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Abstract

Emerging computer architectures pose many new challenges for software develop-
ment. First, as the number of computing elements constantly increases, the impor-
tance of scalability of parallel programs becomes paramount. Second, accessing
memory has become the principal bottleneck, while multi-CPU systems are based
on NUMA architectures, where memory access from different chips is asymmet-
ric. Therefore, it is instrumental to design software with local data access, cache-
friendliness, and reduced contention on shared memory locations, especially across
chips. Furthermore, as systems get larger, their behavior becomes less predictable,
underscoring the importance of robust programs that can overcome unexpected
thread stalls.
In our work we focus on two problems:

1. We design and implement a scalable and highly-efficient non-blocking con-
sumer producer task pool, with lightweight synchronization-free operations
in the common case. Its data allocation scheme is cache-friendly and highly
suitable for NUMA environments. Moreover, our pool is robust in the face
of imbalanced loads and unexpected thread stalls.

2. We consider the case of improving metadata locality in word-based STMs.
To this end, we evaluate a locality-conscious approach for maintaining ver-
sioned locks in TL2. The speedup of the improved algorithm reaches a hun-
dred percent on STAMP benchmarks. We show that this speedup stems from
the following factors: 1) improved spacial and temporal locality, 2) reduced
false sharing and 3) less false conflicts.



Chapter 1

SALSA: Scalable and Low
Synchronization NUMA -aware
Algorithm for
Producer-Consumer Pools

1.1 Introduction

In this chapter, we focus on one of the fundamental building blocks of highly par-
allel software, namely a producer-consumer task pool. Specifically, we present a
scalable and highly-efficient non-blocking pool, with lightweight synchronization-
free operations in the common case. Its data allocation scheme is cache-friendly
and highly suitable for NUMA environments. Moreover, our pool is robust in the
face of imbalanced loads and unexpected thread stalls.

Our system is composed of two independent logical entities: 1) SALSA, Scal-
able and Low Synchronization Algorithm, a single-consumer pool that exports a
stealing operation, and 2) a work stealing framework implementing a management
policy that operates multiple SALSA pools.

In order to improve locality and facilitate stealing, SALSA keeps tasks in
chunks, organized in per-producer chunk lists. Only the producer mapped to a
given list can insert tasks to chunks in this list, which eliminates the need for syn-
chronization among producers.

Though each consumer has its own task pool, inter-consumer synchronization



is required in order to allow stealing. The challenge is to do so without resorting to
costly atomic operations (such as CAS or memory fences) upon each task retrieval.
We address this challenge via a novel chunk-based stealing algorithm that allows
consume operations to be synchronization-free in the common case, when no steal-
ing occurs, which we call the fast path. Moreover, SALS A reduces the stealing rate
by moving entire chunks of tasks in one steal operation, which requires only two
CAS (compare-and-swap) operations.

In order to achieve locality of memory access on a NUMA architecture, SALSA
chunks are kept in the consumer’s local memory. The management policy matches
producers and consumers according to their proximity, which allows most task
transfers to occur within a NUMA node.

In many-core machines running multiple applications, system behavior be-
comes less predictable. Unexpected thread stalls may lead to an asymmetric load
on consumers, which may in turn lead to high stealing rates, hampering perfor-
mance. SALSA employs a novel auto-balancing mechanism that has producers
insert tasks to less loaded consumers, and is thus robust to spurious load fluctua-
tions.

We have implemented SALSA in C++, and tested its performance on a 32-
core NUMA machine. Our experiments show that the SALSA-based work stealing
pool scales linearly with the number of threads; it is 20 times faster than other
work-stealing alternatives, and shows a significant improvement over state-of-the-
art non-FIFO alternatives. SALSA-based pools scale well even in unbalanced sce-
narios.

This chapter proceeds as follows. Section 1.2 describes related work. We
give the system overview in Section 1.4. The model and problem definitions are
presented in Section 1.3 he SALSA single-consumer algorithm is described in Sec-
tion 1.5. We discuss our implementation and experimental results in Section 1.6,
and the correctness of our system in Section 1.7. And finally we present our con-
clusions in Section 1.8.

1.2 Related Work

Task pools. Consumer-producer pools are often implemented as FIFO queues.
A widely used state-of-the-art FIFO queue is Micheal and Scott’s queue [31]. This
queue is implemented by a linked-list with head and tail references. The put oper-
ation adds a new node to the list and then updates the tail reference. This is done



by two CAS operations; one for adding the new node and one for updating the tail
reference. The get operation removes a node by moving the head reference to point
to the next node. This approach is not scalable under high contention as only one
contending operation may succeed.

Moir et al. [32] suggest using elimination to reduce the contention on the queue.
Whereby put and get operations can eliminate each other during the back-off after
an unsuccessful operation. However, due to the FIFO property, those eliminations
can only be done when the queue is empty, making this approach useful only when
the queue is almost to empty.

Hoffman et al. [25] try to reduce the contention of the put operation by allow-
ing concurrent put operations to add tasks to the same “basket”. This is done by
detecting contention on the tail, which is indicated by a failed CAS operation when
trying to update the tail. This reduces the contention on the tail, but not on adding
the node to the “basket”, which still requires a CAS operation. Therefore, this ap-
proach, while more efficient than Micheal and Scott’s queue, is still not scalable
under high contention.

Gidenstam et al. [20] use a similar approach to Micheal and Scott’s, but, in
order to improve locality and decrease the contention on the head and tail, the data
is stored in chunks, and the head and tail points to a chunk rather than single nodes.
This allows updating these references only once per-chunk rather than on every
operation. However, this solution still requires at least one CAS per operation,
rendering it non-scalable under high contention.

A number of previous works have recognized this limitation of FIFO queues,
and observed that strict FIFO order is seldom needed in multi-core systems.

Afek et al. [2] implemented a non-FIFO pool using diffraction trees with elim-
ination (ED-pools). An ED-pool is a tree of queues, which contains elimination
arrays that help reduce contention. While ED-pools scale better than FIFO based
solutions, they do not scale on multi-chip architectures [6].

Basin et al. [7] suggest a wait-free task-pool that allows relaxing FIFO. This
pool is more scalable than previous solutions, but, since it still has some ordering
(fairness) requirements, there is contention among both producers and consumers.

The closest non-FIFO pool to our work is the Concurrent Bags of Sundell et
al. [37], which, like SALSA, uses per-producer chunk lists. This work is opti-
mized for the case that the same threads are both consumers and producers, and
typically consume from themselves, while SALSA improves the performance of
such a task pool in NUMA environments where producers and consumers are sep-

4



arate threads. Unlike our pool, the Concurrent Bags algorithm uses strong atomic
operations upon each consume. In addition, steals are performed in the granularity
of single tasks and not whole chunks as in SALSA. Overall, their throughput does
not scale linearly with the number of participating threads, as shown in [37] and in
Section 1.6 of this chapter.

To the best of our knowledge, all previous solutions use strong atomic opera-
tions (like CAS), at least in every consume operation. Moreover, most of them [2,
3, 7] do not partition the pool among processors, and therefore do not achieve good
locality and cache-friendliness, which has been shown to limit their scalability on
NUMA systems [6].

Techniques. Variations of techniques we employ were previously used in various
contexts. Work stealing [9] is a standard way to reduce contention by using indi-
vidual per-consumer pools, where tasks may be stolen from one pool to another.
We improve the efficiency of stealing by transferring a chunk of tasks upon every
steal operation. Hendler et al. [23] have proposed stealing of multiple items by
copying a range of tasks from one dequeue to another, but this approach requires
costly CAS operations on the fast-path and introduces non-negligible overhead for
item copying. In contrast, our approach of chunk-based stealing coincides with
our synchronization-free fast-path, and steals whole chunks in O(1) steps. Further-
more, our use of page-size chunks allows for data migration in NUMA architec-
tures to improve locality, as done in [8].

The principle of keeping NUMA-local data structures was previously used by
Dice et al. for constructing scalable NUMA locks [15]. Similarly to their work,
our algorithm’s data allocation scheme is designed to reduce inter-chip communi-
cation.

The concept of a synchronization-free fast-path previously appeared in works
on scheduling queues, e.g., [4, 22]. However, these works assume that the same
process is both the producer and the consumer, and hence the synchronization-
free fast-path is actually used only when a process transfers data to itself. More-
over, those works assume a sequentially consistent shared-memory multiprocessor
system, which requires insertion of some memory barrier instructions to the code
when implemented on machine providing a weaker memory model [5]. On the
other hand, our pool is synchronization-free even when tasks are transfered among
multiple threads; our synchronization-free fast-path is used also when multiple pro-
ducers produce data for a single consumer. We do not know of any other work that



supports synchronization-free data transfer among different threads.

The idea of organizing data in chunks to preserve locality in dynamically-sized
data structures was previously used in [10, 20, 22, 37]. SALSA extends on the idea
of chunk-based data structures by using chunks also for efficient stealing.

1.3 Model and Problem Definitions

The problem we solve in this chapter is implementing a lock-free linearizable task-
pool. In Section 1.3.1 we describe the model and runtime environment. Then, in
Section 1.3.2, we define the linearizability criterion for concurrent data structures.
In Section 1.3.3, we introduce a sequential specification for task pools. Finally, in
Section 1.3.4, define our progress guarantee, namely lock-freedom.

1.3.1 Implementation Environment

We consider a shared memory environment where execution threads have a shared
heap, shared read only code, and separate stack memory spaces. The scheduler can
suspend a thread, for an arbitrary duration of time, at any moment after termination
of a basic processor instruction (read, write, CAS). Threads cannot be suspended in
the middle of a basic instruction. In modern architectures read and write operations
may be reordered unless explicitly using a fence operation. However, in our model
we assume sequential execution of instruction per-thread. The reordering problems
are solved by using implicit fences when using CAS, or by the technique explained
in 1.6.1.

1.3.2 Concurrent Objects, Linearizability

Formally, a task pool is a concurrent object [24], which resides in a memory shared
among multiple threads. As a concurrent object, it has some state and supports a set
of operations. Multiple threads can simultaneously perform operations on the same
object. Such operations may update the state of the object. Operations take time
and have a moment of invocation and a moment of response. When threads con-
currently perform operations on concurrent objects, they generate a history [24],
which is an ordered list of invocation and response events of concurrent object op-
erations. The order of events is according to the time line in which they occurred.
An operation invocation event is represented by the record O.methodr(args),
where O is the concurrent object, method is the invoked operation, args are the



invocation arguments and T is the thread that started the invocation. An opera-
tion response event is represented by the record O.methodr(args) returns result,
where result is the operation’s result. In a given history, we say that a response
matches a prior invocation if it has the same object O and thread 7', and no other
events of 7" on object O appear between them. A sequential history is a history
that has the following properties: 1) the first event in the history is an invocation;
2) each invocation, except possibly the last, is immediately followed by a matching
response.

A sequential specification defines which sequential histories of an object are
legal.

