5, we get an average (worst-case,
respectively) latency of roughly (18, respectively) seconds. We now describe this gossip-based
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approach in more detail.

4.6.1 Gossip-Based Multicast

Each node locally divides its time infgossip rounds A gossip round consists of two phases: in

the first phase, each node gossips about recent message identifiers and requests missing messages
from its neighbors (thgossip task and in the second, the corresponding missing messages are
sent.

The gossip-based implementation is presented in Fiduré messagess a FIFO queue of
recently received messages. Themetsingmsgholds identifiers of messages that the node heard
of but did not receive. A functioheardfrom maps each identifier in this set to nodes from which
it was heard.recentmidsholds identifiers of messages received in the latest gossip round along
with the identities of the nodes from which they were received.

Every gossiproundtimeout, a node sends a gossip message to each of its neighbors. A gossip
messagen sent by a node to its neighbor is identified by a message identifien,id, which
includesa’s identifier (e.g., IP address and port) and a one byte serial number (cyclic counter). The
field m.degree holdsa’s current degree (line 5). The setids includes recent message identifiers
thata has received in the last gossip round, and has not heard about:.f(bne 6). In addition,
Araneola piggybacks message requests on gossip messages instead of sending them in separate
request messages. Therefarejncludes a setn.reqs of message identifiers thatis requesting
from n. These are messages thas missing, and has heard their identifiers first frarline 7).

Note thata sends a different gossip message to each of its neighbors. After sending the gossip
messages, the first element in eadard fromlist is moved to the end of that list (line 9) in order

to vary the node from which the message is requestedrearghtmidsis reset (line 10) so as not

to gossip about the same identifiers again.

When node: receives a gossip messagdrom neighbom, for each identifieid in m.ids such
that a message with this identifier is not in tmessagebuffer, id is inserted intanissingmsgs
(line 14) andn is appended tbeard from(id) (line 15). In additiongs sends ta: all the messages
requested inm.reqs. When a data message arrives, it is enqueuadassagesremoved from
missingmsgs and its identifier and sender are inserted metentmids(lines 19-21).

Periodically, old messages are purged fromassageandmissingmsgs This garbage collec-
tion mechanism is straightforward, and is omitted from the pseudo code.

Load balancing for single-source multicast

Although Araneola is intended for multi-point to multi-point communication, it can also be used
for point to multi-point multicast. When the multicast has multiple uniformly distributed sources,

64



Data structures:

messages queue of messages tagged withid, initially empty.
missingmsg— set of messages identifiers, initiafly

heard from:missingmsgs— list of nodes.

recentmids— set of pairgid, from), initially 0.

Parameters:

Timeout: gossiproundtimeout.

Gossip task:

1. loop forever

sleep (gossipoundtimeout)

[* Send gossip messages to neighbors */

3 foreachn € neighbors

4, create new gossip messagewith newm.id
5. m.degree «— |neighbors|
6
7
8

N

m.ids < {i.id : i € recent_mids Ni.from # n}
m.reqs < {i € missingmsgs heard from(i).first= n}
send(GOSSIPn) ton

/* Update data structures */

move 1st element of eadteard from(mid)list to end

10. recentmids« ()

©

Event handlers:
11. uponreceive(GOSSIPn) fromn do

12. neighbor(n).degree < m.degree
13. foreachid € m.ids A id ¢ messages
14. missingmsgs— missingmsgsJ{id}
15. appendr to heard from(id)
[* Send requested messagesitty
16. foreachr € regs
17. send(DATA,message with identifier z.id) ton
18. uponreceive(DATA,m) from n do
19. messages.enqueue(m)
20. missingmsgs.remove(m.id)
21. recentmids« recentmidsuU{ (m.id,n)}

Figure 4.14:Gossip-based multicast.
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the load on Araneola nodes is naturally balanced: each node sends the same number of gossip
messages per round, and each nodes handles roughly the same number of message requests on
average. However, if the multicast would be initiated at a single source, then the message requests
would most often be sent on a spanning tree of the overlay rooted at the source. This can result in
a higher load on inner nodes of the spanning tree.

We propose the following simple solution to this difficulty: Let nodée the single-source
in a multicast session. Whenever a new data message is created aends the message to a
random set of nodes instead of sending it to its neighbors. A different set of nodes is chosen each
time. This simulates a situation in which messages are created by multiple uniformly distributed
sources, and the message requests follow many different spanning trees.

The multicast and management overhead

In this section, we assume that each node is connectédhtmles, there is no packet loss, and the
load on Araneola nodes is balanced as described in the previous section. We denote the multicast
rate agp data packets payossipround timeout

The multicast overhead. In Araneola, as opposed to other multicast protocols, e.g., Lpl&Hst [

and Bullet B1], no duplicate data packets are sent. Whereas in Lpbcast, on average, each node

receivedog N copies of each data packet, and in Bulil][ roughly 10% of received data packets

are duplicates, in Araneola, each node receives one copy of each data packet. Since the load
on Araneola nodes is balanced, on average, each node forwards each data packet to one of its
neighbors. Hence, the per-node multicast loagd data packets pagossipround timeout which

is the multicast rate.

The management overhead. In addition to data packets, eveggssipround.timeout each node

sends a gossip message to each of its neighbors. Assuming each node is conneotatEs) the
per-node management overhead igossip messages pgossiproundtimeout A gossip message

sent from a node to one of its neighbors contains an one-byte serial numbe’s identifier -

bytes),n’s degree (one byte), identifiers of recent messagesitihats received in the last gossip

round whose source is not andn’s message requests frofn Both a message identifier and a
message request are represented by eight bytes. Below, we calculate the average size of a gossip
message.

Each node sends each message identifiér-td nodes, and, in the absence of message loss,
requests each message from one of its neighbors. Therefore, on average, each gossip message
containSp% message identifiers arlimessage requests (recall that the multicast ratedasta
packets pegossipround.timeou). Hence, the average size of a gossip messageH$ + 1 +
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8(p%+%) = 8(1+p) bytes. Therefore, the per-node management overh goss@muidﬂmem-

8(1+p) = gossip,f(fiﬁ)nmeout bytes per-second. For example, if the multicast rat® idata packets

per-second and thgossipround timeoutis 5 seconds, then the per-node management overhead is
less thanl 8 bytes per-second.

4.7 Evaluation of Gossiping over Araneola

We implement the gossip-based multicast module on top of the code for constructing and maintain-
ing the basic Araneola overlay, described in Secsigh In order to run large scale simulations, we

run most of our experiments on a LANZ]]. In Section4.7.3 we also run WAN-like simulations

of Araneola.

We use the standard UDP protocol as the multicast module’s transport protocol. With this
approach, no retransmissions are sent, and therefore we do not increase the network load at times
of congestion, i.e., when there is high message loss. Even without retransmissions, as we show in
this section, Araneola achieves full reliability of data delivery despite high churn and message loss
rates by disseminating message identifiers on multiple disjoint paths in Araneola’s overlay. We use
the standard UDP protocol at the available bandwidth rate of each machine. In particular, we never
over saturate the network. Designing a flow control mechanism to adjust this rate is orthogonal
to our study. For example, the TFRC transport protod@| pdjusts its transmission rate on a
per-connection basis based on prevailing network condit®iis [

We run multiple Araneola nodes per machine, and therefore need to space the gossip rounds
sufficiently so as to allow all the nodes running on the same machine to complete their gossip
operation during a round. Thus, we chose a fairly large round duratiérse€onds. When there
is only one node per machine, the round duration can be an order of magnitude smaller. In order
to construct and maintain Araneola’s overlay we used the code described in Se8tibnith the
parameters and timeouts described in SectidnThroughput this section, we measure the rate at
which messages propagate on the overlay in terms of an overlay-level hop count— each message
is tagged with a counter, and every node that receives the message increases the counter. We use
this approach in order to allow a fair comparison between Araneola and a standard gossip-based
multicast protocol, in which the latency is measured in terms of gossip rounds (see 3ectpn
The actual propagation rate is the propagation rate in terms of an overlay-level hop count multiplied
by the round duration.

In Section4.7.1we evaluate the performance of the multicast layer in static settings, and in
Section4.7.2, we consider high churn. Finally, in Sectidin/.3 we evaluate the performance of
the multicast layer in a WAN-like setting.

67



4.7.1 Static Evaluation

In our static evaluation, all the nodes are created simultaneously, and remain up throughout the
experiment. In each round, a single data message is injected into the system (by the application),
each time from a different machine. At le@60 data messages are sent in each experiment, and
each experiment (with a given number of nodes and choice of parameter settings) is repeated at
least twice.

Scalability

We first examine the impact of number of nodé®n the rate at which messages propagate on the
overlay. Figured.15(a)depicts the message propagation rates measured for valdésarfging

from 500 to 10,000. L and H are set to 5 and 10, respectively. For each number of hpps

the curves depict the average percentage of nodes that receive a message Wwithifn AsN
increases, messages take longer to propagate, but the slow-down is gradual. The average latency
in each of our experiments was close to the average distance between two nodes in the overlay
presented in Figuré.5. For eachV, an average of ovél9% of the nodes receive a message within

a number of hops equal to the overlay’s diameter. On rare occasions, messages were propagated
in more hops than the graph’s diameter if they reached their destination on a “longer” path before
reaching it on the shortest path between the source and destination.
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Figure 4.15:Message propagation rates for different degree Araneola overlays.
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The impact of L

Araneola’s parameter L affects the overlay’s diameter, and hence affects the latency of message
delivery. We study the impact of this parameter in runs with0 nodes (o 00 Netbed machines)
and values of L ranging from to 10. In each experiment, H was set to be-L Increasing
the value of L increases the load, since a node with defreendsk gossip messages in each
gossip round, and sends each message idertifiet times (once to each downstream neighbor).
However, such increase also reduces the message latency, as shown ii@H§(ye Each curve

in the figure depicts the message propagation rate for a given value of L (in experimerg8ith
nodes). The figure shows that the latency decreases as L increases. Wiemlssages reach
99.94% of the nodes withiri4 hops, and 00% of the nodes within5 hops; when & 4, messages
reach99.97% of the nodes withiri0 hops, andl00% of the nodes withiri 1; while when L= 5,
messages reacl9.3% of the nodes ir® hops and all the nodes th The improvement becomes
less dramatic as L increases beydnd

Comparison with gossip protocol

We now compare Araneola to a standard gossip-based multicast protocol (as descr8id in [
Similarly to Araneola, such a protocol supports dynamic user behavior: the reliability of a gossip-
based protocol gracefully degrades with the churn rate, and each join or leave operation incurs a
small overhead. In contrast, as explained in Se@idntree-based overlays like SplitStreagd]
and Bullet B1], which are designed for content streaming, do not strive to achieve full reliability
under high churn rates and induce higher join/leave overhead than the join/leave overhead incurred
by Araneola and a gossip-based multicast protocol.

We have implemented the gossip protocol based on Araneola’s gossip-based multicast module.
The gossip protocol takes a paramdtemwhich is its fan-out. Where an Araneola node sends gos-
sip messages to its neighbors, the gossip protocol sends gossip messagasdomly selected
nodes from its membership view. Whereas Araneola sends each message identifier downstream
only, the gossip protocol sends all recentmidsto all the chosen targets. Thus, the gossip proto-
col instantiated with a fan-out df sends information as many times as Araneola withE + 1.
With the gossip protocol, message requests are sent immediately upon receipt of a gossip message,
and re-sent periodically in case the requested message is not recovered.

We experiment witi 000 nodes or20 Netbed machines. In each experimelit) messages are
sent. Figur@.16(a)compares the average message propagation rates of Araneola=witahd6
to those of the gossip protocol with the corresponding fan-oiits=4 and5. Evidently, Araneola
propagates information much more effectively than the gossip protocol. Initially, the propagation
rates are similar, but after abotihops, Araneola continues to effectively propagate the message,
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while the gossip protocol tapers off. Araneola succeeds in disseminating all the messiaés to

of the nodes ir¥ hops with L= 5, and in6 hops with L= 6. In contrast, the gossip protocol only
reache95.91% of the nodes on average with = 4, and97.69% with /' = 5. Indeed a fan-out

of 5 does not suffice for the gossip protocol with00 nodes. According to previous studi&s],

a fan-out of14 is required. This is due to the fact that with the gossip protocol only the out-degree
(fan-out) is balanced, while the in-degree (fan-in) may be unbalanced. In contrast, Araneola’s in-
degrees and out-degrees are balanced as all links in the overlay are bi-directional. As more nodes
have a given message, the gossip protocol is more likely than Araneola to “waste” its gossip on
nodes that already have the message, and therefore is less effective at spreading the information to
additional nodes.
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(a) Comprable fan-outs for Araneola and gossip. (b) Larger fan-outs for gossip.
Figure 4.16:Araneola versus gossip)00 nodes.

The second plot in Figuré.16 shows the propagation rate of gossip with fan-out$(yfand
15 as compared to Araneola with=L 5. The gossip protocol’s propagation rate with the large
fan-outs is initially much more rapid than that of Araneola witk 15, but after about hops,
Araneola already succeeds to reach more nodes than the gossip protocol. While Araneola succeeds
in delivering all the messages to all the nodes, the gossip protocolFAvith15 fails to do so; it
reaches only9.12% of the nodes on average. With = 10, it reache®8.97% of the nodes on
average.

Our measurements of the gossip protocol are close to those repoiT@flattiiough not identi-
cal to them. Wherea5§] reports of100% reliability with /' = 14, we measur€9.12% reliability
with FF = 15. We believe that this slight discrepancy stems from differences in the evaluation
methodology. First, the evaluation ii@d] uses simulations; it sends a single data message at a
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time; and it assumes that nodes are never over-loaded and no messages are lost. In contrast, we run
multiple nodes on each machine, the nodes communicate over a real network, and multiple data
messages diffuse through the system concurrently. Therefore, we do experience some scheduling
delays and message loss, although not often. Second, the systéf) a¢s servers in order to

have the membership views perfectly uniformly distributed. Since our evaluation does not do so,
our membership views are less perfectly “random”. Since Araneola is evaluated using exactly the
same methodology, our comparison is fair.

4.7.2 Dynamic Evaluation

One of Araneola’s major design goals is to provide an undisrupted multicast service to nodes that
are up despite node and link failures and high churn rates. As long as the overlay contains only one
connected component, Araneola’s multicast module achieves full reliability of message delivery
as it floods message identifiers over the overlay’s links. In Se#idr®, we studied the fault-
tolerance and robustness of the Araneola overlay in static settings and saw that Araneola’s overlay
remains connected following massive random node and link failures. In this section, we study the
performance of the multicast layer under high churn rates using the dynamic simulation scenarios
used in Sectiod.4.2 An application message was injected into the system by one of the machines
in each round. Betweet3 and476 messages were sent in each experiment. The parameters L
and H were set t6 and10 respectively.

In each dynamic experiment, for each messagene definenodes that are up during:’s
transmissiorto be nodes that have joined Araneola’s overlay at léasbunds beforen’s trans-
mission, and did not leave at leas? rounds after the transmission. We chdseas a gross
over-estimate. In fact, as we show below, nodes can normally begin to receive messages reliably
immediately upon requesting to join. However, since weitiraneola nodes on each physical
machine, which due to contention at the network interface may cause a joining node’s messages
to be delayed for several rounds, we have chosen to wait additional rounds before considering the
node to be up.

In all of our dynamic experiments, each message was received(® of the nodes that
were up during its transmission. Moreover, messages were deliveretheigame latency as in
static runs We illustrate this in Figur@.17for N = 1000; similar results were obtained with
N = 2000. The bottom curve depicts the average latency with which messages are delivered for
different values of\. It shows that the latency is unaffected by the join/leave rate. The middle
curve shows that, for all values af the average number of hops it takes a given multicast message
to reach at leasi9% of the live nodes i$. We did, however, observe a small difference in the
message propagation rate: for values ofp to0.1, messages reach o\vr.9% of the nodes within
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6 hops, whereas with = 0.125 and\ = 0.15, they reach only9.5% of the nodes withirt hops.
The top curve shows that regardless\oit takes7 hops for messages to reach all the nodes. All
the latencies are roughly the same as in static runsMitmodes, which is the average number of
live nodes in a dynamic experiment witth = 1000.
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Figure 4.17:Average latencies for different churn ratég800 nodes, |= 5.

Comparison with gossip protocol. Churn has little effect on the performance of a gossip-based
multicast protocol15]. In this section, we showed that churn has virtually no effect on the perfor-
mance of Araneola. Moreover, as the simulations in Secdond.and4.7.2show, under churn,
Araneola achieves higher reliability than the reliability achieved by a classic gossip protocol in a
static failure-free setting, while incurring smaller delay and overhead.

