
Exploiting Locality and NUMA in

Scalable Concurrent Libraries

Elad Gidron





Exploiting Locality and NUMA in

Scalable Concurrent Libraries

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Elad Gidron

Submitted to the Senate of

the Technion — Israel Institute of Technology

Elul 5772 Haifa September 2012





The research thesis was done under the supervision of Prof. Idit Keidar from the

Electrical Engineering Department, Technion, in the Computer Science Depart-

ment, Technion.

I would like to thank my supervisor, Prof. Idit Keidar for guiding me and for

showing me how real research is done.

I would also like to thank my college and friend Dmitri Perelman for working with

me and for his great help during my research.

Finally, I would like to thank my spouse Ruty, for her support during my research

The generous financial support of the Technion is gratefully acknowledged.





Publications

Parts of this work were published in:

Elad Gidron, Idit Keidar, Dmitri Perelman, and Yonathan Perez. SALSA: scalable

and low synchronization NUMA-aware algorithm for producer-consumer pools.

In Proceedinbgs of the 24th ACM symposium on Parallelism in algorithms and

architectures, SPAA ’12, 2012





Contents

Abstract 1

1 SALSA: Scalable and Low Synchronization NUMA-aware Algorithm

for Producer-Consumer Pools 2

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Model and Problem Definitions . . . . . . . . . . . . . . . . . . . 6

1.3.1 Implementation Environment . . . . . . . . . . . . . . . 6

1.3.2 Concurrent Objects, Linearizability . . . . . . . . . . . . 6

1.3.3 Task Pool Sequential Specification . . . . . . . . . . . . . 7

1.3.4 Lock-freedom . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 SALSA Structure . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . 13

1.5.3 Stealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.4 Chunk Pools . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.5 Checking Emptiness . . . . . . . . . . . . . . . . . . . . 18

1.6 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . 20

1.6.1 Dealing with Memory Reordering . . . . . . . . . . . . . 20

1.6.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 21

1.6.3 System Throughput . . . . . . . . . . . . . . . . . . . . . 23

1.6.4 Evaluating SALSA techniques . . . . . . . . . . . . . . . 24

1.6.5 Impact of Scheduling and Allocation . . . . . . . . . . . 25

1.6.6 Chunk size influence . . . . . . . . . . . . . . . . . . . . 26

1.7 SALSA correctness . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



1.7.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7.2 Lock-freedom . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7.3 Linearizability . . . . . . . . . . . . . . . . . . . . . . . 32

1.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 On Locality Effects in STM 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Locality in different architectures . . . . . . . . . . . . . . . . . . 41

2.3.1 Memory contention effect on different architectures . . . . 42

2.3.2 Spacial locality effect . . . . . . . . . . . . . . . . . . . . 43

2.4 Locality in STM . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.2 Local Meta-data implementation . . . . . . . . . . . . . . 45

2.4.3 Local Meta-data advantages . . . . . . . . . . . . . . . . 46

2.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.2 Readset . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.3 Cache effects . . . . . . . . . . . . . . . . . . . . . . . . 51

ii



List of Figures

1.1 Producer-consumer framework overview. . . . . . . . . . . . . . 8

1.2 Chunk lists in SALSA single consumer pool implementation. . . . 12

1.3 An example where a single traversal may violate linearizability. . 18

1.4 System throughput for various ratios of producers and consumers. 20

1.5 System behavior in workloads with a single producer and multiple

consumers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 System throughput – 1 Producer, N consumers. . . . . . . . . . . 24

1.7 Impact of scheduling and allocation . . . . . . . . . . . . . . . . 25

1.8 System throughput as a function of the chunk size. . . . . . . . . 26

2.1 Contention effect - speedup. . . . . . . . . . . . . . . . . . . . . 42

2.2 Prefetch effect - speedup. . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Storing locks in a table vs. storing locks with the data. . . . . . . 45

2.4 STAMP speedup on Opteron. . . . . . . . . . . . . . . . . . . . . 49

2.5 STAMP speedup on Nehalem. . . . . . . . . . . . . . . . . . . . 50

2.6 VacationHigh read-set size distirbution. . . . . . . . . . . . . . . 51

iii



iv



Abstract

Emerging computer architectures pose many new challenges for software develop-

ment. First, as the number of computing elements constantly increases, the impor-

tance of scalability of parallel programs becomes paramount. Second, accessing

memory has become the principal bottleneck, while multi-CPU systems are based

on NUMA architectures, where memory access from different chips is asymmet-

ric. Therefore, it is instrumental to design software with local data access, cache-

friendliness, and reduced contention on shared memory locations, especially across

chips. Furthermore, as systems get larger, their behavior becomes less predictable,

underscoring the importance of robust programs that can overcome unexpected

thread stalls.

In our work we focus on two problems:

1. We design and implement a scalable and highly-efficient non-blocking con-

sumer producer task pool, with lightweight synchronization-free operations

in the common case. Its data allocation scheme is cache-friendly and highly

suitable for NUMA environments. Moreover, our pool is robust in the face

of imbalanced loads and unexpected thread stalls.

2. We consider the case of improving metadata locality in word-based STMs.

To this end, we evaluate a locality-conscious approach for maintaining ver-

sioned locks in TL2. The speedup of the improved algorithm reaches a hun-

dred percent on STAMP benchmarks. We show that this speedup stems from

the following factors: 1) improved spacial and temporal locality, 2) reduced

false sharing and 3) less false conflicts.
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Chapter 1

SALSA: Scalable and Low

Synchronization NUMA-aware

Algorithm for

Producer-Consumer Pools

1.1 Introduction

In this chapter, we focus on one of the fundamental building blocks of highly par-

allel software, namely a producer-consumer task pool. Specifically, we present a

scalable and highly-efficient non-blocking pool, with lightweight synchronization-

free operations in the common case. Its data allocation scheme is cache-friendly

and highly suitable for NUMA environments. Moreover, our pool is robust in the

face of imbalanced loads and unexpected thread stalls.

Our system is composed of two independent logical entities: 1) SALSA, Scal-

able and Low Synchronization Algorithm, a single-consumer pool that exports a

stealing operation, and 2) a work stealing framework implementing a management

policy that operates multiple SALSA pools.

In order to improve locality and facilitate stealing, SALSA keeps tasks in

chunks, organized in per-producer chunk lists. Only the producer mapped to a

given list can insert tasks to chunks in this list, which eliminates the need for syn-

chronization among producers.

Though each consumer has its own task pool, inter-consumer synchronization
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is required in order to allow stealing. The challenge is to do so without resorting to

costly atomic operations (such as CAS or memory fences) upon each task retrieval.

We address this challenge via a novel chunk-based stealing algorithm that allows

consume operations to be synchronization-free in the common case, when no steal-

ing occurs, which we call the fast path. Moreover, SALSA reduces the stealing rate

by moving entire chunks of tasks in one steal operation, which requires only two

CAS (compare-and-swap) operations.

In order to achieve locality of memory access on a NUMA architecture, SALSA

chunks are kept in the consumer’s local memory. The management policy matches

producers and consumers according to their proximity, which allows most task

transfers to occur within a NUMA node.

In many-core machines running multiple applications, system behavior be-

comes less predictable. Unexpected thread stalls may lead to an asymmetric load

on consumers, which may in turn lead to high stealing rates, hampering perfor-

mance. SALSA employs a novel auto-balancing mechanism that has producers

insert tasks to less loaded consumers, and is thus robust to spurious load fluctua-

tions.

We have implemented SALSA in C++, and tested its performance on a 32-

core NUMA machine. Our experiments show that the SALSA-based work stealing

pool scales linearly with the number of threads; it is 20 times faster than other

work-stealing alternatives, and shows a significant improvement over state-of-the-

art non-FIFO alternatives. SALSA-based pools scale well even in unbalanced sce-

narios.

This chapter proceeds as follows. Section 1.2 describes related work. We

give the system overview in Section 1.4. The model and problem definitions are

presented in Section 1.3 he SALSA single-consumer algorithm is described in Sec-

tion 1.5. We discuss our implementation and experimental results in Section 1.6,

and the correctness of our system in Section 1.7. And finally we present our con-

clusions in Section 1.8.

1.2 Related Work

Task pools. Consumer-producer pools are often implemented as FIFO queues.

A widely used state-of-the-art FIFO queue is Micheal and Scott’s queue [31]. This

queue is implemented by a linked-list with head and tail references. The put oper-

ation adds a new node to the list and then updates the tail reference. This is done
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by two CAS operations; one for adding the new node and one for updating the tail

reference. The get operation removes a node by moving the head reference to point

to the next node. This approach is not scalable under high contention as only one

contending operation may succeed.

Moir et al. [32] suggest using elimination to reduce the contention on the queue.

Whereby put and get operations can eliminate each other during the back-off after

an unsuccessful operation. However, due to the FIFO property, those eliminations

can only be done when the queue is empty, making this approach useful only when

the queue is almost to empty.

Hoffman et al. [25] try to reduce the contention of the put operation by allow-

ing concurrent put operations to add tasks to the same “basket”. This is done by

detecting contention on the tail, which is indicated by a failed CAS operation when

trying to update the tail. This reduces the contention on the tail, but not on adding

the node to the “basket”, which still requires a CAS operation. Therefore, this ap-

proach, while more efficient than Micheal and Scott’s queue, is still not scalable

under high contention.

Gidenstam et al. [20] use a similar approach to Micheal and Scott’s, but, in

order to improve locality and decrease the contention on the head and tail, the data

is stored in chunks, and the head and tail points to a chunk rather than single nodes.

This allows updating these references only once per-chunk rather than on every

operation. However, this solution still requires at least one CAS per operation,

rendering it non-scalable under high contention.

A number of previous works have recognized this limitation of FIFO queues,

and observed that strict FIFO order is seldom needed in multi-core systems.

Afek et al. [2] implemented a non-FIFO pool using diffraction trees with elim-

ination (ED-pools). An ED-pool is a tree of queues, which contains elimination

arrays that help reduce contention. While ED-pools scale better than FIFO based

solutions, they do not scale on multi-chip architectures [6].

Basin et al. [7] suggest a wait-free task-pool that allows relaxing FIFO. This

pool is more scalable than previous solutions, but, since it still has some ordering

(fairness) requirements, there is contention among both producers and consumers.

The closest non-FIFO pool to our work is the Concurrent Bags of Sundell et

al. [37], which, like SALSA, uses per-producer chunk lists. This work is opti-

mized for the case that the same threads are both consumers and producers, and

typically consume from themselves, while SALSA improves the performance of

such a task pool in NUMA environments where producers and consumers are sep-
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arate threads. Unlike our pool, the Concurrent Bags algorithm uses strong atomic

operations upon each consume. In addition, steals are performed in the granularity

of single tasks and not whole chunks as in SALSA. Overall, their throughput does

not scale linearly with the number of participating threads, as shown in [37] and in

Section 1.6 of this chapter.

To the best of our knowledge, all previous solutions use strong atomic opera-

tions (like CAS), at least in every consume operation. Moreover, most of them [2,

3, 7] do not partition the pool among processors, and therefore do not achieve good

locality and cache-friendliness, which has been shown to limit their scalability on

NUMA systems [6].

Techniques. Variations of techniques we employ were previously used in various

contexts. Work stealing [9] is a standard way to reduce contention by using indi-

vidual per-consumer pools, where tasks may be stolen from one pool to another.

We improve the efficiency of stealing by transferring a chunk of tasks upon every

steal operation. Hendler et al. [23] have proposed stealing of multiple items by

copying a range of tasks from one dequeue to another, but this approach requires

costly CAS operations on the fast-path and introduces non-negligible overhead for

item copying. In contrast, our approach of chunk-based stealing coincides with

our synchronization-free fast-path, and steals whole chunks in O(1) steps. Further-

more, our use of page-size chunks allows for data migration in NUMA architec-

tures to improve locality, as done in [8].

The principle of keeping NUMA-local data structures was previously used by

Dice et al. for constructing scalable NUMA locks [15]. Similarly to their work,

our algorithm’s data allocation scheme is designed to reduce inter-chip communi-

cation.

The concept of a synchronization-free fast-path previously appeared in works

on scheduling queues, e.g., [4, 22]. However, these works assume that the same

process is both the producer and the consumer, and hence the synchronization-

free fast-path is actually used only when a process transfers data to itself. More-

over, those works assume a sequentially consistent shared-memory multiprocessor

system, which requires insertion of some memory barrier instructions to the code

when implemented on machine providing a weaker memory model [5]. On the

other hand, our pool is synchronization-free even when tasks are transfered among

multiple threads; our synchronization-free fast-path is used also when multiple pro-

ducers produce data for a single consumer. We do not know of any other work that
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supports synchronization-free data transfer among different threads.

The idea of organizing data in chunks to preserve locality in dynamically-sized

data structures was previously used in [10, 20, 22, 37]. SALSA extends on the idea

of chunk-based data structures by using chunks also for efficient stealing.