For defining the correctness of concurrent objects we consider the following
definitions. An invocation is pending in history H if no matching response follows
the invocation. An extension of history H is a history constructed by appending
zero or more responses matching the pending invocations of H. Complete(H ) is
the sub-sequence of H created by removing all pending invocations of H. H|T is
a history consisting of exactly the events of thread 7" in history H. Two histories
H and H' are equivalent if for each thread T, H|T = H'|T.

Given a sequential specification of a concurrent object, the linearizability [24]
correctness criterion is defined as follows: A history H is linearizable if it has an
extension H’ and there is a sequential history S such that:

1. S is legal according to the sequential specification of the object.
2. Complete(H') is equivalent to S.

3. If method response m’ precedes method invocation m in H, then the same
is true in S.

Concurrent objects that have only linearizable histories are called linearizable or
atomic. Intuitively, a concurrent object is linearizable if it requires each concurrent
run of its method calls to be equivalent in some sense to a correct serial run.

1.3.3 Task Pool Sequential Specification

A task pool supports put(7T') and get() returns 7" operations, where 7" is a task or
1.

We assume that tasks inserted into the pool are unique. That is, if put(7T") and
put(T") are two different invocations on a task pool, then 7' # T". This assumption



is made to simplify the definitions, and could be easily enforced in practice by
tagging tasks with process ids and sequence numbers. The sequential specification
of a task pool is as follows:

put(T) operation adds task 7" to the pool. get() returns and removes a task T’
from the pool or returns _L if the pool is empty.

1.3.4 Lock-freedom

Threads may invoke a concurrent object’s operations simultaneously. A concurrent
object implementation is lock-free if there is guaranteed system-wide progress, i.e.,
at least one thread always makes progress in its operation execution, regardless of
the execution speeds or failures of other threads. In this chapter, we implement a
lock-free shared object.

1.4 System Overview

CPU2

Memory 2

interconnect

SCPool 1 < A prod SCPool 3
orod 4 SCPool 4

w

=1 1 )
l Prod 2 access list: : 1 Cons 4 access list: !
1
| cons2, consl, cons3, cons4| 1 cons3, consl, cons2 !

Figure 1.1: Producer-consumer framework overview. In this example, there are two processors
connected to two memory banks (NUMA architecture). Two producers and two consumers running
on each processor, and the data of each consumer is allocated at the closest physical memory. A
producer (consumer) has a sorted access list of consumers for task insertion (respectively stealing).

In the current section we present our framework for scalable and NUMA -aware
producer-consumer data exchange. Our system follows the principle of separating
mechanism and policy. We therefore consider two independent logical entities:

1. A single consumer pool (SCPool) mechanism manages the tasks arriving to
a given consumer and allows tasks stealing by other consumers.

2. A management policy operates SCPools: it routes producer requests to the
appropriate consumers and initiates stealing between the pools. This way,



the policy controls the system’s behavior according to considerations of load-
distribution, throughput, fairness, locality, etc. We are especially interested
in a management policy suitable for NUMA architectures (see Figure 1.1),
where each CPU has its own memory, and memories of other CPUs are
accessed over an interconnect. As a high rate of remote memory accesses
can decrease the performance, it is desirable for the SCPool of a consumer
to reside close to its own CPU.

Algorithm 1 API for a Single Consumer Pool with stealing support.

1: boolean: produce(Task, SCPool) > Tries to insert the task to the pool, returns
false if no space is available.

2: void: produceForce(Task, SCPool) > Insert the task to the pool, expanding
the pool if necessary.

3: {Task U_L}: consume() > Retrieve a task from the pool, returns L if no tasks
in the pool are detected.

4: {Task U_L}: steal(SCPool from) > Try to steal a number of tasks from the
given pool and move them to the current pool. Return some stolen task or L.

5: boolean: isEmpty() > Returns true iff the SCPool contains tasks

6: void: setIndicator(SCPool p, int consumerld) > sets indicator in pool p of
consumer consumerld

7: boolean: checkIndicator(SCPool p, int consumerld) > returns the state of the
indicator in pool p of consumer consumerld

SCPool abstraction. The SCPool API provides the abstraction of a single con-
sumer task pool with stealing support, see Algorithm 1. A producer invokes two
operations: produce(), which attempts to insert a task to the given pool and fails
if the pool is full, and produceForce(), which always succeeds by expanding the
pool on demand. There are also two ways to retrieve a task from the pool: the
owner of the pool (only) can call the consume() function; while any other thread
can invoke steal(), which tries to transfer a number of tasks between two pools and
return one of the stolen tasks. The other function are used for checking emptiness
and will be explained in 1.5.5.

A straightforward way to implement the above API is to use a dynamic-size
multi-producer multi-consumer FIFO queue (e.g., Michael-Scott queue [31]). In
this case, produce() enqueues a new task, while consume() and steal() dequeue a
task. In the next section we present SALSA, a much more efficient SCPool.



Algorithm 2 Work stealing framework pseudo-code.

8: Local variables: 22: Function put(Task t):
9: SCPool myPool > The consumer’s pool 23: > Produce to the pools by the order of the ac-
10: SCPool[] accessList > The consumer’s or pro- cess list
ducer’s access list 24: foreach SCPool p in accessList in order do:
. 25: if (p.produce(t)) return
11: Functl‘on get(): 26: firstp < the first entry in accessList
12: whlle(tfue) X 27: > If all pools are full, expand the closest pool
13: > First try to get a task from the local pool
28: produceForce(t,firstp)
14: t <— myPool.consume() 29 return
15: if (t # L) return t
16: > Failed to get a task from the local pool — 30: Function checkEmpty():
steal 31:  foriin {1..|consumers|} do:
17: foreach SCPool p in accessList in order 32: foreach SCPool p do:
do: 33: if (. = 1) p.setIndicator(myld)
18: t < p.steal() 34 if (!p.isEmpty()) return false
19: if (t # L) return t 35: if (!p.checkIndicator(myld)) return
20: > No tasks found — validate emptiness false
21: if (checkEmpty()) return L 36: return true

Management policy. A management policy defines the way in which: 1) a pro-

ducer chooses an SCPool for task insertion; and 2) a consumer decides when to

retrieve a task from its own pool or steal from other pools. Note that the policy is

independent of the underlying SCPool implementation. We believe that the pol-

icy is a subject for engineering optimizations, based on specific workloads and

demands.

In the current work, we present a NUMA-aware policy. If the individual

SCPools themselves are lock-free, then our policy preserves lock-freedom at the

system level. Our policy is as follows:

e Access lists. Each thread in the system (producer or consumer) is provided

with an access list, an ordered list of all the consumers in the system, sorted
according to their distance from that thread (see Figure 1.1). Intuitively, our
intention is to have a producer mostly interact with the closest consumer,
while stealing mainly happens inside the same processor node.

Producer’s policy. The producer policy is implemented in the put() function
in Algorithm 2. The operation first calls the produce() of the first SCPool in
its access list. Note that this operation might fail if the pool is full, (which
can be seen as evidence of that the corresponding consumer is overloaded).
In this case, the producer tries to insert the task into other pools, in the order
defined by its access list. If all insertions fail, the producer invokes produce-
Force() on the closest SCPool, which always succeeds (expanding the pool

10



if needed).

e Consumer’s policy. The consumer policy is implemented in the get() func-
tion in Algorithm 2. A consumer takes tasks from its own SCPool. If its
SCPool is empty, then the consumer tries to steal tasks from other pools in
the order defined by its access list. The checkEmpty() operation handles
the issue of when a consumer gives up and returns . This is a subtle issue,
and we discuss it in Section 1.5.5. Stealing serves two purposes: first, it is
important for distributing the load among all available consumers. Second,
it ensures that tasks are not lost in case they are inserted into the SCPool of
a crashed (or very slow) consumer.

1.5 Algorithm Description

In the current section we present the SALSA SCPool. We first show the data struc-
tures of SALSA in Section 1.5.1, and then present the basic algorithm without
stealing support in Section 1.5.2. The stealing procedure is described in Sec-
tion 1.5.3, finally, the role of chunk pools is presented in Section 1.5.4. For the
simplicity of presentation, in this section we assume that the the memory accesses
satisfy sequential consistency [27], we describe the ways to solve memory reorder-
ing issues in Section 1.6.1.

1.5.1 SALSA Structure

Algorithm 3 SALSA implementation of SCPool: Data Structures.

37: Chunk type 44: SALSA per consumer data structure:

38: Task[ CHUNK_SIZE] tasks 45: int consumerld

39: int owner > owner’s consumer id 46: List(Node)[] chunkLists > one list per pro-
40: Node type ducer + extra list for stealing (every list is
41: Chunk c; initially L single-writer multi-reader)

42: int idx; initially -1 47: Queue(Chunk) chunkPool > pool of spare
43: Node next; chunks

48: Node currentNode, initially L > current node
to work with

The SALSA data structure of a consumer c; is described in Algorithm 3 and
partially depicted in Figure 1.2. The tasks inserted to SALSA are kept in chunks,
which are organized in per-producer chunk lists. Only the producer mapped to a
given list can insert a task to any chunk in that list. Every chunk is owned by a

11
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Figure 1.2: Chunk lists in SALSA single consumer pool implementation. Tasks are kept in
chunks, which are organized in per-producer lists; an additional list is reserved for stealing. Each
list can be modified by the corresponding producer only. The only process that is allowed to retrieve
tasks from a chunk is the owner of that chunk (defined by the ownership flag). A Node’s index
corresponds to the latest task taken from the chunk or the task that is about to be taken by the current
chunk owner.

single consumer whose id is kept in the owner field of the chunk. The owner is
the only process that is allowed to take tasks from the chunk; if another process
wants to take a task from the chunk, it should first steal the chunk and change its
ownership. A task entry in a chunk is used at most once. Its value is L before the
task is inserted, and TAKEN after it has been consumed.

The per-producer chunk lists are kept in the array chunkLists (see Figure 1.2),
where chunkLists[j] keeps a list of chunks with tasks inserted by producer p;. In
addition, the array has a special entry chunkLists[steal], holding chunks stolen by
c;. Every list has a single writer who can modify the list structure (add or remove
nodes): chunkLists[j]’s modifier is the producer p;, while chunkLists[steal ]'s mod-
ifer is the SCPool’s owner. The nodes of the used chunks are lazily reclaimed and
removed by the list’s owner. For brevity, we omit the linked list manipulation
functions from the pseudo-code below. Our single-writer lists can be implemented
without synchronization primitives, similarly to the single-writer linked-list in [30].
In addition to holding the chunk, a node keeps the index of the latest taken task in
that chunk, this index is then used for chunk stealing as we show in Section 1.5.3.

Safe memory reclamation is provided by using hazard pointers [30] both for
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nodes and for chunks. The free (reclaimed) chunks in SALSA are kept at per-
consumer chunkPools implemented by lock-free Michael-Scott queues [31]. As
we show in Section 1.5.4, the chunk pools serve two purposes: 1) efficient memory
reuse and 2) producer-based load balancing.

