1. Challenges in Evaluating Distributed
Algorithms

Idit Keidar

Department of Electrical Engineering, The Technion, Haifa 32000, Israel
email: idish@ee.technion.ac.il

1.1 Introduction

Theoretical evaluation of performance, availability, and reliability of dis-
tributed algorithms is always based on models and metrics that make some
simplifying assumptions. Such assumptions are needed in order to have sim-
ple abstractions for reasoning about algorithms. However, such assumptions
often lead to models, metrics, and analyses that fail to capture important
aspects of actual system behavior. Using realistic system models and metrics
is important, since distributed algorithms and systems are often designed to
optimize over such metrics.

One example is time complexity metrics. The typical theoretical metric
used to analyze the running time of distributed algorithms is the number
of communication rounds the algorithm performs, or the number of message
exchange steps in case of a non-synchronous system (e.g., [1.20, 1.14, 1.15]).
In Section 1.2, we illustrate the weakness of this metric.

Another example is reliability metrics. In [1.13], we highlight the fact
that fault tolerant algorithms are often designed under the assumption that
no more than ¢ out of n processes or components can fail. This character-
ization of failures implicitly assumes that the probability of a component
failing while a protocol is in progress is independent of the duration of the
protocol; that all components that can fail have an identical probability of
failure; and that failure probabilities of different components are mutually
independent. These assumptions do not adequately reflect the nature of real-
world network environments. In practice, the likelihood of ¢ failures occurring
while a protocol is running is highly dependent on the protocol’s duration.
Thus, while consensus protocols that execute more rounds can tolerate more
faults, the occurrence of more faults with such protocols is also more likely,
which can lead to reduced system availability or reliability, as observed, e.g.,
in [1.3, 1.10].

The rest of this white paper is organized as follows: Section 1.2 presents
an example of a new research effort that tries to better understand the per-
formance of distributed algorithms over Internet. In Section 1.3, we outline
directions for future work. Section 1.4 concludes the discussion.



2 Keidar

1.2 Example: Evaluating the Running Time of a
Communication Round over the Internet

It is challenging to predict the end-to-end performance a distributed algo-
rithm would achieve when run over TCP/IP in a wide-area network. It is
also not obvious to determine which algorithm would work best in a given
setting. E.g., would a decentralized algorithm outperform a leader-based one?
Answering such questions is difficult for a number of reasons. Firstly, perfor-
mance prediction is difficult because end-to-end Internet performance itself is
extremely hard to analyze, predict, and simulate [1.7]. Secondly, end-to-end
performance observed on the Internet exhibits great diversity [1.18, 1.22], and
thus different algorithms can prove more effective for different topologies, and
also for different time periods on the same topology. Finally, different perfor-
mance metrics can be considered.

In [1.4], we look at the running time of a communication round over the
Internet. We consider a fixed set of hosts engaged in a distributed algorithm.
A communication round is essentially a black box that propagates informa-
tion from potentially every host to every other host. Every round is initiated
at some host, called the initiator. We consider the following four common
implementations of a communication round:

— all-to-all, where the initiator sends a message to all other hosts, and each
host that learns that the algorithm has been initiated sends messages to all
the other hosts. This algorithm is structured like decentralized two-phase
commit, some group membership algorithms (e.g., [1.15]), and the first
phases in decentralized three-phase commit algorithms, (e.g., [1.21, 1.9]).

— leader, where the initiator acts as the leader. In this algorithm, the ini-
tiator sends a message to all hosts, and all other hosts respond by send-
ing messages to the leader. The leader aggregates the information from
all the hosts, and sends a message summarizing all the inputs to all the
hosts. This algorithm is structured like two-phase commit [1.8], and like the
first two of three communication phases in three-phase commit algorithms,
e.g., [1.21, 1.12].

— secondary leader, where a designated host (different from the initiator)
acts as the leader. The initiator sends a message to the leader, which then
initiates the leader-based algorithm.

— logical ring, where messages propagate along the edges of a logical ring.
This algorithm structure occurs in several group communication systems,
e.g., [L.1].

Using the typical theoretical metric that counts message exchange steps, we
get the following running times: 2 communication steps for the all-to-all al-
gorithm; 3 for the leader algorithm; 4 for secondary leader; and 2n — 1 steps
for the ring algorithm in a system with n hosts.