Fast join. The final aspect of the multicast layer we evaluate is how fast it allows joining nodes

to begin to receive messages reliably. In order to avoid scheduling race conditions and contention
at the network interface, we rai)0 nodes on a single machine, with=L5 and H= 10. Our
measurements show that a joining node not only receives all the messages sent after its creation,
but actually receive$00% of the messages sent upstoounds before its join. This occurs because

it usually takes hops for a message to propagate to all of the new node’s neighbors. If any of the
new node’s neighbors receives the messagehiops, then the new node will receive this message

in the next round, as théh hop. We conclude that Araneola incorporates joining nodes into the
multicast group without delay.
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4.7.3 WAN Emulation

In this section, we report about simulations of Araneola’s gossip-based multicast module in a
WAN-like setting. We run these simulations in order to evaluate the performance of Araneola
in a wide-area setting, in which the message loss rates and delays are much higher than in a
LAN setting. Our WAN-like setting is motivated by measurements of upload bandwidth of P2P
clients [10g and measurements of loss rates and RTTs (round trip time) of Internet bdks [

For simplicity, in our WAN-like simulation, we usg types of links (see Tabléd.€). In order to
measure the worst case reliability in such a setting, a given node’s links are all of the same type;
this simulates the node’s worst link.

Link Type || Loss Rates RTTs % of Nodes
Excellent < 0.1% 0 0.1%
Good 0.1%—1% < 62.5ms 4.9%
Acceptable| 1%-2.5% | 62.5ms—125ms 30%
Poor 2.5%—5% | 125ms—250ms 45%
Very Poor | 5%—12% | 250ms—500ms 20%

Table 4.6:Links loss rate and RTT.

We use the setting of Secti@n?.1for two group size1000 and8000 nodes. L and H are set to
5and 10, respectively. In Fid.1§ we compare the message propagation in WAN-like simulations
with the message propagation in LAN simulations. As the figure shows, the differences between a
WAN-like setting and a LAN setting are small. Below, we explain these results.

We first note that link latency neither reduces the reliability of message delivery nor increases
the latency of message propagation. This is since we measure the message propagation in rounds,
and a round duration is an order of magnitude longer than a link latency. The message loss does
reduce the reliability. However, as opposed to tree-based multicast systems, in Araneola, as long
as the message loss does not exceed a certain threshold (see &dcHofailures do not reduce
Araneola’s reliability. This is since there are L disjoint paths between each pair of nodes in the
overlay, and hence each message can be retrieved from L different neighbors. In our WAN-like
setting, the failure rates do not exceed the above threshold, and therefore Araneola achieves full
reliability in this setting. The message loss, however, does slightly increase the latency, since
several messages are received not through the shortest path. However, as the figure shows, this
increase is small, since the average link loss is small.
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Chapter 5

EquiCast: Scalable Multicast with Selfish
Users

5.1 Introduction

P2P networks can distribute digital content to a large number of users over the Internet by dis-
tributing the load among the peef®/['107]. However, these networks suffer from the problem of
“freeloaders”, i.e., users who consume resources without contributing their fair @Bhari[order

to discourage “freeloaders”, some P2P systems employ incentives to motivate users to cooperate,
e.g., contribute upload bandwidth or disk space for some other users. However, while current
incentive-based P2P systems reward cooperation to some extent, no existing protocol has been
proven to enforce cooperation in selfish environments. Moreover, such systems3&.d9) [
typically rely on user altruism. For example, a node is expected to upload data blocks to other
nodes for no return whenever it has available bandw/8%#49]. Hence, current incentive-based

P2P systems do not solve the problem of “freeloadesSJ, [and would not have worked well at

all if users would have behaved selfishly, e.g, leaving a content distribution system after they have
finished downloading the fil&dB, 59].

Nowadays, user altruism is common since most users are connected to the Internet using static
machines via ISPs with a flat pricing model, and hence sending a packet does not incur a cost
on its sender. However, these paradigms are changing. First, the increasing access to digital
content is expected to drive ISPs to implement a tiered pricing scheme, where high end pricing
plans shall allow unlimited downloads and uploads, while lower tier pricing plans shall limit traffic
bandwidth [LO7]. With such a pricing scheme, users will most likely cease to be altrusid
This may lead to low P2P system availabili&9[ 71] or even system collaps2%, 96]. Second,
wireless hotspots are proliferating in recent years, and users are increasingly connecting to the
Internet and downloading content to mobile devices such as laptops and cell phones. In such
networks, pricing is typically based on connection time or transmission volume. Moreover, battery
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power is a critical resource for mobile devices. Hence, user altruism can hardly be expected in
such networks. Therefore, we believe that it is important to design P2P systems that work well
even when all users are selfish.

In this chapter, we address this challenge. We introdispeiCast a wide-area P2P multicast
protocol for distributing content to large groups of selfish nodes. We treat the problem of freeload-
ing from a game theoretic perspective, and we model the systenm@as-@ooperative gamen
such a game, nodes are selfish taiional, i.e., each user chooses its ostnategyregarding its
level of cooperation so as to minimize its own ca#f|[ More specifically, the goal of each node
is to receive all the multicast packets while minimizing its sending rate. We define a special set of
protocol-obedient strategies (POS$}enerally speaking, a strategy out of this set allows a node
to determine how many connections to maintain and how many packets to send on each connec-
tion though it does not allow to hack the protocol’s code or assume that others do so. We believe
that it is reasonable to assume that most nodes will run a protocol-obedient strategy (POS), since
users usually do not have the technical knowledge required in order to modify an application code.
We prove that if all nodes choose POSs, then each node receives all the multicast packets and,
moreover, no node can unilaterally reduce its cost by changing its strategy to a non-POS. That is,
unilateral hacking of the protocol’s code cannot reduce a node’s cost. Our formal model and cost
function are presented in Sectibr®, and in Sectiorb.4.2we formally define the set of POSs.

In EquiCast, a single distribution servB(which can be implemented by multiple machines
acting as one logical server) organizes the nodes into a statitay network We divide the time
into rounds, and in each roun8ljnjects new data packets to a small random subset of the nodes
in the overlay. Nodes, then, communicate with their overlay neighbors in order to retrieve missing
data packetsSalso provides a “safety net” for a node whose data receiving rate is lower than the
multicast rate, by sending data packets to either the node or its neighbors. This additional overhead
incurred orSis modest, since most of the nodes are expected to receive most if not all the multicast
packets from their overlay neighbors.

EquiCast enforces cooperation through two mechanisms. The firgtémaoring mechanism
whereby each node monitors the sending rate of each of its neighbors. Specifically, for each
neighborn, each node: maintainsn’s balance which is the difference between the number of
data packetg has sent ta so far and the expected per-link throughput. As long’asalance is
greater than or equal to a predefined negative threshaolds considered to be cooperative, and
continues to send data packetsitdOtherwisen terminates its connection with Note, however,
that it is always possible for cooperative nodes to have a balance greater than or eguatto
respect to all of their neighbors.

The second mechanism is a per-lipgnalty mechanismvhich further motivates nodes to ad-
here to the expected link throughput. It charges a neighbor with one addfiioehcket for every
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round the neighbor has a negative balance, where a fine packet is a dummy packet that has the same
size as a data packet. Fine packets, as opposed to data packets, do not affect the node’s balance.
Therefore, a node is motivated to achieve a non-negative balance, whenever possible. Note that
the multicast rate is tens of data packets per round, and hence the penalty mechanism incurs a
modest overhead. In general, in EquiCast, each node is required to have an upload bandwidth that
is slightly higher, e.g., byi0%, than the multicast rate. Note that similar requirements are also
assumed by multicast systems for cooperative environmags [

In Sectiors.4, we prove that, in environments in which all the nodes are selfish, if all the nodes
choose POSs, then EquiCast disseminates all the multicast packets to all the nodes. Additionally,
every POS in which a node exclusively cooperates with all its neighdioctly dominatesvery
POS in which it does not. This means that the cost incurred on a “freeloader” node is strictly
higher than the cost incurred on a cooperative node, and hence all nodes are expected to follow
the protocol out of their own selfish interests. Finally, we prove that if all the nodes choose POSs,
then no node can unilaterally reduce its cost by changing its strategy to a non-POS. Moreover, we
show that this result holds under some milder conditions, where some of the nodes might adopt
non-POSs or even be non-rational. We are unaware of any previous P2P multicast protocol that
was formally proven to enforce cooperation in environments in whichodes are selfish.

Finally, for simplicity, throughout most of the chapter we describe only a static version of
EquiCast, in which no node joins or leaves the service. In Seéti§nve sketch out a dynamic
version of EquiCast that supports node joins and leaves.

5.2 Model and Problem Statement

We consider a large static collection 8f nodesn,, ns, ..., ny. A single distribution serves
distributesP data packets to the nodes, whérds a random variable distributed exponentially
with a large expectation, e.g., larger th&n000. S knows all the node identities, e.g., by each
node registering itself &

5.2.1 Network and Timing Model

Each node can directly communicate with every other node and Svilthe multicast rate i®

data packets pertime units. Each node has an upload bandwidth of at mest: packets ped

time units, where: andc are small constants such that3, ¢>4, andp%k=0. In addition, we
require that(k*—k)(c—3)<p and k*(c—2)—2k<p, in order to prove that every POS in which a
node exclusively cooperates with all its neighbors strictly dominates every POS in which it does
not. There is a bound ak time units on packet delay, and sending a packet incurs zero delay on

77



the sender. Local computations also incur zero delay. Finally, for simplicity, we assume no packet
loss.

5.2.2 The Game Formulation

We model the system aswan-cooperative gamé which theplayersare theN nodes. Each node
chooses atrategythat dictates how it plays the game skategy profilds a vector ofV strategies,
one for each node. Atrategy spaces the set of strategies available to each node. In this chapter,
the strategy space consists of the set of all the strategies that send no mqre thgackets per
J time units.

We define a special set pfotocol-obedient strategies (POS§enerally speaking, a strategy
out of this set must run the protocol as is and can only determine how many connections to maintain
and how many packets to send on each connection. We defer the precise definition of this set to
Section5.4.2, since it relies on the protocol’s code described in Se@iGm

Each node is selfish amdtional, i.e., n; chooses a strategy; that minimizes its individual
cost as defined below. A strategy strictly dominatesanother strategyt’ if choosingst always
incurs a lower cost than choosirg, regardless of the strategies chosen by other nodesoAgly
dominating strateggtrictly dominates all other strategies. Althougis not one of the players, we
model its random injections of data packets as its stratkgyand hence our proof of cooperation is
valid regardless o8s random choices. Note that, does not determine the length of the session,
i.e., P. Denote byr; the total number of data packets receivedryythroughout the multicast
session, and by; the total number of packets sent hythroughout the multicast session. Then,
the cost function for a node; is defined as:

x ifr,<P
fi(sto,stl, ...,StN) = { s |f r, = P

That is, if n; receives all the multicast packets, then its cost is the number of packets it has sent
during the multicast session. Otherwisg's cost is infinite.

5.2.3 Problem Statement

Our goal is to design a scalable P2P multicast protocol, in which if all nodes choose POSs, then
(i) each node receives all the multicast packets; and (i) no node can reduce its cost by unilaterally
changing its strategy to a non-POS. A second goal is efficiency. The maximal total receiving and
sending overhead incurred on each node throughput the entire multicast seﬁ(@ﬁ%) and
P(1+%’“)+H k packets, respectively, whesigs a small constant anH is a non-negative constant
determined by each node.

78



5.3 EquiCast

Section5.3.1describes EquiCast’s architecture. SecBad2provides a high-level description of
EquiCast’s cooperation enforcement scheme, and SegtBhadescribes the protocol in detail.

5.3.1 Architecture

Sorganizes the nodes into a static overlay that satisfies the following properties: (KRRGL1) each
node in the overlay has exactiyneighbors for some parameter(KRRG2) the overlay’s diameter

is logarithmic in/V; and (KRRG3) the expected distance between a given node and a random node
in the overlay equals the average distance between a pair of nodes in the overlay3Fark-

regular random graph satisfies these properties with high probabild$,[78,122]. Sconstructs

the overlay, e.g., using one of the constructionslz], and sends to each node the identities

of its overlay neighbors, henceforth, simply calleeighbors Note that since the construction is
centralized, no node cooperation is required.

In the next section, we show that, under our model assumptions, for each node, maintaining
connections with itk neighbors is a dominating strategy. Hence, connections are expected to
persist. However, if a given connection is terminated, e.g., due to a node failure, thenaceade
end up with less thak neighbors. In such cases,contactsS, andS emulates a selfish rational
EquiCast node:, and a new connection is formed betweeandn. n’'s interface is identical to
the interface of each EquiCast node with the following two exceptionss alance with respect
to n is initialized to the lowest possible balance, i.E;,and ii) in each roundy must send a fine
packet ton regardless of its balance with respechi@therwisen terminates its connection with
Hence, as we show in Secti®.2, a node prefers to maintain a connection with a non-emulated
node over an emulated one.

5.3.2 Overview

We divide the time intcR:(%} rounds. Every rounds creategp new data packets, and for each
noden, Ssends all the copies of thepgackets ta: with a probability of£, so that, on average,
each data packet is sentkmodes.

In each round, every nodegossips with its neighbors about new data packets it has received
in the previous round, i.e., for each neighbeisends a gossip packet containing the identities of
all the data packets it has received in the previous round. After receiving gossip packets from its
neighborsy requests from each of its neighbors data packets that the neighbor has and were not

1A k-regular random graplwith N nodes is a graph chosen uniformly at random from the sktrefjular graphs
with V nodes.
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previously received by. If a given packet is available at more than one neighbor, themdomly
picks one of those neighbors to request the packet from. Finalgnds its neighbors the data
packets they requested from it.

We note that since a given packet is sent31p each of the nodes with equal probability and
since the expected distance between a random node and a given node equals the average distance
between a pair of nodes in the overlay (KRRG3), if all the nodes comply with the protocol, then the
average latency with which nodes receive data packets is identical for all nodes, and the expected
throughput is? data packets per-round on every overlay link. In a previous si@gly \ve used a
similar technique in order to support reliable multicast in cooperative environments. The aim of
this study is achieving similar results in a non-cooperative environment.

In order to motivate cooperation, we introduceanitoring mechanispwhereby each node
monitors the sending rate of each of its neighbors. For each neighlomaintainsn.neighbor-
_balancef:], which is the difference between the number of data packets sent so far and the
expected per-link throughput éfdata packets per-round. Note that, in a given rouinehay have
less thary new data packets that have not yet been receivedwhereas in another round it may
have more tha data packets fon. Therefore, we allow for some slack in the balance. The
allowed imbalance is captured by a negative threstholds long asi’s balance with respect to
is greater than or equal g, » is considered to be cooperative byBut if n's balance with respect
to n drops belowL, thenn terminates the connection with Note that, as long as's balance
with respect ton is greater than or equal tb, the uploading rate from to 7 is unaffected by the
downloading rate from to n. This independence is required in order to prove cooperation.

In order to further motivate nodes to adhere to the expected throughput, we introduce a per-
link penalty mechanisrthat charges a neighbor with one additiofiak packet for every round
the neighbor has a negative balance with respect to the node, where a fine packet contains no
useful data but has the same size as a data packet. If the node does not receive a fine packet from a
neighbor with a negative balance, then it terminates its connection with that neighbor. Fine packets,
as opposed to data packets, do not affect the node’s balance. Therefore, a node is motivated to
achieve a non-negative balance, where all sent packets contribute to its balance. Moreover, it is
beneficial for nodes to have a strictly positive balance whenever possible. This is because there is
no guarantee that a given neighbor will request at Iégsackets from the node in forthcoming
rounds. If a neighbor requests fewer tHapackets when the node’s balance toward it is zero, then
the balance becomes negative, and the node pays the fine. Each node chooses its maximal balance
with respect to a given neighbor. This maximal balance is captured by the non-negative threshold
H. As long as the node’s balance with respect to a given neighlmes not exceedl the node
sends all the data packets thatequests from it, yet it refrains from sending data packets that
would increase its balance with respecfitbeyondH . Note that a node cannot optimize the value
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of H according to the session duration,/ass a random variable distributed exponentially. Note
also that the penalty mechanism does not eliminate the nedd &nce without this threshold, a
selfish node could have sent only fine packets.

Although nodes are motivated to have a hon-negative balance, due to randomness, aagde
have an insufficient number of new packets for a given neighbor in order to be able to maintain
a balance greater than or equal/to In order to avoid a disconnection in such a scenatioan
askSto send up td new data packets on behalf of it to a given neighban return for sending
the same number of fine packetsSon countsSs packets towarda’s balance only if ignoring
these packets would draops balance with respect tobelow .. Hencey contactsSonly when its
balance with respect to drops belowL. In addition, after the end of the multicast sessioran
askSto send to it up taL|k data packets in return for sending the same number of fine packets to
S

On the one hand, the allowed imbalance should be large enough to reduce the probability of a
cooperative node reachirg in order to avoid overloading On the other hand, a high imbalance
allows a selfish node to receive many data packets,Lg:, without sending any data packets in
return. Hence, there is an inherent tradeoff between the overhead incurgahdrthe number of

data packets a node can receive for free. For example, séttmg 200 is a good tradeoff between

the two opposite requirements. On the one hankk=i3, then a node can get onhy0 data packets
without contributing anything in return to the system. Since we assume that the multicast session
is significantly longer, including at lea$t,000 packets, it seems like users will not be satisfied
with getting a mer&00 packets and will therefore be motivated to contribute. On the other hand,
such a bound is expected to incur a modest overhe&l Wote that the value of is independent

of all the other system parameters.