1.5.2 Basic Algorithm

SALSA producer

Algorithm 4 SALSA implementation of SCPool: Producer Functions.

49: Producer local variables: 62: Function produceForce(Task t):

50: int producerld 63: insert(t, this, true)

51: Chunk chunk; initially L > the chunk to insert
to

52: int prodIdx; initially O t> the prefix of inserted

64: Function getChunk(SALSA scPool, bool force)
65: newChunk < dequeue chunk from
scPool.chunkPool

tasks
’ 66: if (chunk = ) 1> no available chunks in this
53: Function produce(Task t): pool
54: return insert(t, this, false) 67: if (force = false) then return false
L. 68: newChunk < allocate a new chunk
55: Function insert(Task t, SCPool scPool, bool 69: newChunk.owner < scPool.consumerld
forc‘e): 70: node < new node with idx = —1 and ¢ =
56: if (chunk = L) then > allocate new chunk newChunk
5T if (getChunk(scPool, force) = false) then 71: scPool.chunkLists[producerld].append(node)
return false
58: chunk.tasks[prodIdx] < t; prodldx++ 7 chunk ¢ newChunk; prodldx ¢ 0
59: if(prodldx = CHUNK_SIZE) then 73 return true
60: chunk «— L > the chunk is full '
61: return true

The description of SALSA producer functions is presented in Algorithm 4. The
insertion of a new task consists of two stages: 1) finding a chunk for task insertion
(if necessary), and 2) adding a task to the chunk.

Finding a chunk The chunk for task insertions is kept in the local producer vari-
able chunk (line 51 in Algorithm 4). Once a producer starts working with a chunk
¢, it continues inserting tasks to c until c is full — the producer is oblivious to chunk
stealing. If the chunk’s value is L, then the producer should start a new chunk
(function getChunk). In this case, it tries to retrieve a chunk from the chunk pool
and to append it to the appropriate chunk list. If the chunk pool is empty then
the producer either returns | (if force=false), or allocates a new chunk by itself
(otherwise) (lines 66—68).
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Inserting a task to the chunk As previously described in Section 1.5.1, different
producers insert tasks to different chunks, which removes the need for synchroniza-
tion among producers. The producer local variable prodldx indicates the next free
slot in the chunk. All that is left for the insertion function to do, is to put a task in
that slot and to increment prodldx (line 58). Once the index reaches the maximal
value, the chunk variable is set to L, indicating that the next insertion operation
should start a new chunk.

SALSA consumer without stealing

The consumer’s algorithm without stealing is given in the left column of Al-
gorithm 5. The consumer first finds a nonempty chunk it owns and then invokes
takeTask() to retrieve a task.

Unlike producers, which have exclusive access to insertions in a given chunk,
a consumer must take into account the possibility of stealing. Therefore, it should
notify other processes which task it is about to take.

To this end, each node in the chunk list keeps an index of the taken prefix of
its chunk in the idx variable, which is initialized to —1. A consumer that wants to
take a task 7', first increments the index, then checks the chunk’s ownership, and
finally changes the chunk entry from 7" to TAKEN (lines 90-92). By doing so, a
consumer guarantees that idx always points to the last taken task or to a task that is
about to be taken. Hence, a thread that is stealing a chunk from a node with idx = ¢
can assume that the tasks in the range [0...7) have already been taken. The logic
for dealing with stolen chunks is described in the next section.

1.5.3 Stealing

The stealing algorithm is given in the function steal() in Algorithm 5. We refer to
the stealing consumer as cg, the victim process whose chunk is being stolen as c¢,,
and the stolen chunk as C'.

The idea is to turn ¢, to the exclusive owner of C, so that ¢, will be able to take
tasks from the chunk without synchronization. In order to do that, c, first adds the
chunk to its list (line 115) then changes the ownership of C' from ¢, to cs using
CAS (line 116) and removes the chunk from ¢,’s list (line 132). Once ¢, notices
the change in the ownership it can take at most one more task from C' (lines 95—
98) after failing the second check of ownership in line 91 having passed the one in
line 88.
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Algorithm 5 SALSA implementation of SCPool: Consumer Functions.

74: Function consume():

75: if (currentNode # L) then > common case
76: t < takeTask(currentNode)
77: if (t # L) then return t

78: foreach Node n in ChunkLists do: ©> fair
traversal of chunkLists

79: if (n.c # L A n.c.owner = consumerld)
then
80: t + takeTask(n)
81: if (t # L) then currentNode < n; re-
turn t
82: currentNode < _L; return L

83: Function takeTask(Node n):

84: chunk < n.c

85: if (chunk = 1) then return L > this chunk
has been stolen

86: task <— chunk.tasks[n.idx + 1]

87: if (task = L) then return L > no inserted

tasks
88: if (chunk.owner # consumerld)
89: return L

90: n.idx++ > tell the world you’re going to take
a task from idx

91: if (chunk.owner = consumerld) then > com-
mon case

92: chunk.tasks[n.idx] <~ TAKEN

93: checkLast(n)

94: return task

> the chunk has been stolen, CAS the last task
and go away
95: success <— (task # TAKEN A
CAS(chunk.tasks[n.idx], task, TAKEN))
96: if(success) then checkLast(n)
97: currentNode < L
98: return (success) ? task : L

99: Function checkLast(Nconsumerode n):

100: if(n.idx + 1 = CHUNK_SIZE) then > fin-
ished the chunk

101: n.c < _L; return chunk to chunkPool

102: currentNode < L

103: Function isEmpty():
104: foreach Node n in chunkLists do:

105: if (n.c has tasks in slots greater than
n.idx)

106: return true

107: return false

108: Function steal(SCPool p):

109:

110:

111:
112:
113:

114:
115:

116:

117:
118:

119:
120:

121:
122:
123:
124:
125:

126:
127:
128:
129:
130:
131:

132:

133:
134:
135:
136:
137:

138:

prevNode < a node holding tasks, whose
owner is p, from some list in p’s pool > dif-
ferent policies possible
if (prevNode = L) return L > No Chunk
found
¢ < prevNode.c; if (c = L) then return L
prevldx < prevNode.idx
if (prevldx+] = CHUNK.SIZE V
c.tasks[prevldx+1] = 1)
return |
chunkLists[steal].append(prevNode) >
make it stealable from my list
if (CAS(c.owner, p.consumerld, con-
sumerld) = false)
chunkLists[steal].remove(prevNode)
return L > failed to steal

idx <— prevNode.idx
if (idx+1 = CHUNK_SIZE) > Chunk is
empty
chunkLists[steal].remove(prevNode)
return L
task < c.tasks[idx+1]
if (task # L) > Found task to take
if (c.owner # consumerld A idx # prev-
Idx)
chunkLists[steal].remove(prevNode)

return L
idx++
newNode <— copy of prevNode
newNode.idx = idx
replace prevNode with newNode in chun-
kLists[steal]
prevNode.c <— _L > remove chunk from con-
sumer’s list
> done stealing the chunk, take one task from
1t
if (task = L) then return L > still no task
at idx
if (task = TAKEN Vv
ICAS(c.tasks[idx], task, TAKEN)) then
task «— L
checkLast(newNode)
if (c.owner = consumerld) currentNode <+
newNode
return task

When the steal() operation of cs; occurs simultaneously with the takeTask()

operation of ¢, both ¢, and ¢, might try to retrieve the same task. We now explain

why this might happen. Recall that ¢, notifies potential stealers of the task it is



about to take by incrementing the idx value in C’s node (line 90). This value is
copied by c¢; in line 129 when creating a copy of C’s node for its steal list.

Consider, for example, a scenario in which the idx is incremented by ¢, from
10 to 11. If ¢, checks C’s ownership before it is changed by c;, then ¢, takes the
task at index 11 without synchronization (line 92). Therefore, c; cannot be allowed
to take the task pointed by idx at all. Hence, c, has to take the task at index 11
even if it does observe the ownership change. After stealing the chunk, cs will
eventually try to take the task pointed by idx + 1. However, if ¢4 copies the node
before i¢dx is incremented by c,, c¢s might think that the value of ¢dx + 1 is 11. In
this case, both ¢ and ¢, will try to retrieve the task at index 11. To ensure that the
task is not retrieved twice, both functions invoke CAS in order to retrieve this task
(line 134 for c;, line 95 for ¢,).

The above schematic algorithm works correctly as long as the stealing con-
sumer can observe the node with the updated index value. This might not be the
case in case the same chunk is concurrently stolen by another consumer, rendering
the idx of the original node obsolete. In order to prevent this situation, stealing
a chunk from the pool of consumer c, is allowed only if ¢, is the owner of this
chunk (line 116). This approach is prone to the ABA problem: consider a scenario
where consumer c, is trying to steal from c;, but before the execution of the CAS
in line 116, the chunk is stolen by c. and then stolen back by c¢;. In this case,
co’s CAS succeeds but ¢, has an old value of ¢dz. To prevent this ABA problem,
the owner field contains a tag, which is incremented on every CAS operation. For
brevity, tags are omitted from the pseudo-code.

A naive way for c; to steal the chunk from ¢, would be first to change the
ownership and then to move the chunk to the steal list. However, this approach
may cause the chunk to disappear when c; stalls, because the chunk is not yet
accessible via the lists of ¢ and yet c; is its owner. Therefore, SALSA first adds
the original node to the steal list of cg, then changes the ownership, and only then
replaces the original node with a new one (lines 115-132).

An additional problem may occur if cg steals a chunk that does not contain
tasks. This may happen if the chunk is emptied after c; chooses it in line 109.
In this case, c; may notice that the chunk does not contain a task and return L in
line 133. However, another task may be added later and then taken by c,, which
may have already started taking a task before the chunk was stolen. In this case, ¢,
will take this task using a CAS operation, while c; may try to take the same task
later without using a CAS operation, and therefore the task may be taken twice.
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To avoid this problem, we make sure that if a chunk is stolen, ¢, will not take a
task that ¢, might have missed because it was added after c; tried to read it. This
is done by adding an ownership check after ¢, reads the task on line 86 and before
committing to take it by incrementing ¢dz in line 90. This makes sure that ¢, can
only take tasks that existed before the chunk was stolen. For the same reason, the
ownership check is added in line 125. In this case however ¢, also checks if the idz
has changed since before it changed ownership. This is done by comparing the idx
read before the ownership change in line 112 to the idx read after the ownership
change in line 119. If the idx hasn’t changed, it means that ¢ is guaranteed to
see the task pointed by idx, because due to the check in line 113 we know that
task existed before ¢, changed ownership, and therefore existed before c; changed
ownership. In this case ¢, may safely increase ¢dx and take the task. Note that
returning the task is necessary to avoid livelock.

Another issue we need to address is making sure that the idx value in nodes
pointing to a given chunk increases monotonically. To this end, we make sure that
when c; creates a new node, this node’s idx is greater than or equal to the ¢dx of
¢,’s node. As noted before, ¢, may increase the ¢dx at most once after its chunk
is stolen. Also, thanks to the ownerships checks that are done after the task was
read and before the idx is incremented, we know that the idx field of ¢, increases
only if there is a task in the next slot after the ownership change. To ensure that
idx does not decrease in this case, ¢, sets the idz of the new node to be the idx of
¢y plus one if the next task is not L (line 128).