In [1.4] we evaluate these four algorithms over the Internet. Our exper-
iments span ten hosts, at geographically disperse locations — in Korea, Tai-



1. Challenges in Evaluating Distributed Algorithms 3

wan, the Netherlands, and several hosts across the US, some at academic
institutions and others on commercial ISP networks. The hosts communicate
using TCP/IP. We measure each algorithm’s overall running time, that is,
the time that elapses from when initiator initiates the algorithm, and until
all the hosts terminate. In contrast to what the communication step met-
ric suggests, we observe that all-to-all usually has the worst performance. In
cases in which the initiator is a host with good communication links to other
hosts, the leader algorithm performs best. If the initiator is a host, like the
one in Taiwan, that has poor connectivity to most of the other hosts, then
secondary leader algorithm achieves the best overall running time. The typi-
cal running time of ring was usually less than double the running times of the
other algorithms. As an aside, we note that in case of failures, the all-to-all
algorithm is the most robust of the four. The other algorithms may fail to
complete in cases of failures that occur while the algorithm is running. Thus,
there is a tradeoff between performance and robustness.

Why does the standard metric fail to capture the actual algorithm be-
havior over the Internet? Firstly, not all communication steps have the same
cost, e.g., a message from MIT to Cornell can arrive within 20 ms., while a
message from MIT to Taiwan may take 125 ms. Secondly, the latency on TCP
links depends not only on the underlying message latency, but also on the loss
rate. If a message sent over a TCP link is lost, the message is retransmitted
after a timeout which is larger than the average round-trip time on the link.
Therefore, if one message sent by an algorithm is lost, the algorithm’s overall
running time can be more than doubled. Since algorithms that exchange less
messages are less susceptible to message loss, they are more likely to perform
well when loss rates are high. This explains why the overall running time of
all-to-all is miserable in the presence of lossy links. Additionally, message la-
tencies and loss rates on different communication paths on the Internet often
do not preserve the triangle inequality [1.19, 1.15, 1.2], because routing poli-
cies at Internet routers often do not choose the best possible path between
two sites. This explains why secondary leader can achieve better performance
by refraining from sending messages on very lossy or slow paths.

One general lesson from our study is that some communication steps are
more costly than others. E.g., it is evident that propagating information from
only one host to all other hosts is faster than propagating information from
every host to each of the other hosts.

1.3 Future Directions and Research Goals

Our goal in the Dalgeval (distributed algorithm evaluation) project is to de-
velop realistic ways to evaluate distributed algorithms. We believe that in or-
der to succeed in this endeavor, a range of research techniques must be used:
from gathering of data [1.4], through empirical evaluation in real environ-
ments [1.4, 1.15] and simulation using accurate models [1.10], to theoretical



4 Keidar

modeling and analysis. These techniques complement each other, and when
used together can lead to more effective results. Most importantly, obtaining
data on how real environments behave can lead to more accurate simula-
tions and more realistic theoretical system models. We propose the following
general research directions:

Obtaining data about how distributed algorithms behave in realistic environ-
ments. This research effort focuses on obtaining data, and then analyzing the
data to identify the factors that affect distributed algorithms’ performance
and availability, and how these factors come into play. Such experiments can
teach us which aspects of system behavior are important and ought to be
captured in a theoretical system model or metric, and which aspects have
little impact and therefore can be simplified out. We gave one example of
such a research effort in the Section 1.2; many others are yet to be explored.

Using the gathered data to evaluate a range of algorithms. The gathered
data can be used, for example, in trace-driven simulations. Consider the re-
sults of the experiments described in the previous section [1.4]. Beyond the
specific evaluation of four different distributed algorithms for propagating
information, the data gathered in those experiments provides information
regarding the nature of communication failures over the Internet, and the
correlation among failures over distinct communication paths. This informa-
tion is useful for evaluating many different kinds of algorithms. Indeed, trace
data we gathered in those experiments is currently being used by other re-
searchers [1.11] for evaluating the stability of group membership algorithms
such as Moshe [1.15] over the Internet, and the effectiveness of different scal-
able master-worker algorithms that use group membership, e.g., [1.6, 1.17]. It
is our hope that in the future, these traces and others will be used to evaluate
various other algorithms.

Formulating better theoretical complexity and reliability metrics. Ultimately,
we hope that such empirical results will lead to more realistic theoretical eval-
uation of distributed algorithms. However, the transition from data to models
is not easy; having gathered data about real systems, it is still challenging to
find ways to model this data so it will be easy to reason about.