5.3.3 Detailed Description

The source protocol

On each roundS createp new data packets, and for each nadi sends all the copies of these
packets ta: with a probability of%. In the rare case in which, at a given round, no node is chosen
to receive all the copies of thenew data packet§restarts the round. Note that this does not add
to the round duration, since computation time is zero.

Upon receiving a request from a noddo sendx data packets to another nodeS verifies
that: (i) x<?; (ii) this request is followed by the sending.ofine packets from; (iii) » andn are
neighbors; (iv) neithen norn has asked&to replace the other node with an emulated node; and
(v) n is not pretending to be another node (IP-spoofing). The latter is checked, e.g., by sending a
random string to: thatn should send back t6in one of the fine packets. #f passes the checks,
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Data structures:

neighbors- set of the overlay neighboring nodes.

my_balance[k]— outgoing balance, initiallyn € neighbors, my_balance[n] = 0.
neighborbalance[k]— incoming balance, initiallyn € neighbors, neighbor_balance[n] = 0.

H —an upper bound on the balance, chosen by the node.

ids— set of data packet identifiers that the node has not yet received, injtially

regs[n] — a set of data packets identifiers to ask from neighanitially Vn € neighbors, req[n] = 0.
Parameters:

L — alower bound on the balance (a negative number).

Figure 5.1:EquiCast’s data structures and parameters.

thenSsends tau copies ofr new data packets that it intends to distribute in the next round. If two
or more ofn’s neighbors aslSto send data packets fg thenS sends tan different packets on
behalf of each neighbor. We neglect the possibility that in the next reumidl be chosen bySto
receive data packets from it, as the probability for this scena@’fpz.s

After the end of the multicast sessidprovides a “safety net” for cooperative nodes that did
not receive all the? multicast packets. Specifically, upon receivindine packets from a node
n, Ssendsr data packets to, for z<|L|k. In order to avoid server overloading in the end of the
multicast session, we use the randomized back-off strategy descritietil]n [

The node protocol

Figure5.1 presents the data structures and parameters maintained by an EquiCast node. The set
neighborsholds the node’s neighbors. The array_balanceholds the node’s balance with respect
to each of its neighbors, and the arreighborbalanceholds the neighbors’ balances with respect
to the node. The sétls contains identifiers of data packets that the node heard about (from one
or more of its neighbors) but has not yet received. The aeggholds identifiers of data packets
that the node asks its neighbors to send to it. The (negative) threshadtermines the minimal
allowed balance. Finally, each node chooses its own upper bdumdits balance with respect to
a given neighbor, which defines its level of cooperation.

The pseudo-code of the node’s protocol is presented is Fdrdt consists of four phases,
which are executed sequentially.

In the first phase, which last& time units, a node sends to its neighbors identifiers of data
packets it received in the previous round (lines 1-5).

In the second phase, which also la&tsime units, if the node does not receive a gossip packet
from some neighbor, then the node replaces its connection with that neighbor with a connection
with an emulated node by calling to the procedure replagighbor (lines 6—7). Then, the node

2In this case, ifz is chosen byBto receive data packets in rouithenScan send data packetsiian roundt+1.
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upon bootstrapneighbors «—

identities of nodes received fro no REQUEST packet arrived
19. replaceneighbor )
Procedurereplaceneighbor (noder) 20.  /* Send data packets */
neighbors « neighbors \ {n} 21.  send up tor data packets ta according tan's
contactSand ask for an emulated neighbor request, where
neighbors <« neighbors| J{n} x = min(H+{ —my_balance[n], £+c—3)
22.  my_balance[n] < my_balance[n]+x—7
Phase | (gossip) 23. if my_balance[n|<L then
1. /* Send gossip packets to neighbors */ 24, w <+ min(f+c—(x+3),%)
2. foreachn € neighbors 25. sendSw fine packets and ask
3. create new gossip packetvith all the data it to sendw data packets te
packet identifiers received in the last round 26. my_balance[n| — my_balance[n]+w
4, send(GOSSIRy) ton 27.  waitd — 3A time
5 wait A time
Phase IV (update data structures, pay fine)
Phase Il (process gossip, send requests) 28. foreachneighborn
6. foreachn € neighbors from which no GOSSIP  29. d — number of data packets that |
packet arrived askedn to send me in phase Il and
7. replaceneighbor ) were received from in this round
8. ids « set of identifiers received in gossip packets30. if neighbor balance[n]<L+% and |
whose corresponding data packets were received in this roundn data packets
not received yet from Son behalf ofn then
9. foreachn € neighbors reqsn] < () 31. d—d+m
10. foreachid € ids 32. neighbor balance[n] — neighbor_balance[n]
11. id_set < set of neighbors that gossiped +d— %
aboutid 33. /* Send a fine packet (if needed) */
12. ne < arandom neighbor fromi_set so that 34. foreachneighborn
|regs[ne]|<Z+c—3 35. if my_balance[n] < 0 then
13. if there is no suche then continue 36. send a FINE packet to
14. regs|ne] — regsine] U {id} 37. wait A time
15. foreachn € neighbors 38. foreachneighborn
16. send(REQUESTregs[n]) ton 39. /* Check if neighbor is OK */
17. wait A time 40. if neighbor_balance[n] < L or
neighbor_balance[n] < 0 andn did not
Phase Il (send data) send me a FINE packet in this routiten
18. foreachn € neighbors from which 41. replaceneighbor )

Figure 5.2:Code for EquiCast node.
processes gossip packets it has received from its neighbors. For each identiliethe setd_set
holds all the neighbors that have the corresponding data packet. One such neightardomly
chosen from this set, and the node ask® send it the corresponding data packet by appending
the identifier toregs|n|.

In the third phase, which lasts-3A time units, if the node does not receive a request packet
from some neighbor, then the node replaces its connection with that neighbor with a connection
with an emulated node by calling to the procedure replagighbor (lines 18-19). Then, the node
sends data packets to each of its neighbors. Note that, according to the model (see5S8c¢tion
each node has an upload bandwidth of at mastc packets peb time units. Therefore, in the
third phase, the node sends upate?+c—3 data packets to a given neighbey as long as its
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balance with respect to does not exceedl (line 21). Additionally, the node increases its balance
with respect to: by z. If the node’s balance with respectitas smaller tharn, then the node asks
Sto send ton sufficiently many packets so that in the end of the current round the node will have
a balance that is equal to or larger thamith respect to: (lines 23-25).

In the fourth phase, which lasts time units, the node updates each neighbor’s balance ac-
cording to the number of data packets it received from the neighbor andSmmbehalf of the
neighbor in the previous phase (lines 28-32). Note that the node does not accept unsolicited data
packets from its neighbors. Likewise, the node accepts data packetsSfoombehalf of some
neighborn only if, in the beginning of the fourth phase,has a balance lower thair-£2 with
respect to the node. Then, if the node has a negative balance with respetié¢o it sends one
fine packet tax. Finally, if n either has a balance lower thanor did not send the fine packet it
was required to, then the node terminates its connectionmwith

5.4 Proof of Cooperation

Recall thatP, the number of data packets in a session, is a random variable distributed exponen-
tially with a large expectation, at least an order of magnitude larger [thgn Hence, in every
round,Sis expected to create more thgh . new data packets in the future. In this section, we
neglect the probability that, starting from some roun8will create less thafl.|k new data pack-
ets, and hence we assume that, in every round, the probabilitg Wilitcreate more thatlZ |k data
packets in the future is. Moreover, for every constanbnst, <2 is negligible (recall thaR = %
is the total number of rounds in the multicast session), and for simplicity is assumed.to be

We say that a node maintainsa connection with another nodein some phase of some
roundt if, in phasez of roundt, n runs the protocol’s code (described in Fighrg) with respect
to n without changing any of the protocol's parameters exdéptNote thatn can be either a
real node or a node emulated ByWe say that: maintains a connection with throughout the
multicast session i, maintains a connection within every phase of each of the firBtrounds of
the multicast session (i.e., in every round in whtreates new data packets).

Throughout this section, we use the following notations related to aimadd a given neighbor
n of n: b(n,n) is n's balance towards aftert rounds as stored in.my_balance[n]. x;(n,n) is
the number of data packets(or S on behalf ofn) sends ton during roundt, and X, (n,n) =

In Section5.4.], we prove several basic (technical) properties of the protocol. In SegdoR
we define the set gbrotocol-obedient strategies (POSand we prove that every POS in which
a node cooperates with all its neighbors strictly dominates every POS in which it does not. In
addition, we prove that if all the nodes choose POSs, then each node receives all the multicast
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packets. In SectioB.4.3 we prove that if all the nodes choose POSs, then no node can unilaterally
reduce its cost by changing its strategy to a non-POS. In addition, we prove that, in this case, all the
nodes receive all the multicast packets. Finally, in Sedidn4 we prove that each node chooses

a non-negativef parameter.

5.4.1 Basic Properties

Lemma 1. For every two neighboring nodes and », if, starting from the initialization of the
connection between them, bottand » maintain the connection between them in every phase of
the firstt rounds, them.my_balance|n| = n.neighbor_balance|n| in the end of round’, for every
t<t.

Proof. By induction on the round number.
Base: There are two cases. In the first case, ha@hdn are not emulated nodes. In this case, the
connection between the two nodes is initialized in the beginning of the multicast session (i.e.,
in the end of round “0”), and, upon the initialization of the connectionny_balance[n] =
n.neighbor_balance[n] = 0. In the second case, eitheror » is an emulated node. Without
loss of generality, assume thatis an emulated node, and thateceives the identity of from
Sduring roundr, for somer > 0. In this case, the connection between the two nodes is initial-
ized in roundr, andn.my_balance[n] = n.neighbor _balance[n] = L upon the initialization of
the connection. We note that, in roundn andn do not send data packets to each other; this is
since the connection is initialized after the end of the first (gossip) phase of roamdl hence,
in roundr, no gossip packets are sent on the connection between these two nodes, and therefore,
in this round, no data packets are sent on this connection either. Therefore, in the end of,round
n.my_balance[n] = n.neighbor _balance[n] = L.
Step: Assume that, in the end of rouhdw.my_balance[n] = n.neighbor_balanceln|. We will
prove that, in the end of round-1, n.my_balance[n] = n.neighbor_balance[n).

In roundt+1, bothn.my_balance[n] andn.neighbor balance[n] are reduced by (see Fig-
ure5.2, lines 22 and 32). In addition, in rourtd-1, n.my_balance[n| andn.neighbor_balance[n]
are increased upon the sending of data packets frand fromS on behalf ofn to » (see Fig-
ure5.2, lines 22, 26, and 32).

Whenn sendse new data packets 0, n.my_balance[n] is increased by: (see Figuré.2, line
22). Since there is no packet loss, these packets are receined\& note that, sends ta: only
data packets that requested from it in phase Il of rountd-1; this is sincen ignores unsolicited
data packets, as it maintains the connection wit(see Figures.2, line 29). Therefore, upon
receiving ther data packets; increases..neighbor_balance[n] by x.

If n.my_balance[n] drops belowl during phase Il of round+-1, thenn sendsw fine packets to
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Sand it asksSto sendw data packets on behalf of it fo(see Figur®.2, lines 23-25). Additionally,
n.my_balance[n] is increased by (see Figuré.2, line 26). We note that does not request from
Sto send ton more than? data packets, aSignores such requests (see SechoB.j. Hence,
upon receiving the request from S sendsw data packets on behalf af to n. Since there is
no packet loss, these packets are received #&ccording to the induction assumption and since
n andn maintain the connection between themeighbor_balance[n|<L+% in the beginning
of phase IV of round+1. Hence,n accepts the data packets received fi§nand it increases
n.neighbor _balance[n] by w (see Figur.2, lines 30-32). Finally, we note thatifasksSto send
data packets té@ whenn.my_balance[n]>L, thenn ignores these data packets (see Figué
line 30), since in this caseneighbor balance[n|>L+%, and hence, asksSto send data packets
to n only if n.my_balance[n]< L during phase Il of a given round. O

Lemma 2. For every two neighboring nodes and n, if, starting from the initialization of the
connection between them, bottand » maintain the connection between them in every phase of
the firstt rounds, then this connection is not terminated in the firsunds.

Proof. Without loss of generality, we will prove that does not terminate the connection with
n (i.e., n does not call to the procedure replasgighbor withn’s identity) in roundt’, for ev-

ery ' < t. Sincen maintains the connection with, then it terminates the connection with
n in roundt’ only if one (or more) of the following situations occurs: (i) it does not receive a
gossip packet from in phase | of round’; or if (ii) it does not receive a request packet from
n in phase Il of round’; or if (iii) either n is an emulated node or, in the end of routid
n.neighbor_balance[n]<0, andn does not receive a fine packet framn round¢’; or if (iv) in

the end of round’, n.neighbor_balance[n|<L.

Sincen maintains the connection witla then (i), (ii), and (iii) do not happen. In addition, we
note that, can ensure that, in the end of each roundhy _balance[n]>L by askingSto send data
packets ta:» whenn.my_balance[n|<L (during phase lIl of a given round). Hence, according to
Lemmal, (iv) does not happen either. ]

Lemma 3. If a noden maintains a connection with another nodehrough the first rounds of
the multicast session, thety(n, i)="2+b,(n, i).

Proof. By induction.

Base: t = 0.X,(n,7) = by(n,n) = 0. Therefore Xo(n, 7) = 2 + by(n,n).

Step: AssumeX;(n,n) = 2 + b,(n, 7). We will prove thatXHl( n) = t“ P 4 gy, (n,R).
Xpy1(n,f) = Xy(n,n) + zia(n,n) = 2 + by(n,n) + 241 (n, 7). Slncen maintains the

connection with, we know thab, 1 (n, 7) = by(n, n)+x.41(n, n) -~ (see Figur®.2, lines 22 and

26). Thereforeh,(n, n)+xi11(n,n) = by (n,n)+2. Hence X, (n,n) = (t+1)p+bt+1(n n). O
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Lemma 4. If £ neighbors of a nodes maintain a connection with it throughout the multicast
session, them receives from its neighbors and from S on behalf of its neighbors at leagik
data packe

Proof. By Lemma3, for every neighbofi of n, Xr(#, n) = £ +bg(n, n). Recall thabg(n, 7) >
L andR = %. Hence, from all itsk neighbors,n receives at leaskp + Lk = P + Lk data
packets. O

Lemma 5. The per-round overhead of maintaining a connection over the entire multicast session
is at least? +-2 packets and at mogt+c packets.

Proof. The overhead incurred on a noddor maintaining a connection with another natleon-
sists of: (i) data overheadX(z), i.e., packets that contribute tds balance with respect to, (ii)
gossip/request packets, and (iii) penalty packets.

The maximum data overhead incurred by maintaining the connectiomvigtf +- c — 3 data
packets per-round (see Figuse?, lines 21-25). By Lemm#&, and sincel is fixed, w =
P+ %;;m > 2+ % = 2. The gossip/request overhead is fixed, namely: two packets per-round.
The penalty on either a negative balance or on maintaining a connection with an emulated node
is one fine packet per round, and zero otherwise. Hence, the minimal and maximal per-round

overheads aré+2 and?+c packets, respectively. O

Lemma 6. If a noden maintains connections with at most k-1 nodes throughout the multicast
session and in addition, it communicates with a bounded number of nodes throughout a bounded
number of rounds, thefj,=cc.

Proof. We first note that, during the multicast sessiencannot request frons to send it data
packets. From at mo&t—1 neighbors with whichn maintains connections throughout the multi-
cast session (and fro@on behalf of these neighbors),can receive at most=(k—1)(%+c—3)

data packets per round. Recall tfat—k)(c—3)<p. Hence,x<p. We note thatr<p even if

n communicates with an additional bounded number of nodes throughout a bounded number of
rounds. This is since receives a bounded number, denotedvas:, of data packets from these
nodes, and hencﬁ‘%:am p. Finally, if n receives up toL |k data packets fror8 after the end

of the multicast session, then it still cannot receive allfhaulticast packets, SinC—Té%El—L“C:x< .
Hence,f,=00. O

Lemma 7. If a noden maintains connections with nodes that also maintain a connection with it
throughout the multicast session, thép<oo and %§p+kc.

3Recall thatZ is negative.
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Proof. By Lemma4, if n maintains connections with nodes that also maintain connections with
it throughout the multicast session, themeceives at leagP+ Lk data packets from its neighbors
and fromS on behalf of its neighbors. In addition, after the end of the multicast sessioan
receive up tdL|k data packets fror (in return for sending a fine packet for each data packet),
and hencef,,=s, <.