1.5.4 Chunk Pools

As described in Section 1.5.1, each consumer keeps a pool of free chunks. When a
producer needs a new chunk for adding a task to consumer c;, it tries to get a chunk
from ¢;’s chunk pool — if no free chunks are available, the produce() operation
fails.

As described in Section 1.4, our system-wide policy defines that if an insertion
operation fails, then the producer tries to insert a task to other pools. Thus, the
producer avoids adding tasks to overloaded consumers, which in turn decreases the
amount of costly steal operations. We further refer to this technique as producer-
based balancing.

Another SALSA property is that a chunk is returned to the pool of a consumer
that retrieves the latest task of this chunk. Therefore, the size of the chunk pool
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of consumer c; is proportional to the rate of ¢;’s task consumption. This property
is especially appealing for heterogeneous systems — a faster consumer c¢;, (e.g.,
one running on a stronger or less loaded core), will have a larger chunk pool, and
so more produce() operations will insert tasks to c;, automatically balancing the
overall system load.

1.5.5 Checking Emptiness

Check  Check Check
SCPool, SCPool, SCPool,
a: - »-
consume: return L
b: ~consume:
return t,
p:  —— - >
produce t, produce t_
in SCPool, in SCPool,

Figure 1.3: An example where a single traversal may violate linearizability: consumer a is trying
to get a task. It fails to take a task from its own pool, and starts looking for chunks to steal in other
pools. At this time there is a single non-empty chunk in the system, which is in b’s pool; a checks
¢’s pool and finds it empty. At this point, a producer adds a task to ¢’s pool and then b takes the last
task from its pool before a checks it. Thus, a finds b’s pool empty, and returns L. There is no way
to linearize this execution, because throughout the execution of a’s operation, the system contains at
least one task.

For our system to be linearizable, we must ensure that it returns L only if it
is empty (i.e., contains no tasks) at some point during the get() operation. We
describe a policy for doing so in a lock-free manner.

Let us examine why a naive approach, of simply traversing all task pools and
returning L if no task is found, violates correctness. First, a consumer might “miss”
one task added during its traversal, and another removed during the same traversal,
as illustrated in Figure 3. In this case, a single traversal would have returned |
although the pool was not empty at any point during the get() operation. Second, a
consumer may miss a task that is moved from one pool to another due to stealing.
In order to identify these two cases, we add to each pool a special emptyIndicator, a
bit array with a bit per-consumer, which is cleared every time the pool may become
empty. In SALSA, this occurs when the last task in a chunk is taken or when a
chunk is stolen. In addition, we implement a new function, checkEmpty(), which
is called by the framework whenever a consumer fails to retrieve tasks from its
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pool and all other pools. This function returns true only if there is a time during
its execution when there are no tasks in the system. If checkEmpty() returns false,
the consumer simply restarts its operation.

Denote by n the number of consumers in the system. The checkEmpty() func-
tion works as follows: the consumer traverses all SCPools, to make sure that no
tasks are present. After checking a pool for the first time, the consumer sets its bit
in emptyIndicator using CAS. The consumer repeats this traversal n times, where
in all traversals, it checks that its bit in emptyIndicator is set, i.e., that no chunks
were emptied or removed during the traversal. The n traversals are needed in order
to account for the case that other consumers have already stolen or removed tasks,
but did not yet update emptylndicator, and thus their operations were not detected
by the consumer. Since up to n — 1 pending operations by other consumers may
empty pools before any emptylndicator changes, it is guaranteed that among n
traversals in which no chunks were seen and the emptylndicator did not change,
there is one during which the system indeed contains no tasks, and therefore it is
safe to return _L. This method is similar to the one used in Concurrent Bags [37].

Algorithm 6 SALSA extensions for supporting checkEmpty()

139: Per consumer local: 148: Function clearIndicator():
140: boolean[] emptyIndicator > one entry per 149: foreach(boolean b in emptyIndicator) do:
consumer 150: b < false
> replacement for the checkLast() function 151: Function setIndicator(SCPool p, int con-
141: Function checkLast(Node n, Task next): sumerld):

142: if(n.idx + 1 = CHUNK_SIZE) then > fin- 152: emptylIndicator[consumerld] < true

ished the chunk .
153: Function checkIndicator(SCPool p, int con-

143: n.c < _L; return chunk to chunkPool i

144: currentNode <+ L sumerld): .

145: clearIndicator() 154: return emptyIndicator[consumerld]
146: if(next = L) then > took last task

147: clearIndicator()

We now describe the extensions to the SALSA pool which are needed so that
checkEmpty() will work. Specifically, we need to make sure that operations that
may cause a pool to become empty will clear emptyIndicator.

We note that a pool may become empty in two cases: (1) When a chunk is
stolen from a pool and this is the only chunk that contains tasks, and (2) when a
task is taken and that was the last task in the pool.

We alter the consumer code so it will clear it in those cases:
1. In case of a successful steal - the consumer clear the indicator before line 119.
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2. If the task returned may be the last task in the chunk, the consumer clears
emptylndicator in the checkLast() function. The updated function is de-
scribed in Algorithm 6.

In the second case, the consumer checks that this is the last task by reading the next
slot before changing the current slot to TAKEN, and then checking if the next slot
contained L.

1.6 Implementation and Evaluation

In this section we evaluate the performance of our work-stealing framework built
on SALSA pools. We first present the implementation details on dealing with
memory reordering issues in Section 1.6.1. The experiment setup is described in
Section 1.6.2, we show the overall system performance in Section 1.6.3, study the
influence of various SALSA techniques in Section 1.6.4 and check the impact of
memory placement and thread scheduling in Section 1.6.5.
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(a) System throughput — N producers, N consumers. (b) System throughput — variable producers-consumers
ratio.

Figure 1.4: System throughput for various ratios of producers and consumers. SALSA scales
linearly with the number of threads — in the 16/16 workload, it is x20 faster than WS-MSQ and
WS-LIFO, and x3.5 faster than Concurrent Bags. In tests with equal numbers of producers and
consumers, the differences among work-stealing alternatives are mainly explained by the consume
operation efficiency, since stealing rate is low and hardly influences performance.

1.6.1 Dealing with Memory Reordering

The presentation of the SALSA algorithm in Section 1.5 assumes sequential con-
sistency [27] as the memory model. However, most existing systems relax se-
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quential consistency to achieve better performance. Specifically, according to x86-
TSO [35], memory loads can be reordered with respect to older stores to different
locations. As shown by Attiya et al. [5], it is impossible to avoid both read-after-
write and atomic-write-after-read in work stealing structures, which requires using
a synchronization operation, such as a fence or CAS, to ensure correctness. In
SALSA, this reordering can cause an index increment to occur after the ownership
validation (lines 90, 91 in Algorithm 5), which violates correctness as it may cause
the same task to be taken twice, by both the original consumer and the stealing
thread.

The conventional way to ensure a correct execution in such cases is to use mem-
ory fences to force a specific memory ordering. For example, adding an mfence
instruction between lines 90 and 91 guarantees SALSA’s correctness. However,
memory fences are costly and their use in the common path degrades performance.
Therefore, we prefer to employ a synchronization technique that does not add sub-
stantial overhead to the frequently used takeTask() operation. One example for
such a technique is location-based memory fences, recently proposed by Ladan-
Mozes et al. [26], which is unfortunately not implemented in current hardware.

In our implementation, we adopt the synchronization technique described by
Dice et al. [14], where the slow thread (namely, the stealer) binds directly to the
processor on which the fast thread (namely, the consumer) is currently running,
preempting it from the processor, and then returns to run on its own processor.
Thread displacement serves as a full memory fence, hence, a stealer that invokes
the displacement binding right after updating the ownership (before line 119 in
Algorithm 5) observes the updated consumer’s index. On the other hand, the steal-
free fast path is not affected by this change.

1.6.2 Experiment Setup

The implementation of the work-stealing framework used in our evaluation does
not include the linearizability mechanism described in 1.5.5. We believe that this
mechanism has negligible effect on performance; moreover, in our experiment they
would not have been invoked because the pool is never empty. We compare the
following task pool implementations:

e SALSA - our work-stealing framework with SCPools implemented by SALSA.

e SALSA+CAS - our work-stealing framework with SCPools implemented
by a simplistic SALSA variation, in which every consume() and steal() op-
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eration tries to take a single task using CAS. In essence, SALSA+CAS re-
moves the effects of SALSA’s low-synchronization fast-path and per-chunk
stealing. Note that disabling per-chunk stealing in SALSA annuls the idea of
chunk ownership, hence, disables its low-synchronization fast-path as well.

e ConcBag — an algorithm similar to the lock-free Concurrent Bags algo-
rithm [37]. It is worth noting that the original algorithm was optimized for
the scenario where the same process is both a producer and a consumer (in
essence producing tasks to itself), which we do not consider in this work;
in our system no thread acts as both a producer and a consumer, therefore
every consume operation steals a task from some producer. We did not have
access to the original code, and therefore reimplemented the algorithm in
our framework. Our implementation is faithful to the algorithm in the pa-
per, except in using a simpler and faster underlined linked list algorithm. All
engineering decisions were made to maximize performance.

e WS-MSQ - our work-stealing framework with SCPools implemented by
Michael-Scott non-blocking queue [31]. Both consume() and steal() opera-
tions invoke the dequeue() function.

e WS-LIFO - our work-stealing framework with SCPool implemented by
Michael’s LIFO stack [30].

We did not experiment with additional FIFO and LIFO queue implementations,
because, as shown in [37], their performance is of the same order of magnitude as
the Michael-Scott queue. Similarly, we did not evaluate CAFE [7] pools because
their performance is similar to that of WS-MSQ [6], or ED-Pools [2], which have
been shown to scale poorly in multi-processor architectures [6, 37].

All the pools are implemented in C++ and compiled with —~0O2 optimization
level. In order to minimize scalability issues related to allocations, we use jemalloc
allocator, which has been shown to be highly scalable in multi-threaded environ-
ments [1]. Chunks of SALSA and SALSA+CAS contain 1000 tasks, and chunks
of ConcBag contain 128 tasks, which were the respective optimal values for each
algorithm (see Section 1.6.6).

We use a synthetic benchmark where 1) each producer works in a loop of insert-
ing dummy items; 2) each consumer works in a loop of retrieving dummy items.
Each data point shown is an average of 5 runs, each with a duration of 20 seconds.
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The tests are run on a dedicated shared memory NUMA server with 8 Quad Core
AMD 2.3GHz processors and 16GB of memory attached to each processor.

1.6.3 System Throughput

Figure 1.4(a) shows system throughput for workloads with equal number of pro-
ducers and consumers. SALSA scales linearly as the number of threads grows
to 32 (the number of physical cores in the system), and it clearly outperforms all
other competitors. In the 16/16 workload, SALSA is x20 faster than WS-MSQ
and WS-LIFO, and more than x3.5 faster than Concurrent Bags.