1.3 Model and Problem Definitions

The problem we solve in this chapter is implementing a lock-free linearizable task-

pool. In Section 1.3.1 we describe the model and runtime environment. Then, in

Section 1.3.2, we define the linearizability criterion for concurrent data structures.

In Section 1.3.3, we introduce a sequential specification for task pools. Finally, in

Section 1.3.4, define our progress guarantee, namely lock-freedom.

1.3.1 Implementation Environment

We consider a shared memory environment where execution threads have a shared

heap, shared read only code, and separate stack memory spaces. The scheduler can

suspend a thread, for an arbitrary duration of time, at any moment after termination

of a basic processor instruction (read, write, CAS). Threads cannot be suspended in

the middle of a basic instruction. In modern architectures read and write operations

may be reordered unless explicitly using a fence operation. However, in our model

we assume sequential execution of instruction per-thread. The reordering problems

are solved by using implicit fences when using CAS, or by the technique explained

in 1.6.1.

1.3.2 Concurrent Objects, Linearizability

Formally, a task pool is a concurrent object [24], which resides in a memory shared

among multiple threads. As a concurrent object, it has some state and supports a set

of operations. Multiple threads can simultaneously perform operations on the same

object. Such operations may update the state of the object. Operations take time

and have a moment of invocation and a moment of response. When threads con-

currently perform operations on concurrent objects, they generate a history [24],

which is an ordered list of invocation and response events of concurrent object op-

erations. The order of events is according to the time line in which they occurred.

An operation invocation event is represented by the record O.methodT (args),

where O is the concurrent object, method is the invoked operation, args are the
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invocation arguments and T is the thread that started the invocation. An opera-

tion response event is represented by the record O.methodT (args) returns result,

where result is the operation’s result. In a given history, we say that a response

matches a prior invocation if it has the same object O and thread T , and no other

events of T on object O appear between them. A sequential history is a history

that has the following properties: 1) the first event in the history is an invocation;

2) each invocation, except possibly the last, is immediately followed by a matching

response.

A sequential specification defines which sequential histories of an object are

legal.

For defining the correctness of concurrent objects we consider the following

definitions. An invocation is pending in history H if no matching response follows

the invocation. An extension of history H is a history constructed by appending

zero or more responses matching the pending invocations of H . Complete(H) is

the sub-sequence of H created by removing all pending invocations of H . H|T is

a history consisting of exactly the events of thread T in history H . Two histories

H and H ′ are equivalent if for each thread T , H|T = H ′|T .

Given a sequential specification of a concurrent object, the linearizability [24]

correctness criterion is defined as follows: A history H is linearizable if it has an

extension H ′ and there is a sequential history S such that:

1. S is legal according to the sequential specification of the object.

2. Complete(H ′) is equivalent to S.

3. If method response m′ precedes method invocation m in H , then the same

is true in S.

Concurrent objects that have only linearizable histories are called linearizable or

atomic. Intuitively, a concurrent object is linearizable if it requires each concurrent

run of its method calls to be equivalent in some sense to a correct serial run.

1.3.3 Task Pool Sequential Specification

A task pool supports put(T ) and get() returns T operations, where T is a task or

⊥.

We assume that tasks inserted into the pool are unique. That is, if put(T ) and

put(T ′) are two different invocations on a task pool, then T 6= T ′. This assumption
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is made to simplify the definitions, and could be easily enforced in practice by

tagging tasks with process ids and sequence numbers. The sequential specification

of a task pool is as follows:

put(T ) operation adds task T to the pool. get() returns and removes a task T

from the pool or returns ⊥ if the pool is empty.

1.3.4 Lock-freedom

Threads may invoke a concurrent object’s operations simultaneously. A concurrent

object implementation is lock-free if there is guaranteed system-wide progress, i.e.,

at least one thread always makes progress in its operation execution, regardless of

the execution speeds or failures of other threads. In this chapter, we implement a

lock-free shared object.

1.4 System Overview

SCPool 1

Memory 1
CPU1

cons 1 prod 1 SCPool 3

Memory 2
CPU2

cons 3prod 3

interconnect

SCPool 2
cons 2 prod 2

SCPool 4
cons 4prod 4

d l lProd 2 access list: 
cons2, cons1, cons3, cons4

Cons 4 access list: 
cons3, cons1, cons2

Figure 1.1: Producer-consumer framework overview. In this example, there are two processors

connected to two memory banks (NUMA architecture). Two producers and two consumers running

on each processor, and the data of each consumer is allocated at the closest physical memory. A

producer (consumer) has a sorted access list of consumers for task insertion (respectively stealing).

In the current section we present our framework for scalable and NUMA-aware

producer-consumer data exchange. Our system follows the principle of separating

mechanism and policy. We therefore consider two independent logical entities:

1. A single consumer pool (SCPool) mechanism manages the tasks arriving to

a given consumer and allows tasks stealing by other consumers.

2. A management policy operates SCPools: it routes producer requests to the

appropriate consumers and initiates stealing between the pools. This way,
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the policy controls the system’s behavior according to considerations of load-

distribution, throughput, fairness, locality, etc. We are especially interested

in a management policy suitable for NUMA architectures (see Figure 1.1),

where each CPU has its own memory, and memories of other CPUs are

accessed over an interconnect. As a high rate of remote memory accesses

can decrease the performance, it is desirable for the SCPool of a consumer

to reside close to its own CPU.

Algorithm 1 API for a Single Consumer Pool with stealing support.

1: boolean: produce(Task, SCPool) ⊲ Tries to insert the task to the pool, returns

false if no space is available.

2: void: produceForce(Task, SCPool) ⊲ Insert the task to the pool, expanding

the pool if necessary.

3: {Task ∪⊥}: consume() ⊲ Retrieve a task from the pool, returns ⊥ if no tasks

in the pool are detected.

4: {Task ∪⊥}: steal(SCPool from) ⊲ Try to steal a number of tasks from the

given pool and move them to the current pool. Return some stolen task or ⊥.

5: boolean: isEmpty() ⊲ Returns true iff the SCPool contains tasks

6: void: setIndicator(SCPool p, int consumerId) ⊲ sets indicator in pool p of

consumer consumerId

7: boolean: checkIndicator(SCPool p, int consumerId) ⊲ returns the state of the

indicator in pool p of consumer consumerId

SCPool abstraction. The SCPool API provides the abstraction of a single con-

sumer task pool with stealing support, see Algorithm 1. A producer invokes two

operations: produce(), which attempts to insert a task to the given pool and fails

if the pool is full, and produceForce(), which always succeeds by expanding the

pool on demand. There are also two ways to retrieve a task from the pool: the

owner of the pool (only) can call the consume() function; while any other thread

can invoke steal(), which tries to transfer a number of tasks between two pools and

return one of the stolen tasks. The other function are used for checking emptiness

and will be explained in 1.5.5.

A straightforward way to implement the above API is to use a dynamic-size

multi-producer multi-consumer FIFO queue (e.g., Michael-Scott queue [31]). In

this case, produce() enqueues a new task, while consume() and steal() dequeue a

task. In the next section we present SALSA, a much more efficient SCPool.
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Algorithm 2 Work stealing framework pseudo-code.
8: Local variables:

9: SCPool myPool ⊲ The consumer’s pool

10: SCPool[] accessList ⊲ The consumer’s or pro-

ducer’s access list

11: Function get():

12: while(true)

13: ⊲ First try to get a task from the local pool

14: t← myPool.consume()

15: if (t 6= ⊥) return t

16: ⊲ Failed to get a task from the local pool –

steal

17: foreach SCPool p in accessList in order

do:

18: t← p.steal()

19: if (t 6= ⊥) return t

20: ⊲ No tasks found – validate emptiness

21: if (checkEmpty()) return ⊥

22: Function put(Task t):

23: ⊲ Produce to the pools by the order of the ac-

cess list

24: foreach SCPool p in accessList in order do:

25: if (p.produce(t)) return

26: firstp← the first entry in accessList

27: ⊲ If all pools are full, expand the closest pool

28: produceForce(t,firstp)

29: return

30: Function checkEmpty():

31: for i in {1..|consumers|} do:

32: foreach SCPool p do:

33: if (i = 1) p.setIndicator(myId)

34: if (!p.isEmpty()) return false

35: if (!p.checkIndicator(myId)) return

false

36: return true

Management policy. A management policy defines the way in which: 1) a pro-

ducer chooses an SCPool for task insertion; and 2) a consumer decides when to

retrieve a task from its own pool or steal from other pools. Note that the policy is

independent of the underlying SCPool implementation. We believe that the pol-

icy is a subject for engineering optimizations, based on specific workloads and

demands.

In the current work, we present a NUMA-aware policy. If the individual

SCPools themselves are lock-free, then our policy preserves lock-freedom at the

system level. Our policy is as follows:

• Access lists. Each thread in the system (producer or consumer) is provided

with an access list, an ordered list of all the consumers in the system, sorted

according to their distance from that thread (see Figure 1.1). Intuitively, our

intention is to have a producer mostly interact with the closest consumer,

while stealing mainly happens inside the same processor node.

• Producer’s policy. The producer policy is implemented in the put() function

in Algorithm 2. The operation first calls the produce() of the first SCPool in

its access list. Note that this operation might fail if the pool is full, (which

can be seen as evidence of that the corresponding consumer is overloaded).

In this case, the producer tries to insert the task into other pools, in the order

defined by its access list. If all insertions fail, the producer invokes produce-

Force() on the closest SCPool, which always succeeds (expanding the pool
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if needed).

• Consumer’s policy. The consumer policy is implemented in the get() func-

tion in Algorithm 2. A consumer takes tasks from its own SCPool. If its

SCPool is empty, then the consumer tries to steal tasks from other pools in

the order defined by its access list. The checkEmpty() operation handles

the issue of when a consumer gives up and returns ⊥. This is a subtle issue,

and we discuss it in Section 1.5.5. Stealing serves two purposes: first, it is

important for distributing the load among all available consumers. Second,

it ensures that tasks are not lost in case they are inserted into the SCPool of

a crashed (or very slow) consumer.

1.5 Algorithm Description

In the current section we present the SALSA SCPool. We first show the data struc-

tures of SALSA in Section 1.5.1, and then present the basic algorithm without

stealing support in Section 1.5.2. The stealing procedure is described in Sec-

tion 1.5.3, finally, the role of chunk pools is presented in Section 1.5.4. For the

simplicity of presentation, in this section we assume that the the memory accesses

satisfy sequential consistency [27], we describe the ways to solve memory reorder-

ing issues in Section 1.6.1.

1.5.1 SALSA Structure

Algorithm 3 SALSA implementation of SCPool: Data Structures.

37: Chunk type

38: Task[CHUNK SIZE] tasks

39: int owner ⊲ owner’s consumer id

40: Node type

41: Chunk c; initially ⊥
42: int idx; initially -1

43: Node next;

44: SALSA per consumer data structure:

45: int consumerId

46: List〈Node〉[] chunkLists ⊲ one list per pro-

ducer + extra list for stealing (every list is

single-writer multi-reader)

47: Queue〈Chunk〉 chunkPool ⊲ pool of spare

chunks

48: Node currentNode, initially ⊥ ⊲ current node

to work with

The SALSA data structure of a consumer ci is described in Algorithm 3 and

partially depicted in Figure 1.2. The tasks inserted to SALSA are kept in chunks,

which are organized in per-producer chunk lists. Only the producer mapped to a

given list can insert a task to any chunk in that list. Every chunk is owned by a
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Figure 1.2: Chunk lists in SALSA single consumer pool implementation. Tasks are kept in

chunks, which are organized in per-producer lists; an additional list is reserved for stealing. Each

list can be modified by the corresponding producer only. The only process that is allowed to retrieve

tasks from a chunk is the owner of that chunk (defined by the ownership flag). A Node’s index

corresponds to the latest task taken from the chunk or the task that is about to be taken by the current

chunk owner.

single consumer whose id is kept in the owner field of the chunk. The owner is

the only process that is allowed to take tasks from the chunk; if another process

wants to take a task from the chunk, it should first steal the chunk and change its

ownership. A task entry in a chunk is used at most once. Its value is ⊥ before the

task is inserted, and TAKEN after it has been consumed.

The per-producer chunk lists are kept in the array chunkLists (see Figure 1.2),

where chunkLists[j] keeps a list of chunks with tasks inserted by producer pj . In

addition, the array has a special entry chunkLists[steal], holding chunks stolen by

ci. Every list has a single writer who can modify the list structure (add or remove

nodes): chunkLists[j]’s modifier is the producer pj , while chunkLists[steal]’s mod-

ifer is the SCPool’s owner. The nodes of the used chunks are lazily reclaimed and

removed by the list’s owner. For brevity, we omit the linked list manipulation

functions from the pseudo-code below. Our single-writer lists can be implemented

without synchronization primitives, similarly to the single-writer linked-list in [30].

In addition to holding the chunk, a node keeps the index of the latest taken task in

that chunk, this index is then used for chunk stealing as we show in Section 1.5.3.