By Lemmab, maintainingk connections incurs sending at mgstkc packets per-round. In
addition, since%:() (L andk are fixed), sending at mostL |k fine packets in the end of the
multicast session does not increase the per-round overhead.%lﬂ;ﬁ;kc. O

We now discuss the case in which a nodenaintains connections with more thamodes
throughout the multicast session. Note that by LenBrend due to bandwidth limitations;
cannot maintain more tha[v"%‘%J connections. Below, we prove that maintaining connections
with £ + 1 or more nodes incurs a higher cost than maintaining connections:wibiales.

Lemma 8. Every strategy in which a nodeexclusively maintains connections witihodes (i.e.n
communicates only with thegenodes) throughout the multicast session incurs a lower cost than
every strategy in whiclh maintains connections with nodes throughout the multicast session,
wherej>k.

Proof. By Lemmab, if n maintains connections with+1 or more nodes throughout the multi-
cast session, thelx >(k+1)(£+2), i.e., %2(k;+1)(§+2). By Lemma, if n exclusively main-
tains connections wittk nodes throughout the multicast session, tl-f@gpqtkc. Recall that
k?(c—2)—2k<p. Hencep+ke<(k+1)(2+2). O

5.4.2 The Set of Protocol-Obedient Strategies (POSSs)

We now define the set of POSs. Roughly speaking, a node that chooses a POS can choose
which connections to maintain among those allowed by the protocol, and it doesn’'t communi-
cate with anyone with which it does not maintain a connection. In this section, we prove that, if all
nodes choose dominating POSs, then each node maintains connections with its metgthbors
throughout the entire multicast session and it receives all the multicast packets.

Definition 1 (Protocol-obedient strategy (POS)) A node’s strategy is protocol-obediaft

POS 1.In the beginning of the multicast sessianchooses some subset of the inifiahodes given
to it by S to be connected to.

POS 2.In the beginning of every phase of every roumdhooses for each node that it is connected to
whether to disconnect from it or to remain connected to it, and moreowwtmnoses whether
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to ask S for any number of new emulated nodes to connect to as lendaes not maintain
connections with more thalhemulated nodes.

POS 3. For each node:, n communicates with in some phase of some round if and only ifn is
connected ta in phasez of roundt¢ according to the choices above, and moreover, in this
case,n maintains the connection within phasez of roundt.

POS 4. For any noden, if n does not maintain the connection withn phasez of roundt, thenn
terminates its connection with (according to the protocol) in phase+ 1 of roundt, and it
does not further communicate withstarting from this phase.

Note that, in particular, following the protocol (see Figbté) is a POS.

We believe that it is reasonable to assume that most users will run POSs, since the typical user
usually does not have the technical knowledge to modify an application code. In addition, in many
P2P applications, a node communicates with nodes whose identities are received from a centralized
server. For example, in BitTorrent, a node locates other nodes by contacting a “tracker”, which is a
centralized process that keeps track of all nodes interested in a speciil87f¥]. Moreover, in
the next section, we prove that for each nagé all the nodes that communicates with choose
POSs, them also chooses a POS. That is, hacking the protocol’'s code cannot regdumest if
neither at least one ofs initial neighbors also hacked the protocol’s code msucceeds to locate
by itself identities of nodes that also hacked the protocol’s code.

Definition 2 (k-protocol-obedient strategy (k-POS)).A POS in which a node maintains exactly
k connections throughout the entire multicast session is called a k-POS

We note that a k-POS is always feasible, since a node can always maintain connections with
k emulated nodes that will also maintain connections with it. The following lemma shows that a
k-POS is a dominating POS.

Lemma 9. A k-POS strictly dominates every POS in whicinaintains connections withnodes,
wherej#k.

Proof. We first note that: can communicate only with either the initiaineighbors given to it by
Sor with up tok emulated nodes; this is sineechooses a POS. We also note that maintaining
a connection for a bounded number of rounds cannot redigoeost, since from this connection
n receives a bounded number of data packets, denotedras and **=0. Hence, the lemma
follows from Lemmas, 7, and8. O

We next show that, if all nodes choose POSs, then a node benefits more from connections with
its original £ neighbors than from connections with emulated ones.
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Lemma 10. Assume that (i) all nodes choose POSs; (ii) a nadeaintains a connection with a
non-emulated node in some phase of some round; and (iii) » also maintains a connection
with n in phasez of roundt. Then,n does not replace its connection wittwith a connection with
an emulated node.

Proof. Recall thak’s interface is identical ta’s interface with the following two exceptions:sjs
balance with respect tois initialized to the lowest possible balance, if. and ii) in each round,
n must send a fine packet tg regardless of its balance with respectimtherwisee terminates
its connection witm. Hence, there is no difference between the data receiving raterfiaomd the
data receiving rate from.

The overhead of maintaining a connection with either e is composed of: (i) data overhead,
(ii) gossip/request packets, and (iii) penalty packets. The gossip/request overhead is fixed. The
data sending rate tois larger than or equal to the data sending raté,tsincen’s balance with
respect tee is initialized to the lowest possible balance, i.t., The penalty overhead incurred
by maintaining a connection with is larger than or equal to the penalty overhead incurred by
maintaining a connection with, since, at each round, is required to send a penalty packetfo
regardless of its balance with respect td-inally, in order to maintain a connection withn needs
to send a join message ®Hence, the overhead of maintaining a connection withlarger than
the overhead of maintaining a connection withTherefore, since there is no difference between
the data receiving rate fromand the data receiving rate framn does not replace its connection
with 7 with a connection witle. O

Theorem 1. If all nodes choose strongly dominating strategies out of the set of POSs, then every
noden exclusively maintains connections with its initlalneighbors throughout the multicast
session, and it receives all the multicast packets.

Proof. By Lemmas9 and/10, n’s strategy is to exclusively maintain connections with its initial
k neighbors throughout the multicast session. By Len2nthese connections are maintained.
Hence,n exclusively maintains connections with its initialneighbors throughout the multicast
session. Finally, by Lemmig n receives all the multicast packets. O

5.4.3 Unilateral Defection from the Protocol

In this section, we prove that if all the nodes, except for one mp@dboose a strategy out of the set

of possible POSs, theris cost is minimized by choosing a k-POS. In other words, if all the nodes
choose POSs, then no node can reduce its cost by unilaterally changing its strategy to a non-POS.
Furthermore, we show that, in this case, all the nodes receive all the multicast packets.
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Theorem 2. If all the nodes, except for one (rational) nodechoose a strategy out of the set of
possible POSs, thenalso chooses a POS.

Proof. We shall prove that. complies with statements POS 1- POS 4, which together comprise
the definition of a POS (see Sectibrl.?).

We first note that each node, includimg complies with POS 1, since, in the beginning of
the multicast session, each node receives f&inentities ofk nodes, and each node can choose
whether to connect to each of its initlaheighbors.

Throughout the entire multicast sessiarhenefits nothing from sending packets to nodes that
their identities were not received frof) since these nodes send no packets;tehis is since
these nodes choose POSs which prohibit communication with nodes whose identities were not
received fromS. In addition, we note that if a connection betweeand one of its neighbors is
terminated, them refuses to communicate (i.e., to send packets) wjthincen chooses a POS
which replaces a neighbor that does not maintain a connection with an emulated neighbor. Hence,
starting from the second round adds connections to emulated nodes only. Finally, we noteithat
cannot be connected to more thlaamulated nodes, sin&does not allow such a case. Therefore,

n complies with POS 2.

We note that, does not communicate with any nolés some phase of some round if it
does not maintain a connection within this phase; this is since chooses a POS that dictates
terminating the connection with in phasez + 1 of roundt if n does not maintain the connection
with 7 in phase: of roundt, and therefore: benefits nothing from communication within phase
z of roundt if this communication is not according to the protocol. Hencepmplies with POS
3.

Sincen is rational, we note that terminates a connection with a neighboif n does not
maintain the connection with; this is sincen chooses a POS, and hence eithemaintains
the connection withn or it does not send any packets/ipand hence: benefits nothing from
maintaining a connection with if n does not maintain a connection with Hence,n complies
with POS 4. O

Note that Theorer@ holds even if all the nodes, except forare not rational.

Next, we establish that hacking the protocol’'s code cannot reduce a node’s cost if neither at
least one of the node’s initial neighbors also hacked the protocol’s code nor the node’s succeeds to
locate by itself identities of nodes that also hacked the protocol’s code.

Theorem 3. If all of a node’sn’s initial £ neighbors are rational and choose POSs andannot
locate an identity of a node that does not choose a POS, thexclusively maintains connec-
tions with its initial £ neighbors throughout the multicast session, and it receives all the multicast
packets.
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Proof. The theorem follows directly from Theorerfiand?2. m

5.4.4 Choosing H

Next, we prove that each node chooses a non-negAtiparameter.

Lemma 11. Assume that a node maintains connections with nodes throughout the multicast
session. Assume also that some neighbaf n requests fromm to send to itg<?+c—3 data
packets in some round, and in the beginning of round, n» has a negative balance éfwith
respect tar. Then, in round-, n sendsnin(|b|, q) data packets ta.

Proof. We first note that, in the end of each round, (n, n)> L, sincen maintains the connection
with 7. Thus, the sending rate fodoes not affect the data receiving rate froyrand hence: can
minimize its sending rate to in order to minimize its cost.

The per-round overhead incurred by maintaining the connectionwitbnsists of: (i) data
overhead {%R), (ii) gossip/request packets, and (iii) penalty packets. The gossip/request overhead
is fixed. Hencenp tries to minimize the data and penalty overheads.

By Lemmas3, XRg’ﬁ)szrbR(;’m. The per-round data overhead is bounded from below by
%Jré. SincelL is a constant that does not dependinwve can neglecﬁ, i.e., assume it is zero.

The per-round penalty overhead is the percentage of rounds in which the balance is negative. Recall
that, in each round, the probability thawill create more thatZ|k data packets in the future 1s

Hence, the overall cost is lowerif maintains a zero balance with respectitm the end of each

round when this is possible. Thereforesendsnin(|b|, ¢) data packets té in roundr. O

5.5 Dynamic Setting

We now describe in a nutshell a dynamic version of EquiCast, c8lle@ (Dynamic EquiCas})
in which nodes can join and leave the protocol during its execution. Below, we detail only the
differences between the two versions.

Architecture

DEC is deployed on top of a dynamic overlay that supports node joins and leaves. For example,
we can use the overlay i82], which is a dynamically maintaineftregular graph composed §f
Hamiltonian cycles.
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The cost function

DEC's cost function is obtained from EquiCast’s cost function by replacing the requirement to
receive all theP multicast packets with the requirement to receive data packets, where is
the number of rounds during which the node is connected to the overlay.

A join operation

A joining noden sends goin message t& Upon receiving this reques$,incorporates: into the
overlay, e.g., by inserting between’zi' pairs of neighboring node82]. For example, assume that
nodesn; andn, are connected to the overlay prior 4 joining, andn becomes:;’s neighbor
instead ofny,. We describe hovs setsn’s andn;’s incoming qeighbor_balance) and outgoing
(my_balance) balances with respect to each other.

Prior to incorporating into the overlaySasks both; andn, for their incoming and outgoing
balances with respect to each other. If these balances do not matcB diseonnects both; and
no from the overlay by sending an appropriate message to all their neighbors. Hence, since both
andn, are rational, they could be expected to correctly report about their incoming and outgoing
balances with respect to each other.

Denoten;’s outgoing and incoming balances with respectiian the end of round as B
and By, respectively. We would like to ensure thats cost will not increase due te's joining.
Therefore, in the beginning of round-1, bothn;’s outgoing balance with respect toandn’s
incoming balance with respect iq are set toB;,. Additionally, in the beginning of roune+1,
bothn,’s incoming balance with respect toandn’s outgoing balance with respect iq are set
to max(Bs,0). This is to ensure that will not pay a fine form,’s negative outgoing balance with
respect toy,. Finally, if By, <0, thenSsends B, | new data packets to;, in order to ensure that it
receives at least:-p data packets, where is the number of rounds during whieh is connected
to the overlay. Similarly, ifB,,>0, thenS sendsB;, hew data packets to.

A leave operation

A leaving noden sends deavemessage t&. Upon receiving this requesgremoves: from the
overlay, e.g., by connecting each pairdé neighbors with each othe82]. For example, assume
that, prior ton’s leave,n was connected to nodes andn,, andn; andn, become neighbors after
n’s leave. We describe ho®setsn,’s andn,y’s incoming and outgoing balances with respect to
each other.

Prior to leaving the overlay; sends tdSits incoming and outgoing balances with respect to
bothn, andn,. Note thatn cannot gain anything from reporting about false balances, and hence
n could be expected to correctly report about its balances with respectiadn..
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Denoten;’s andn,’s outgoing balances with respect #oin the end of round as B;,, and
Bs,, respectively. We would like to ensure that's andn,’s cost will not increase due ta'’s
leave. Therefore, in the beginning of routidl, n,’s andny’s outgoing balances with respect to
each other are set tBy,, and B,,,, respectively. Additionally, in order to ensure the protocol’s
correctness, in the beginning of round1, n;’s andn,’s incoming balances with respect to each
other are set t@,, and B;,,, respectively.

Denoten;’s andny’s incoming balances with respectian the end of round asB,,; andB,,2,
respectively. IfBsy,>B,1, thenn; may not receiven-p data packets, where is the number of
rounds during which; is connected to the overlay. Hence, in such a casendsB,,, — B,; hew
data packets to,. Similarly, if B;,,>B,., thenSsendsB;,,— B,,; hew data packets to,.

Finally, a noden’ that is connected to the overlay for rounds may receive less thanp data
packets if it has negative incoming balances with respect to its neighbors on leave time. Hence,
after it leaves the overlay,’ can receive up toL|k data packets fronsin return for sending a
fine packet for each data packet.

94



Chapter 6

Octopus: A Fault-Tolerant and Efficient
Ad-hoc Routing Protocol

6.1 Introduction

MANETSs consist of mobile wireless nodes that communicate with each other without relying on
any infrastructure. Therefore, routing in MANETS is performed by the mobile nodes themselves.
Such nodes often intermittently disconnect from the network due to signal blo&@@]. Thus,
an important challenge that ad-hoc routing protocols should address is coping with such failures
(or disconnections) without incurring high overhead. Our goal is to profadi-tolerance i.e.,
high routing reliability when many nodes frequently disconnect and reconnect, without sacrificing
efficiency in routing in large MANETS consisting of hundreds of mobile nodes.

We considelposition-based routing protocqlén which each node can determine its physical
location. Such protocols scale better than non-position-based ®tjegypically, the location of
each node is stored at some other nodes, which datason serverdor that node$6, 91]. When
a node wishes to send packets to another node, it first issoesteon queryin order to discover the
target’s location, and theflorwardspackets to this location. In position-based protocols, reliability
is measured as the success rate of location quégps [

Position-based protocols differ from each other mainly in how many location servers store each
node’s location91]. E.g., in DREAM [19], each node acts as a location server for all nodes, and
in LAR [8(], each node is a location server for its one-hop neighbors only. It has been e88led [
that neither of these extreme approaches is appropriate for large networks, since they both use
flooding to disseminate either position information (DREAM) or location queries (LAR). Li et
al. [83] have proposed the Grid Location Service (GLS), which stores each node’s location at small
number of nodes. They have shown that this approach, callddr-some[91], achieves good
tradeoff between reliability and load: each node updates its location at small number of nodes
without flooding the network, and location queries incur a reasonable overhead. Li et al. have
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further shown that in a small network, GLS tolerates intermittent node disconnection8@}ell [
However, as we show in Secti@b5.4 in large networks, GLS’s fault-tolerance greatly degrades.
For example, in a grid df.3km by 2.3km, with an average of00 nodes connected to the network

at a given time, when half the nodes intermittently disconnect and reconnect, GLS’s query success
rate is only65%; when all the nodes intermittently disconnect and reconnect, it drofyto

There is an inherent tradeoff between fault-tolerance and load in all-for-some protocols, since
fault-tolerance is achieved by constantly updating the location of each node at multiple location
servers, which in typical all-for-some protoco&3[/63] are far from each other (in order to allow
for quick location discovery). Thus, each node updates each of its location servers separately,
causing the load to increase with the level of redundancy. Moreover, a location update packet is
typically relayed several times before it reaches the appropriate location server, and the average
number of relays increases with the network area. In order to reduce the location update overhead,
in most all-for-some routing protocols, e.9.83 163], remote location servers are updated less
frequently than close ones. In Sectbb.4 we show that in large networks this approach greatly
degrades the fault-tolerance as routing often uses stale information.

In order to achieve a better tradeoff between load and fault-tolerance, we introduce a new lo-
cation update technique callsginchronized aggregatiorin this technique, each location update
packet includes the locations of several nodes and updates many location servers. Moreover, up-
dates are synchronized in the sense that only one node initiates the propagation of an aggregate
update from a given region, and hence no duplicate updates are sent. It is worth noting that such a
synchronized aggregation technique is not feasible in existing all-for-some protocol83s63] [
in which the locations of nearby nodes are stored at non-adjacent location servers.