We note that the performance trend of ConcBags in our measurements differs
from the results presented by Sundell et al. [37]. While in the original paper, their
throughput drops by a factor of 3 when the number of threads increases from 4
to 24, in our tests, the performance of ConcBags increases with the number of
threads. The reasons for the better scalability of our implementation can be related
to the use of different memory allocators, hardware architectures, and engineering
optimizations.

All systems implemented by our work-stealing framework scale linearly be-
cause of the low contention between consumers. Their performance differences are
therefore due to the efficiency of the consume() operation — for example, SALSA
is x 1.7 faster than SALSA+CAS thanks to its fast-path consumption technique.

In contrast, in ConcBags, which is not based on per-consumer pools, every
consume() operation implies stealing, which causes contention among consumers,
leading to sub-linear scalability. The stealing policy of ConcBags algorithm plays
an important role. The stealing policy described in the original paper [37] pro-
poses to iterate over the lists using round robin. We found out that the approach
in which each stealer initiates stealing attempts from the predefined consumer im-
proves ConcBags’ results by 53% in a balanced workload.

Figure 1.4(b) shows system throughput of the algorithms for various ratios of
producers and consumers. SALSA outperforms other alternatives in all scenarios,
achieving its maximal throughput with equal number of producers and consumers,
because neither of them is a system bottleneck.

We next evaluate the behavior of the pools in scenarios with a single pro-
ducer and multiple consumers. Figure 1.5(a) shows that the performance of both
SALSA and SALSA+CAS does not drop as more consumers are added, while the
throughput of other algorithms degrades by the factor of 10. The degradation can
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Figure 1.5: System behavior in workloads with a single producer and multiple consumers. Both
SALSA and SALSA+CAS efficiency balance the load in this scenario. The throughput of other
algorithms drops by a factor of 10 due to increased contention among consumers trying to steal tasks
from the same pool.

be explained by high contention among stealing consumers, as evident from Fig-
ure 1.5(b), which shows the average number of CAS operations per task transfer.

1.6.4 Evaluating SALSA techniques
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Figure 1.6: System throughput — 1 Producer, N consumers. Producer-based balancing contributes
to the robustness of the framework by reducing stealing. With no balancing, chunk-based stealing
becomes important.

In this section we study the influence of two of the techniques used in SALSA:
1) chunk-based-stealing with a low-synchronization fast path (Section 1.5.3), and
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2) producer-based balancing (Section 1.5.4). To this end, we compare SALSA
and SALSA+CAS both with and without producer-based balancing (in the latter a
producer always inserts tasks to the same consumer’s pool).

Figure 1.6 depicts the behavior of the four alternatives in single producer / mul-
tiple consumers workloads. We see that producer-based balancing is instrumental
in redistributing the load: neither SALSA nor SALSA+CAS suffers any degrada-
tion as the load increases. When producer-based balancing is disabled, stealing
becomes prevalent, and hence the stealing granularity becomes more important:
SALSA’s chunk based stealing clearly outperforms the naive task-based approach
of SALSA+CAS.

1.6.5 Impact of Scheduling and Allocation
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Figure 1.7: Impact of scheduling and allocation (equal number of producers and consumers).
Performance decreases once the interconnect becomes saturated.

We now evaluate the impact of scheduling and allocation in our NUMA system.
To this end, we compare the following three alternatives: 1) the original SALSA
algorithm; 2) SALSA with no affinity enforcement for the threads s.t. producers do
not necessarily work with the closest consumers; 3) SALSA with all the memory
pools preallocated on a single NUMA node.

Figure 1.7 depicts the behavior of all the variants in the balanced workload.
The performance of SALSA with no predefined affinities is almost identical to the
performance of the standard SALSA, while the central allocation alternative looses
its scalability after 12 threads.

The main reason for performance degradation in NUMA systems is bandwidth
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saturation of the interconnect. If all chunks are placed on a single node, every re-
mote memory access is transfered via the interconnect of that node, which causes
severe performance degradation. In case of random affinities, remote memory ac-
cesses are distributed among different memory nodes, hence their rate remains be-
low the maximum available bandwidth of each individual channel, and the program
does not reach the scalability limit.

1.6.6 Chunk size influence
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Figure 1.8: System throughput as a function of the chunk size.

Figure 1.8 shows the influence of chunk size on system throughput for the
chunk-based algorithms SALSA, SALSA+CAS and ConcBags in a 16/16 work-
load. SALSA variations achieve their best throughput for large chunks with 1000
tasks (~ 8KB size in 64-bit architectures). The optimal chunk for ConcBags in-
cludes 128 tasks. We believe that ConcBags is ineffective with large chunk sizes
since its consumers linearly scan a chunk when seeking a task to steal. In contrast,
SALSA keeps the index of the latest consumed task in the chunk node, and there-
fore its consume operations terminate in O(1) steps for every chunk size. In our
evaluation in section 1.6 we used optimal chunk sizes for each algorithm.
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1.7 SALSA correctness

1.7.1 Definitions

First we define constants and definitions that are used in the section.

A — The system as describe in Section 1.4, when using SALSA pools as the SCPool.
n — The number of consumers in A.

Definition 1. (Referring Node) A node is the referring node of chunk C' if that
node points to C, and is in a chunk list of C'’s owner.

We now define what we shall call the commit points of A, we will later show
that these points are the linearization points of A.

Definition 2. The commit points of A are as follows:

1. For a put() operation, the commit point is the assignment in line 58 of the
put() function.

2. For a get() operation that returns a task, the commit point is the point where
the idx of the referring node is increased to include the returned task. More
specifically:

o [f the task T is returned by consume(), the commit point is line 90 of
the consume() if the chunk containing 'T' is owned by the consumer exe-
cuting this consume() operation, and otherwise, it is line 131 executed
by a stealing consumer before it removes the chunk from the current
consumer’s node in line 132

o [f the task is returned by steal() and the new node added to the list in
line 131 has a higher idx than the node it replaces, then the commit
point is line 131.

o [fthe task is returned by steal() and the new node added to the list has
the same idx as the node it replaces in line 131, it means that the idx
of the replaced node has been incremented between lines 119 and 131.
In this case the commit point is at the time the idx was increased to
its current value. This may be either in line 90 or line 131, depending
on the operation (consume() or steal()) executed by the consumer that
increments it.
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Definition 3. (taken) A rask T' is taken at a given time if the idx of the referring
node of the chunk containing T’ is greater than or equal to the slot of this task.

Note that if a task 7 is returned, then the commit point of the get() operation
that returns 7" is the point where the task is raken.

Definition 4. (empty) A task pool is empty at a given time t, if all tasks that were
added to the pool by put() operations that passed their commit point before time t
are taken at time t.

Definition 5. Let c be the consumer owning a SALSA SCPool, then c’s SCPool is
non-empty if there is a chunk owned by c that contains tasks which are not taken.

1.7.2 Lock-freedom

For the purpose of the proof, we refer to the first part of the steal() operation
(lines 109 to 118) as part I of the operation and to the second part (lines 119
to 138) as part 11 of the operation.

From Definition 5, Definition 4 and the fact the each chunk is owned by a
consumer we can reach the following observation:

Observation 1. If the task pool is not empty, then at least one SALSA SCPool is
non-empty.

Lemma 1. If a chunk owned by a consumer c contains a task, then that chunk is
accessible from one of the lists in c’s SCPool.

Proof. If cis the first owner of this chunk than that chunk was inserted to ¢’s pool
by a producer in line 71. Otherwise, c stole this chunk, and before the changing
ownership in line 116, c pointed to this chunk in line 115 and later replaced to
node pointing to that chunk in line 131. Therefore, this chunk is accessible via c’s
SCPool during the time c is the chunk’s owner. O

Lemma 2. If a consumer successfully finishes part 1 of the steal() operation (i.e.,
succeeds in the CAS in line 116) and later finishes the operation, then in the dura-
tion of this steal() operation, a task becomes taken.

Proof. First we note that before the consumer finishes part I, it first checks that
there is a task in the current chunk, and stores the index of that task in previdx
(line 113). If the idx as read in line 119 is bigger than prevIdzx, a task was taken in
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the duration of this operation and we are done. Otherwise, ¢dx as read in line 119
is equal to prevldzx and therefore the consumer will reach line 128. In this case
the new node replacing the old node will have ¢dx greater than prev/dz, and so
the task in previdz is taken and we are done. [

Lemma 3. If a consumer fails to finish part 1 of the steal() operation (i.e., fails the
CAS in line 116) n times on a SCPool that is non-empty when the operation begins,
then there is another consumer that takes a task from the task pool during the time
interval spanning those n failed attempts.

Proof. Since we assume the SCPool is not empty when the operation begins, then
by Lemma 1 there is a list containing a non-empty chunk owned by the victim
in the victim’s SCPool. Therefore if no chunk is found in line 109 then either a
concurrent consume() operation took a task in which case we are done, or another
steal() operation successfully stole a chunk from this SCPool.

Otherwise a chunk is found and the consumer may fail to finish part I of the
steal() operation on a non-empty SCPool in the following cases:

1. The if statement in line 113 is true because the chunk does not contain a task.
However since, a chunk containing task was chosen in line 109, at least one
task was taken from this chunk after it was chosen, and we are done.

2. The if statement in line 111 is true. In this case, a stealable chunk was found,
but another steal() operation successfully stole the chunk before the chunk
was read.

3. The if statement in line 116 is true. In this case, the steal() operation fails
because another consumer stole this chunk.

If a task was taken in the period spanning the n operations, we are done. Oth-
erwise, there are n operations by other consumers that successfully stole a chunk,
i.e., there are n operations that finished part I. Since there are only n— 1 consumers
other than the consumer that failed, we conclude that there is at least one consumer
that completed part II. Therefore, by Lemma 2, some task was taken during this
time. O

Lemma 4. If a consumer returns L in n steal() operations on a non-empty SALSA
SCPool, then there is a consumer that takes a task from the task pool during that
time interval.
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Proof. If the consumer returns L because it fails to finish part I n times, then by
Lemma 3, a task was taken during that time period. Otherwise, at least one of its n
steal operations successfully finishes part I of the steal() and returns L in part 1.
By Lemma 2, a task was taken by some consumer during this time interval. 0

Lemma 5. If a consumer returns | in n consume() operations on a non-empty
SALSA SCPool, then there is a consumer that takes a task from the task pool during
that time interval.

Proof. A consume() operation may return _L in two cases:

1. No chunk with a task was found and | was returned in line 82. In this case,
no task was found in the SCPool, but since we assume that this SCPool was
non-empty when the operation started, we know that the chunk containing
this task was stolen by some other consumer.

2. If a chunk with a task was found, and takeTask() returned L. This may
happen only if another consumer stole the chunk.