Safe memory reclamation is provided by using hazard pointers [30] both for
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nodes and for chunks. The free (reclaimed) chunks in SALSA are kept at per-

consumer chunkPools implemented by lock-free Michael-Scott queues [31]. As

we show in Section 1.5.4, the chunk pools serve two purposes: 1) efficient memory

reuse and 2) producer-based load balancing.

1.5.2 Basic Algorithm

SALSA producer

Algorithm 4 SALSA implementation of SCPool: Producer Functions.
49: Producer local variables:

50: int producerId

51: Chunk chunk; initially⊥⊲ the chunk to insert

to

52: int prodIdx; initially 0 ⊲ the prefix of inserted

tasks

53: Function produce(Task t):

54: return insert(t, this, false)

55: Function insert(Task t, SCPool scPool, bool

force):

56: if (chunk = ⊥) then ⊲ allocate new chunk

57: if (getChunk(scPool, force) = false) then

return false

58: chunk.tasks[prodIdx]← t; prodIdx++

59: if(prodIdx = CHUNK SIZE) then

60: chunk← ⊥ ⊲ the chunk is full

61: return true

62: Function produceForce(Task t):

63: insert(t, this, true)

64: Function getChunk(SALSA scPool, bool force)

65: newChunk ← dequeue chunk from

scPool.chunkPool

66: if (chunk = ⊥) ⊲ no available chunks in this

pool

67: if (force = false) then return false

68: newChunk← allocate a new chunk

69: newChunk.owner← scPool.consumerId

70: node ← new node with idx = −1 and c =

newChunk

71: scPool.chunkLists[producerId].append(node)

72: chunk← newChunk; prodIdx← 0

73: return true

The description of SALSA producer functions is presented in Algorithm 4. The

insertion of a new task consists of two stages: 1) finding a chunk for task insertion

(if necessary), and 2) adding a task to the chunk.

Finding a chunk The chunk for task insertions is kept in the local producer vari-

able chunk (line 51 in Algorithm 4). Once a producer starts working with a chunk

c, it continues inserting tasks to c until c is full – the producer is oblivious to chunk

stealing. If the chunk’s value is ⊥, then the producer should start a new chunk

(function getChunk). In this case, it tries to retrieve a chunk from the chunk pool

and to append it to the appropriate chunk list. If the chunk pool is empty then

the producer either returns ⊥ (if force=false), or allocates a new chunk by itself

(otherwise) (lines 66–68).
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Inserting a task to the chunk As previously described in Section 1.5.1, different

producers insert tasks to different chunks, which removes the need for synchroniza-

tion among producers. The producer local variable prodIdx indicates the next free

slot in the chunk. All that is left for the insertion function to do, is to put a task in

that slot and to increment prodIdx (line 58). Once the index reaches the maximal

value, the chunk variable is set to ⊥, indicating that the next insertion operation

should start a new chunk.

SALSA consumer without stealing

The consumer’s algorithm without stealing is given in the left column of Al-

gorithm 5. The consumer first finds a nonempty chunk it owns and then invokes

takeTask() to retrieve a task.

Unlike producers, which have exclusive access to insertions in a given chunk,

a consumer must take into account the possibility of stealing. Therefore, it should

notify other processes which task it is about to take.

To this end, each node in the chunk list keeps an index of the taken prefix of

its chunk in the idx variable, which is initialized to −1. A consumer that wants to

take a task T , first increments the index, then checks the chunk’s ownership, and

finally changes the chunk entry from T to TAKEN (lines 90–92). By doing so, a

consumer guarantees that idx always points to the last taken task or to a task that is

about to be taken. Hence, a thread that is stealing a chunk from a node with idx = i

can assume that the tasks in the range [0 . . . i) have already been taken. The logic

for dealing with stolen chunks is described in the next section.

1.5.3 Stealing

The stealing algorithm is given in the function steal() in Algorithm 5. We refer to

the stealing consumer as cs, the victim process whose chunk is being stolen as cv,

and the stolen chunk as C.

The idea is to turn cs to the exclusive owner of C, so that cs will be able to take

tasks from the chunk without synchronization. In order to do that, cs first adds the

chunk to its list (line 115) then changes the ownership of C from cv to cs using

CAS (line 116) and removes the chunk from cv’s list (line 132). Once cv notices

the change in the ownership it can take at most one more task from C (lines 95–

98) after failing the second check of ownership in line 91 having passed the one in

line 88.

14



Algorithm 5 SALSA implementation of SCPool: Consumer Functions.

74: Function consume():

75: if (currentNode 6= ⊥) then ⊲ common case

76: t← takeTask(currentNode)

77: if (t 6= ⊥) then return t

78: foreach Node n in ChunkLists do: ⊲ fair

traversal of chunkLists

79: if (n.c 6= ⊥ ∧ n.c.owner = consumerId)

then

80: t← takeTask(n)

81: if (t 6= ⊥) then currentNode← n; re-

turn t

82: currentNode← ⊥; return ⊥

83: Function takeTask(Node n):

84: chunk← n.c

85: if (chunk = ⊥) then return ⊥ ⊲ this chunk

has been stolen

86: task← chunk.tasks[n.idx + 1]

87: if (task = ⊥) then return ⊥ ⊲ no inserted

tasks

88: if (chunk.owner 6= consumerId)

89: return ⊥

90: n.idx++ ⊲ tell the world you’re going to take

a task from idx

91: if (chunk.owner = consumerId) then ⊲ com-

mon case

92: chunk.tasks[n.idx]← TAKEN

93: checkLast(n)

94: return task

⊲ the chunk has been stolen, CAS the last task

and go away

95: success← (task 6= TAKEN ∧
CAS(chunk.tasks[n.idx], task, TAKEN))

96: if(success) then checkLast(n)

97: currentNode← ⊥
98: return (success) ? task : ⊥

99: Function checkLast(Nconsumerode n):

100: if(n.idx + 1 = CHUNK SIZE) then ⊲ fin-

ished the chunk

101: n.c← ⊥; return chunk to chunkPool

102: currentNode← ⊥

103: Function isEmpty():

104: foreach Node n in chunkLists do:

105: if (n.c has tasks in slots greater than

n.idx)

106: return true

107: return false

108: Function steal(SCPool p):

109: prevNode ← a node holding tasks, whose

owner is p, from some list in p’s pool ⊲ dif-

ferent policies possible

110: if (prevNode = ⊥) return ⊥ ⊲ No Chunk

found

111: c← prevNode.c; if (c = ⊥) then return ⊥
112: prevIdx← prevNode.idx

113: if (prevIdx+1 = CHUNK SIZE ∨
c.tasks[prevIdx+1] = ⊥)

114: return ⊥
115: chunkLists[steal].append(prevNode) ⊲

make it stealable from my list

116: if (CAS(c.owner, p.consumerId, con-

sumerId) = false)

117: chunkLists[steal].remove(prevNode)

118: return ⊥ ⊲ failed to steal

119: idx← prevNode.idx

120: if (idx+1 = CHUNK SIZE) ⊲ Chunk is

empty

121: chunkLists[steal].remove(prevNode)

122: return ⊥
123: task← c.tasks[idx+1]

124: if (task 6= ⊥) ⊲ Found task to take

125: if (c.owner 6= consumerId ∧ idx 6= prev-

Idx)

126: chunkLists[steal].remove(prevNode)

127: return ⊥
128: idx++

129: newNode← copy of prevNode

130: newNode.idx = idx

131: replace prevNode with newNode in chun-

kLists[steal]

132: prevNode.c← ⊥⊲ remove chunk from con-

sumer’s list

⊲ done stealing the chunk, take one task from

it

133: if (task = ⊥) then return ⊥ ⊲ still no task

at idx

134: if (task = TAKEN ∨
!CAS(c.tasks[idx], task, TAKEN)) then

135: task← ⊥
136: checkLast(newNode)

137: if (c.owner = consumerId) currentNode ←
newNode

138: return task

When the steal() operation of cs occurs simultaneously with the takeTask()

operation of cv, both cs and cv might try to retrieve the same task. We now explain

why this might happen. Recall that cv notifies potential stealers of the task it is
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about to take by incrementing the idx value in C’s node (line 90). This value is

copied by cs in line 129 when creating a copy of C’s node for its steal list.

Consider, for example, a scenario in which the idx is incremented by cv from

10 to 11. If cv checks C’s ownership before it is changed by cs, then cv takes the

task at index 11 without synchronization (line 92). Therefore, cs cannot be allowed

to take the task pointed by idx at all. Hence, cv has to take the task at index 11

even if it does observe the ownership change. After stealing the chunk, cs will

eventually try to take the task pointed by idx + 1. However, if cs copies the node

before idx is incremented by cv, cs might think that the value of idx+ 1 is 11. In

this case, both cs and cv will try to retrieve the task at index 11. To ensure that the

task is not retrieved twice, both functions invoke CAS in order to retrieve this task

(line 134 for cs, line 95 for cv).

The above schematic algorithm works correctly as long as the stealing con-

sumer can observe the node with the updated index value. This might not be the

case in case the same chunk is concurrently stolen by another consumer, rendering

the idx of the original node obsolete. In order to prevent this situation, stealing

a chunk from the pool of consumer cv is allowed only if cv is the owner of this

chunk (line 116). This approach is prone to the ABA problem: consider a scenario

where consumer ca is trying to steal from cb, but before the execution of the CAS

in line 116, the chunk is stolen by cc and then stolen back by cb. In this case,

ca’s CAS succeeds but ca has an old value of idx. To prevent this ABA problem,

the owner field contains a tag, which is incremented on every CAS operation. For

brevity, tags are omitted from the pseudo-code.

A naı̈ve way for cs to steal the chunk from cv would be first to change the

ownership and then to move the chunk to the steal list. However, this approach

may cause the chunk to disappear when cs stalls, because the chunk is not yet

accessible via the lists of cs and yet cs is its owner. Therefore, SALSA first adds

the original node to the steal list of cs, then changes the ownership, and only then

replaces the original node with a new one (lines 115–132).

An additional problem may occur if cs steals a chunk that does not contain

tasks. This may happen if the chunk is emptied after cs chooses it in line 109.

In this case, cs may notice that the chunk does not contain a task and return ⊥ in

line 133. However, another task may be added later and then taken by cv, which

may have already started taking a task before the chunk was stolen. In this case, cv
will take this task using a CAS operation, while cs may try to take the same task

later without using a CAS operation, and therefore the task may be taken twice.
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To avoid this problem, we make sure that if a chunk is stolen, cv will not take a

task that cs might have missed because it was added after cs tried to read it. This

is done by adding an ownership check after cv reads the task on line 86 and before

committing to take it by incrementing idx in line 90. This makes sure that cv can

only take tasks that existed before the chunk was stolen. For the same reason, the

ownership check is added in line 125. In this case however cv also checks if the idx

has changed since before it changed ownership. This is done by comparing the idx

read before the ownership change in line 112 to the idx read after the ownership

change in line 119. If the idx hasn’t changed, it means that cs is guaranteed to

see the task pointed by idx, because due to the check in line 113 we know that

task existed before cv changed ownership, and therefore existed before cs changed

ownership. In this case cv may safely increase idx and take the task. Note that

returning the task is necessary to avoid livelock.

Another issue we need to address is making sure that the idx value in nodes

pointing to a given chunk increases monotonically. To this end, we make sure that

when cs creates a new node, this node’s idx is greater than or equal to the idx of

cv’s node. As noted before, cv may increase the idx at most once after its chunk

is stolen. Also, thanks to the ownerships checks that are done after the task was

read and before the idx is incremented, we know that the idx field of cv increases

only if there is a task in the next slot after the ownership change. To ensure that

idx does not decrease in this case, cs sets the idx of the new node to be the idx of

cv plus one if the next task is not ⊥ (line 128).

1.5.4 Chunk Pools

As described in Section 1.5.1, each consumer keeps a pool of free chunks. When a

producer needs a new chunk for adding a task to consumer ci, it tries to get a chunk

from ci’s chunk pool – if no free chunks are available, the produce() operation

fails.

As described in Section 1.4, our system-wide policy defines that if an insertion

operation fails, then the producer tries to insert a task to other pools. Thus, the

producer avoids adding tasks to overloaded consumers, which in turn decreases the

amount of costly steal operations. We further refer to this technique as producer-

based balancing.

Another SALSA property is that a chunk is returned to the pool of a consumer

that retrieves the latest task of this chunk. Therefore, the size of the chunk pool
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of consumer ci is proportional to the rate of ci’s task consumption. This property

is especially appealing for heterogeneous systems – a faster consumer ci, (e.g.,

one running on a stronger or less loaded core), will have a larger chunk pool, and

so more produce() operations will insert tasks to ci, automatically balancing the

overall system load.

1.5.5 Checking Emptiness
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Figure 1.3: An example where a single traversal may violate linearizability: consumer a is trying

to get a task. It fails to take a task from its own pool, and starts looking for chunks to steal in other

pools. At this time there is a single non-empty chunk in the system, which is in b’s pool; a checks

c’s pool and finds it empty. At this point, a producer adds a task to c’s pool and then b takes the last

task from its pool before a checks it. Thus, a finds b’s pool empty, and returns ⊥. There is no way

to linearize this execution, because throughout the execution of a’s operation, the system contains at

least one task.