In Section6.3, we present Octopus, a simple and efficient all-for-some routing protocol that
employs synchronized aggregation in order to achieve high fault-tolerance without incurring a high
load. Octopus divides the network area into horizontal and vertical strips, and stores the location
of each node at all the nodes residing in its horizontal and vertical strips. This approach naturally
supports synchronized aggregation: all the nodes in the same strip can learn each other’s loca-
tions through the propagation of exactly two location update packets along the strip. Note that this
location update technique does not require nodes to synchronize their clocks: by knowing its im-
mediate neighbors’ locations, a node can determine whether it needs to initiate a strip update. The
propagation of a strip update packet does not require synchronization at all. Since synchronized
aggregation dramatically reduces the location update overhead, Octopus can update all the location
servers at the same high frequency- at a low cost.

On the one hand, Octopus enforces higher redundancy and more freshness of location infor-
mation than previously suggested all-for-some proto®@#s83], and hence achieves much better
fault-tolerance. On the other hand, by aggregating node locations and synchronizing their propa-
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gation, Octopus incurs lower overhead than these protocols in typical scenarios.

Octopus has a third important advantage over most previous all-for-some protocol$3:.g., |
83]: In Octopus, the area in which nodes reside does not need to be pre-known or fixed; it can
change at run time. This feature is crucial for rescue missions and battle field environments, in
which the borders of the network are not known in advance and are constantly changing.

Finally, the redundancy of location information in Octopus has a fourth advantage: nodes use
information they have about strip neighbors in order to improve the forwarding reliability. Hence,
we eliminate the need to maintain designated information (for example, two-hop neighbor lists as
in [83]) for improving the forwarding reliability.

In Sectior6.4, we analyze Octopus’s scalability: we prove that under a fixed node density, the
number of location update packets per node per seconds is constant, and the byte complexity grows
asO(v/N) with the number of noded/. We also analyze the probability for update and query
propagation failures in Octopus’s horizontal and vertical strips, and show that under reasonable
density assumptions, the probability for holes is very small.

In Section6.5, we evaluate Octopus’s performance using extensive ns2 simulations with up to
675 mobile nodes. Our results show that Octopus achieves high routing reliability, low overhead,
good scalability, and excellent fault-tolerance. For example, in a gritl3éfn by 2.3km with
nodes thaall intermittently disconnect and reconnect, and an averagé®tonnected nodes at
a given time, Octopus achieves a query success rdt&’%fwhich is identical to the success rate
when all nodes are constantly up. We also compare Octopus to GLS, the position-based protocol
that achieved the best reliability-load tradeoff thus far. Our results indicate that in the absence of
failures, Octopus achieves slightly better reliability than GLS, at lower overhead (both packets and
bytes). In failure-prone settings, Octopus’s reliability is greatly superior to that of GLS.

6.2 System Model

The network consists of a collection of mobile nodes moving in a rectangular space. The set of
nodes can change over time as nodes connect and disconnect. The coordinates of the space can
also change over time. Each node can determine its own position, e.g., using GPS. Each node can
broadcast packets to all its neighbors within a certain radiealed the radio range. Packets can
be lost due to MAC-level collisions or barriers.

In our simulations, we use the MAC layer provided by t&2 simulator, which simulates
packet loss in typical MANETSs. As in other protocoB3[ 83], a certain minimal node density
throughout the grid is required in order to ensure reliability. Thus, we assume that the number of
nodes grows proportionally with the area of the network. A%®) 83], we assume that nodes are
uniformly distributed in the space.
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Octopus divides the space into horizontal and vertical strips. The strip wigltis, constant
and known to all nodes. Knowing, the zero longitude and latitude, and its current location, each
node can determine which horizontal and vertical strips it resides in at a given time. For example,
in Fig. 6.1, nodeS resides in the highlighted horizontal and vertical strips, and its radio range
neighbors are circled. Each strip has a unique identifier (of type StripID), identifying its location
relative to the global zero coordinates.

Figure 6.1: Node S’s neighbors and strips.
A, B,C, and D are end nodes in the highlighted
strips.

6.3 Octopus

Octopus is composed of three sub-protoctisation updatelocation discoveryandforwarding

The location update protocol maintains each node’s location at its designated location servers, as
well as at its radio range neighbors. When a node wishes to send packets to another node, it first
issues docation queryto the location discovery protocol in order to discover the target’s location,
and then uses the forwarding protocol to forward packets to this location. Se6t®d<6.3.2,
and6.3.3 present Octopus’s location update, location discovery, and forwarding sub-protocols,
respectively. The types and data structures used in the three sub-protocols are presentédin Fig.

In all three sub-protocols, we use limited retransmissions in order to partially overcome packet
loss: Whenever a node A sends a packet to a node B, and B is expected to send a packet in return
(e.g., to propagate/forward the packet further or respond to a location query), node A waits to hear
the appropriate packet from B. If A does not hear B’s packet withatransmissiongimeout then
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Types:

NodelD — a node identifier.

StripID — a strip identifier.

Direction — in{north= 0, south= 1, west= 2, east= 3}

Node —(NodelD1id, Realx, Realy, Timetime, StripID hid,
StripID vid, Realp_x, Realp_y, Time p_time)

Data structures

Nodethis — this node.

Set of Nodeneighbors, strip[4], recent_locations.

Figure 6.2:0ctopus’s types and data structures.

A chooses another nodg, distinct fromB, and re-sends the packetto Up to two retransmission
attempts are made per packet.

6.3.1 Location Update

Octopus synchronizes location updates by having them initiated only by each atrijrsodesA
north (south) end node is a node that has no neighbors in direction north (respectively, south) in its
vertical strip, and a west (east) end node is a one that has no neighbors to the west (respectively,
east) in its horizontal strip. For example, in F&1, A, B, C, andD are end nodes if§’s strips.
Periodically, an end node initiates a strip update packet, which propagates along the strip towards
the end node at the other side of the strip.

The location update protocol maintains two data structures at each nedgbors— radio
range neighbors, arstrip[i] for i € {north, south, west, east nodes residing in directiarin the
node’s strip. Each element in these sets is of type Node. As shown i6.Bighis type is a tuple
including the following fieldsid — the node’s identifier;, y — the node’s last reported coordinates,
time — the time of the last received coordinates repaid, vid — the node’s horizontal and vertical
StripIDs,p_z, p_y — the node’s previous coordinates, antime — the time of the previous received
coordinates report.

The neighborsset is updated upon receiving a short HELLO packet from another node. This
packet is broadcast by every node evérylo_timeout seconds, and it contains the broadcast-
ing node’s identity and physical coordinates. If a node does not hear from some neigfdvor
2hello_timeout seconds, it removesfrom neighbors

The pseudo-code for maintainisgip[*] is presented in Figh.3. The locations of all the nodes
in a given strip are propagated through the strip via the periodic diffusion of SURIPATE pack-
ets initiated by the end nodes of the strip evstryp_updatetimeout An end node broadcasting a
STRIP.UPDATE packet to directiod includes in the packet all itseighborsthat are in the same
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strip. A STRIPUPDATE packet also includes the strip identifier, the packet direction, and a target
node, which will forward this packet further. The target is chosen to be the farthest node in the
propagation direction.

loop forever
foreachDirectiond do
if (I have no neighbors in directiaf) then
stripld] «— 0
StripID sid <« getstrip.id (d)
propagatepacketgid, opposite direction td)
sleep (stripupdatetimeout)

NogMdwbhe

Event handler:

8. uponreceive(STRIP.UPDATE, sid, d, set, next) do
9. if (sid = this.wid V this.hid) then

10. strip[opposite direction td] « set

11. [* If | am the packet target */

12. if (this = next) then

13. propagatepacket id, d)

Procedures:
14. set of Nodegetnodesin_strip (sid)
15.  return{this} U{n € neighbors|n.hid = sid V n.vid = sid}

16. StriplD getstrip.id (d)

17. if d € {north, south} then
18. returnthis.vid

19. returnthis.hid

20. voidpropagatepacket §id, d)

21.  setof Nodeset < strip[opposite direction tad]
U getnodesin_strip(sid)

22. Node next— farthest node in directiod in set

23.  [*If propagation is not complete */

24, if (this # next) then

25. bcast{STRIP.UPDATE, sid, d, set, next)

Figure 6.3:The strip update protocol.

Upon receiving a STRIRJPDATE packet, a node updates the appropriate entsyrip[*] . If
the node is designated as the packet target and is not the strip’s end-node, then it appends to the
packet all itsneighborsthat reside in the packet’s strip, chooses a new target, and broadcasts the
packet. The propagation of a STRUPDATE packet completes when it reaches an end node, i.e.,
when the farthest node in directians the current nodetliis = nex). For example, in Figb.1, a
STRIP.UPDATE packet with direction south begins at nadeand propagates to the south-most
node of the stripD.
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Forwarding holes

We define dorwarding holeto be a situation in which a node€ cannot forward a STRIRIPDATE
packet to direction/ in a strip s although there is another node drthat is in directiond of X.

For example, in Fig6.], there is a forwarding hole south of nod® In a typical scenario, the
probability for a forwarding hole is small (less than2, see Sectio®.4.2). Moreover, as we
describe in Sectio.3.2, storing each node’s location at both the horizontal and vertical strips
guadratically decreases the probability for query failures due to forwarding holes.

Although the probability for a routing failure due to forwarding holes is small, we have imple-
mented a simple bypass mechanism in order to overcome such failures: in this mechanism, a node
that cannot forward a STRIBPDATE packet to directiod in a strips forwards the packet to a
node that is in directiord of it and resides in an adjacent strip 40 Empirically, the additional
reliability achieved by this bypass mechanism is negligible (less2f@nsince Octopus already
achieves high reliability without it. Therefore, for simplicity reasons, we present and evaluate
Octopus without the bypass mechanism.

Correctness

We now identify circumstances under which Octopus’s location update protocol achi#fes
reliability, i.e., correctly stores node locations at all of their designated location servers. We note,
however, that in the presence of failures, movements, packet loss, and uneven node distribution,
these ideal circumstances are not always achieved. Nevertheless, in &g tiwa show that in

typical scenarios with frequent failures and movements, Octopus'’s reliability is clo5&:to

Lemma 12. In a run in which there are no node movements or failures and no packet loss, if the
strip widthw < ‘/7§r and the bound on packet delay is less thhafo_timeout, then in every seg-
ment of a strip in which there are no forwarding holes, every node eventually knows the identities
and locations of all the nodes that reside in this segment.

Proof. We first note that all the nodes’ neighbors’ sets are accurate, i.e., include exactly all the
nodes within their radio range, since there is no packet loss, the bound on packet delay is less
than hello_timeout, and a node is removed from the current nodessghborsset only if the
current node does not hear from this nodeZbello_timeout seconds. Therefore, after at most
2hello_timeout seconds, only an end node initiates a propagation of a STRIPATE packet.
Note also that in a segment of a strip with no holes, a propagation of a SIRIATE packet
from one end node is guaranteed to eventually reach the other end node of the segment, since there
is no packet loss or failures.

Consider a segment of stripwith no holes. Assume that the segment’s end nddsends a
STRIP.UPDATE packetn1 to nodeB, and thenB sends a STRIRJPDATE packetn2 to node
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C'. Without loss of generality, assume thas a horizontal strip. Consider a nodéin s whosex
coordinate is between'’s and B's, at distance\r from A’s = coordinate. IfAz < £, thenN isin

A’s radio range, and hence it receivesd. Sincew < %gr and A’s neighborsset is accuratenl
contains all the nodes iwithin 5 meters ofA in the direction ofn1, as all these nodes are within
A’s radio range (see Fi®.4). Therefore, after receivingu1, NV knows the identities and locations

of all the nodes between it antl If Az > 7, thenN receivesn?2 as itis inB’s radio range (see
Fig./6.4). According to the protocol, sincé’s and B’s neighborssets are accurate;2 contains

all the nodes irs that are withinA’s and B’s radio ranges. Thus, in both cases, after the broadcast
of m2, N knows the identities and locations of all the nodes whosex coordinates are between
N’s andA’s. Note that, since there are no movements or failures, and since only end nodes initiate
updates, parallel propagations of different STRIPDATE packets do no violate the protocol’s
correctness, as such packets contain the same information.

Figure 6.4:A strip of widthw = @

By induction, we get that after propagating a STRIPDATE packet fromA to 7, the end
node at the other end of the segment, each node knows the identities and locations of all the nodes
in the segment between it and Likewise, after propagating a STRIPPDATE packet fron¥ to
A, each node knows the identities and locations of all the nodebétween it and’. O

Although Lemmédl2requiresw < @ to ensure that nodes are not missed by a STRFDATE
propagation, the simulations in Secti®b.1show that increasing from @ tor does not hurt the
reliability, since increasing also reduces the probability for forwarding holes (see Seftidr3),
and hence may increase the reliability.

6.3.2 Location Discovery

The location discovery protocol uses the information storestrip[*] andneighbors as well as
the setrecentlocations which is a cache of recently discovered target locations. The cache entries
expire afterstrip_updateseconds. The location discovery protocol is presented ing=yg.

The interface to the location discovery protocol consists of the fundticate which upon
success results in addition of its target to redesations. It first searches the target in one of
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locate (NodelD tid)

1. Nodetarget < searchlocally (tid)

2 if (target = null) then

3 searchlocation ¢his, tid, north)

4, searchlocation {his, tid, south)

5. sleep (discoveryimeout)

6 if (target ¢ recent_locations) then
7 searchlocation ¢his, tid, west)
8 searchlocation ¢his, tid, east)

Event handlers:
9. uponreceive(QUERY, src, t_id, d, next) do
10.  if (next = this) then

11. Nodetarget <— searchlocally (¢_id)

12. if (target = null) then

13. searchlocation (sre, t_id, d)

14. else* target found - send reply */

15. Directiond’ < opposite direction ta
16. sendreply (src, target, d’)

17. uponreceive(REPLY, src, target, d, next) do

18.  recent_locations < recent_locations U {target}
19.  if (next = this) then

20. sendreply (src, target, d)

Macro:
21. strip.neighborsf] = (neighbors N strip[d]) U {this}

Procedures:

22. Nodesearchlocally (target __id)

23.  if(3In s.t. n € neighbors U strip[x] U recent_locations
24. An.id = target_id) then

25. return n

26.  return null

27. searchlocation (sre, t_id, d)
28. Nodenext « farthest node in strimeighborsfl] in the

29. same square a#:s or in an adjacent square
30. if (next # this) then
31. bcast(QUERY, src, t_id, d, next)

32. sendreply (src, target, d)

33. Nodenext < closest node terc in strip_neighbors{]
34.  if (next # this) then

35. bcast(REPLY, src, target, d, next)

Figure 6.5:The locdiid discovery protocol.



the locally maintained setstfip[*] , neighbors andrecentlocationg. If the target’s location is

not found in these sets, the protocol broadcasts two QUERY packets to the node’s north-most
and south-most neighbors in its square or in adjacent squares in its vertical strip. The recipient
of a QUERY packet continues the search in the same manner, forwarding the packet in the same
direction if needed. Once a QUERY packet reaches a node that knows the target, it broadcasts a
REPLY packet with its information about the target towards the source. Every node that receives
a REPLY packet adds the located target tagtsentlocations In rare cases in which no REPLY
packet is received withidiscoverytimeoutseconds, the search is repeated in the same manner in

a west-east directions.

Figure 6.6:Successful query location.

Fig. 6.€ depicts how node discovers nodd™s location. S broadcasts QUERY packets to
the north and south. The next hop of the north-going packeét isfails to discoveri”s location
locally, and forwards the packet to its north-most neighdorT is in J's strip[east] Thus,.J
broadcasts a REPLY packet containifitg location towardsS. This packet reachel which in
return broadcasts the packetdo

Correctness

As in the previous section, we identify circumstances under which Octopus’s location discovery
service achieves00% reliability.

Lemma 13. Consider a run with no node movements, node disconnections, or packet loss, and
assume thatv < \/7570 and the bound on packet delay is less thahlo_timeout. Consider a
location query with node$§ andT as the query’s source and target, respectively. Let squ&e

be the intersection betweél’s vertical (horizontal, respectively) strip ai¥ds horizontal (vertical,
respectively) strip (see Fi#.€). If there are no forwarding holes betweéhand a and between

T anda, or there are no holes betweéhand b and betweerd” and b, thenS’s recentlocations
eventually include&™s location.
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1. sendfn,T)

2 spawn thread to rutvcate(T')

3. wait until existsn € recent_locations s.t.n.id =T
4 forward (m, n)

5. forward (Packep, Nodetarget)

6 updatecoordinatestarget)

7. Nodenext « closest node toarget in neighbors U {this}
8 if (next = this) then

©

target’ < closest node toarget in strip[«]|
10. updatecoordinatesturget’)
11. next « closest node téarget’ in neighbors

12.  bcast{FORWARD,p, target, next)

Event handler:
13. uponreceive(FORWARD,p, target, next) do
14. if (target = this) then

15. deliverp

16. else if(next = this) then
17. forward (p, target)
Procedure:

updatecoordinatest

18. Updatet.z, t.y, t.time according to the current time ang
19.  direction of movement obtained frotis last two reported
20.  coordinations. Store old valuesimw_x, t.p_y, t.p_time.