In both cases there was some other consumer that stole a chunk. If this occurs n
times, then we know that there are n operations that finished part I. Since there are
only n — 1 consumers other than this consumer, we conclude that there is at least
one consumer that finishes part 11, i.e. returns from its steal() operation. Therefore,
by Lemma 2, there is a consumer that takes a task. O

Lemma 6. If checkEmpty() returns false because the if in line 35 is true 2n times,
then there is a consumer that takes a task during that time interval.

Proof. 1f checkEmpty() returns false because of the if in line 35, then some con-
sumer has cleared emptylndicator during the execution of checkEmpty(). This
can happen only when a consumer successfully steals a chunk or takes a task from
a chunk. By Lemma 4, if the first case occurs more than n — 1 times, a task is
taken and we are done. Otherwise, there are at least n operations that take a task
and clear emptylndicator. At most n — 1 of these operations were invoked before
checkEmpty() began. Therefore, at least one of the n operations that take tasks
began after the checkEmpty() operation began and cleared emptylndicator before
it ended. Since this operation takes the task before it cleares emptylndicator, it
takes the task before checkEmpty() ends, and the lemma follows. ]
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Claim 1. If a get() operation runs for bn iterations in A, then a task is taken by
some consumer in the system during those iterations.

Proof. The get() operation is a loop. In every iteration of the while loop in lines 13-
21 it calls consume() on the local SCPool, then steal() » — 1 on the other pools,
and finally checkEmpty(). When consume() or steal() return a task, this task
is returned by the get() operation. If checkEmpty() returns true, then the get()
operation returns | .

Consider a get() operation that does not return after 5n loop iterations. At
the end of each iteration, checkEmpty() returns false. If it returns false 2n times
because of the if in line 35, then by Lemma 6 a task is taken and we are done.
Otherwise, the are at least 3n iterations in which the task pool contained a task
when checkEmpty() was called. In each of those iterations, there are three cases:
(1) the consumer found the task pool non-empty during a its corresponding steal()
or consume(), (2) the task was taken from this task pool by another consumer,
(3) the chunk that included that task was stolen. If case (2) happens we are done.
Therefore, assume that all 3n iterations fall in cases (1) or (3). If (3) happens
n times, then at least one of the consumers finishes the steal() operation, and by
Lemma 2, a task was taken and we are done. Otherwise, then there are at least
2n iterations where the task pool is not empty, and therefore by Observation 1 in
those iterations there is at least one non-empty SCPool. Thus, in every iteration
the consumer performs consume() or steal() on a non-empty SALSA SCPool, and
since at least n of those operations are of the same type, then by Lemmas 5 and 4 a
task will be taken by this consumer or by another consumer during that time. [

We now show the if (n + 1) tasks are taken from the pool a task is returned
during that time. Note that while it is possible to show a tighter bound on the
number of faken tasks, we chose to use a higher value for proof clarity.

Lemma 7. If (n + 1)? tasks are taken from the task pool in a certain time interval,
then in the duration of this interval a task is returned by some consumer.

Proof. First we show that if n + 1 tasks are taken, then at least one slot is changed
to TAKEN during that time. By Definition 3, a task is faken after the ¢dx pointing
to the chunk containing that task is increased to include this task This may occur in
line 90 or 131. After either of these lines is executed, the consumer always reaches
a line that changes the slot to TAKEN if it wasn’t already changed (lines 92 and 95
in takeTask() and line 134 in steal()). The slot is not changed to TAKEN before the
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task is taken, since it is only changed after incrementing of ¢dx. Therefore, after a
task is taken when the consumer incrementing the idx pointing to this chunk fin-
ishes its takeTask() or steal() operation, the slot of this task is changed to TAKEN.
Since there are n consumers in the system, if n + 1 tasks are taken, then at least
one consumer finished takeTask() or steal() after executing line 92, 95, or 134, and
therefore during the time when n + 1 tasks are taken a task is changed to TAKEN.

Therefore when (n+1)? tasks are taken from the pool, we know that n+1 slots
are changed to TAKEN. We now note that when a slot is changed to TAKEN by
a consumer, that consumer returns that task when it completes its get() operation.
Since we know that n + 1 slots were changed to TAKEN, and since there are only
n consumers in the system, we know that at least one consumer finished its get()
operation after changing a slot to taken, and therefore returns that task. O

Theorem 1. A is lock-free.

Proof. According to Claim 1, if a get() operation runs for 5n iterations without
taking a task, then a task is faken by some consumer in the system. By Lemma 7
if (n + 1)? tasks are taken a tasked is returned. Therefore after (n + 1)% x 5n
iterations of get() a is be returned. Therefore, the get() operation is lock-free. The
put() operation is trivially wait-free. O

1.7.3 Linearizability

Lemma 8. Let C be a task chunk and idz,,, idx., be the idx of the referring node
of C at times ty, tg respectively, s.t. t1 < to. Then idzy, < idxy,

Proof. First we note that an idx field of a node may only increase after it is created
(line 90). It therefore remains to consider the case that the new referring node
pointing to C replaces an old referring node. When the referring node pointing
to C' is replaced by a new referring node (line 131) the node is created with the
previous node’s idx or with its idz+ 1 if the idz+ 1’th slot in C'is not L. However,
the previous node’s owner may increase its ¢dx after it is read by other consumers.
Note that this may occur only if this chunk did not contain | in the ¢dz’th slot
before the chunk changed ownership, since the consumer checks that the next slot
in the chunk is not L and that it is the owner before incrementing ¢dx (lines 87
and 88 in takeTask() and lines 124 and 125 in steal()). Therefore, we get that if
the previous owner may have increased its idzx, then a consumer stealing the chunk
will create a new node with idx + 1. And since after a chunk is stolen the previous
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owner may increase the ¢dz at most once before it notices that it was stolen and
leaves this chunk, the lemma follows. O

We will now prove that A is linearizable. First we show that the commit points
defined in Section 1.7.1 are well-defined and therefore can be used as the lineariza-
tion points of A.

Claim 2. There is exactly one commit points in the duration of any put() operation

or get() operation that returns a task.

Proof. For a put() operation, it is easy to see that the function always reaches
line 58.
For a get() that returns a task, the following cases are possible:

o If the task is taken by consume(), then line 90 is always executed before
the task is returned. However, this line may be executed after the chunk is
stolen. In this case a concurrent steal() operation might have removed the
chunk from the consumer’s list (line 132) and before that, pointed to the
chunk with a new node that has higher idx (line 131). If this is the case, then
the commit point is the time of the node replacement in line 131. Note that
the other consumer executed this line during the execution of the consume()
operation - before line 90 and after the chunk is selected in line 86

o If the task taken by steal(), by Lemma 8 there are two options:

— The new node added to the list in line 131 has a higher ¢dx than the
node it replaces. In this case, it is obvious that line 131 is executed
before the task is returned.

— The new node added to the list has the same ¢dx as the node it replaces.
This may occur only if the idx of the original node is increased after
the stealing consumer reads its value in line 119 and before the stealing
consumer replaces the node in line 131. Therefore the incrementation
of idx is performed in the course of the stealer’s steal() call.

O

We will show that commit points as described above are valid linearization
points for put() operations, and for get() operations that return a task. For get()
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operations that returns |, we will show that such a linearization point exist without
explicitly specifying it.
The following observation follows immediately from the code in Algorithm 6.

Observation 2. If a consumer operation that takes the last task in a pool returns a
task, this operation clears the emptylndicator of this pool after taking the task and
before starting a new operation.

Claim 3. If checKEmpty() returns true then there is a time between its invocation
and its response when the task pool is empty.

Proof. In every iteration of the loop in line 32 of checkEmpty(), the consumer
checks that its bit in emptylndicator is set (line 35). If checkEmpty() returns
true then the emptylndicator was not reset by any consumer after it was set in the
first iteration. Note that an operation may take the last task in the pool and then
stall before clearing emptylndicator. Since there are n — 1 consumers other than
the consumer running checkEmpty(), there may be up to n — 1 such operations.
Since only n — 1 consumers may take the last task from a pool without clearing
the emptyIndicator of that pool (by Observation 2), we can conclude that there is at
least one iteration during which no pool changes from non-empty to empty. During
this iteration, checkEmpty() does not find a task in line 106. Therefore, when that
iteration began, the pool was empty and the claim follows. O

Lemma 9. Let o be a run and t a time in o such that all the pending operations
that started before time t complete in o and, assume a consumer c increments the
idx field of a node at time t. Then the task pointed by this idx will be returned
either by that consumer or another consumer running a concurrent get() operation
that started before c incremented the idzx field.

Proof. First we note that operations that start after ¢dx is incremented do not take
the task pointed by that idx, since they read the up-to-date idx, which by Lemma 8
never decreases. Therefore, if an operation takes the task pointed by idx after it is
incremented, it must be an operation that started before c’s operation.

The idzx field can be incremented in the takeTask() or steal() functions.

If the idx was incremented in the taskTask() function in line 90 then there are
three possible cases:

1. If c is still the owner of the chunk when it reaches line 91, then ¢ will return
this task in line 94.

34



2. Otherwise, if the chunk is stolen before ¢ executes line 91, then c tries to CAS
the slot from the task to TAKEN in line 95, and if the CAS is successful, ¢
returns it in line 98.

3. Otherwise, some other consumer ¢’ succeeds in changing the slot to TAKEN
in line 134, and returns this task in line 138.

If the idx field is incremented in steal() in line 131 by replacing the old node
with a node with higher idx, then c created this node with a higher ¢dz and there-
fore must have executed line 128, which means that the if in line 124 was true, and
the slot did not contain L. Therefore, ¢ will reach line 134, and will try to CAS the
slot from the task to TAKEN. If it is successful it returns the task, and otherwise,
some other consumer succeeds, and that consumer returns the task.

]

Claim 4. Let o be a run and t a time in o such that all the pending operations that
started before time t complete in o and the system is empty at time t. Then every
task that was added to the pool by a put() operation that passed its commit point
before time t is returned by some get() operation whose commit point is before time
t.

Proof. If the system is empty, then by Definitions 4 and 3 the ¢dz of every node is
greater than or equal to the the index of the last task in that chunk. By Lemma 9,
if the idx is increased then the task in that ¢dx is either returned, or is about to
be returned by an active get() operation. By the definition of the commit point of
get(), that operation has passed its commit point, since the idx of the node was
increased. The claim follows. O

Claim 5. If a consumer c returns a task T, then there is a put(T) operation that
passes its commit point before c’s get() operation passes its commit point.

Proof. Before a consumer returns a task, the idx field of the node pointing to the
task is incremented. Since both takeTask() and steal() verify that the task is not
L before incrementing idx, we know that the put() operation already passed its
commit point before the idx is incremented, and by the definition of the get()
commit points, the claim follows. O

Lemma 10. If a consumer c, steals a chunk from a consumer c, and this chunk’s
referring node’s idx value is © when cs reads it in line 119. Then (1) ¢, does not
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take tasks from indexes greater than i+ 1 in this chunk unless c,, resteals the chunk.
And (2) If c,, attempts to take a task from slot © + 1 in this chunk it does so using
CAS.