For our system to be linearizable, we must ensure that it returns ⊥ only if it

is empty (i.e., contains no tasks) at some point during the get() operation. We

describe a policy for doing so in a lock-free manner.

Let us examine why a naı̈ve approach, of simply traversing all task pools and

returning ⊥ if no task is found, violates correctness. First, a consumer might “miss”

one task added during its traversal, and another removed during the same traversal,

as illustrated in Figure 3. In this case, a single traversal would have returned ⊥

although the pool was not empty at any point during the get() operation. Second, a

consumer may miss a task that is moved from one pool to another due to stealing.

In order to identify these two cases, we add to each pool a special emptyIndicator, a

bit array with a bit per-consumer, which is cleared every time the pool may become

empty. In SALSA, this occurs when the last task in a chunk is taken or when a

chunk is stolen. In addition, we implement a new function, checkEmpty(), which

is called by the framework whenever a consumer fails to retrieve tasks from its
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pool and all other pools. This function returns true only if there is a time during

its execution when there are no tasks in the system. If checkEmpty() returns false,

the consumer simply restarts its operation.

Denote by n the number of consumers in the system. The checkEmpty() func-

tion works as follows: the consumer traverses all SCPools, to make sure that no

tasks are present. After checking a pool for the first time, the consumer sets its bit

in emptyIndicator using CAS. The consumer repeats this traversal n times, where

in all traversals, it checks that its bit in emptyIndicator is set, i.e., that no chunks

were emptied or removed during the traversal. The n traversals are needed in order

to account for the case that other consumers have already stolen or removed tasks,

but did not yet update emptyIndicator, and thus their operations were not detected

by the consumer. Since up to n − 1 pending operations by other consumers may

empty pools before any emptyIndicator changes, it is guaranteed that among n

traversals in which no chunks were seen and the emptyIndicator did not change,

there is one during which the system indeed contains no tasks, and therefore it is

safe to return ⊥. This method is similar to the one used in Concurrent Bags [37].

Algorithm 6 SALSA extensions for supporting checkEmpty()

139: Per consumer local:

140: boolean[] emptyIndicator ⊲ one entry per

consumer

⊲ replacement for the checkLast() function

141: Function checkLast(Node n, Task next):

142: if(n.idx + 1 = CHUNK SIZE) then ⊲ fin-

ished the chunk

143: n.c← ⊥; return chunk to chunkPool

144: currentNode← ⊥
145: clearIndicator()

146: if(next = ⊥) then ⊲ took last task

147: clearIndicator()

148: Function clearIndicator():

149: foreach(boolean b in emptyIndicator) do:

150: b← false

151: Function setIndicator(SCPool p, int con-

sumerId):

152: emptyIndicator[consumerId]← true

153: Function checkIndicator(SCPool p, int con-

sumerId):

154: return emptyIndicator[consumerId]

We now describe the extensions to the SALSA pool which are needed so that

checkEmpty() will work. Specifically, we need to make sure that operations that

may cause a pool to become empty will clear emptyIndicator.

We note that a pool may become empty in two cases: (1) When a chunk is

stolen from a pool and this is the only chunk that contains tasks, and (2) when a

task is taken and that was the last task in the pool.

We alter the consumer code so it will clear it in those cases:

1. In case of a successful steal - the consumer clear the indicator before line 119.
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2. If the task returned may be the last task in the chunk, the consumer clears

emptyIndicator in the checkLast() function. The updated function is de-

scribed in Algorithm 6.

In the second case, the consumer checks that this is the last task by reading the next

slot before changing the current slot to TAKEN, and then checking if the next slot

contained ⊥.

1.6 Implementation and Evaluation

In this section we evaluate the performance of our work-stealing framework built

on SALSA pools. We first present the implementation details on dealing with

memory reordering issues in Section 1.6.1. The experiment setup is described in

Section 1.6.2, we show the overall system performance in Section 1.6.3, study the

influence of various SALSA techniques in Section 1.6.4 and check the impact of

memory placement and thread scheduling in Section 1.6.5.
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Figure 1.4: System throughput for various ratios of producers and consumers. SALSA scales

linearly with the number of threads – in the 16/16 workload, it is ×20 faster than WS-MSQ and

WS-LIFO, and ×3.5 faster than Concurrent Bags. In tests with equal numbers of producers and

consumers, the differences among work-stealing alternatives are mainly explained by the consume

operation efficiency, since stealing rate is low and hardly influences performance.

1.6.1 Dealing with Memory Reordering

The presentation of the SALSA algorithm in Section 1.5 assumes sequential con-

sistency [27] as the memory model. However, most existing systems relax se-
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quential consistency to achieve better performance. Specifically, according to x86-

TSO [35], memory loads can be reordered with respect to older stores to different

locations. As shown by Attiya et al. [5], it is impossible to avoid both read-after-

write and atomic-write-after-read in work stealing structures, which requires using

a synchronization operation, such as a fence or CAS, to ensure correctness. In

SALSA, this reordering can cause an index increment to occur after the ownership

validation (lines 90, 91 in Algorithm 5), which violates correctness as it may cause

the same task to be taken twice, by both the original consumer and the stealing

thread.

The conventional way to ensure a correct execution in such cases is to use mem-

ory fences to force a specific memory ordering. For example, adding an mfence

instruction between lines 90 and 91 guarantees SALSA’s correctness. However,

memory fences are costly and their use in the common path degrades performance.

Therefore, we prefer to employ a synchronization technique that does not add sub-

stantial overhead to the frequently used takeTask() operation. One example for

such a technique is location-based memory fences, recently proposed by Ladan-

Mozes et al. [26], which is unfortunately not implemented in current hardware.

In our implementation, we adopt the synchronization technique described by

Dice et al. [14], where the slow thread (namely, the stealer) binds directly to the

processor on which the fast thread (namely, the consumer) is currently running,

preempting it from the processor, and then returns to run on its own processor.

Thread displacement serves as a full memory fence, hence, a stealer that invokes

the displacement binding right after updating the ownership (before line 119 in

Algorithm 5) observes the updated consumer’s index. On the other hand, the steal-

free fast path is not affected by this change.

1.6.2 Experiment Setup

The implementation of the work-stealing framework used in our evaluation does

not include the linearizability mechanism described in 1.5.5. We believe that this

mechanism has negligible effect on performance; moreover, in our experiment they

would not have been invoked because the pool is never empty. We compare the

following task pool implementations:

• SALSA – our work-stealing framework with SCPools implemented by SALSA.

• SALSA+CAS – our work-stealing framework with SCPools implemented

by a simplistic SALSA variation, in which every consume() and steal() op-
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eration tries to take a single task using CAS. In essence, SALSA+CAS re-

moves the effects of SALSA’s low-synchronization fast-path and per-chunk

stealing. Note that disabling per-chunk stealing in SALSA annuls the idea of

chunk ownership, hence, disables its low-synchronization fast-path as well.

• ConcBag – an algorithm similar to the lock-free Concurrent Bags algo-

rithm [37]. It is worth noting that the original algorithm was optimized for

the scenario where the same process is both a producer and a consumer (in

essence producing tasks to itself), which we do not consider in this work;

in our system no thread acts as both a producer and a consumer, therefore

every consume operation steals a task from some producer. We did not have

access to the original code, and therefore reimplemented the algorithm in

our framework. Our implementation is faithful to the algorithm in the pa-

per, except in using a simpler and faster underlined linked list algorithm. All

engineering decisions were made to maximize performance.

• WS-MSQ – our work-stealing framework with SCPools implemented by

Michael-Scott non-blocking queue [31]. Both consume() and steal() opera-

tions invoke the dequeue() function.

• WS-LIFO – our work-stealing framework with SCPool implemented by

Michael’s LIFO stack [30].

We did not experiment with additional FIFO and LIFO queue implementations,

because, as shown in [37], their performance is of the same order of magnitude as

the Michael-Scott queue. Similarly, we did not evaluate CAFÉ [7] pools because

their performance is similar to that of WS-MSQ [6], or ED-Pools [2], which have

been shown to scale poorly in multi-processor architectures [6, 37].

All the pools are implemented in C++ and compiled with -O2 optimization

level. In order to minimize scalability issues related to allocations, we use jemalloc

allocator, which has been shown to be highly scalable in multi-threaded environ-

ments [1]. Chunks of SALSA and SALSA+CAS contain 1000 tasks, and chunks

of ConcBag contain 128 tasks, which were the respective optimal values for each

algorithm (see Section 1.6.6).

We use a synthetic benchmark where 1) each producer works in a loop of insert-

ing dummy items; 2) each consumer works in a loop of retrieving dummy items.

Each data point shown is an average of 5 runs, each with a duration of 20 seconds.
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The tests are run on a dedicated shared memory NUMA server with 8 Quad Core

AMD 2.3GHz processors and 16GB of memory attached to each processor.

1.6.3 System Throughput

Figure 1.4(a) shows system throughput for workloads with equal number of pro-

ducers and consumers. SALSA scales linearly as the number of threads grows

to 32 (the number of physical cores in the system), and it clearly outperforms all

other competitors. In the 16/16 workload, SALSA is ×20 faster than WS-MSQ

and WS-LIFO, and more than ×3.5 faster than Concurrent Bags.

We note that the performance trend of ConcBags in our measurements differs

from the results presented by Sundell et al. [37]. While in the original paper, their

throughput drops by a factor of 3 when the number of threads increases from 4

to 24, in our tests, the performance of ConcBags increases with the number of

threads. The reasons for the better scalability of our implementation can be related

to the use of different memory allocators, hardware architectures, and engineering

optimizations.

All systems implemented by our work-stealing framework scale linearly be-

cause of the low contention between consumers. Their performance differences are

therefore due to the efficiency of the consume() operation – for example, SALSA

is ×1.7 faster than SALSA+CAS thanks to its fast-path consumption technique.

In contrast, in ConcBags, which is not based on per-consumer pools, every

consume() operation implies stealing, which causes contention among consumers,

leading to sub-linear scalability. The stealing policy of ConcBags algorithm plays

an important role. The stealing policy described in the original paper [37] pro-

poses to iterate over the lists using round robin. We found out that the approach

in which each stealer initiates stealing attempts from the predefined consumer im-

proves ConcBags’ results by 53% in a balanced workload.

Figure 1.4(b) shows system throughput of the algorithms for various ratios of

producers and consumers. SALSA outperforms other alternatives in all scenarios,

achieving its maximal throughput with equal number of producers and consumers,

because neither of them is a system bottleneck.

We next evaluate the behavior of the pools in scenarios with a single pro-

ducer and multiple consumers. Figure 1.5(a) shows that the performance of both

SALSA and SALSA+CAS does not drop as more consumers are added, while the

throughput of other algorithms degrades by the factor of 10. The degradation can
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(a) System throughput – 1 Producer, N consumers.
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(b) CAS operations per task retrieval – 1 Producer,

N consumers.

Figure 1.5: System behavior in workloads with a single producer and multiple consumers. Both

SALSA and SALSA+CAS efficiency balance the load in this scenario. The throughput of other

algorithms drops by a factor of 10 due to increased contention among consumers trying to steal tasks

from the same pool.

be explained by high contention among stealing consumers, as evident from Fig-

ure 1.5(b), which shows the average number of CAS operations per task transfer.

1.6.4 Evaluating SALSA techniques

0 

5 

10 

15 

20 

25 

30 

35 

40 

1 4 8 12 16 20 24 28 31 

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 t

a
sk

s/
m

se
c)

 

Num of consumers 

SALSA 

SALSA+CAS 

SALSA no balancing 

SALSA+CAS no balancing 

Figure 1.6: System throughput – 1 Producer, N consumers. Producer-based balancing contributes

to the robustness of the framework by reducing stealing. With no balancing, chunk-based stealing

becomes important.

In this section we study the influence of two of the techniques used in SALSA:

1) chunk-based-stealing with a low-synchronization fast path (Section 1.5.3), and
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2) producer-based balancing (Section 1.5.4). To this end, we compare SALSA

and SALSA+CAS both with and without producer-based balancing (in the latter a

producer always inserts tasks to the same consumer’s pool).

Figure 1.6 depicts the behavior of the four alternatives in single producer / mul-

tiple consumers workloads. We see that producer-based balancing is instrumental

in redistributing the load: neither SALSA nor SALSA+CAS suffers any degrada-

tion as the load increases. When producer-based balancing is disabled, stealing

becomes prevalent, and hence the stealing granularity becomes more important:

SALSA’s chunk based stealing clearly outperforms the naı̈ve task-based approach

of SALSA+CAS.

1.6.5 Impact of Scheduling and Allocation
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Figure 1.7: Impact of scheduling and allocation (equal number of producers and consumers).

Performance decreases once the interconnect becomes saturated.

We now evaluate the impact of scheduling and allocation in our NUMA system.