We now propose one simple example of how our empirical results can be
used to improve the accuracy of theoretical complexity analysis. As noted
above, our results show that propagating information from only one host to
all other hosts is faster than propagating information from every host to each
of the other hosts. This observation can be leveraged in order to refine the
way by which one analyzes algorithm time complexity. We suggest to refine
the communication step metric as to encompass different kinds of steps. One
cost parameter, Ay, can be associated with the overall running time of a
step that propagates information from all hosts to all hosts. This step can be
implemented using the most appropriate algorithm for the particular setting
where the algorithm is deployed. A different (assumed smaller) cost parame-
ter, As, can be associated with a step that propagates information from one



1. Challenges in Evaluating Distributed Algorithms 5

host to all other hosts. Another cost parameter, As can be associated with
propagating information from a quorum of the hosts to all the hosts!, etc.
This more refined metric can then be used to revisit known lower and upper
bound results. E.g., [1.14] presents a tight lower bound of two communica-
tion steps for failure-free executions of consensus in practical models. Under
the more refined metric, the lower bound is 2A;, whereas known algorithms
(e.g., [1.16, 1.5]) achieve running times of Ay + As.

Improving algorithm design. Finally, we hope that focusing on the “right”
metrics will lead to the design of more effective distributed algorithms and
systems.

1.4 Conclusions

Gathering data about network characteristics and the behavior of distributed
algorithms in different networks is extremely important. Such data can be at
the basis of more realistic simulations, as well as theoretical complexity and
reliability metrics. Ultimately, using better performance metrics can lead to
more effective design of distributed algorithms and systems.

References

1.1 D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia. The
Totem multiple-ring ordering and topology maintenance protocol. ACM Trans.
Comput. Syst., 16(2):93-132, May 1998.

1.2 D. G. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay
networks. In SOSP, pp. 131-145. ACM, Oct. 2001.

1.3 O. Babaoglu. On the reliability of consensus-based fault-tolerant distributed
computing systems. ACM Trans. Comput. Syst., 5(4):394-416, 1987.

1.4 O. Bakr and I. Keidar. Evaluating the running time of a communication round
over the Internet. In ACM Symp. on Prin. of Dist. Comp. (PODC), July 2002.

1.5 T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225-267, Mar. 1996.

1.6 S. Dolev, R. Segala, and A. Shvartsman. Dynamic load balancing with group
communication. In Intl. Coll. Struct. Inf. and Comm. Complezity, 1999.

1.7 S. Floyd and V. Paxson. Difficulties in simulating the Internet. IEEE/ACM
Trans. Networking, 9(4):392-403, Aug 2001.

1.8 J. N. Gray. Notes on database operating systems. In Operating Systems: An
Advanced Course, LNCS 60, pp. 393—481, 1978.

1.9 R. Guerraoui and A. Schiper. The decentralized non-blocking atomic commit-
ment protocol. In IEEE Intl. Symp. on Par. and Dist. Proc. (SPDP), Oct
1995.

1.10 K. W. Ingols and I. Keidar. Availability study of dynamic voting algorithms.
In 21st Intl. Conf. on Dist. Comp. Sys. (ICDCS), pp. 247-254, Apr 2001.

! In future experiments we intend to evaluate a primitive that waits for responses
from a quorum of hosts.



6 Keidar

1.11 K. Jacobsen, K. Marzullo, and X. Zhang. Private communication, 2002.

1.12 I. Keidar and D. Dolev. Increasing the resilience of distributed and replicated
database systems. J. Comput. Syst. Sci., 57(3):309-324, Dec 1998.

1.13 I. Keidar and K. Marzullo. The need for realistic failure models in protocol
design. In 4th Intl. Survivability Wshop (ISW) 2001/2002, March 2002.

1.14 1. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there
are no faults — a tutorial. Tech. Rep. MIT-LCS-TR-821, MIT May 2001.

1.15 1. Keidar, J. Sussman, K. Marzullo, and D. Dolev. Moshe: A group mem-
bership service for WANs. ACM Trans. Comput. Syst., 20(3):1-48, August
2002.

1.16 L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133-169, May 1998.

1.17 G. Malewicz, A. Russell, and A. Shvartsman. Optimal scheduling for dis-
connected cooperation. In Intl. Coll. Struct. Inf. and Comm. Complezity, Jun
2001.

1.18 V. Paxson. End-to-end Internet packet dynamics. In ACM SIGCOMM, Sep
1997.

1.19 S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The end-to-end
effects of Internet path selection. In ACM SIGCOMM, pp. 289-299, Sep 1999.

1.20 A. Schiper. Early consensus in an asynchronous system with a weak failure
detector. Dist. Comp., 10(3):149-157, 1997.

1.21 D. Skeen. Nonblocking commit protocols. In ACM SIGMOD Intl. Symp. on
Management of Data, pp. 133-142, 1981.

1.22 Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the constancy of Internet
path properties. In ACM SIGCOMM Internet Measurement Wshop, Nov 2001.