Proof. First we note that in consume(), after a consumer increments the value of
a node’s idz, it then checks that it is still the owner of the chunk pointed by that
node. If the consumer notices that it is not the case it leaves it (line 97). Therefore,
after a successful steal(), the previous consumer of the chunk can increase the idx
field by at most one. In consume(), the consumer takes tasks from the ¢dx’th slot
of the chunk (lines 92 and 95), and therefore it does not take tasks from slots larger
than 7 + 1.

Since ¢, reads the ¢dx of ¢,’s node after changing ownership (line 119), if ¢,
increases the idx in line 90 after c; steals the node, ¢, notices the ownership change
(line 91) and therefore attempts to take the task using a CAS operation in line 95.

If ¢, is executing steal(), c, either takes the ¢ + 1’st task if ¢dx is read by c;
before ¢, increments it in line 131 or it takes the ¢’th task if ¢4 reads it after it
is increased. In both cases, ¢, used CAS to take the task. Moreover, since the
ownership has changed, ¢, does not try to take tasks from this chunk before re-
stealing it, since this chunk is not chosen by this consumer if it is not the owner
(line 79). O

Lemma 11. Let ¢ be a consumer stealing a chunk from consumer c,, and let the
idx value of the referring node of that chunk be i when cg reads it in line 119. Then
(1) cs only takes tasks from indexes greater than i; and (2) if another consumer
tries to take a task from index i + 1, then cg attempts to take that task using CAS.

Proof. The first task c; attempts to take is the task at index ¢ + 1 (line 134). This
is done by a CAS operation if there is a task in that slot when c, reads the contents
of the slot in line 123. If the slot is | when ¢ reads it, c; may later take this
task without a CAS operation if the chunk is not stolen. In the later case, other
consumers do not try to take this task unless they steal the chunk, since they may
only see this task after c; changes the ownership, and since after reading a slot,
ownership is checked (lines 88 and 125). An exception is in line 125 where the
task might be taken in case the ownership changed. However, this is done only if
the task was there before the ownership change and therefore c; is guaranteed to
also notice this task. If the chunk is stolen from cg, then by Lemma 10 c; takes the
i + 1’st task using CAS.
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After ¢, takes the first task, it increments idx in line 131 or line 90, and since
subsequent consume() operations will take tasks from slots 7 4+ 1 and higher, the
lemma follows. O

Lemma 12. A rask in A may be only returned once.

Proof. Consider a consumer c; that takes a task. If ¢, stole the chunk from another
consumer c¢,, then by Lemma 10 and Lemma 11, ¢ and ¢, do not take tasks from
the same slot, and if they do, they use CAS. Since only one consumer may suc-
ceed in a CAS operation we conclude that a task will be returned by at most one
consumer, and since a consumer will not attempt to take the same task twice, as it
always takes tasks from idx + 1 and always increases idz, a task can be returned
only once.

O

Theorem 2. A is linearizable.

Proof. We will now show that it is possible to choose the linearization points to be
the commit point as defined above. We only show correctness for complete histo-
ries. However, since our algorithm is lock-free it is possible to complete pending
operations of partial histories so they will be complete. Therefore our proof also
holds for partial histories.

From Claim 5 we know that the linearization point of a consumer execut-
ing get() that returns 7" always follows the linearization point of put(7T). From
Claim 12 we know that for each put(T') operation, at most one get() returns 7.
From Claim 3 we know that if a get() operation returns L, then there is a point
during its execution in which the pool is empty. From Claim 4 we know that each
put(T) operation that preceded a point in which the pool was empty there is a a
get(), which stats after he linearization point of put(T") that returns 7. O

1.8 Conclusions

We presented a highly-scalable task pool framework, built upon our novel SALSA
single-consumer pools and work stealing. Our work has employed a number of
novel techniques for improving performance: 1) lightweight and synchronization-
free produce and consume operations in the common case; 2) NUMA-aware mem-
ory management, which keeps most data accesses inside NUMA nodes; 3) a chunk-
based stealing approach that decreases the stealing cost and suits NUMA migration
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schemes; and 4) elegant producer-based balancing for decreasing the likelihood of
stealing.

We have shown that our solution scales linearly with the number of threads. It
outperforms other work-stealing techniques by a factor of 20, and state-of-the art
non-FIFO pools by a factor of 3.5. We have further shown that it is highly robust
to imbalances and unexpected thread stalls.

We believe that our general approach of partitioning data structures among
threads, along with chunk-based migration and an efficient synchronization-free
fast-path, can be of benefit in building additional scalable high-performance ser-
vices in the future.
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Chapter 2

On Locality Effects in STM

2.1 Introduction

Locality has always been an important aspect of many research fields, such as
concurrent data structures, concurrent algorithms, and memory allocators. Indeed,
many papers discuss locality and cache-awareness (see Section 2.2). However,
somewhat surprisingly, in the field of software transactional memory (STM) [36],
not many papers address this subject, and the few that do, only refer to it shortly.

The benefits of locality are well known and consist of two aspects: the first
is spacial locality, which affects both single-threaded and multi-threaded applica-
tions. The second is cache-contention, which affects multi-threaded programs. In
Section 2.4.3 we examine these two locality effects, and run micro-benchmarks
in order to understand them and their impact on performance better. Our micro-
benchmarks show that both effects can have a potentially large impact on perfor-
mance.

In STM systems, one way to achieve locality is by storing the meta-data inline
with the data. This approach was suggested in the past in McRT-STM [34] for
word-based systems, and in [18] for object-based systems, but the locality effects
were not evaluated or explained in detail. In this chapter we use an approach similar
to the one used in McRT-STM and evaluate the effects of this approach. We create
a version of TL2 that emulates this approach by storing locks inline with the data,
instead of storing them in a global lock-table as done in most STMs.

Storing meta-data inline with the data has several advantages:

e Avoiding global meta-data can reduce so called “false” cache contention
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caused due to multiple unrelated meta-data items sharing the same cache
line.

e Because the data is stored next to the meta-data, fetching the meta-data may
fetch the data to the cache and thus reduce the number of cache misses.

e Whereas storing meta-data inline with the data uses the minimal amount
of memory necessary, storing meta-data in a global hash table has a large
memory overhead.

e Storing meta-data in a global table may result in false conflicts if one location
is used for more than one lock. This is not a problem with local meta-data,
since there is exactly one lock per allocation.

We look at TL2 [16] as a test case and we run benchmarks from the STAMP
benchmark suite in order to evaluate the effect of storing meta-data locally on an
STM system. Our results show a 20-230% speedup when comparing local meta-
data to a global lock-table. We also see a decline in the number of cache misses
that may explain this difference. In summary, our contributions in this chapter are:

e Understanding the two locality effects.
e Evaluating the effects of meta-data locality on an STM system.

e Understanding how meta-data locality may help improve STM systems.

2.2 Related Work

The effect of data locality on performance is the subject of many works. In [13],
the authors recognize data locality as an important problem. The authors sug-
gest that data should be clustered in memory in a data-structure aware manner.
They suggest a new version of malloc which can allocate related data in the same
cache block, thus reducing the number of accesses to memory. Other works such
as [38], [29] suggest improving locality by compiler based optimizations, while
works such as [33] and [12] use programmer “hints” to improve data locality of
both sequential and parallel programs.

Many of the STM systems for unmanaged environments are lock-based ([16],
[19], [17], [34]). Locks are used to protect shared memory locations in order to
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make sure that the transactions do not conflict before a transaction is allowed to
commit (see section 2.4.1). Most of these algorithms have been implemented by a
global lock-table ([16], [19], [17]). In our work we focus on TL2 [16], a lock-based
STM system, in which locks are only acquired at commit time, but are validated
before and after every read, thus making the overhead of accessing locks signifi-
cant.

In this chapter we evaluate the idea of storing locks inline instead of using a
global lock table. This idea of inline locks in STM systems was first presented in
MCcRT-STM [34]. This STM system had an optional in-line locks implementation,
which allocated the locks of small objects in-line with the data. This is done by
using a custom memory allocator. The effect of in-line locking vs. global lock
table were tested by three micro benchmarks and showed improvement in two of
the benchmarks. However, the reason for those improvements were not further
looked at, and the effect was not tested using more realistic benchmarks.

Concurrently and independently to our work, Mannarswamy and Govindara-
jan [28] suggested compiler transformations for reducing cache-misses in STMs.
They showed that cache-misses of the STM system account for a large number
of the total cache-misses of the STAMP benchmarks. They showed that in most
benchmarks most of the cache-misses originate from accessing locks. The solution
they gave for this problem is holding the lock in-line with the data, similarly to
MCcRT-STM.

2.3 Locality in different architectures

In this section we discuss the different locality effects, and run micro-benchmarks
in order to see those effects.

We run the micro-benchmarks on two systems:

1. An AMD Opteron system with eight 4-core CPUs with NUMA layout and
128GB of RAM.

2. An Intel Nehalem system with two 6-core hyperthreaded CPUs (a total of 24
hardware threads) and 80GB of RAM.

In the first benchmark we check how contention affects performance and in the
second we check how spacial data locality affects performance.
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2.3.1 Memory contention effect on different architectures
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Figure 2.1: Contention effect - speedup.

The purpose of this benchmark is to show the effect of sharing data among
threads. In this simple benchmark all threads access an integer in a 80%/20% R/W

ratio. We run the benchmark in two modes:
e Fully local - all threads access different integers, so no data is shared.

e Fully shared - all threads access the same integer, so that all read and write

operations are to shared data.
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Opteron - 32 threads Nehalem - 24 threads

Fully Shared Fully Local Fully Shared Fully Local
L1 miss rate 0.987 0.005 7.826 0.446
Total miss rate 1.129 0.001 6.116 0.240

Table 2.1: Contention effect - cache miss rates (%).

We run the benchmark on both systems with a different number of threads,
up to the hardware thread limit of the machine. In each test we run a constant
number of operations which we divide among the threads. Thus, if the threads do
no interrupt each other, we expect the speedup to be linear in the number of threads.
In Figure 2.1 we show the result of this benchmark. The x-axis is the number of
threads and the curve shows the speedup of the benchmark relative to the run time
of the benchmark with one thread.

We can see that there is a major difference between the runs. This can be
explained by the difference between the latency of accessing a value in the L1
cache and a value located in the memory. In Table 2.1 we can see the L1 data
cache loads miss rate and the overall miss rate (#of LLC load misses/#L1 loads),
where LLC is the last level cache. It is clear that there is a major difference between
the two modes, and this verifies our assumption.

2.3.2 Spacial locality effect

In this benchmark we test the effect of spacial locality on performance. Again we
implemented a simple benchmark with two modes. In the first mode, which we call
no-spacial-locality, each thread performs reads from different memory locations,
where each read accesses two cache lines that are far enough apart so that the data
is not fetched together from memory to cache. The threads do not share their data
in order to disable contention effects.

The second mode, spacial-locality, is identical to the first, except that every
even operation is performed on the same cache as like the preceding operation. In
this case, half of the operations access data that resides in the cache.