To this end, we compare the following three alternatives: 1) the original SALSA

algorithm; 2) SALSA with no affinity enforcement for the threads s.t. producers do

not necessarily work with the closest consumers; 3) SALSA with all the memory

pools preallocated on a single NUMA node.

Figure 1.7 depicts the behavior of all the variants in the balanced workload.

The performance of SALSA with no predefined affinities is almost identical to the

performance of the standard SALSA, while the central allocation alternative looses

its scalability after 12 threads.

The main reason for performance degradation in NUMA systems is bandwidth
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saturation of the interconnect. If all chunks are placed on a single node, every re-

mote memory access is transfered via the interconnect of that node, which causes

severe performance degradation. In case of random affinities, remote memory ac-

cesses are distributed among different memory nodes, hence their rate remains be-

low the maximum available bandwidth of each individual channel, and the program

does not reach the scalability limit.

1.6.6 Chunk size influence
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Figure 1.8: System throughput as a function of the chunk size.

Figure 1.8 shows the influence of chunk size on system throughput for the

chunk-based algorithms SALSA, SALSA+CAS and ConcBags in a 16/16 work-

load. SALSA variations achieve their best throughput for large chunks with 1000

tasks (∼ 8KB size in 64-bit architectures). The optimal chunk for ConcBags in-

cludes 128 tasks. We believe that ConcBags is ineffective with large chunk sizes

since its consumers linearly scan a chunk when seeking a task to steal. In contrast,

SALSA keeps the index of the latest consumed task in the chunk node, and there-

fore its consume operations terminate in O(1) steps for every chunk size. In our

evaluation in section 1.6 we used optimal chunk sizes for each algorithm.
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1.7 SALSA correctness

1.7.1 Definitions

First we define constants and definitions that are used in the section.

A — The system as describe in Section 1.4, when using SALSA pools as the SCPool.

n — The number of consumers in A.

Definition 1. (Referring Node) A node is the referring node of chunk C if that

node points to C, and is in a chunk list of C’s owner.

We now define what we shall call the commit points of A, we will later show

that these points are the linearization points of A.

Definition 2. The commit points of A are as follows:

1. For a put() operation, the commit point is the assignment in line 58 of the

put() function.

2. For a get() operation that returns a task, the commit point is the point where

the idx of the referring node is increased to include the returned task. More

specifically:

• If the task T is returned by consume(), the commit point is line 90 of

the consume() if the chunk containing T is owned by the consumer exe-

cuting this consume() operation, and otherwise, it is line 131 executed

by a stealing consumer before it removes the chunk from the current

consumer’s node in line 132

• If the task is returned by steal() and the new node added to the list in

line 131 has a higher idx than the node it replaces, then the commit

point is line 131.

• If the task is returned by steal() and the new node added to the list has

the same idx as the node it replaces in line 131, it means that the idx

of the replaced node has been incremented between lines 119 and 131.

In this case the commit point is at the time the idx was increased to

its current value. This may be either in line 90 or line 131, depending

on the operation (consume() or steal()) executed by the consumer that

increments it.
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Definition 3. (taken) A task T is taken at a given time if the idx of the referring

node of the chunk containing T is greater than or equal to the slot of this task.

Note that if a task T is returned, then the commit point of the get() operation

that returns T is the point where the task is taken.

Definition 4. (empty) A task pool is empty at a given time t, if all tasks that were

added to the pool by put() operations that passed their commit point before time t

are taken at time t.

Definition 5. Let c be the consumer owning a SALSA SCPool, then c’s SCPool is

non-empty if there is a chunk owned by c that contains tasks which are not taken.

1.7.2 Lock-freedom

For the purpose of the proof, we refer to the first part of the steal() operation

(lines 109 to 118) as part I of the operation and to the second part (lines 119

to 138) as part II of the operation.

From Definition 5, Definition 4 and the fact the each chunk is owned by a

consumer we can reach the following observation:

Observation 1. If the task pool is not empty, then at least one SALSA SCPool is

non-empty.

Lemma 1. If a chunk owned by a consumer c contains a task, then that chunk is

accessible from one of the lists in c’s SCPool.

Proof. If c is the first owner of this chunk than that chunk was inserted to c’s pool

by a producer in line 71. Otherwise, c stole this chunk, and before the changing

ownership in line 116, c pointed to this chunk in line 115 and later replaced to

node pointing to that chunk in line 131. Therefore, this chunk is accessible via c’s

SCPool during the time c is the chunk’s owner.

Lemma 2. If a consumer successfully finishes part I of the steal() operation (i.e.,

succeeds in the CAS in line 116) and later finishes the operation, then in the dura-

tion of this steal() operation, a task becomes taken.

Proof. First we note that before the consumer finishes part I, it first checks that

there is a task in the current chunk, and stores the index of that task in prevIdx

(line 113). If the idx as read in line 119 is bigger than prevIdx, a task was taken in
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the duration of this operation and we are done. Otherwise, idx as read in line 119

is equal to prevIdx and therefore the consumer will reach line 128. In this case

the new node replacing the old node will have idx greater than prevIdx, and so

the task in prevIdx is taken and we are done.

Lemma 3. If a consumer fails to finish part I of the steal() operation (i.e., fails the

CAS in line 116) n times on a SCPool that is non-empty when the operation begins,

then there is another consumer that takes a task from the task pool during the time

interval spanning those n failed attempts.

Proof. Since we assume the SCPool is not empty when the operation begins, then

by Lemma 1 there is a list containing a non-empty chunk owned by the victim

in the victim’s SCPool. Therefore if no chunk is found in line 109 then either a

concurrent consume() operation took a task in which case we are done, or another

steal() operation successfully stole a chunk from this SCPool.

Otherwise a chunk is found and the consumer may fail to finish part I of the

steal() operation on a non-empty SCPool in the following cases:

1. The if statement in line 113 is true because the chunk does not contain a task.

However since, a chunk containing task was chosen in line 109, at least one

task was taken from this chunk after it was chosen, and we are done.

2. The if statement in line 111 is true. In this case, a stealable chunk was found,

but another steal() operation successfully stole the chunk before the chunk

was read.

3. The if statement in line 116 is true. In this case, the steal() operation fails

because another consumer stole this chunk.

If a task was taken in the period spanning the n operations, we are done. Oth-

erwise, there are n operations by other consumers that successfully stole a chunk,

i.e., there are n operations that finished part I. Since there are only n−1 consumers

other than the consumer that failed, we conclude that there is at least one consumer

that completed part II. Therefore, by Lemma 2, some task was taken during this

time.

Lemma 4. If a consumer returns ⊥ in n steal() operations on a non-empty SALSA

SCPool, then there is a consumer that takes a task from the task pool during that

time interval.
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Proof. If the consumer returns ⊥ because it fails to finish part I n times, then by

Lemma 3, a task was taken during that time period. Otherwise, at least one of its n

steal operations successfully finishes part I of the steal() and returns ⊥ in part II.

By Lemma 2, a task was taken by some consumer during this time interval.

Lemma 5. If a consumer returns ⊥ in n consume() operations on a non-empty

SALSA SCPool, then there is a consumer that takes a task from the task pool during

that time interval.

Proof. A consume() operation may return ⊥ in two cases:

1. No chunk with a task was found and ⊥ was returned in line 82. In this case,

no task was found in the SCPool, but since we assume that this SCPool was

non-empty when the operation started, we know that the chunk containing

this task was stolen by some other consumer.

2. If a chunk with a task was found, and takeTask() returned ⊥. This may

happen only if another consumer stole the chunk.

In both cases there was some other consumer that stole a chunk. If this occurs n

times, then we know that there are n operations that finished part I. Since there are

only n − 1 consumers other than this consumer, we conclude that there is at least

one consumer that finishes part II, i.e. returns from its steal() operation. Therefore,

by Lemma 2, there is a consumer that takes a task.

Lemma 6. If checkEmpty() returns false because the if in line 35 is true 2n times,

then there is a consumer that takes a task during that time interval.

Proof. If checkEmpty() returns false because of the if in line 35, then some con-

sumer has cleared emptyIndicator during the execution of checkEmpty(). This

can happen only when a consumer successfully steals a chunk or takes a task from

a chunk. By Lemma 4, if the first case occurs more than n − 1 times, a task is

taken and we are done. Otherwise, there are at least n operations that take a task

and clear emptyIndicator. At most n − 1 of these operations were invoked before

checkEmpty() began. Therefore, at least one of the n operations that take tasks

began after the checkEmpty() operation began and cleared emptyIndicator before

it ended. Since this operation takes the task before it cleares emptyIndicator, it

takes the task before checkEmpty() ends, and the lemma follows.
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Claim 1. If a get() operation runs for 5n iterations in A, then a task is taken by

some consumer in the system during those iterations.

Proof. The get() operation is a loop. In every iteration of the while loop in lines 13-

21 it calls consume() on the local SCPool, then steal() n − 1 on the other pools,

and finally checkEmpty(). When consume() or steal() return a task, this task

is returned by the get() operation. If checkEmpty() returns true, then the get()

operation returns ⊥.

Consider a get() operation that does not return after 5n loop iterations. At

the end of each iteration, checkEmpty() returns false. If it returns false 2n times

because of the if in line 35, then by Lemma 6 a task is taken and we are done.

Otherwise, the are at least 3n iterations in which the task pool contained a task

when checkEmpty() was called. In each of those iterations, there are three cases:

(1) the consumer found the task pool non-empty during a its corresponding steal()

or consume(), (2) the task was taken from this task pool by another consumer,

(3) the chunk that included that task was stolen. If case (2) happens we are done.

Therefore, assume that all 3n iterations fall in cases (1) or (3). If (3) happens

n times, then at least one of the consumers finishes the steal() operation, and by

Lemma 2, a task was taken and we are done. Otherwise, then there are at least

2n iterations where the task pool is not empty, and therefore by Observation 1 in

those iterations there is at least one non-empty SCPool. Thus, in every iteration

the consumer performs consume() or steal() on a non-empty SALSA SCPool, and

since at least n of those operations are of the same type, then by Lemmas 5 and 4 a

task will be taken by this consumer or by another consumer during that time.

We now show the if (n + 1)2 tasks are taken from the pool a task is returned

during that time. Note that while it is possible to show a tighter bound on the

number of taken tasks, we chose to use a higher value for proof clarity.

Lemma 7. If (n+1)2 tasks are taken from the task pool in a certain time interval,

then in the duration of this interval a task is returned by some consumer.

Proof. First we show that if n+ 1 tasks are taken, then at least one slot is changed

to TAKEN during that time. By Definition 3, a task is taken after the idx pointing

to the chunk containing that task is increased to include this task This may occur in

line 90 or 131. After either of these lines is executed, the consumer always reaches

a line that changes the slot to TAKEN if it wasn’t already changed (lines 92 and 95

in takeTask() and line 134 in steal()). The slot is not changed to TAKEN before the
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task is taken, since it is only changed after incrementing of idx. Therefore, after a

task is taken when the consumer incrementing the idx pointing to this chunk fin-

ishes its takeTask() or steal() operation, the slot of this task is changed to TAKEN.

Since there are n consumers in the system, if n + 1 tasks are taken, then at least

one consumer finished takeTask() or steal() after executing line 92, 95, or 134, and

therefore during the time when n+ 1 tasks are taken a task is changed to TAKEN.

Therefore when (n+1)2 tasks are taken from the pool, we know that n+1 slots

are changed to TAKEN. We now note that when a slot is changed to TAKEN by

a consumer, that consumer returns that task when it completes its get() operation.

Since we know that n+ 1 slots were changed to TAKEN, and since there are only

n consumers in the system, we know that at least one consumer finished its get()

operation after changing a slot to taken, and therefore returns that task.

Theorem 1. A is lock-free.

Proof. According to Claim 1, if a get() operation runs for 5n iterations without

taking a task, then a task is taken by some consumer in the system. By Lemma 7

if (n + 1)2 tasks are taken a tasked is returned. Therefore after (n + 1)2 × 5n

iterations of get() a is be returned. Therefore, the get() operation is lock-free. The

put() operation is trivially wait-free.

1.7.3 Linearizability

Lemma 8. Let C be a task chunk and idxt1 , idxt2 be the idx of the referring node

of C at times t1, t2 respectively, s.t. t1 < t2. Then idxt1 ≤ idxt2

Proof. First we note that an idx field of a node may only increase after it is created

(line 90). It therefore remains to consider the case that the new referring node

pointing to C replaces an old referring node. When the referring node pointing

to C is replaced by a new referring node (line 131) the node is created with the

previous node’s idx or with its idx+1 if the idx+1’th slot in C is not ⊥. However,

the previous node’s owner may increase its idx after it is read by other consumers.

Note that this may occur only if this chunk did not contain ⊥ in the idx’th slot

before the chunk changed ownership, since the consumer checks that the next slot

in the chunk is not ⊥ and that it is the owner before incrementing idx (lines 87

and 88 in takeTask() and lines 124 and 125 in steal()). Therefore, we get that if

the previous owner may have increased its idx, then a consumer stealing the chunk

will create a new node with idx+1. And since after a chunk is stolen the previous
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owner may increase the idx at most once before it notices that it was stolen and

leaves this chunk, the lemma follows.

