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ABSTRACT
This talk focuses on dynamic computations (sometimes called
live, on-going, continuous, or stabilizing), which continu-
ously adapt their output to reflect input and network topol-
ogy changes. Three specific examples are discussed: contin-
uous weighted matching, live monitoring, and peer sampling
(also called gossip-based membership). Such computations
are of interest in ever-changing networks, where the net-
work topology itself (nodes and links) constantly changes, as
do the inputs to the computation, e.g., sensor reads. Ever-
changing networks occur in many settings nowadays, includ-
ing ad-hoc, vehicular, and sensor networks, social networks,
and clouds spanning multiple data-centers.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Com-
munication Networks—Distributed Systems; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed
Systems; H.4.3 [Information Systems Applications]: Com-
munications Applications

General Terms
Algorithms, Reliability, Theory

Keywords
Dynamic systems, network algorithms, weighted matching,
group membership, peer sampling, average aggregation

1. INTRODUCTION
In recent years, we increasingly see ever-changing networks
deployed in the real world. They occur not only in mobile
settings, such as ad hoc and vehicular networks, but also
in stationary settings. For example, sensor networks are
subject to churn (dynamic changes in the set of nodes) as
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sensor motes frequently fail and are replaced by new ones;
their network topology dynamically changes as communica-
tion links disappear and reappear due to weather and bat-
tery conditions. Social networks are also ever-changing, as
their topology is defined by users’ dynamic interests and
“friends”. Even networks that were traditionally static, like
those found in large data centers and clouds, today exhibit
high churn rates because data center operators constantly
bring online new servers and virtual machines while old ones
die out. And in the near future, one can envision dynamic
switching in data centers as a part of network virtualization.
All these examples illustrate the importance of treating ever-
changing networks as a first class citizen.

Traditional distributed network computing is based on a
static foundation. It treats dynamism as a “problem” or
failure that needs to be overcome: Fault-tolerant algorithms
are expected to achieve a correct result despite such failures;
while self-stabilizing algorithms are expected to converge to
a correct state after the “problem” is gone. In both cases,
the network is expected to stop changing at some point, as
do the algorithm’s inputs and output. In the past decade or
so, this“eventually static”paradigm has begun to crack with
the advent of churn-resistant peer-to-peer networks. Indeed,
quite a bit of recent work deals with building overlay net-
works and on supporting peer-to-peer lookup under constant
churn, though typically over a static (fully connected) un-
derlying network topology. Still, such systems do not really
compute anything distributively. More elaborate network
problems have yet to be revisited in an ever-changing net-
work model.

In this talk, we focus on dynamic computations (sometimes
called live, on-going, continuous, or stabilizing), which con-
tinuously adapt their output to reflect topology changes in
an ever-changing network, as well as changes in their in-
put. Such problems are more challenging than their static,
one-shot counterparts. Differently from a multi-shot com-
putation, which runs multiple instances of a static one, a
dynamic computation does not begin at pre-defined points
in time, but rather responds to changes in input and topol-
ogy. We discuss three examples of dynamic computations:
continuous weighted matching, live monitoring [1], and peer
sampling (also called gossip-based membership) [2].

2. DYNAMIC MATCHING
A popular static (one-shot) network problem is (weighted)
matching. A matching is a set of graph edges that are vertex-



disjoint, i.e., no node participates in more than one edge.
The goal of a matching algorithm is to maximize the num-
ber of edges, or rather, to approximate the maximum within
a constant factor (e.g., 2) efficiently. The weighted vari-
ant of the problem is appropriate where different links in
the network have different characteristics (e.g., bandwidth,
throughput, loss rates, and load), which can be captured
using weights. Here, the goal is to approximate the maxi-
mum matching weight, which is the sum of the weights of
all selected edges.

Matching is useful in wireless networks, where traditional
overlay networks are insufficient, because simultaneous com-
munication by adjacent nodes leads to interference. In such
networks, the communication pattern can be designed using
a matching algorithm to ensure that no interference occurs.
Though the weighted matching problem garnered a lot of
attention of late, virtually all recent works consider the one-
shot problem in a synchronous network with a static topol-
ogy. This talk, instead, introduces the continuous weighted
matching problem, which constantly outputs a valid match-
ing while adapting to the network’s ever-changing topology.
The talk further presents an asynchronous algorithm for its
solution.

3. LIVE MONITORING
There is a plethora of work on gathering data in a large
network or computing some function thereof. For example,
a frequently studied problem is average aggregation (or av-
erage consensus), which computes the average sensor read
in a sensor network. By and large, this work focuses on
solving the problem once. Some solutions assume that data
(e.g., sensed values) is static (i.e., never changes), while oth-
ers gather the latest sensor information (once) in response
to an explicit query. However, in a real network, the val-
ues constantly change, and a monitoring service ought to
track the latest data values in the system. While this can
be addressed by periodic polling, this approach may lead
to inaccurate results because it can incur a large delay in
detecting abrupt changes, and may also be wasteful, due to
inevitably sometimes polling when there are no changes.

This talk discusses LiMoSense [1], a fault-tolerant live mon-
itoring algorithm for dynamic sensor networks. LiMoSense
is an average aggregation algorithm that performs live mon-
itoring, i.e., it constantly obtains a timely and accurate pic-
ture of dynamically changing data. LiMoSense uses gossip
to dynamically track and aggregate a large collection of ever-
changing sensor reads. It overcomes message loss, node fail-
ures and recoveries, and dynamic network topology changes.

4. PEER SAMPLING (GOSSIP-BASED MEM-
BERSHIP)

In a large-scale ever-changing network, it is impossible for
nodes to constantly keep track of all the nodes in the sys-
tem. However, in order to allow nodes to communicate with
each other, each node must know the ids, (for example, IP
addresses and ports), of some other nodes. The set of ids a
node knows is called its view. For fast and robust commu-
nication, it is important for views to include some random
nodes. Obtaining such random ids is called peer sampling.
Beyond maintaining an overlay graph for communication,

independent random node id samples are useful for a vari-
ety of additional applications, such as gathering statistics,
gossip-based aggregation, and choosing locations for data
caching.

The most common approach to peer sampling is using gossip-
based membership protocols. In such protocols, nodes ex-
change (“gossip about”) ids from their views with their neigh-
bors, and use this information to update their views.

In an ever-changing network, peer sampling is a dynamic
problem: Each node constantly outputs a sample or view,
and peer samples must evolve to reflect joining nodes and
exclude ones that left or failed. Moreover, the system should
converge to provide independent uniform samples from any
sufficiently connected initial topology resulting from joins,
leaves, and failures.

In this talk we overview Send & Forget (S&F) [2], a peer-
sampling protocol for dynamic networks subject to churn
and message loss. S&F has a number of desirable mathe-
matically proven guarantees, including convergence to inde-
pendent uniform samples from any sufficiently connected ini-
tial topology resulting from joins, leaves, and failures. The
protocol works well in practice because it does not require
atomic actions and it overcomes message loss.

5. CONCLUSIONS
Ever-changing networks already exist today, and will become
ever more prevalent in the future. Over such networks, solv-
ing dynamic versions of network problems is important. We
discussed three examples of such problems, but many more
have yet to be studied.
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