The results of this benchmark on 16 threads can be seen in Figure 2.2. Here we
can see that both machines show a 70-99% runtime speedup. In Table 2.3.2 we can
see that, as expected, the no-spacial-locality mode has about twice as much misses
as the spacial-locality mode.
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Figure 2.2: Prefetch effect - speedup.

Opteron Nehalem

Spacial Locality = No Yes No Yes
L1 miss rate 29.57 13.09 56.72 23.58
Total miss rate  29.88 1324 0.70 047

Table 2.2: Prefetch effect - cache miss rate (%).

2.4 Locality in STM

In this section we present an alternative method to store meta-data in a local-aware
manner and discuss the effects it may have on the performance of the STM system.
We look at TL2 [16] as a case study, and implement a variant of it that stores locks
near the data instead of storing them in a global hash-table.

2.4.1 Background

In many lock-based STM implementations, like TL2[16], locks are held in a global
lock-table which is usually implemented as an array-based hash table. Each word
or group of several words in the memory is mapped to an entry in the array that con-
tains the lock for that word by a simple hash function (see Figure 2.3(a)). In case
of collisions, it is possible for two words to share a lock, thus causing transactions
to abort due to false-conflicts.

In TL2, the lock is checked before and after each read, if a read is successful,
then the address read is added to the transaction’s read-set. When writing to an
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Lock Table

Lock 1
Word 1 Lock 2
Lock 3 Lock O1|Object 1
Word 2 :
R Lock -1 Lock O2|Object 2
. Lock n :
(a) Lock table (b) Lock with data

Figure 2.3: Storing locks in a table vs. storing locks with the data.

object, the object is buffered in a set called the transaction’s write-set. When the
transaction commits, locks are acquired for all the addresses in the write-set, then,
the lock is validated again for each entry in the read set, and finally the data in the
write-set is written back to memory and the locks are released.

2.4.2 Local Meta-data implementation

While many previous STM systems store meta-data in a global table (see Figure
2.3(a)), we store meta-data, such as locks, near the data itself, as depicted in Figure
2.3(b). A similar approach was used in McRT-STM [34]. Since our goal in this
work is to see the effects of locality on STM, our implementation is not a full work-
ing system, but rather an emulation of such a system. A more detailed description
on how such system can be fully implemented is found in [34].

There is a technicality related to changing the location of the lock - it requires
changing the memory allocation library, as described in [34]. Specifically, for our
experiments, we alter the implementation supplied with the STAMP benchmark
suite [11]. In this implementation, every call to malloc is wrapped with a func-
tion that provides the block size This is done so that when a block is freed it will
be possible to free the locks associated with each word of this block. In our im-
plementation, we change the wrapper function to also include the lock, (similarly
to [34]). We also adapt the TL2 implementation to work with this change.

In order to locate the lock when reading or writing a value, the STM system
must know where the start of the block is. This may be a problem if the operation
is done on a field in a struct or a cell in an array, since only the pointer to the data
is passed to the STM system. In order to bypass this problem, we changed the
implementation of the read and write macros so that they will get a pointer to the
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start of the block in addition to the actual data location. This change is for the sake
of testing only. As described in [34], it is possible to implement a real STM system
that stores the meta-data as we do even without passing the address of the lock by
changing the implementation of the memory allocator.

As described in [34], when the allocated objects are large, as in the case of
arrays, it is better to use a lock-table instead of a lock per object in order to avoid
false-conflicts. We do not discuss this aspect in this chapter, and instead restrict
our attention to benchmarks with small objects.

In addition, we also altered the read-set implementation. Originally it was
implemented as an array with an initial capacity of 8192. Each read of a mem-
ory location inserted the address of the lock to the last free slot in this array, and
therefore reading from the same address twice would result in two identical ar-
ray entries. To eliminate this redundancy, we changed the implementation of the
read-set and implemented it as a hash-set with an O(1) add operation, an O(n) reset
operation, and an O(n) object iteration operation. This change helps both the local
meta-data and the global lock-table implementations. In fact, the global lock-table
implementation has a greater benefit from this change than the local meta-data im-
plementation.

2.4.3 Local Meta-data advantages

Storing meta-data locally has several advantages over the global lock-table imple-
mentation:

Local meta-data: In the global lock-table implementation, adjacent locks may
share the same cache line; this is a case of false-sharing. In this case a thread that
writes to one lock may cause cache invalidations to other threads that read adjacent
locks. In contrast, in the local meta-data implementation, there is no such false-
sharing. The local approach therefore reduces the contention on the cache, which
we expect to yield a similar effect to the one we saw in Section 2.3.1.

Spacial & temporal locality: As described in Section 2.4.1, in TL2, the lock
is checked before and after each read. When a global table is used the lock resides
in a global hash-table which is far from the data, and therefore each read requires
fetching at least two different memory location to the cache. In the local meta-data
implementation, when a lock is read, the data associated with that lock is often also

46



fetched to the cache. Since the next action after reading a lock is usually reading
the data (unless the transaction aborts before the read), we will not get a cache miss
here. This is particularly significant if the data set is large, and most accesses are
to objects that are not in the already in the cache. Here we expect to see speedup
due to the spacial memory locality effect that we saw in section 2.3.2.

Lock granularity: In the local meta-data implementation, the locking granularity
is not arbitrary as it is with the fixed-granularity implementation of TL2. Rather,
we keep one lock per object allocated by malloc. This may be an advantage in
cases such as structs, which are semantically one object, since when we access one
field in a struct there is high probability of accessing additional fields in the same
struct. Also, in this scenario, accessing several fields of the same struct will add
only a single lock to the read-set, where originally there was one lock per field.
Therefore, in the local meta-data implementation, the read-set is smaller and there-
fore consumes less memory and takes less time to validate before commit. The
downside of this method is that for very big objects, like arrays, one lock may be
too coarse and cause false conflicts. Indeed, as noted above, it is not recommended
to use this approach for large objects.

Memory consumption and false conflicts: Unlike a global table, where there in-
herently must be many empty table entries to reduce the probability of collision, in
the local meta-data implementation there is exactly one lock per allocation, there-
fore, memory consumption is lower. Moreover, with a global table, two objects
may be mapped to the same lock and thus cause a false-conflict between transac-
tions that access different objects leading to spurious aborts. In our experiments
we increased the size of the lock-table from 22° to 22° to minimize such cases.
Furthermore we experimented on machines with ample memory, minimizing the
effect of the big tables.

2.5 Benchmarks

We evaluate the effect of local meta-data using some of the STAMP[11] bench-
marks.
We do not use benchmarks that have large shared objects, since as mentioned
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above, local meta-data is not a good solution for such objects - they are best sup-
ported by “falling back” on a global lock table[34]. The benchmarks we run are:
vacation, yada and intruder. We use the recommended configurations suggested in
[11]. Suffixes of low and high indicate the relative amount of contention, and the
‘+’ symbol indicates a larger input size.

We run the benchmarks on both systems (see 2.3), each benchmark was run
with 1,2,4,8 and 16 threads on both machines, and 32 threads on the AMD machine.
Each data point is the average of 5 runs.

The first benchmark is vacation, an implementation of an online transaction
system emulating a travel reservation system. Each transaction performs several
operations on the database, which is implemented as a set of red-black trees. We
found that in most cases, contention in this benchmark is very low and the ma-
jority of transactions commit. The second benchmark is intruder, a network intru-
sion detection system. This system has two main data-structures, a FIFO queue
and a balanced tree. This benchmark has short transaction with high contention.
The third benchmark is Yada, which implements Ruppert’s algorithm for Delaunay
mesh refinement. This benchmark has long transactions with medium contention.

2.5.1 Results

Figures 2.4 and 2.5 show the speedup of the local meta-data implementation over
the global lock-table implementation for the all three benchmarks on both ma-
chines.

For the vacation benchmarks we can see that while using local meta-data is
better for all cases, the speedup is greater when the input is larger, this may be
because in those cases the chance of a lock to already be in the cache before the it is
accessed is smaller compared to the benchmark with smaller data sets. This leads
to a bigger advantage for the local meta-data implementation, since the locality
effects are more relevant when the lock is not already in the cache.

We can see that the improvement is not just because of less false-conflicts,
since there is a significant improvement even when only one thread is used. Thus
we can assume that this speedup is mainly due to locality effects.

For the intruder benchmark we can see a 20% speedup on the Opteron machine
and a 10%-20% speedup in the Nehalem machine. For the yada benchmark we see
a 20% speedup for yada on the Opteron machine. For yada+ we see a 40%—80%
speedup, the incline in speedup may be caused by a larger number of aborts in the
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normal version due to false-conflicts, the probability for such aborts increase as
more threads are run.

2.5.2 Readset
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Figure 2.6: VacationHigh read-set size distirbution.

As we stated in Section 2.4.3 the size of the read-set is also affected by our
change due to the changed granularity. While we believe the effect of this on the
runtime is minor, we show in Figure 2.6 the read-set size for the vacationHigh
benchmark with one thread on the Opteron machine. The x-axis is the size of the
read-set divided to buckets, the y-axis is the number of transactions that committed
with that read-set certain size. It can be seen that our the local meta-data system’s
read-set is about half the size of the original TL2 implementation.

2.5.3 Cache effects

In this section we will see how locality effects in our the local meta-data STM
system reflect in cache misses. To see this we run the STAMP tests we ran in
Section 2.5.3. Most runs were with one thread so other effects that may occur due
to aborts will be disabled. We also run vacation with 16 threads since the aborts
rate there are low. We then read the performance counters for the L1 and last-level-
cache loads and load-misses and compare the results between the global lock-table
and the local meta-data implementations.

Table 2.3 shows the cache miss rate for three benchmarks with one thread, and
for vacationHigh with 16 threads. It can be seen that there are less cache misses
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when the metadata is inline. However, this change seems to be small. This can
be explained by the fact that in those benchmarks a significant part of the code is
outside of the STM system, which makes the STM system less significant. Never-
theless, those changes, while small, can have a noticeable effect on the performance
as accessing memory has high latency penalty, and therefore may explain some of
the changes in latency in our tests.

(a) vacationHigh 1 thread

Opteron Nehalem

Meta data Global Local Global Local
L1 miss rate 1.81 1.38 3.87 2.73
Total miss rate 0.81 0.65 1.21 1.06

(b) vacationHigh 16 threads

Opteron Nehalem

Meta data Global Local Global Local
L1 miss rate 1.84 1.38 3.80 3.23
Total miss rate ~ 0.88 0.72 1.33 1.19

(c) intruder 1 thread

Opteron Nehalem

Meta data Global Local Global Local
L1 miss rate 0.66 0.37 1.42 0.87
Total miss rate  0.10 0.06 0.34 0.20

(d) yada 1 thread

Opteron Nehalem

Meta data Global Local Global Local
L1 miss rate 0.99 0.66 2.78 1.69
Total miss rate ~ 0.28 0.18 0.47 0.30

Table 2.3: STAMP - cache misses (%).
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