Figure 6.7:The forwarding protocol.

Proof. Without loss of generality, assume that there are no forwarding holes befeah: and
betweerl” anda. Since QUERY packets never skip over squares ¢seechlocationin Fig.6.5)

and there is no packet loss, a QUERY packet propagating along the strip reaches to somve node
that resides im. By Lemmal2, N knowsT’s location. SinceV does not move or fail, it initiates

a REPLY packet. Since there are no holes or packet loss, this packet propagates$aakd6
includesT in its recentlocationsset. O

6.3.3 Data Forwarding

Fig.6.7describes the process of sending a data packetm the current nods to a target nodé.
First, S calls to the functioriocate (see Figo.5) in a separate thread. Wheéf's recent_locations
set contains/”’s location, S forwards the data packet 6 using the interfaceforward of the
forwarding protocol.

Octopus employs geographic forwardirfl] in order to forward data packets to their desti-
nations. The basic version of geographic forwarding works as follows: each node has knowledge
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of its one-hop neighbors and their locations. Each intermediate node forwards a data packet to its
neighbor that is geographically closest to the packet’s destination. This protocol is efficient, but it
may fail if an intermediate node islacal maximumi.e, it is closer to the destination than all of
its neighbors.

In case of a forwarding failure, Octopus chooses an alternative targett’, which is the
closest node to the packet destination from the &teifg[*] and forwards the packet to its neighbor
that is geographically closest target’. We illustrate this recovery technique in F@&1& where
node S needs to forward a data packet to ndbe S is closer toT" than all of its radio range
neighbors.S chooses nodé& (the closest node td from S’s strip[*] ) as an alternative target, and
forwards the packet tal (S’s closest neighbor t@’). Note that the packet’s ultimate destination
remains unchanged, and subsequent forwarding steps follow the basic geographic forwarding if
possible. In Sectiof.5, we show that this recovery technique is very effective, achieving the same
reliability as two-hop geographic forwarding as used3g]|.

77777777777777777777777777777777777777777

Figure 6.8:0ctopus’s forwarding protocol.

Since nodes continue to move while packets are en route to them, it is important to constantly
re-estimatethe target’s location. In each forwarding step, the forwarding node forwards the data
packet to the target’s estimated location. This location is calculated according to the target’s last
two reported coordinates, which are included in the Node data structure sent in REPLY and FOR-
WARD packets.

6.4 Analysis

In Section6.4.], we analyze Octopus’s scalability, and in Secitoh.2we analyze the probability
for forwarding holes.
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6.4.1 Scalability

The following lemma shows that the message complexity of Octopus’s location update protocol is
constant with respect to the network size.

Lemma 14. Assuming a fixed node densjtythe per node per second packet complexity of the
location update protocol does not grow with the network size.

Proof. We first observe that the average distance that a STRRPATE packet traverses each time

it is forwarded to a node that it is not at the end of a strip is independent of the network size: this
distance depends only on the radio range, the node density, and the strip width. Asymptotically,
when the grid is large, most of the nodes are not close to the ends of the grid. Hence, we neglect
the effect of the location of the forwarding node on the average propagation distance. Denote the
average propagation distance by

Second, we observe that the probability for a forwarding hole at any particular point in the strip
is independent of the network size. Therefore, the average percentage of the strip in which there
are no forwarding holes is constant with respect to the network size. Denote this portion by

In a single iteration of the strip update protocol, the propagation of STHIPATE packet(s)
along a strip with an edge length efrequires an average 6f transmissions in each direction.
Denotes = 1/strip_updatetimeout Then on averagez,a% STRIP.UPDATE packets per strip
are sent in a second. In order to obtain the average per node message complexity, we divide this
number by the expected number of nodes in a strip, whicheis, and multiply it by 2 since
STRIP.UPDATE packets are propagated in both horizontal and vertical strips. Therefore, on aver-
age, each node broadca%;sg = g‘;“—g STRIP.UPDATE packets per second, which is independent
of the network size.

In addition to STRIPUPDATE packets, the location update protocol also sends HELLO pack-
ets. Since each node broadcasts HELLO packets at a fixed frequency, the total per node per second
message complexity incurred by the location update protocol is constant with respect to the net-
work size. O

The next lemma shows that the byte complexity of Octopus’s location update protocaVwith
nodes isO(v/'N).

Lemma 15. Assuming a fixed node density, the per node per second byte complexity incurred by
the location update protocol with’ nodes isO(v/N).

Proof. Recall that in our model, we assume tiianodes are uniformly distributed in the network
area. Therefore, assuming a fixed node density, when we inchéaee network edge size,
increases by)(v/N), and therefore, the number of nodes in each strip increase®Iik&V).
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Thus, the number of bytes in STRIBPDATE packets increases like(v/N). The size of a
HELLO packet is constant.

From Lemmal4, we get that the number of packets sent per node does not increas®' with
and therefore the overall per node byte complexity of the location update prot@@oVia’). [

6.4.2 Update/Query Propagation Reliability

Forwarding holes in strips may hamper Octopus’s reliability, as they may prevent location updates
from propagating in the entire strip. We now analyze the probability for forwarding holes. We
show that under reasonable density assumptions, this probability is very small, which explains
why Octopus achieves excellent reliability in the simulations below.

A forwarding hole occurs when a node has no radio range neighbors in the strip in the direction
the packet is going, i.e., when there are no nodes in the intersection between the forwarding node’s
radio range and the strip in the packet’s direction. For example, in@%g.a hole inN’s east
direction occurs if there are no nodes in the area denoted by A. The size of this area depends on
r, and the node’s location relative to the strip boundaries. Without loss of generality, let us examine
a horizontal strip. Consider a node whaseoordinate is at distaneefrom the south boundary of
the strip. Using the equation for the area of a circular segnignive compute A as follows:

Ay(d) = r*cos! (g) —dvr? —d?
IIr? — (Ag(d) + Ag(w — d))

A (d) = 5
As(w—d)
w-d
r- A
T
As(d)

Figure 6.9:Node N has a forwarding hole in direction east if area A is uninhabited.

For an asymptotic analysis, we use a Poisson node distribution. Since the expected number of
nodes in an area of size A is4, we get that the probability of no nodes residing in A is:

Pry = e A
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Since this probability varies witth, in order to compute the average probability for a forwarding
hole we need to averadger, for d’s in [0, w]. We observe thaPr, monotonically decreases when
d grows from0 to w/2 (as the area gets larger), and then symmetrically increaségrasvs from
w/2 tow. The highest probability occurs whén= 0 or d = w. We compute a coarse lower bound
of the probability for holes by considering two cases: first, wtiéhbetweenov /4 and3w /4, and
second whermrl is not in the middle half of the strip. We bound the probability for the first case
by looking at its minimum point, wheré = w/4, and we bound the second case by looking at its
minimum point, wherel = 0. We get the following:

1 1
PT[hOlq < §P7’w/4+ §PT0

When we instantiate the formula above wjgh= 75, w = r = 0.25 (used in most of our
simulations), we get tha®r[holg < 0.02. This explains why Octopus achieves high query success
rate in typical scenarios. With a strip width@R = % < \/257”, which ensures that location updates
and queries are received at all the nodes residing in segments of the strip they propagate through,
we get thatPr[hold = 0.0327. Hence, we see that two opposing tendencies affect the protocol’s
reliability: increasingw beyond@ reduces the probability for a forwarding hole, and hence
increases the reliability, but it also increases the probability that a location update or query will not
be received by all the nodes residing in segments of the strip it propagates through. Our simulations

in Section6.5.1show that these two strip widths achieve virtually the same reliability.

6.5 Evaluation

We now evaluate Octopus using simulations. Octopus is implementad2ifb] with CMU’s
wireless extensions. Each node uses the IEEE 802.11 radio and MAC model provided by the CMU
extensions, with a radio rangeof 250 meters and a throughput 0£22. The nodes are initially
placed uniformly at random in a square universe. In most of our simulations, theTé aceles

per square kilometer. (Li et aB8B] have experimentally shown that such a node density is required

in order to achieve high forwarding reliability.) Each node moves using the random waypoint
model used in83]: it chooses a random destination and moves toward it with a constant speed
chosen uniformly between zero ah@:>-. When a node reaches its destination, it chooses a new
destination and immediately begins moving toward it at the same speed. For each set of parameters,
we run five300 seconds long simulations, and in each simulation, each node initiates an average
of one location query a minute to random destinations, stastirggeconds into the simulation, and
ending at270 seconds. In all of our experiments, the results of all the five simulations were very
close to each other. This consistency is due to the large number of events in each simulation.

109



In Section6.5.1, we discuss our choice of the protocol’'s parameters. In Sebtbg, we ex-
amine Octopus’s scalability as the number of nodes and network area increase. In 6&cfion
we evaluate the reliability of Octopus’s forwarding sub-protocol and compare it with two-hop geo-
graphic forwarding. In Sectic8.5.4 we study Octopus’s fault-tolerance. Finally, in Sect085.5
we compare Octopus’s reliability, overhead, and fault-tolerance to those of GLS.

6.5.1 The Choice of Parameters

In the simulations reported below, each node broadcasts a HELLO packeResengnds, as was
done in GLS83]. We chose this frequency in order to allow a fair comparison between the two
protocols. Nevertheless, we also ran experiments withl&_timeout of up to five seconds, and

the results were virtually identical. This occurs due to the nature of movement in the random
way point model, which allows a node to predict a neighbor’s location in the near future from the
neighbor’s last two reported coordinations.

We set thestrip_updatetimeoutto 10 seconds. Empirically, reducing this value, e.g.,5to
seconds, results in a negligible increase in the protocol’s reliability. On the other hand, increasing
this timeout ta20 seconds, decreases the reliability3y—10%.

The retransmissiongimeoutand discoverytimeoutwere set to2 seconds each, as in other
protocols, e.g., LAR&Q]. This timeout value was chosen since, in all our failure-free experiments,
more tham5% of the successful queries are received at the source within two seconds from the
time they are issued. We allow up to two retransmissions per packet. Empirically, we observed
that increasing the number of retransmissions beyond two has a negligible effect of the protocol’s
reliability.

Finally, we examine the effect of the strip width on the protocol’s reliability and overhead. In
Sectior6.3.], we proved that whemn < %gr, location updates are guaranteed to cover all the nodes
residing in segments of the strip they propagate through. Increasbeyond this threshold may
cause some nodes to be missed by location updates passing next to them. Nevertheless, increasing
w does not necessarily hamper Octopus’s reliability. This is so because it reduces the probability
for forwarding holes, as it increases the area of the intersection between nodes’ radio ranges and
their strips (see Sectio®r4.2), and thus reduces the probability that no nodes reside in this area.
Whenr = 250m, ‘/757“ = 216m. We experiment with strip widths af00 and 250 meters. In
order to ensure a fair comparison, we examine grid edge lengths that are divisible R2pbatid
200. Fig.|6.10shows the query success rate as a function of the number of nodes and the grid’s
edge length for OCTOPUS-250 (whete = 250) and OCTOPUS-200 (where = 200). The
95% confidence intervals for the results presented in this figure are very tight: tp.85¢ of the
average value. We see that the query success rate is very similar for both strip widths. We conclude
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Figure 6.10: Octopus’s query success rates for
different strip widths.

that under a density a5 nodes per square kilometer, setting= » does not reduce the reliability
compared to choosing < */737:
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Figure 6.11:0ctopus’s overhead for different strip widths.

At the same time, increasing reduces the number of STRIPPDATE packets sent, since
there are fewer strips. Although the size of each STEFDATE packet increases as there are
more nodes in each strip, the total number of node locations sent in all STROATE packets
does not change. Since each transmitted packet also includes a MAC header, sending the same
information in fewer packets reduces the total number of bytes sent by the protocol. Indeed,
Fig.|6.11(a) and Fig/6.11(b) show that increasing the strip width froe00m to 250m reduces
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the per node packet and byte complexities of Octopus. &ifl(a) shows for each setting the
average number of packets of each type and&igl(b) shows the average number of protocol
bytes in each packet type as well as (in white) the average number of bytes in MAC headers. The
95% confidence intervals for the results presented in'€i@il(a) and Fig6.11(b) are up tot+0.01
packets and-0.1 bytes of the average value, respectively, indicating that the results are accurate.
Henceforth, we fix the strip width &0m.

6.5.2 Scalability

We now examine Octopus’s scalability. We first examine the impact of increasing the network size
while maintaining a fixed node density, and then focus on the effect of increasing the node density.

Increasing the network size

As the network area increases, the probability for forwarding holes in the update/query path in-
creases, and therefore, the reliability inevitably degrades. We observe that regardless of strip width
or density, this degradation is very gradual (see &ifi0).

Figure6.11examines the increase of Octopus’s overhead as the network size and the number
of nodes grow. Fig6.11(a) shows that the number of location update packets sent by Octopus is
constant, matching the analysis in SeciA.1 The overall packet overhead gradually increases
with the network size and the number of nodes. The moderate increase in the per query overhead
stems from the increased failure probability of the first discovery attempt (in the north-south direc-
tions), which leads to more cases in which locations are also searched in the east-west directions.
Nevertheless, this increase is gradual, because the failure probability is low even in large grids.
We note that similar phenomena occur in other all-for-some proto83l<6B, 48, 117], where
the probability for query failures also increases with the network area. This, in turn, increases the
overhead due to query retries or trying alternative location servers.

Fig. 6.11(b) examines the increase in Octopus’s byte overhead as the network size and the
number of nodes grow. We note that the byte (and packet) overhead incurred by broadcasting
HELLO packets is constant with respect to the networks size. Although most of the broadcasted
packets are of type HELLO, their byte overhead is small, since these packets are very small. As
expected, the number of bytes in STRIFPDATE packets increases with the network size (see
Section6.4.]). As explained above, the number of QUERY and REPLY packets also increases
with the network size (see F@ll1(a)), and hence the number of bytes in these two types of
packets also increases with the network size. However, this increase is negligible, as these packets
are very small.
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The effect of node density

We now examine what happens when the node density increase§3rtmm00 nodes per square
kilometer. Fig.6.12 shows that the query success rate remains similar. This occurs because of
two opposing tendencies: On the one hand, increasing the density reduces the probability for
forwarding holes, and thus improves reliability. On the other hand, as the node density increases,
the probability for MAC-level collisions increases, and therefore, more packets are lost, which
reduces the reliability. The5% confidence intervals for the results presented in Ei@i2are up

to +1% of the average value.
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Figure 6.12: Octopus’s query success rates for
different node densities.

In Fig. 6.13a) and Fig/6.13b), we see that increasing the density reduces Octopus’s per
node message and byte complexity. The message complexity is reduced since the number of
STRIP.UPDATE packets sent in each strip does not grow, while these packets are divided among
more nodes. Although the number of node locations sent in each SURIPATE increases, send-
ing fewer packets per node reduces the MAC overhead, and the overall per node byte complexity
is therefore also reduced. TH&% confidence intervals for the results presented in Bi@ida)
and Fig/6.13b) are up ta+0.01 packets and-0.1 bytes of the average value, respectively.

6.5.3 Data Forwarding

In order to evaluate the reliability of Octopus’s forwarding sub-protocol, we run simulations in
which data traffic is sent. Our simulation scenario follows the one88h. [ Each node’s radio
bandwidth is2%. In each simulation, data traffic is generated by a number of constant bit rate
connections equal to half the number of nodes; no node is a source in more than one connection;
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Figure 6.13:0ctopus’s overhead for different node densities.

no node is a destination in more than three connections. Each source senti33fbyte data
packets each second 20 seconds. Each simulation lasts 00 seconds, and data packets are
sent at random times betwegt and270 seconds into the simulation. All other parameters are as

in the simulations described above. We vary the number of nodes and the grid’s edge length, while
maintaining a node density of roughii§y nodes per square kilometer.

We compare the reliability of Octopus’s forwarding sub-protocol with that of two-hop geo-
graphic forwarding, which is employed, e.g., by GLS. For both protocols, target locations are
discovered using Octopus’s location discovery sub-protocol. &g shows that the forwarding
reliability of the two protocols is virtually identical. TH#&% confidence intervals for the results
presented in this figure are uptd %. We conclude that the high redundancy of Octopus’s location
information is an adequate substitute for storing dedicated information for increasing forwarding
reliability. Note that the additional overhead for maintaining the two-hop neighbor lists needed for
two-hop forwarding is substantial, and it grows with the node density.