We will now prove that A is linearizable. First we show that the commit points

defined in Section 1.7.1 are well-defined and therefore can be used as the lineariza-

tion points of A.

Claim 2. There is exactly one commit points in the duration of any put() operation

or get() operation that returns a task.

Proof. For a put() operation, it is easy to see that the function always reaches

line 58.

For a get() that returns a task, the following cases are possible:

• If the task is taken by consume(), then line 90 is always executed before

the task is returned. However, this line may be executed after the chunk is

stolen. In this case a concurrent steal() operation might have removed the

chunk from the consumer’s list (line 132) and before that, pointed to the

chunk with a new node that has higher idx (line 131). If this is the case, then

the commit point is the time of the node replacement in line 131. Note that

the other consumer executed this line during the execution of the consume()

operation - before line 90 and after the chunk is selected in line 86

• If the task taken by steal(), by Lemma 8 there are two options:

– The new node added to the list in line 131 has a higher idx than the

node it replaces. In this case, it is obvious that line 131 is executed

before the task is returned.

– The new node added to the list has the same idx as the node it replaces.

This may occur only if the idx of the original node is increased after

the stealing consumer reads its value in line 119 and before the stealing

consumer replaces the node in line 131. Therefore the incrementation

of idx is performed in the course of the stealer’s steal() call.

We will show that commit points as described above are valid linearization

points for put() operations, and for get() operations that return a task. For get()
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operations that returns ⊥, we will show that such a linearization point exist without

explicitly specifying it.

The following observation follows immediately from the code in Algorithm 6.

Observation 2. If a consumer operation that takes the last task in a pool returns a

task, this operation clears the emptyIndicator of this pool after taking the task and

before starting a new operation.

Claim 3. If checkEmpty() returns true then there is a time between its invocation

and its response when the task pool is empty.

Proof. In every iteration of the loop in line 32 of checkEmpty(), the consumer

checks that its bit in emptyIndicator is set (line 35). If checkEmpty() returns

true then the emptyIndicator was not reset by any consumer after it was set in the

first iteration. Note that an operation may take the last task in the pool and then

stall before clearing emptyIndicator. Since there are n − 1 consumers other than

the consumer running c
¯
heckEmpty(), there may be up to n − 1 such operations.

Since only n − 1 consumers may take the last task from a pool without clearing

the emptyIndicator of that pool (by Observation 2), we can conclude that there is at

least one iteration during which no pool changes from non-empty to empty. During

this iteration, checkEmpty() does not find a task in line 106. Therefore, when that

iteration began, the pool was empty and the claim follows.

Lemma 9. Let σ be a run and t a time in σ such that all the pending operations

that started before time t complete in σ and, assume a consumer c increments the

idx field of a node at time t. Then the task pointed by this idx will be returned

either by that consumer or another consumer running a concurrent get() operation

that started before c incremented the idx field.

Proof. First we note that operations that start after idx is incremented do not take

the task pointed by that idx, since they read the up-to-date idx, which by Lemma 8

never decreases. Therefore, if an operation takes the task pointed by idx after it is

incremented, it must be an operation that started before c’s operation.

The idx field can be incremented in the takeTask() or steal() functions.

If the idx was incremented in the taskTask() function in line 90 then there are

three possible cases:

1. If c is still the owner of the chunk when it reaches line 91, then c will return

this task in line 94.
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2. Otherwise, if the chunk is stolen before c executes line 91, then c tries to CAS

the slot from the task to TAKEN in line 95, and if the CAS is successful, c

returns it in line 98.

3. Otherwise, some other consumer c′ succeeds in changing the slot to TAKEN

in line 134, and returns this task in line 138.

If the idx field is incremented in steal() in line 131 by replacing the old node

with a node with higher idx, then c created this node with a higher idx and there-

fore must have executed line 128, which means that the if in line 124 was true, and

the slot did not contain ⊥. Therefore, c will reach line 134, and will try to CAS the

slot from the task to TAKEN. If it is successful it returns the task, and otherwise,

some other consumer succeeds, and that consumer returns the task.

Claim 4. Let σ be a run and t a time in σ such that all the pending operations that

started before time t complete in σ and the system is empty at time t. Then every

task that was added to the pool by a put() operation that passed its commit point

before time t is returned by some get() operation whose commit point is before time

t.

Proof. If the system is empty, then by Definitions 4 and 3 the idx of every node is

greater than or equal to the the index of the last task in that chunk. By Lemma 9,

if the idx is increased then the task in that idx is either returned, or is about to

be returned by an active get() operation. By the definition of the commit point of

get(), that operation has passed its commit point, since the idx of the node was

increased. The claim follows.

Claim 5. If a consumer c returns a task T , then there is a put(T ) operation that

passes its commit point before c’s get() operation passes its commit point.

Proof. Before a consumer returns a task, the idx field of the node pointing to the

task is incremented. Since both takeTask() and steal() verify that the task is not

⊥ before incrementing idx, we know that the put() operation already passed its

commit point before the idx is incremented, and by the definition of the get()

commit points, the claim follows.

Lemma 10. If a consumer cs steals a chunk from a consumer cv and this chunk’s

referring node’s idx value is i when cs reads it in line 119. Then (1) cv does not
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take tasks from indexes greater than i+1 in this chunk unless cv resteals the chunk.

And (2) If cv attempts to take a task from slot i + 1 in this chunk it does so using

CAS.

Proof. First we note that in consume(), after a consumer increments the value of

a node’s idx, it then checks that it is still the owner of the chunk pointed by that

node. If the consumer notices that it is not the case it leaves it (line 97). Therefore,

after a successful steal(), the previous consumer of the chunk can increase the idx

field by at most one. In consume(), the consumer takes tasks from the idx’th slot

of the chunk (lines 92 and 95), and therefore it does not take tasks from slots larger

than i+ 1.

Since cs reads the idx of cv’s node after changing ownership (line 119), if cv
increases the idx in line 90 after cs steals the node, cv notices the ownership change

(line 91) and therefore attempts to take the task using a CAS operation in line 95.

If cv is executing steal(), cv either takes the i + 1’st task if idx is read by cs
before cv increments it in line 131 or it takes the i’th task if cs reads it after it

is increased. In both cases, cv used CAS to take the task. Moreover, since the

ownership has changed, cv does not try to take tasks from this chunk before re-

stealing it, since this chunk is not chosen by this consumer if it is not the owner

(line 79).

Lemma 11. Let cs be a consumer stealing a chunk from consumer cv, and let the

idx value of the referring node of that chunk be i when cs reads it in line 119. Then

(1) cs only takes tasks from indexes greater than i; and (2) if another consumer

tries to take a task from index i+ 1, then cs attempts to take that task using CAS.

Proof. The first task cs attempts to take is the task at index i + 1 (line 134). This

is done by a CAS operation if there is a task in that slot when cs reads the contents

of the slot in line 123. If the slot is ⊥ when cs reads it, cs may later take this

task without a CAS operation if the chunk is not stolen. In the later case, other

consumers do not try to take this task unless they steal the chunk, since they may

only see this task after cs changes the ownership, and since after reading a slot,

ownership is checked (lines 88 and 125). An exception is in line 125 where the

task might be taken in case the ownership changed. However, this is done only if

the task was there before the ownership change and therefore cs is guaranteed to

also notice this task. If the chunk is stolen from cs, then by Lemma 10 cs takes the

i+ 1’st task using CAS.
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After cs takes the first task, it increments idx in line 131 or line 90, and since

subsequent consume() operations will take tasks from slots i + 1 and higher, the

lemma follows.

Lemma 12. A task in A may be only returned once.

Proof. Consider a consumer cs that takes a task. If cs stole the chunk from another

consumer cv, then by Lemma 10 and Lemma 11, cs and cv do not take tasks from

the same slot, and if they do, they use CAS. Since only one consumer may suc-

ceed in a CAS operation we conclude that a task will be returned by at most one

consumer, and since a consumer will not attempt to take the same task twice, as it

always takes tasks from idx + 1 and always increases idx, a task can be returned

only once.

Theorem 2. A is linearizable.

Proof. We will now show that it is possible to choose the linearization points to be

the commit point as defined above. We only show correctness for complete histo-

ries. However, since our algorithm is lock-free it is possible to complete pending

operations of partial histories so they will be complete. Therefore our proof also

holds for partial histories.

From Claim 5 we know that the linearization point of a consumer execut-

ing get() that returns T always follows the linearization point of put(T ). From

Claim 12 we know that for each put(T ) operation, at most one get() returns T .

From Claim 3 we know that if a get() operation returns ⊥, then there is a point

during its execution in which the pool is empty. From Claim 4 we know that each

put(T ) operation that preceded a point in which the pool was empty there is a a

get(), which stats after he linearization point of put(T ) that returns T .

1.8 Conclusions

We presented a highly-scalable task pool framework, built upon our novel SALSA

single-consumer pools and work stealing. Our work has employed a number of

novel techniques for improving performance: 1) lightweight and synchronization-

free produce and consume operations in the common case; 2) NUMA-aware mem-

ory management, which keeps most data accesses inside NUMA nodes; 3) a chunk-

based stealing approach that decreases the stealing cost and suits NUMA migration
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schemes; and 4) elegant producer-based balancing for decreasing the likelihood of

stealing.

We have shown that our solution scales linearly with the number of threads. It

outperforms other work-stealing techniques by a factor of 20, and state-of-the art

non-FIFO pools by a factor of 3.5. We have further shown that it is highly robust

to imbalances and unexpected thread stalls.

We believe that our general approach of partitioning data structures among

threads, along with chunk-based migration and an efficient synchronization-free

fast-path, can be of benefit in building additional scalable high-performance ser-

vices in the future.
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Chapter 2

On Locality Effects in STM

2.1 Introduction

Locality has always been an important aspect of many research fields, such as

concurrent data structures, concurrent algorithms, and memory allocators. Indeed,

many papers discuss locality and cache-awareness (see Section 2.2). However,

somewhat surprisingly, in the field of software transactional memory (STM) [36],

not many papers address this subject, and the few that do, only refer to it shortly.

The benefits of locality are well known and consist of two aspects: the first

is spacial locality, which affects both single-threaded and multi-threaded applica-

tions. The second is cache-contention, which affects multi-threaded programs. In

Section 2.4.3 we examine these two locality effects, and run micro-benchmarks

in order to understand them and their impact on performance better. Our micro-

benchmarks show that both effects can have a potentially large impact on perfor-

mance.

In STM systems, one way to achieve locality is by storing the meta-data inline

with the data. This approach was suggested in the past in McRT-STM [34] for

word-based systems, and in [18] for object-based systems, but the locality effects

were not evaluated or explained in detail. In this chapter we use an approach similar

to the one used in McRT-STM and evaluate the effects of this approach. We create

a version of TL2 that emulates this approach by storing locks inline with the data,

instead of storing them in a global lock-table as done in most STMs.

Storing meta-data inline with the data has several advantages:

• Avoiding global meta-data can reduce so called “false” cache contention
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caused due to multiple unrelated meta-data items sharing the same cache

line.

• Because the data is stored next to the meta-data, fetching the meta-data may

fetch the data to the cache and thus reduce the number of cache misses.

• Whereas storing meta-data inline with the data uses the minimal amount

of memory necessary, storing meta-data in a global hash table has a large

memory overhead.

• Storing meta-data in a global table may result in false conflicts if one location

is used for more than one lock. This is not a problem with local meta-data,

since there is exactly one lock per allocation.

We look at TL2 [16] as a test case and we run benchmarks from the STAMP

benchmark suite in order to evaluate the effect of storing meta-data locally on an

STM system. Our results show a 20-230% speedup when comparing local meta-

data to a global lock-table. We also see a decline in the number of cache misses

that may explain this difference. In summary, our contributions in this chapter are:

• Understanding the two locality effects.

• Evaluating the effects of meta-data locality on an STM system.

• Understanding how meta-data locality may help improve STM systems.

2.2 Related Work

The effect of data locality on performance is the subject of many works. In [13],

the authors recognize data locality as an important problem. The authors sug-

gest that data should be clustered in memory in a data-structure aware manner.

They suggest a new version of malloc which can allocate related data in the same

cache block, thus reducing the number of accesses to memory. Other works such

as [38], [29] suggest improving locality by compiler based optimizations, while

works such as [33] and [12] use programmer “hints” to improve data locality of

both sequential and parallel programs.

Many of the STM systems for unmanaged environments are lock-based ([16],

[19], [17], [34]). Locks are used to protect shared memory locations in order to
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make sure that the transactions do not conflict before a transaction is allowed to

commit (see section 2.4.1). Most of these algorithms have been implemented by a

global lock-table ([16], [19], [17]). In our work we focus on TL2 [16], a lock-based

STM system, in which locks are only acquired at commit time, but are validated

before and after every read, thus making the overhead of accessing locks signifi-

cant.

In this chapter we evaluate the idea of storing locks inline instead of using a

global lock table. This idea of inline locks in STM systems was first presented in

McRT-STM [34]. This STM system had an optional in-line locks implementation,

which allocated the locks of small objects in-line with the data. This is done by

using a custom memory allocator. The effect of in-line locking vs. global lock

table were tested by three micro benchmarks and showed improvement in two of

the benchmarks. However, the reason for those improvements were not further

looked at, and the effect was not tested using more realistic benchmarks.

Concurrently and independently to our work, Mannarswamy and Govindara-

jan [28] suggested compiler transformations for reducing cache-misses in STMs.

They showed that cache-misses of the STM system account for a large number

of the total cache-misses of the STAMP benchmarks. They showed that in most

benchmarks most of the cache-misses originate from accessing locks. The solution

they gave for this problem is holding the lock in-line with the data, similarly to

McRT-STM.

2.3 Locality in different architectures

In this section we discuss the different locality effects, and run micro-benchmarks

in order to see those effects.

We run the micro-benchmarks on two systems:

1. An AMD Opteron system with eight 4-core CPUs with NUMA layout and

128GB of RAM.

2. An Intel Nehalem system with two 6-core hyperthreaded CPUs (a total of 24

hardware threads) and 80GB of RAM.

In the first benchmark we check how contention affects performance and in the

second we check how spacial data locality affects performance.
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2.3.1 Memory contention effect on different architectures
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Figure 2.1: Contention effect - speedup.

The purpose of this benchmark is to show the effect of sharing data among

threads. In this simple benchmark all threads access an integer in a 80%/20% R/W

ratio. We run the benchmark in two modes:

• Fully local - all threads access different integers, so no data is shared.

• Fully shared - all threads access the same integer, so that all read and write

operations are to shared data.
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Opteron - 32 threads Nehalem - 24 threads

Fully Shared Fully Local Fully Shared Fully Local

L1 miss rate 0.987 0.005 7.826 0.446

Total miss rate 1.129 0.001 6.116 0.240

Table 2.1: Contention effect - cache miss rates (%).

We run the benchmark on both systems with a different number of threads,

up to the hardware thread limit of the machine. In each test we run a constant

number of operations which we divide among the threads. Thus, if the threads do

no interrupt each other, we expect the speedup to be linear in the number of threads.

In Figure 2.1 we show the result of this benchmark. The x-axis is the number of

threads and the curve shows the speedup of the benchmark relative to the run time

of the benchmark with one thread.

We can see that there is a major difference between the runs. This can be

explained by the difference between the latency of accessing a value in the L1

cache and a value located in the memory. In Table 2.1 we can see the L1 data

cache loads miss rate and the overall miss rate (#of LLC load misses/#L1 loads),

where LLC is the last level cache. It is clear that there is a major difference between

the two modes, and this verifies our assumption.

2.3.2 Spacial locality effect

In this benchmark we test the effect of spacial locality on performance. Again we

implemented a simple benchmark with two modes. In the first mode, which we call

no-spacial-locality, each thread performs reads from different memory locations,

where each read accesses two cache lines that are far enough apart so that the data

is not fetched together from memory to cache. The threads do not share their data

in order to disable contention effects.

The second mode, spacial-locality, is identical to the first, except that every

even operation is performed on the same cache as like the preceding operation. In

this case, half of the operations access data that resides in the cache.

The results of this benchmark on 16 threads can be seen in Figure 2.2. Here we

can see that both machines show a 70-99% runtime speedup. In Table 2.3.2 we can

see that, as expected, the no-spacial-locality mode has about twice as much misses

as the spacial-locality mode.
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Figure 2.2: Prefetch effect - speedup.

Opteron Nehalem

Spacial Locality No Yes No Yes

L1 miss rate 29.57 13.09 56.72 23.58

Total miss rate 29.88 13.24 0.70 0.47

Table 2.2: Prefetch effect - cache miss rate (%).

2.4 Locality in STM

In this section we present an alternative method to store meta-data in a local-aware

manner and discuss the effects it may have on the performance of the STM system.

We look at TL2 [16] as a case study, and implement a variant of it that stores locks

near the data instead of storing them in a global hash-table.

2.4.1 Background

In many lock-based STM implementations, like TL2[16], locks are held in a global

lock-table which is usually implemented as an array-based hash table. Each word

or group of several words in the memory is mapped to an entry in the array that con-

tains the lock for that word by a simple hash function (see Figure 2.3(a)). In case

of collisions, it is possible for two words to share a lock, thus causing transactions

to abort due to false-conflicts.

In TL2, the lock is checked before and after each read, if a read is successful,

then the address read is added to the transaction’s read-set. When writing to an
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Figure 2.3: Storing locks in a table vs. storing locks with the data.

object, the object is buffered in a set called the transaction’s write-set. When the

transaction commits, locks are acquired for all the addresses in the write-set, then,

the lock is validated again for each entry in the read set, and finally the data in the

write-set is written back to memory and the locks are released.

2.4.2 Local Meta-data implementation

While many previous STM systems store meta-data in a global table (see Figure

2.3(a)), we store meta-data, such as locks, near the data itself, as depicted in Figure

2.3(b). A similar approach was used in McRT-STM [34]. Since our goal in this

work is to see the effects of locality on STM, our implementation is not a full work-

ing system, but rather an emulation of such a system. A more detailed description

on how such system can be fully implemented is found in [34].

There is a technicality related to changing the location of the lock - it requires

changing the memory allocation library, as described in [34]. Specifically, for our

experiments, we alter the implementation supplied with the STAMP benchmark

suite [11]. In this implementation, every call to malloc is wrapped with a func-

tion that provides the block size This is done so that when a block is freed it will

be possible to free the locks associated with each word of this block. In our im-

plementation, we change the wrapper function to also include the lock, (similarly

to [34]). We also adapt the TL2 implementation to work with this change.

In order to locate the lock when reading or writing a value, the STM system

must know where the start of the block is. This may be a problem if the operation

is done on a field in a struct or a cell in an array, since only the pointer to the data

is passed to the STM system. In order to bypass this problem, we changed the

implementation of the read and write macros so that they will get a pointer to the
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start of the block in addition to the actual data location. This change is for the sake

of testing only. As described in [34], it is possible to implement a real STM system

that stores the meta-data as we do even without passing the address of the lock by

changing the implementation of the memory allocator.

As described in [34], when the allocated objects are large, as in the case of

arrays, it is better to use a lock-table instead of a lock per object in order to avoid

false-conflicts. We do not discuss this aspect in this chapter, and instead restrict

our attention to benchmarks with small objects.

In addition, we also altered the read-set implementation. Originally it was

implemented as an array with an initial capacity of 8192. Each read of a mem-

ory location inserted the address of the lock to the last free slot in this array, and

therefore reading from the same address twice would result in two identical ar-

ray entries. To eliminate this redundancy, we changed the implementation of the

read-set and implemented it as a hash-set with an O(1) add operation, an O(n) reset

operation, and an O(n) object iteration operation. This change helps both the local

meta-data and the global lock-table implementations. In fact, the global lock-table

implementation has a greater benefit from this change than the local meta-data im-

plementation.

2.4.3 Local Meta-data advantages

Storing meta-data locally has several advantages over the global lock-table imple-

mentation:

Local meta-data: In the global lock-table implementation, adjacent locks may

share the same cache line; this is a case of false-sharing. In this case a thread that

writes to one lock may cause cache invalidations to other threads that read adjacent

locks. In contrast, in the local meta-data implementation, there is no such false-

sharing. The local approach therefore reduces the contention on the cache, which

we expect to yield a similar effect to the one we saw in Section 2.3.1.

Spacial & temporal locality: As described in Section 2.4.1, in TL2, the lock

is checked before and after each read. When a global table is used the lock resides

in a global hash-table which is far from the data, and therefore each read requires

fetching at least two different memory location to the cache. In the local meta-data

implementation, when a lock is read, the data associated with that lock is often also
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fetched to the cache. Since the next action after reading a lock is usually reading

the data (unless the transaction aborts before the read), we will not get a cache miss

here. This is particularly significant if the data set is large, and most accesses are

to objects that are not in the already in the cache. Here we expect to see speedup

due to the spacial memory locality effect that we saw in section 2.3.2.

Lock granularity: In the local meta-data implementation, the locking granularity

is not arbitrary as it is with the fixed-granularity implementation of TL2. Rather,

we keep one lock per object allocated by malloc. This may be an advantage in

cases such as structs, which are semantically one object, since when we access one

field in a struct there is high probability of accessing additional fields in the same

struct. Also, in this scenario, accessing several fields of the same struct will add

only a single lock to the read-set, where originally there was one lock per field.

Therefore, in the local meta-data implementation, the read-set is smaller and there-

fore consumes less memory and takes less time to validate before commit. The

downside of this method is that for very big objects, like arrays, one lock may be

too coarse and cause false conflicts. Indeed, as noted above, it is not recommended

to use this approach for large objects.

Memory consumption and false conflicts: Unlike a global table, where there in-

herently must be many empty table entries to reduce the probability of collision, in

the local meta-data implementation there is exactly one lock per allocation, there-

fore, memory consumption is lower. Moreover, with a global table, two objects

may be mapped to the same lock and thus cause a false-conflict between transac-

tions that access different objects leading to spurious aborts. In our experiments

we increased the size of the lock-table from 220 to 225 to minimize such cases.

Furthermore we experimented on machines with ample memory, minimizing the

effect of the big tables.

2.5 Benchmarks

We evaluate the effect of local meta-data using some of the STAMP[11] bench-

marks.

We do not use benchmarks that have large shared objects, since as mentioned
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above, local meta-data is not a good solution for such objects - they are best sup-

ported by ”falling back” on a global lock table[34]. The benchmarks we run are:

vacation, yada and intruder. We use the recommended configurations suggested in

[11]. Suffixes of low and high indicate the relative amount of contention, and the

‘+’ symbol indicates a larger input size.

We run the benchmarks on both systems (see 2.3), each benchmark was run

with 1,2,4,8 and 16 threads on both machines, and 32 threads on the AMD machine.

Each data point is the average of 5 runs.

The first benchmark is vacation, an implementation of an online transaction

system emulating a travel reservation system. Each transaction performs several

operations on the database, which is implemented as a set of red-black trees. We

found that in most cases, contention in this benchmark is very low and the ma-

jority of transactions commit. The second benchmark is intruder, a network intru-

sion detection system. This system has two main data-structures, a FIFO queue

and a balanced tree. This benchmark has short transaction with high contention.

The third benchmark is Yada, which implements Ruppert’s algorithm for Delaunay

mesh refinement. This benchmark has long transactions with medium contention.

2.5.1 Results

Figures 2.4 and 2.5 show the speedup of the local meta-data implementation over

the global lock-table implementation for the all three benchmarks on both ma-

chines.

For the vacation benchmarks we can see that while using local meta-data is

better for all cases, the speedup is greater when the input is larger, this may be

because in those cases the chance of a lock to already be in the cache before the it is

accessed is smaller compared to the benchmark with smaller data sets. This leads

to a bigger advantage for the local meta-data implementation, since the locality

effects are more relevant when the lock is not already in the cache.

We can see that the improvement is not just because of less false-conflicts,

since there is a significant improvement even when only one thread is used. Thus

we can assume that this speedup is mainly due to locality effects.

For the intruder benchmark we can see a 20% speedup on the Opteron machine

and a 10%–20% speedup in the Nehalem machine. For the yada benchmark we see

a 20% speedup for yada on the Opteron machine. For yada+ we see a 40%–80%

speedup, the incline in speedup may be caused by a larger number of aborts in the
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Figure 2.4: STAMP speedup on Opteron.
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Figure 2.5: STAMP speedup on Nehalem.
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normal version due to false-conflicts, the probability for such aborts increase as

more threads are run.

2.5.2 Readset
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Figure 2.6: VacationHigh read-set size distirbution.

As we stated in Section 2.4.3 the size of the read-set is also affected by our

change due to the changed granularity. While we believe the effect of this on the

runtime is minor, we show in Figure 2.6 the read-set size for the vacationHigh

benchmark with one thread on the Opteron machine. The x-axis is the size of the

read-set divided to buckets, the y-axis is the number of transactions that committed

with that read-set certain size. It can be seen that our the local meta-data system’s

read-set is about half the size of the original TL2 implementation.

2.5.3 Cache effects

In this section we will see how locality effects in our the local meta-data STM

system reflect in cache misses. To see this we run the STAMP tests we ran in

Section 2.5.3. Most runs were with one thread so other effects that may occur due

to aborts will be disabled. We also run vacation with 16 threads since the aborts

rate there are low. We then read the performance counters for the L1 and last-level-

cache loads and load-misses and compare the results between the global lock-table

and the local meta-data implementations.