6.5.4 Fault-Tolerance

Octopus’s main design goal was to provide high fault-tolerance in the presence of intermittently
disconnecting nodes. We now examine whether this design goal is met. To this end, we introduce
unstablenodes, which alternate between being connected and disconn88jedEpch time an
unstable node awakens, it remains connected for a time interval chosen uniformly at random in the
range[0, 120] seconds. And when it disconnects, it remains disconnected for a time interval chosen
uniformly at random in the rangé, 60| seconds. Thus, at any given time, an averag? off the
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Figure 6.14:0ctopus’s data forwarding reliabil-
ity.

unstable nodes are connected. We experiment with a varying percentégastablenodes. The
remaining nodes are connected throughout the simulation. We experiment in a fairly large grid
of 2.3km by 2.3km. In order to isolate the effect of node disconnections without impacting the
density, we fix the average number of connected nodes at a given titt®.af hat is, we run

1_‘;%%10 nodes (e.g480 nodes whemp = 0.5). Note that although the average density of live nodes

at any given time is not reduced, it is still challenging to achieve high reliability, since part of the
global state is lost with each node disconnect, whereas new nodes connect without any location
information. Therefore, protocols that employ low redundancy, e.g., GLS, fail to achieve high
routing reliability in the face of disconnects (see Bid9.

Clearly, location queries for nodes that are disconnected during the location query or shortly
beforehand or afterwards are bound to fail. Likewise, nodes that disconnect shortly after issuing a
location query will inevitably not receive the query response. We therefore only take into account
queries whose target is connected during the intétvall0, ¢t + 10] seconds, wheregis the query
issue time, and whose query source is connected during the intenval 10] (the same approach
was taken in83]). Note that we only require the source and query target to remain connected—
all other nodes, including the target’s location servers and the nodes along the search path, can
disconnect at any time. A successful query location is followed by the transmission a2&ne
byte data packet from the source to the target.

Fig..6.15shows the query success rate and the overall data forwarding reliability as a function
of the percentage of unstable nodes. Dh& confidence intervals for the results presented in
this figure are up tat1.4%. We see that Octopus achieves perfect fault-tolerance: its query and
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Figure 6.15:0Octopus’s fault-tolerance: query success rate and data forwarding reliability are vir-
tually unaffected by the percentage of the unstable nodes.

forwarding success rates do not degrade at all as we increase the percentage of unstable nodes.
This impressive fault-tolerance is achieved thanks to the high level of redundancy in Octopus, and
the freshness of the redundant information: Consider a sguis®uing a query for a targét. The

query succeeds when it reaches a location server in the intersecticaanaff/’s strips. There are at

least two such squares (oneSfs horizontal strip, and one in its vertical strip). Every seconds,

T’s location is stored at all the nodes residing in these two squares (&linpgaipdatetimeout

is 10 seconds). Assuming there are no forwarding holes, as long as one of the nodes in these
squares remains connected during theseconds interval, the query should be successful. When
the node density i85, the average population of these two squarés3ss nodes. Even when all

the nodes in the network are unstable, the probability of all these nodes failing Witeeétonds is
negligible. Note also that the probability for holes does not increase when nodes are unstable, since
the average node density is fixed. Therefore, Octopus’s forwarding reliability does not degrade as
we increase the percentage of unstable nodes. This is due to the fact that forwarding failures
mainly occur due to holes. In addition, forwarding failures due to node disconnections are usually
overcome using retransmissions to alternative nodes.

6.5.5 Comparison with GLS

We now compare the reliability, overhead, and fault-tolerance of Octopus to those of GLS. We
use the ns2 implementation of GLS from MI#][ In these experiments, we use the grid sizes
and densities from GLS'’s original evaluatia8d], with one exception: in the smallest grid{n

by 1km) we place75 nodes instead aof00 in order to maintain a similar node density of roughly
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Figure 6.16:0ctopus versus GLS: query success
rates.

75 nodes per square kilometer in all grid sizes. Note that these scenarios are not optimized for
Octopus, since most of the grid edge sizes are not multiples of Octopus’s strip @idth)(
Fig.6.16shows the query success rates of Octopus and GLSVTHeonfidence intervals for
the results presented in this figure are up-@8%. GLS-100 and GLS200 are GLS simulations
with a location update threshold ®60m and200m, respectively. In GLSE a node updates its
orders location servers after each movementof’d meters. We see that with either threshold,
Octopus achieves similar reliability to GLS in a small network, and better reliability than GLS
in medium and large networks. Octopus’s advantage is most notable in the largest grid, where
Octopus’s reliability is roughlyt% and7% higher than GLSH0's and GLS200’s, respectively.
The reliability gap between Octopus and GLS increases with the grid size because of the lower
freshness of location information stored at GLS’s remote location servers. Whereas in Octopus,
a node updates all its location servers at the same high frequency (évseconds), in GLS,
the average frequency at which a node updates its location servers grows with the grid size. For
example, in the.9km by 2.9km grid, a GLS100 node updates its orderiocation servers only
after moving400 meters, and its order{ocation servers after a movement3of) meters. Thus, a
node moving at the average speéd’() updates its ordet-(orders) location servers only every
80 (respectively160) seconds.
Fig./6.17 compares Octopus’s overhead to that of GLS. 5% confidence intervals for the
results presented in Fig.14a) and Figl6.17b) are up tot+0.01 packets and).1 bytes, respec-
tively. We observe that thanks to aggregation, Octopus sends a smaller number of packets than
GLS. Moreover, as the network size grows, GLS’s packet overhead increases drastically, while
Octopus’s packet overhead increases very moderately. This occurs since, as opposed to Octopus,
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Figure 6.17:0ctopus versus GLS: overhead.

GLS does not employ aggregation, and hence the number of location servers each node needs
to update grows with the network size. In addition, the average distance between a node and its
location servers also grows with the network size. Although Octopus’s location update packets
are larger than GLS'’s, by sending fewer packets, Octopus reduces the number of bytes sent in
MAC-level headers. Therefore, overall, Octopus’s byte complexity is smaller than GLS’s (see
Fig./6.174b)). Although GLS’s overhead appears to grow more moderately in large networks, this
is simply because its reliability drops more sharply in such settings: e.g.2.Wa by 2.9km
grid, GLS's reliability drops to onl\85%, and therefore many location update and query packets
do not reach their destinations, and are hence relayed less times than needed.
Next, we consider simulations with data traffic. In Seclob.3 we showed that the reliability
of Octopus’s forwarding sub-protocol is similar to the reliability achieved by the two-hop geo-
graphic forwarding protocol employed by GLS. We now compare their overhead. We measure the
total (data and protocol) packet overhead incurred by both protocols in the simulation scenario of
Sectior.5.2 Fig.6.18shows the average per node per second number of packets sent by Octopus
and the more efficient version of GLS, GI280. The 95% confidence intervals for the results
presented this figure are up #€0.01 packets. We do not measure the byte overhead, because it
is dominated by the data traffic. As the figure shows, Octopus sends fewer packets than GLS. In
addition, Octopus’s overhead grows more moderately with the network size than GLS’s overhead.
Finally, Octopus’s greatest advantage over GLS is its fault-tolerance. 1% Bi¢j.we contrast
Octopus’s fault-tolerance against that of the more reliable version of GLS, 1BL.SThe 95%
confidence intervals for the results presented in both of these figures are-up$. As explained
in Section6.5.4 we experiment with an average 40 connected nodes at a time, oR.akm by
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Figure 6.18:0Octopus versus GLS: data and pro-
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2.3km grid. Whereas Octopus’s reliability does not degrade when the percentage of unstable nodes
increases, GLS's reliability greatly degrades with the number of unstable nodes50eaf the

nodes are unstable, GLS’s query success rate goes down to le$s thaand when all the nodes

are unstable, it drops to less thasls. GLS is less fault-tolerant than Octopus for two reasons:
first, GLS employs less redundancy, and second, in GLS, it takes reconnecting nodes a long time

to update their remote location servers.
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Figure 6.19:0ctopus versus GLS: fault-tolerance.
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Chapter 7

Evaluating Unstructured P2P Lookup
Overlays

7.1 Introduction

In unstructured P2P lookup systems, peers self organize into unstructured overlay networks. Ex-
amples to such systems include eMule, Freenet, and Gnutella. Unstructured lookup systems in-
cur small constant overhead per single join or leave operation, and can easily support keyword
searches. Chawathe et @4] have argued that these two features of unstructured lookup systems
are highly important, as users frequently join and leave lookup sessions, and keyword searches are
more popular than exact-match queries. Indeed, most of the currently deployed lookup systems
are unstructured ones.

In unstructured lookup systems, the search is not structural and may fail. However, queries
usually succeed in locating files due to natural file redundz®dly fhat is, popular files are held
by many nodes. Most unstructured P2P lookup systems and some partially-structured ones employ
flooding in order to locate a searched object, at least among a subset of the nodes, e.g., super-peers
in KaZaA. Due to the natural file redundancy, it is usually enough to limitedly flood the network
in order to locate a searched obje87] The main reason for using flooding is due to the high
search reliability achieved by it. Nevertheless, as with all other search techniques, the dependabil-
ity of flood-based search depends on the robustness of the overlay: in a highly connected overlay,
flooding achieves high reliability, even in dynamic failure-prone environments, whereas in a dis-
connected overlay, it may fail to locate an object that is stored in the system. Flooding also incurs
low latency, and can locate many copies of a searched object. However, flooding is also inefficient,
as it creates a high number of duplicate search messages, i.e., multiple copies of a query may be
sent to a given node by its multiple neighbors. Another problem with flooding is the difficulty to
choose the appropriate TTL (Time-To-Live), which controls the flooding propagation. A high TTL
achieves high search reliability but also incurs high overhead. The flooding effectiveness versus
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the overhead it incurs mainly depends on characteristics of the overlay. These characteristics also
determine how the flooding overhead is distributed among the different nodes, and the overlay’s
dependability. In this chapter, we define metrics capturing the above important overlay features
and evaluate a number of overlays according to these metrics.

Our first metric,c, is the overlay’s connectivity, i.e., the minimal number of disjoint paths
between a pair of nodes in the overlay. This metric measures the overlay’s fault-tolerance in the
presence of node failures and disconnections, and hence captures the search dependability.

The second metride (flooding efficiencykvaluates the flooding coverage versus the overhead
it incurs. Assume a query is propagated from a random node with a TTLiofThen,fe(i) is
defined as]% whereN; is the expected number of nodes that receivasd )/; is the expected
number of copies of that are sent. A higlfe value implies a small number of duplicates, and
hence high efficiency.

The third metric,cg (coverage granularity)measures the difference in the coverage when
increasing the TTL by one. A smaib allows one to build an adaptive dependable lookup system
that adjusts to varying failure rates, where faults include node and link failures. For exaneple, if
is small, increasing the TTL by one upon multiple query failures will increase the search reliability
at the expense of a slightly higher overhead. Likewise, reducing the TTL by one upon succeeding
to locate many copies of searched objects will result in overhead reduction while achieving similar
search reliability. For a given TTL, we definedcg(i) as Nji,jl, whereN; is as defined above.

Our final metric|b (load balancing) evaluates how the flooding overhead is distributed among
the nodes. Assume a query is initiated from a random node with a certain TTL. In arandom overlay,
the probability that a random node is requested to forward this query to its neighbors is proportional
to the node’s degree. Therefore, it is desirable that overlays would be degree-balanced, in order
to incur similar overhead on all nodes. This is becoming more important now, as many ISPs have

started to limit the maximal bandwidth consumption of every user. For random overlays, we define
Jo] asfi:ﬁ, whered,,.... (d,.i») IS the maximal (minimal, respectively) node degree.

We evaluate different graphs and overlays according to the above four metrics. We start by
evaluating a Gnutella graph, which is a typical file sharing application graph. We proceed by
applying our metrics on several synthetic graph structures, including a power law graph, normal
random graphs, and3aregular random graph (aregular random graplwith N nodes is a graph
chosen uniformly at random from the set/efegular graphs withv nodes). Finally, we evaluate
an Araneola’s overlayd3d], which is a distributed approximation ofiaregular random graph. Our
results show that a-regular random graph and3aAraneola overlay achieve the best (virtually
identical) results.

In addition, we examine the join overhead in each of the graphs mentioned above. We observe
that a Gnutella graph and an Araneola overlay incur the lowest construction and maintenance
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Figure 7.1:Distribution of node degrees in four graphs. Note that we use log scale for the power-
law random and Gnutella graphs, while for the normal random graphs we use a linear scale.

overhead: in these two graphs structures, each join (or leave) operation is handled locally and
entails the sending of a small constant number of messages. In normal random graph constructions,
a join or leave operation is also handled locally, though such operation incurs séndingV)
messages, wher® is the number of nodes in the system. In a power law graph, some nodes
have a high degree, proportional to N, and hence joining/leaving of such nodes inevitably entails
high overhead. In contrast to the above four graph structures, there are no known distributed
constructions ofk-regular random graphs. Therefore, with this graph structure, a single join or
leave operation requires reconstructing the graph anew, and hence leads to an ovefheéég of
messages.

This chapter proceeds as follows: In Secifog, we describe in detail the tested graphs, and in
Section7.3we evaluate these graphs according to our metrics. Finally, in Sétdpwe analyze
the join cost in each of the graphs.
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7.2 The Evaluated Overlays

In our study, we use six undirected graph topologies. In all of the graphs, there, a0é nodes.
We start with a Gnutella-like graph. This graph was constructed using a node degree distribution
of a real Gnutella graph taken froriQ€]. In order to allow a fair comparison among all the six
topologies, we extrapolated the data frad€] in order to create &0, 000 node graph. We kept an
average 08.4 links per-node as inll0€], and a node degree distribution similar to the onélog].
In such a graph, there is a small number of highly-connected nodes]®Gtbr more links, and
the majority of the nodes have a degree betw&amd 10. Similar characteristics also occur in
other P2P file sharing application34] 51]. Fig 7.1(a) shows the node degree distribution of the
Gnutella-like graph. We compare this graph with a power-law random graph. In this graph, the
ith node choose other nodes as its neighbors, whare= 500, o = 0.8, and1 < i < 10, 000.
We use this setting in order to achieve an average node degreé lks per-node, as in the
Gnutella-like graph. Fi@.1(b) shows the node degree distribution of this graph.

Next, we use two normal random graphs, one with ﬁ and the second with = ﬁ
in which a node creates a connection with a given other node with a probabil'ga%&f and
ﬁ’ (respectively). The resulting average node degrees amd 10, (respectively). We use
tﬁe first normal random graph in order to allow a fair comparison with the previous two graphs.
However, since such a graph is not connected (a normal random graph is connected if and only
if p = O(log N) [2€]), we also use the second connected normal random graphi/. ¥ and
Fig7.1(d) show the node degree distributions of these two graphs.

Next, we use &-regular random graph, in which each node is connected to three other random
nodes. Finally, we usezAraneola overlay93], in which roughly90% of the nodes have a degree

of 3, while the rest have a degreeffleading to an average node degree of roughly

7.3 The Metrics

7.3.1 Connectivity

Table7.1 presents the connectivity of the different graphs.k#egular random graph andia
Araneola graph are almost alwaysconnected 93, 127]. Therefore, such graphs achieve high
dependability even with high failure-rates, (includes node and link failures). A normal random
graph is connected with high probabilityifis at least logarithmic in the number of nod2§][
Therefore, the first normal random graph is disconnected (connectivity 0). The second one has a
connectivity ofl. The power-law random graph and the Gnutella-like graph have a connectivity of

1, as several nodes in these graphs have a degieé&oich nodes are very likely to be disconnected
from the overlay graph. For a given number of links, we observe ti3ategular random graph

123



| Graph | Connectivity|
3-regular random graph 3
3-Araneola overlay
Normal random graph(=
Normal random graph(=
Gnutella-like graph
Power-law random graph

3
20,000)

T
2.000)

3
0
1
1
1

Table 7.1:Connectivity: A3-regular random graph andaAraneola overlay has a connectivity of
3. The rest of the graphs have a connectivityl afr 0.

and a3-Araneola overlay achieve much higher connectivity than a Gnutella graph, a power-law
random graph, and normal random graphs, due to their regular structure. In facggalar
random graph and 2-Araneola overlay, in which the average node degree is rogjhdghieve
higher connectivity than a normal random graph with an average node dediee of

7.3.2 Flooding Efficiency

We now evaluate the flooding efficiency in all the graphs except the normal random graph with
p = m as this graph is not connected. For each graph, we run the flooding prato66D
times, one time from each node, and we calculated the average flooding efficiency. We report about
our results in Fig7.2, and Fig.7.3 shows the coverage achieved with each TTL.