Table 2.3 shows the cache miss rate for three benchmarks with one thread, and

for vacationHigh with 16 threads. It can be seen that there are less cache misses
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when the metadata is inline. However, this change seems to be small. This can

be explained by the fact that in those benchmarks a significant part of the code is

outside of the STM system, which makes the STM system less significant. Never-

theless, those changes, while small, can have a noticeable effect on the performance

as accessing memory has high latency penalty, and therefore may explain some of

the changes in latency in our tests.

(a) vacationHigh 1 thread

Opteron Nehalem

Meta data Global Local Global Local

L1 miss rate 1.81 1.38 3.87 2.73

Total miss rate 0.81 0.65 1.21 1.06

(b) vacationHigh 16 threads

Opteron Nehalem

Meta data Global Local Global Local

L1 miss rate 1.84 1.38 3.80 3.23

Total miss rate 0.88 0.72 1.33 1.19

(c) intruder 1 thread

Opteron Nehalem

Meta data Global Local Global Local

L1 miss rate 0.66 0.37 1.42 0.87

Total miss rate 0.10 0.06 0.34 0.20

(d) yada 1 thread

Opteron Nehalem

Meta data Global Local Global Local

L1 miss rate 0.99 0.66 2.78 1.69

Total miss rate 0.28 0.18 0.47 0.30

Table 2.3: STAMP - cache misses (%).
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 המחקר נעשה בהנחיית פרופ' עדית קידר מהפקולטה להנדסת חשמל בפקולטה
למדעי המחשב.

 אני מבקש להביע את תודתי למנחה שלי, פרופ. עדית קידר, שליוותה אותי במהלך
 עבודתי ולימדה אותי איך עושים מחקר. כמו כן אני רוצה להודות לדמיטרי פרלמן,

 שהיה חבר ושותף למחקר, על העבודה המשותפת והעזרה הגדולה במהלך
המחקר . לבסוף, אני מודה לבת-זוגתי רותי שליוותה אותי לאורך תקופת התואר.   

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני





 תקציר

כיום מעבדים תוכנה.  מציבות אתגרים חדשים למפתחי  מודרניות   ארכיטקטורות מחשוב 
 מכילים יותר מליבה אחת, והמגמה היא לכלול מספר גדול יותר של ליבות בעתיד. מגמה זו
 מאלצת את מפתחי התוכנה לכתוב תוכנות יותר סקלביליות, שמסוגלות לנצל מספר גדול של

ליבות על ידי שימוש במספר גדול של חוטים.

 שימוש במספר גדול של חוטים יוצר מספר בעיות. גישה לזכרון משותף על ידי מספר גדול
 של חוטים מהווה צוואר בקבוק, ולכן על מפתחי התוכנה להימנע מכך. כמו כן, ההשהיה
 בגישה לזכרון מרוחק ארוכה יחסית לגישה לזכרון המטמון של המעבד, ולכן על המפתחים
 למזער את הגישה לזיכרון מרוחק וליצור תוכנה שהיא ידידותית-למטמון, כלומר תוכנה בה

רוב הגישות הן גישות לזכרון המטמון.

 , בתצורה זו לכל מעבדNUMAמערכות רבות בעלי מעבדים-מרובים מגיעות כיום בתצורת 
 יש בנק זכרון משלו, אליו הוא ניגש דרך בקר הזכרון שלו. אם מעבד צריך לגשת לזכרון
 מרוחק, עליו לגשת אליו דרך חיבור מיוחד שמחבר אותו למעבדים מרוחקים. הגישה לזכרון
 מרוחק היא בעלת זמן השהייה גבוה יותר ורוחב הערוץ לזכרון מרוחק קטן יותר בהשוואה

  עדיף לגשת לזכרון המקומיNUMAלגישה לזכרון שמחובר ישירות למעבד. לכן במערכות 
על מנת לצמצם את התעבורה בין המעבדים.

בעבודה זו חקרנו שתי בעיות בהקשר של סקלביות ולוקליות.
 העבודה הראשונה היא מימוש של מבנה נתונים של מאגר משימות עבור צרכנים-יצרנים.
 מבנה זה מיועד לשימוש על-ידי חוטים-יצרנים שמייצרים משימות, אותם החוטים-הצרכנים
והחוטים-הצרכנים המשימות,  למאגר  משימות  מוסיפים  החוטים-היצרנים  לבצע.   צריכים 
יחזירו ולא  ריק  ידווחו שהוא  ריק, חוטים-צרכנים   לוקחים משימות מהמאגר. אם המאגר 
 משימה. מבנה נותנים זה הוא מבנה נתונים בסיסי בתבנית התכנות של יצרן-צרכן שנפוצה

בתכנות מקבילי.

 המטרה שלנו בעבודה זו היא לתכנן ולממש מאגר משימות כך שהוא יהיה סקלבילי, מהיר
 וחסר-נעילות. אלגוריתם חסר-נעילות הינו אלגוריתם שמריץ מספר חוטים תוך הבטחה שאם
 חוט מבצע פעולות, אז אחד החוטים יסיים את הפעולה שלו בזמן סופי. כמו-כן האלגוריתם

 ,barrier ולא דורש פעולות סנכרון מסוג CASשלנו לא מבצע פעולות אטומיות חזקות כגון 
ברוב המקרים כשהמערכת מאוזנת. 

בו סדר ההוצאה זהה לסדר ההכנסה.FIFOמאגרי משימות כאלו לרוב מומשו ע"י תור    
 מכיוון שיש אילוץ על סדר ההוצאה, מבנים אלו דורשים סנכרון בעת הכנסת והוצאת איברים

לצורךFIFOולכן הם אינם סקלביליים. בעבודות מהתקופה האחרונה ויתרו על תכונת ה-   
 , אך הן לא תמידFIFOסקלביליות. עבודות אילו אכן מציגות ביצועים טובים יותר מתורי 

 סקלביליות ביחס לינארי למספר החוטים, וכולן משתמשות בפעולות סנכרון במקרה הנפוץ,
אפילו אם הוא לא נחוץ.



 בעבודה זו תכננו ומימשנו מאגר משימות חסר-נעילות, סקלבילי וללא פעולות סנכרון במקרה
 הנפוץ.  מבנה הנתונים מורכב ממערכת של מאגרים כמספר הצרכנים. לכל מאגר יש צרכן
 שהוא הבעלים שלו. כל מאגר תומך בפעולות של הוספת משימה, לקיחת משימה על-ידי
 הבעלים וגניבת משימה על-ידי צרכן שאינו הבעלים. צרכן שרוצה לקחת משימה מהמערכת
 תחילה ינסה לקחת משימה מהמאגר שלו, אם הוא נכשל ינסה לגנוב משימות ממאגרים של
 צרכנים אחרים. יצרן יכול להוסיף משימות לכל אחד מהמאגרים. המדיניות שלנו מודעת

צרכנים מנסים לגנוב מצרכנים שנמצאים עלNUMAלארכיטקטורת המערכת, ובמערכות    
חולקים מעבד. לצרכן שאיתו הם  להוסיף משימות  יעדיפו  יצרנים  כמותם.   אותו המעבד 
 מדיניות זו גורמת לכך שרוב הגישות יעשו לזכרון הקרוב לחוט ובכך תצמצם גישות למעבדים

מרוחקים.

 המאגרים של כל צרכן ממומשים עלי-ידי רשימות של משימות כאשר הרשימה מחולקת
 לנתחים וכל נתח מכיל מספר רשימות. לכל יצרן יש רשימה משלו, וכך אין צורך בסנכרון בין
 היצרנים. לכל נתח יש יצרן שהוא הבעלים של הנתח, לכל נתח יש שדה שמכיל את זהות
 היצרן שהוא הבעלים של הנתח. יצרן יכול לקחת משימות רק מנתחים שבבעלותו. כאשר
 יצרן מעוניין לגנוב נתח של יצרן אחר, הוא משנה את הבעלות של הנתח ואז מעביר אותו
 לרשימה שלו. כאשר נתח נגנב, יתכן שהבעלים המקורי כבר התחיל בפעולת לקיחה של
 משימה, במקרה זה הבעלים המקורי יבחין שהנתח נגנב וייקח את המשימה עם פעולה

נתח, עליו לקחת את המשימה הבאהCASאטומית מסוג- גונב  יצרן  זו, כאשר   . מסיבה 
כדי למנוע מצב בו משימה נלקחת פעמיים. שיטה זו מאפשרת לנוCASבעזרת פעולת    

 לוותר על פעולות סנכרון כאשר אין גניבות, ומשתמשת בפעולות אלה רק כאשר יש צורך
בהן. 

 על מנת לשמור על המאגרים מאוזנים מבחינת כמות המשימות, נקטנו בשיטה אותה אנו
 מכנים "איזון מונחה יצרנים". לכל צרכן יש מאגר של נתחים ריקים שפנויים לשימוש, כאשר
 יצרן זקוק לנתח חדש להוסיף לרשימת הנתחים שלו במאגר של יצרן כלשהו הוא לוקח נתח
 ממאגר הנתחים של אותו צרכן. אם מאגר הנתחים של אותו צרכן לא מכיל נתחים פנויים,
 היצרן מנסה להוסיף את המשימה שלו למאגרים של צרכנים אחרים. בנוסף, כאשר צרכן גונב
 נתח מצרכן אחר, נתח זה ישוב למאגר הנתחים של הצרכן הגנב לאחר שהוא יסיים לקחת
 ממנו את המשימות. באופן זה לצרכנים מהירים יהיו יותר נתחים פנויים ולצרכנים איטיים

פחות נתחים פנויים וכך יצרנים יפנו יותר לצרכנים המהירים ופחות לאיטיים.

 . בנוסף מימשנו גירסה שלCעל-מנת להעריך את ביצועי המערכת, מימשנו אותה בשפת ++
  גם כאשר אין גניבות, על מנת לראות את השפעתCASהמערכת שבה הצרכן מבצע פעולת 

שפורסם ב-ConcBagsפעולות הסנכרון על המערכת. כמו כן מימשנו את אלגוריתם ה-  
תור 2011 מימשנו  בנוסף  בנו.  המתחרה  ביותר  החדש  האלגוריתם  את  ומייצג   FIFO 

שערכנו הבדיקות  בכל  שלנו.  המערכת  בתשתית  שמשתמשים  חסרי-מנעולים   ומחסנית 
 המערכת החדשה הציגה ביצועים עדיפים על המערכות הקודמות וכמו כן היתה סקלבילית

באופן לינארי למספר החוטים במערכת.

  (מידע על מידע) במערכת זכרוןmetadataהבעיה השנייה שאותה חקרנו היא בעיית אחסון 
) תוכנה  Softwareטרנזקציוני מבוסס   transactional  memory  -  STM .(אלו  מערכות 



 ממשות סביבת זמן ריצה שמאשרת למפתחי תוכנה לממש תוכנה מקבילית בקלות יחסית
 , המתכנת מגדיר בלוקים שיבוצעו בצורה אטומיתTMללא שימוש במנעולים. במערכות 

מריצה את הקטעים במקביל בצורה אופטימית. אם המערכת מזהה שתיTMומערכת ה-   
טרנזקציות שניגשות לאותו מידע, היא תבטל את אחת מהן ותתחיל אותה מחדש. 

 חלק ניכר ממערכות אלו משתמש במנעולים על-מנת לוודא שטרנזקציות לא ניגשות לאותם
 תאים זכרון. הגישה הרגילה היא לאחסן מנעולים אלו בטבלת מנעולים רציפה בזכרון, אך
 לגישה זו יש מספר בעיות – מכיוון שטבלה זו משותפת, גם טרנזקציות שניגשות לאזורי
 זכרון שונים עלולות לגשת למיקומים קרובים בטבלה וכך להפריע אחת לשניה. בנוסף מכיוון
 שטבלה זו בגודל סופי וקבוע, יש מצבים בהם מספר מנעולים ממופים לאותה שורה וכך יתכן

מצב שבו טרנזקציה תיכשל ללא סיבה. 

 פתרון אפשרי שהוצע למצב זה הוא לאחסן את המנעולים ביחד עם המידע. דרך זו מאפשרת
וכך מעלה את הסבירות שהמידע יהיה במטמון. בנוסףmetadataגישה רציפה למידע ול-   

 בדרך זה אין התנגשויות בין פעולות שניגשות לאזורים שונים בזכרון ולכן הפתרון הוא יותר
 סקלבילי. לבסוף דרך זו מאפשרת נעילה ברמה של אובייקט לוגי גם בשפות שאינן מונחות

אובייקטים. 

 . תחילהSTMבעבודה שלנו חקרנו את ההשפעה של לוקליות על הביצועים של מערכת 
 הרצנו מיקרו-בדיקות שבודקות את האפקט של לוקליות במערכות שונות. לאחר מכן מימשנו

מבוססת על STMאב-טיפוס של מערכת   TL2-בה ה  metadataנשמר עם המידע. על   
הבדיקות  מאוסף  בדיקות  הרצנו  זו  מערכות STAMPמערכת  לבדיקת  המיועדת   STM 

ה- אחסון  של  ההשפעות  את  המטמוןmetadataוהראנו  זכרון  ביצועי  הריצה  זמן  על    
ופרמטרים נוספים.
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