In a power-law random graph and in a Gnutella-like graph, starting from a TT4, tiie
flooding efficiency, i.e., the coverage divided by the overhead, is poor. This is due to the presence of
high-degree nodes in both of the graphs, which create and receive many duplicate search messages.
A similar phenomenon occurs in the normal random graph w&hﬁ as the degrees in such a
graph range from to 23. In contrast, in low degree balanced graphs such3aéi@neola overlay
and a3-regular random graph, the flooding efficiency is very high. For small T ], the
flooding efficiency of the3-regular random graph and tBeAraneola overlay is very close to one.
Hence, for such TTLs, flooding is as efficient as random walks.[Eshows that with a TTL of
7/8/9, flooding over a3-Araneola overlay and &regular random graph reaches, on average, to
485/989/1957 (roughly 4.85%/9.9%/20%) antir6/739/1424 (roughly 3.8%/7.4%/14%) nodes,
respectively. Therefore, with&Araneola overlay and aregular random graph, it is possible to
reach any desired portion of the nodes efficiently; this is thanks to their good coverage granularity,
as discussed in the next section.
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Figure 7.2: Flooding efficiency: for effective TTLs, 8-Araneola overlay and a-regular ran-
dom graph achieve a near to perfect search efficiency. Other graphs achieve much lower search
efficiency.

7.3.3 The Coverage Granularity

Recall thatcg(i) is defined asN]i,—tl, where N; is the expected number of nodes that receive a
guery that originates from a random node with a TTL:iof Fig. 7.4 showscg(i) for the five

graphs evaluated in the previous section. As the figure shosvéraneola overlay and &regular

random graph have a low (virtually identica(i) value for all TTLs. In addition, in these two
graphscg(i) is very similar for all the TTLs. This is due to the fact thiategular random graphs

are good expanders. Therefore, in these two graphs, one can adapt the search dependability and
overhead according to the failure rate. In contrast, in the rest of the greglilSs very high for

small (effective) TTLs and low for high (ineffective) TTLs. In addition, in these graphs, the low
coverage granularity is achieved only when the flooding efficiency is poor (see Sé@&iéhn

7.3.4 Load Balancing

It is desirable that the flooding overhead would be distributed equally among all nodes. Recall that
for a random overlay, we define the load balanciiy asj:ﬁ, whered, ... (d:n) 1S the maximal
(minimal, respectively) node degree. In the normal random graprw\ti:t%, we ignore nodes

with degred), as they are not connected to the overlay. Tallshows thdb value of the different
graphs. The-regular random graph achieves perfect load balancingli.&lext, the3-Araneola
overlay achieves excellent Ioad-balancirgg: The two normal random graphs halevalues of
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Graph | 1b = Gmes
3-regular random graph 1
3-Araneola overlay 4/3
Normal random graph(= 20’%00 14/1
Normal random graph(= ﬁ) 23/1
Gnutella-like graph 103/1
Power-law random graph 502/1

Table 7.2: Load balancing: &-regular random graph achieves perfect load balancint oA
3-Araneola overlay achieves a good load balancing ofhe rest of the graphs achieves poor load

balancing.

% andQ—f’. In such graphs, assuming queries are distributed uniformly, the overhead incurred on a
highly-connected node may I6&log N) times the overhead incurred on a low-connected node, as

in such graphs a connected node’s degree is between O(log N). In the Gnutella-like graph

and the power-law random graph the load balance is even worse, as the overhead incurred on a
highly-connected node can be two orders of magnitude greater than the overhead incurred on a

low-connected node.

7.4 The Join Cost

The results of Sectioid.3 have shown that th&regular random graph and tBeAraneola overlay
are the best overlays among the tested graphs. We now examine the cost/feasibility of distributed

126



16

T T T T
Q -0~ Power-Law Random
i -+ - Gnutella
141 I -o- Normal Random
\ —— 3-Araneola

o 3-Regular Random |

=
N}
T

7

coverage granularity (cg(i))

=

Figure 7.4:Coverage granularity: &Araneola overlay and a-regular random graph achieve a
goodcgvalue for all TTLs. In the rest of the graphs(i) is very high for small (effective) TTLs
and low for high (ineffective) TTLs, in which the flooding efficiency is poor.

constructions of the tested graphs. Specifically, we examine the join overhead in each of the graphs.
We evaluate this overhead in two ways. We first assume the existence of a membership service that
maintains at each node a small number of random node identities. Examples to such scalable
membership services can be found4d,[93]. Next, we evaluate the join overhead without relying

on the existence of a membership service. In this case, we assume that a joining node knows the
identity of some other node that is currently in the system. We assume, however, in this case that
a random walk ofD(log N) steps from a given node reaches a random node. Law &2hhgve

shown that this assumption is true for expander graphs. Note that a scalable membership service
amortizes the logarithmic cost of knowing a random node by aggregating membership information,
and hence it is more efficient than a random walk for retrieving random node identities.

Table7.3 shows the join cost for each graph in both cases. 3mA@aneola overlay, a join op-
eration requires sendirgg = 9 messages, assuming the existence of a membership service. In the
absence of such a service, connecting to a random node requires sef@lingg N) = O(log N)
messages. In a Gnutella graph, the overheads are similar to the overheads above. However, for a
high degree node, i.e., one that H&® or more links, the leave overhead is very high, as such a
node is connected to many other nodes.

In a normal random graph and in a power-law random graph, given a membership service, the
join cost is the node’s degree. In a connected normal random graph this degree is logarithmic in the
number of nodes in the system, and in a power-law random graph a node’s degree(@¥i)be
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Graph

The join cost
(with membership service)

3-Araneola overlay 9
Gnutella-like graph constant
Normal random graph O(log N)
Power-law random graph O(N)
3-regular random graph Q(N)

Graph

The join cost
(without membership service

N—r

3-Araneola overlay O(log N)

Gnutella-like graph O(log N)

Normal random graph O(log” N)
Power-law random graph Q(N)
3-regular random graph Q(N)

Table 7.3:The join cost: A3-Araneola overlay achieves the lowest join cost.

Therefore, assuming the existence of a membership service, the joining overhead in a (connected)
normal random graph and in a power-law random grap®(®g N) and O(N), respectively.

In the absence of a membership service, these overheads need to be multipllediy), the
overhead for retrieving a random node. Finally, ih-eegular random graph, since no distributed
constructions of such a graph are known, a join operation requires the reconstruction of the entire
graph, leading to a prohibitive overhead(®fN) messages.
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Chapter 8

Discussion, Results, and Conclusions

P2P systems achieve high scalability and robustness, and can be easily deployed. Hence, P2P
computing is a promising architecture for deploying distributed services. However, in order to
realize their full potential, P2P systems need to cope better with real-world problems like failures,
dynamic behavior, and selfishness. This dissertation has addressed these problems in two different
network settings: over the Internet and in MANETSs. Although there are substantial differences
between these settings, we have seen that similar considerations and challenges arise in both.
Below, we review the challenges in P2P computing we have studied in this dissertation, and our
solutions to these challenges.

Fault-tolerance. Conventional wisdom suggests that failures are overcome using redundancy.
The challenge is doing so without creating unreasonably high load. We have presented techniques
for providing redundancy at a lower cost than previous work, thanks to the use of an optimal
overlay structure (in Araneola, as shown in Chag)eand aggregation (in Octopus, as shown in
Chaptel6).

Dynamic behavior. Dynamic behavior further emphasizes the need for allowing fast low-overhead
incorporation into the system. Araneola quickly incorporates joining nodes and removes leaving
(or failing) ones thanks to the use of an unstructured overlay network: in Araneola, a joining
node not only receives all the messages sent after its creation, but actually réceiesf the
messages sent up orounds before its join. In addition, each join, leave, or failure is handled
locally, and entails the sending of only ab@it messages in total, independent of the number of
nodes. Octopus achieves perfect fault-tolerance to node connections and disconnections thanks to
employing high level of redundancy, as well as the freshness of the redundant information. This
fault-tolerance is achieved without incurring high overhead thanks to aggregating node locations
and synchronizing their propagation.
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Selfishness. P2P networks suffer from the problem of “freeloaders”, i.e., users who consume
resources without contributing anything in return. EquiCast enforces cooperation through two
mechanisms. The first isronitoring mechanispwhereby each node monitors the sending rate
of each of its neighbors. The second mechanism is a pepkmalty mechanispnwhich further
motivates nodes to adhere to the expected link throughput.

We now review the main results in each chapter.

8.1 Results of Chapterd, Araneola: A Scalable Reliable Multi-
cast System for Dynamic Environments

In Chapted, we have presented Araneola, a scalable reliable multi-point to multi-point application-
level multicast system for dynamic environments. We have evaluated Araneola over both a LAN
and a WAN, and have shown that Araneola is scalable. The only aspect of Araneola that varies
with the number of nodes is message latency, which increases logarithmically with the group size,
whereas Araneola’s load, reliability, resilience to message loss, resilience to simultaneous node
failures, and overhead for handling join and leave events are all independent of the group size.
Araneola can deliver messages with high reliability and predictable latency in the presence of siz-
able message loss rates, simultaneous failures of a certain percentage of the nodes, and high churn.
The failure rates that Araneola can withstand depend on a tunable parameter, L. As the failure rate
increases beyond its expectation, Araneola’s reliability degrades gracefully. We have also shown
how to extend Araneola to exploit available bandwidth for communication with nearby nodes.
Such an approach substantially reduces the communication costs and message latency without
hurting the overlay’s robustness to random failures.

Recall that we have set the following design goals for Araneola:

e High reliability —100% reliability as long as the failure and message loss rates do not exceed
certain configurable thresholds, and graceful degradation in the face of increasing failure
rates. The reliability should be independent of the number of nodes, i.e., Araneola should
withstand a certain failure rate independently of the number of nodes in the system.

e Low latency, increasing at most like(log V); the latency should remain low while multiple
nodes are joining and leaving (or failing).

e Low constant load on each node, as well as low constant cost for handling joins and failures.
e Quick failure recovery and prompt incorporation of joining nodes.

We now show that all these design goals are met.
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8.1.1 High Reliability and Fault-Tolerance

Araneola achieves high reliability and fault-tolerance by constructing a richly-connected overlay
and disseminating pertinent information on multiglsjoint paths in this overlay. In Secti@h4.2,
we studied the fault-tolerance and robustness of the Araneola overlay by removing random subsets
of edges and nodes from the overlay graph and analyzing the resulting graphs. This allows us to
predict Araneola’s reliability and latency in the presence of message loss (in case of edge removals)
and node failures (in case of node removals).

Our analysis has shown that Araneola achieves high fault-tolerance to node and link failures
(see Figuregl.6(a) 4.7, 4.8(a) and4.9). This fault-tolerance isndependentf the number of
nodes. Araneola’s overlay becomes partitioned only if at |€a% of the nodes or the edges
are randomly removed from the overlay graph. Moreover, remarkably,=fob Lafter a random
removal of roughlyl0% of the edges or the nodeé®)% of the remaining nodes are still connected
to each other, and onl\2 of the remaining nodes are partitioned from the rest. Finally, the overlay
exhibits graceful degradation: as the failure rate increases, the diameter and average path length
increase moderately, while the average number of disjoint paths moderately decreases.

8.1.2 Low Latency with High Churn

In Figure4.15(a) we have shown that, in static setting, the message latency grow logarithmically
with the number of nodes. Moreover, the message latency does not increase with the churn rate.
As Figure4.17 shows, in dynamic settings, each multicast message was receivéddyof the

nodes that were up during its transmission, and messages were deliverégevgime latency as

in static runs That is, Araneola provides an undisrupted service to nodes that are up despite high
churn rates exceeding the ones measured over the Internet and over the Mbone.

8.1.3 Low Constant Load on Each Node, as Well as Low Constant Cost for
Handling Joins and Failures

Each Araneola’s node communicates only with either L arlLnodes (its overlay neighbors).
Hence, Araneola incurs@nstanioad on each node, regardless of the number of nodes. Araneola
also incorporates joining nodes and removes leaving (or failing) ones with @lestanioverhead

thanks to the use of an unstructured overlay network. In Sedt®.& we calculated the join and

leave overheads for the simple case where a single join or leave, respectively, occurs when the
system is stable, i.e., each node’s degree is either Lidr, land no two neighboring nodes have

a degree of b-1. We have shown that these overheads are small and independent of the number
of nodes. We have also verified our analysis through dynamic experiments, in which nodes join
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and leave the overlay. Our empirical results, which are close to our analysis, have shown that each
join or leave operation incurs the sending of only ab®utessages in total, independent of the
number of nodes.

8.1.4 Quick Failure Recovery and Prompt Incorporation of Joining Nodes

Araneola quickly incorporates joining nodes and removing leaving (failing) ones thanks to the use
of an unstructured overlay network, in which nodes join the overlay according to some loose con-
straints. In Sectiod.7.2, we evaluated how fast Araneola allows joining nodes to begin receiving
messages reliably. Our measurements have shown that a joining node not only receives all the
messages sent after its creation, but actually recdive® of the messages sent upGeounds

before its join.

8.2 Results of Chapter5, EquiCast: Scalable Multicast with
Selfish Users

In Chaptei5, we have introduced EquiCast, a P2P multicast protocol for selfish environments. We
treated the problem of freeloading from a game theoretic perspective, and modeled the system as
a non-cooperative gameln such a game, nodes are selfish tattonal, i.e., each user chooses
its own strategyregarding its level of cooperation so as to minimize its own cd§}. [ More
specifically, the goal of each node is to receive all the multicast packets while minimizing its
sending rate.

We defined a special set pfotocol-obedient strategies (POS§enerally speaking, a strategy
out of this set allows a node to determine how many connections to maintain and how many pack-
ets to send on each connection though it does not allow users to hack the protocol’s code or assume
that others do so. In Theoreh) we have proved that, in EquiCast, if all nodes choose strongly
dominating strategies out of the set of POSs, then every node exclusively maintains connections
with its initial £ neighbors throughout the multicast session, and it receives all the multicast pack-
ets. In this case, EquiCast incurs a constant load on each node, and hence it can support large
groups of users.

In Theoreni2, we have proved that if all the nodes, except for one (rational) nogdboose a
strategy out of the set of possible POSs, thaaiso chooses a POS.

In Theorem3, we have proved that if all of a nodesss initial £ neighbors are rational and
choose POSs andcannot locate an identity of a node that does not choose a POS; #hariu-
sively maintains connections with its initial neighbors throughout the multicast session, and it
receives all the multicast packets. That is, unilateral hacking of the protocol’s code cannot reduce
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a node’s cost.

Finally, we have described a dynamic version of EquiCast, which supports node joins and
leaves. We are unaware of any previous P2P multicast protocol that has been shown to enforce
cooperation in environments in which all the nodes are selfish.

8.3 Results of Chapter, Octopus: A Fault-Tolerant and Effi-
cient Ad-hoc Routing Protocol

In Chaptei6, we have presented Octopus, a simple, fault-tolerant, and efficient routing protocol for
large MANETS, which supports movement of the area in which nodes are located. We have proven
Octopus’s scalability: in Octopus, as opposed to other ad-hoc routing protocols6&,.83|[ the
number of location update packets does not increase with the network size. The number of bytes in
such packets grows lik@(v/N) with the number of noded’ (and the network size). Empirically,

this constitutes a smaller increase in the overhead than exhibited by previous protocol63e.g., [
83.

We have conducted thorough empirical evaluation of Octopus using the ns2 simulator with
up to 675 mobile nodes. Our extensive simulations have shown Octopus to be scalable, efficient,
and have illustrated Octopus’s perfect fault-tolerance: in a large grid with hundreds of nodes that
intermittently disconnect and reconnect, Octopus achieves the same high reliability as when all
nodes are constantly up. This impressive fault-tolerance is achieved thanks to the high level of
redundancy in Octopus, and the freshness of the redundant information. At the same time, Octo-
pus incurs less overhead than previous efficient position-based routing protocols. This is achieved
thanks to the use of synchronized aggregation. While we employed aggregation only in the context
of location discovery, we believe that similar aggregation can be used to improve the fault-tolerance
of various additional protocols and to reduce their overhead, e.g., by aggregating queries or infor-
mation about various searchable resources in resource location ser}ices [

We have also introduced a recovery technique that overcomes forwarding failures by using
information stored at the location servers. We have shown that the basic geographic forwarding
protocol combined with this recovery technique achieves similar reliability to two-hop geographic
forwarding, while incurring substantially less overhead.
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8.4 Results of Chaptel7, Evaluating Unstructured P2P Lookup
Overlays

In Chaptel7, we have defined metrics for evaluating unstructured overlays for P2P lookup systems.
These metrics capture the search dependability and efficiency, the granularity at which one can
control the tradeoff between the two, and also the fairness. According to these metrics, we have
evaluated different graphs and overlays, including a Gnutella graph, a power law random graph,
normal random graphs, &regular random graph, and3aAraneola overlay. Our results have
shown that a&-regular random graph and3aAraneola overlay achieve the best results in term
of all four metrics. Moreover, using such overlays eliminates the main drawback due to which
unstructured overlays were abandoned, namely the search inefficiency. In fact, with such overlays,
one can reach up 0% of the nodes with almost perfect search efficiency.

As opposed to a-regular random graph,3Araneola overlay supports dynamic user behavior.
In such an overlay, each single join or leave operation is handled locally, and incurs the sending
of only 9 messages on average (@flog V) messages in the absence of a membership service).
Therefore, we conclude thaBaAraneola overlay is an excellent solution for a flooding-based P2P
lookup system.
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